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Abstract Uncertainty measure can supply a new viewpoint
for analyzing knowledge conveyed by an Atanassov’s intu-
itionistic fuzzy set (AIFS). So uncertainty measurement is a
key topic in AIFS theory, analogous to the role of entropy
in probability theory. After reviewing the existing measures
of uncertainty (entropy) for AIFSs, we argue that the exist-
ing measures of uncertainty cannot capture all facets of
uncertainty associated with an AIFS. Then we point out and
justify that there are at least three kinds of uncertainty for an
AIFS, namely non-specificity, fuzziness, and intuitionism.
We provide formal measures of non-specificity, fuzziness,
and intuitionism, together with their properties and proofs.
Properties of the proposed non-specificity measure are espe-
cially investigated. Finally, a general uncertainty measure
consisting of these three uncertainties is presented. Illustra-
tive examples show that the proposed uncertainty measure
is consistent with intuitive cognize, and it is more sensitive
to changes of AIFSs. Moreover, the proposed uncertainty
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measure can also discriminate uncertainty hiding in classi-
cal sets. Thus, it provides an alternative way to construct
unified uncertainty measures.
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Uncertainty · Non-specificity · Fuzziness · Intuitionism

1 Introduction

As a generation of Zadeh’s fuzzy sets [1], Atanassov’s intu-
itionistic fuzzy sets (AIFSs), first formulated by Atanassov
[2], can express and process uncertainty much better by
introducing a hesitation degree. In fuzzy sets, the member-
ship value μ(x) of x in X (called the universe) is just a single
real number, usually in [0, 1], and the non-membership
of x is taken as 1 − μ(x). But for AIFSs, the member-
ship value μ(x) and the non-membership value v(x) should
be both taken into account for describing any x in X.
Moreover the sum of membership and non-membership is
less than or equal to 1. Thus, an AIFS is expressed with
an ordered pair of real numbers (μ(x), v(x)). The differ-
ence between 1 and μ(x) + v(x), i.e., 1 − μ(x) − v(x),
is called the hesitancy degree. As a novel mathematical
tool for handling uncertainty, AIFS is attracting more and
more attentions from researchers [3]. Theoretical research
on AIFS mainly concentrates on its relationship with other
generalized fuzzy sets [4–6], intuitionistic fuzzy opera-
tions [7, 8], and some important mathematical measures
for AIFSs [10–18]. Meanwhile, the application of AIFS
has been extended to many areas like information fusion
[19, 20], multi-attribute decision making [21], intuitionistic
fuzzy optimization [22, 23], data mining [24], etc.
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The measure of uncertainty is very crucial in all kinds
of theories of uncertainty. The concept of uncertainty is
intricately connected to the concept of information. There-
fore, to describe the uncertainty, measures in information
theory are often used for reference. For example, in prob-
ability theory, the Shannon entropy is developed. In fuzzy
set theory and its related applications, some entropy-alike
measures also are proposed to represent the uncertainty
[25, 26]. These measures try to quantify only one aspect
of uncertainty, i.e., fuzziness. But fuzzy sets are associated
with another kind of uncertainty, which is related to lack
of specificity. To make a distinction between them, we can
say that fuzziness measures gradualarity while specificity is
related to granularity. Yager [27, 28] have proposed differ-
ent measures of specificity for fuzzy sets. Yager’s specificity
measures are defined by quantifying the degree to which a
fuzzy subset focuses on (points to) one and only one element
as its member.

Inspired by those works on fuzzy uncertainty, many
researchers have constructed uncertainty measures for
AIFSs. An axiomatic foundation for entropy of AIFS was
first proposed by Burillo and Bustince [10] in 1996. Szmidt
and Kacprzyk [15] also proposed another set of axioms
for intuitionistic fuzzy entropy, by extending the axiomatic
entropy of fuzzy sets. Both of these axiomatic structures
are non-probabilistic type entropy measures. The diference
between these two definitions lies in the fact that the entropy
of Burillo and Bustince [10] is a measure of how far an AIFS
is from a fuzzy set, whereas the definition given by Szmidt
and Kacprzyk [15] is a measure of how far an AIFS is from
a classical set. Thus, the former is often called intuitionism,
while the latter is called fuzziness.

However, it has been demonstrated that these two inter-
esting approaches cannot capture all facets of uncertainty
that are associated with AIFSs. Either fuzziness or intuition-
ism alone may not be a satisfactory uncertainty measure for
AIFSs. The reason is that a fuzziness measure answers the
question about the difference between the membership and
non-membership degrees, but does not consider any pecu-
liarities of the membership and non-membership degrees, as
discussed by Szmidt et al. [16]. So, the two situations, one
with the maximal entropy for a membership function equal
to a non-membership function (e.g., both take 0.5), and
another when we know absolutely nothing (i.e., both equal
to 0), are equal from the point of view of the entropy mea-
sure (in terms of the AIFSs). Nevertheless, in the application
of decision making, these two situations are clearly differ-
ent. On the other hand, the intuitionism essentially measures
the differences between 1 and μ(x) + v(x). So the uncer-
tainty degrees of AIFSs with equal hesitancy are difficult
to be discriminated. Based on such sense, some researchers
attempted to define uncertainty measure for AIFSs based on
both fuzziness and intuitionism [12, 13, 16–18].

Taking a closer examination on existing uncertainty mea-
sures, we can find that the uncertainty caused by fuzziness
is decreasing with the difference between μ(x) and v(x),
while uncertainty caused by intuitionism or lack of knowl-
edge is increasing with the hesitancy degree π(x). It is
obvious that all existing uncerrtainty measures for AIFSs
can be applied in fuzzy sets by setting v(x) = 1 − μ(x).
Then another interesting question arises: how to measure the
uncertainty of a classical subset of X? Since a classical set
can be regarded as a special AIFS with all membership and
non-membership degrees as 0 or 1, hesitancy degrees as 0
for ∀x ∈ X, we have |μ(x) − v(x)| = 1 and π(x) = 0.
Monotonicity properties of fuzziness and intuitionism indi-
cate that the uncertainty degree of all sets is minimum,
always taken as 0. However, the uncertainty hidden by
classical sets with different number of elements should indi-
cate different uncertainty grades. For example, the full set
A = X representing full ignorance is more uncertain than
the singleton set which is completely precise. In fact, this
contradiction also exists for other non-singleton subsets of
X. To overcome such contradictions, a general uncertainty
measure for AIFSs is desirable.

So far, there are few uncertainty measures that can quan-
tify uncertainty degree of fuzzy sets, AIFSs and classical
sets simultaneously. From our point of view, another uncer-
tainty related to the cardinality of a set must be considered.
This kind of uncertainty is also determined by the inverse
of the degree to which a set points to one and only one ele-
ment as its member. In this paper, we call it non-specificity,
which is different from the so-called non-specificity defined
by Pal et al. in [13]. Our proposed non-specificity means
two or more alternatives are left unspecified, which repre-
sents a degree of imprecision. It only focuses on those sets
with cardinality larger than 1. Non-specificity is a distinc-
tive uncertainty type in the theory of intuitionistic fuzzy
set when compared with the entropy-type uncertainty. Thus,
only by combining non-specificity, fuzziness and intuition-
ism together, can we define a general uncertainty measure
suitable for all AIFSs, including fuzzy sets and sets.

In this paper, we address the problem of general uncer-
tainty measure for AIFSs. The proposed uncertainty mea-
sure comprises three aspects: non-specificity, fuzziness,
and intuitionism. Meanwhile, we uncover some axiomatic
properties of the proposed measure to demonstrate its gener-
alization ability. The main priority of our proposed general
uncertainty measure lies in its capability in discriminating
uncertainty degrees of classical sets, fuzzy sets, as well as
Atanassov’s intuitionistic fuzzy sets in a union way. Hence,
it provides an alternative way to quantify uncertainties of
imprecise information.

We organize the rest of this paper as follows. Section 2
gives a brief recall of AIFSs. In Section 3, we briefly
review and analyze existing axiomatic entropy measures for
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AIFSs. Non-specificity, fuzziness, intuitionism and a gen-
eral uncertainty measure consisting of them are put forward
in Section 4. In this section we also provide some properties
of proposed measures along with their proofs. In Section 5,
illustrative examples are given to show the performance of
the proposed measure. The proposed uncertainty measure is
applied to solve the problem of multi-attribute decision in
Section 6. This paper is concluded in Section 7.

2 Preliminaries

In this section, we briefly recall the basic concepts related
to AIFSs, and then list some operations defined on AIFSs.
The connection between AIFSs and classical sets is also
presented.

Definition 1 [1]. Let X = {x1, x2, · · · , xn} be the universe
of discourse, then a fuzzy set A in X is defined as:

A = {〈x, μA(x)〉 |x ∈ X } (1)

where μA(x) : X → [0, 1] is the membership degree.

Definition 2 [2]. An intuitionistic fuzzy set A in X defined
by Atanassov can be written as:

A = {〈x, μA(x), vA(x)〉 |x ∈ X } (2)

where μA(x) : X → [0, 1] and vA(x) : X → [0, 1] are
membership degree and non-membership degree, respec-
tively, with the condition:

0 ≤ μA(x) + vA(x) ≤ 1 (3)

πA(x) determined by the following equation:

πA(x) = 1 − μA(x) − vA(x) (4)

is called the hesitancy degree of the element x ∈ X to the
set A, and πA(x) ∈ [0, 1], ∀x ∈ X.

πA(x) is also called the intuitionistic index of x belong-
ing to A. Greater πA(x) indicates more vagueness on x.
Obviously, when πA(x) = 0, ∀x ∈ X, an AIFS degenerates
into an ordinary fuzzy set.

It is worth noting that besides Definition 2 there are other
possible representations of AIFSs proposed in the litera-
ture. Hong and Kim [11] proposed an interval representation
[μA(x), 1 − vA(x)] to represent Atanassov’s intuitionistic
fuzzy set A in X instead of using 〈μA(x), vA(x)〉. This
approach is equivalent to the interpretation of interval val-
ued fuzzy sets, where μA(x) and 1 − vA(x) represent
the lower bound and upper bound of membership degree,
respectively. Obviously, [μA(x), 1 − vA(x)] is a valid inter-
val, since μA(x) + vA(x) ≤ 1 always indicates μA(x) ≤
1 − vA(x).

Definition 3 [9]. Let A = {〈x, μA(x), vA(x)〉 |x ∈ X } and
B = {〈x, μB(x), vB(x)〉 |x ∈ X } be two Atanassov’s intu-
itionistic fuzzy sets over X. Some operations on them are
defined as:

A ⊆ B if and only if μA(x) ≤ μB(x), vA(x) ≥
vB(x), ∀x ∈ X;

A = B if and only if μA(x) = μB(x), vA(x) =
vB(x), ∀x ∈ X;

AC = {〈x, vA(x), μA(x)〉 |x ∈ X } , where AC is the
complement of A;

A∩B = {〈x, min (μA(x), μB(x)) , max (vA(x), vB(x))〉 |x ∈ X } ;

A∪B = {〈x, max (μA(x), μB(x)) , min (vA(x), vB(x))〉 |x ∈ X } ;

A + B = {〈x, μA(x) + μB(x)

−μA(x) · μB(x), vA(x) · vB(x)〉 |x ∈ X } ;
A ·B = {〈x, μA(x) · μB(x), vA(x) + vB(x) − vA(x) · vB(x)〉 |x ∈ X } .

Let X = {x1, x2, · · · , xn} be the universe of discourse.
A denotes an arbitrary nonempty subset of X, i.e., A ⊆ X

and A �= ∅. Then A can be expressed as an AIFS as: Ã ={〈
xi, μÃ

(xi), vÃ
(xi)

〉}
, where μ

Ã
(xi) = 1 for xi ∈ A and

μ
Ã
(xi) = 0 for xi /∈ A, i = 1, 2, · · · , n; v

Ã
(xi) = 1 −

μ
Ã
(xi), and π

Ã
(xi) = 0, ∀xi ∈ X.

For example, in the universe X = {x1, x2, x3, x4}, two
subsets A = {x1, x2} and B = {x1, x2, x3} can, respectively,
be written in the form of AIFS as:

Ã = {〈x1, 1, 0〉 , 〈x2, 1, 0〉 , 〈x3, 0, 1〉 , 〈x4, 0, 1〉} ,

B̃ = {〈x1, 1, 0〉 , 〈x2, 1, 0〉 , 〈x3, 1, 0〉 , 〈x4, 0, 1〉} .

In such sense, AIFSs can be considered as a general form of
fuzzy sets and classical sets. For clarity, in the following dis-
cussions, no differentiation among classical sets, fuzzy sets
and intuitionistic fuzzy sets will be made. The superscripts
in Ã will be omitted.

3 Entropy measures for AIFSs

As discussed earlier, most of the existing uncertainty mea-
sures are defined based on entropy. Burillo and Bustince
[10] firstly presented the definition of entropy for AIFSs as
following.

Definition 4 [10] Let AIFS(X) denote the set of all AIFSs
over X. A mapping EI : AIFS(X) → [0, 1] is called an
entropy if it satisfies the following properties:

(EI 1) EI (A) = 0 if and only if A is a fuzzy set;
(EI 2) EI (A) = 1 if and only if μA(x) = vA(x) = 0for

everyx ∈ X;
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(EI 3) EI (A) = EI (A
C);

(EI 4) EI (A) ≥ EI (B) if μA(x) ≤ μB(x) and vA(x) ≤
vB(x) for everyx ∈ X.

We can notice that this entropy measure is increasing
with the hesitancy degree. This definition basically consid-
ers the entropy as a measure of how far an AIFS is from a
fuzzy set. Therefore, the uncertainty degree of AIFSs cannot
be captured by this definition.

By describing the difference between fuzzy sets and clas-
sical sets, De Luca and Termini [25] has defined an entropy
measure EFS

LT for fuzzy sets as:

EFS
LT (A) = −1

n

n∑

i=1

[
μA(xi) log2 μA(xi)

+ (1 − μA(xi)) log2 (1 − μA(xi))
]

(5)

Then Szmidt and Kacprzyk [15] extended this definition
to measure the entropy of AIFSs as following.

Definition 5 [15]. A mapping EF : AIFS(X) → [0, 1] is
said to be an entropy if it satisfies the following axioms:

(EF 1) EF (A) = 0 if and only if A is a set;
(EF 2) EF (A) = 1 if and only if μA(xi) = vA(xi) for

every xi ∈ X;
(EF 3) EF (A) = EF (AC);
(EF 4) EF (A) ≤ EF (B) if μA(xi) ≤ μB(xi) and

vA(xi) ≥ vB(xi) for μB(xi) ≤ vB(xi) or μA(xi) ≥
μB(xi) and vA(xi) ≤ vB(xi) for μB(xi) ≥ vB(xi).

We can find that this definition only focuses on fuzziness,
without considering intuitionism. It ignores the entropy
changes caused by hesitancy degree whileμA(x) = vA(x)

for all x ∈ X.

These two definitions provide us with two different ways
for measuring uncertainty for AIFSs. In fact, these two kinds
of entropy exist in an AIFS simultaneously. Firstly, an AIFS
is a fuzzy set and it is associated with fuzziness. A measure
of such fuzziness would be related to the departure of the
AIFS from its closest set. Such uncertainty may be called
the fuzziness (or “fuzzy-type” uncertainty) associated with
an AIFS. On the other hand, in an AIFS, there exists another
kind of uncertainty that is related to lack of knowledge. This
aspect of uncertainty is related to how much we do not know
about the membership and non-membership, i.e., related to
hesitancy 1 − μA(x) − vA(x). This uncertainty may be
called intuitionism type uncertainty. Essentially, EI (A) in
Definition 4 models the intuitionistic aspect of uncertainty,
while EF (A) in Definition 5 is defined to model the fuzzy
aspect of uncertainty.Thus, although both of these measures
are interesting uncertainty measures for AIFSs, neither of

them is competent to capture intuitionistic fuzzy uncertainty
comprehensively.

To illustrate these analyses, let us consider the following
examples.

Example 1 Let X be a universe, A and B be two AIFSs in X.
For some fixed x ∈ X, suppose μA(x) = 0.2, vA(x) = 0.5;
μB(x) = 0.6, vB(x) = 0.3. Thus, πA(x) = 0.3 whereas
πB(x) = 0.1. EI (A) is a model of entropy in terms of intu-
itionism, so, in principle EI (A) ≥ EI (B). But clearly the
conditions μA(x) ≤ μB(x) and vA(x) ≤ vB(x) do not hold
at least for one x ∈ X.

Example 2 Let A = {< x1, 0.5, 0.5 >,< x2, 0.3, 0.3 >}
and B = {< x1, 0.2, 0.2 >,< x2, 0.1, 0.1 >} be two AIFSs
on X = {x1, x2}. Then we have EF (A) = EF (B) = 1. But
clearly in terms of lack of knowledge (hesitancy, intuition-
ism), these two sets differ signicantly. So the intuitionism-
type uncertainty, which is the special and intrinsic property
of an AIFS, is not reflected in this formulation.

In order to construct a comprehensive uncertainty mea-
sure to capture all kinds of uncertain information in AIFSs,
Mao et al. [12] refined the axiomatic criteria for the intu-
itionistic fuzzy entropy measure and proposed a general
model as follows:

Definition 6 [12]. The intuitionistic fuzzy entropy mea-
sure of an AIFS A is a real-valued function EIF (A) with
πA and �A = |μA − vA|, i.e., EIF (A) = g(πA, �A) :
AIFS(X) → [0, 1], satisfying the following axiomatic
principles:

(EIF 1) EIF (A) = 0 if and only if A is a classical set;
(EIF 2) EIF (A) = 1 if and only if μA(xi) = vA(xi) = 0

for every xi ∈ X;
(EIF 3) EIF (A) = EIF (AC);
(EIF 4) g(πA, �A) is a real-valued continuous function

increasing with respect to the first variable πA, and
decreasing with second variable �A = |μA − vA|.

That is to say, the entropy value will increase along with
the enhanced fuzziness under the same intuitionism; equiva-
lently, it will decrease along with the weakened intuitionism
under the same fuzziness.

Pal et al. [13] have also reformulated the axioms for mea-
sures of uncertainty associated with an AIFS in a manner
such that it can capture both types of uncertainties present in
it. They applied the couple (EI , EF ) to quantify the uncer-
tainty hidden in AIFSs. Definitions of EI and EF are in
analogy with Definition 4 and Definition 5, respectively.
Moreover, we can obtain the definition of EIF by taking
both EI and EF into account. So it is indicated that the
uncertainty degree of AIFSs can be well measured by the
combination of fuzziness and intuitionism.
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Since classical sets can be regarded as a special type
of AIFSs, the uncertainty measure for AIFSs should be
capable of discriminating the uncertainty degree of classi-
cal sets. However, none of fuzziness, intuitionism and the
combination of them makes sense for classical sets. The rea-
son is that the fuzziness and intuitionism of a classical set
are both zero, but it contains another kind of uncertainty
namely non-specificity, which is related to its cardinality.
As for an AIFS, the non-specificity can be regarded as the
inverse concept of the degree to which an AIFS focuses
on one and only one element as its member. Obviously,
the non-specificity-based uncertainty is beyond the scope of
fuzziness and intuitionism.

This can be demonstrated by the next example.

Example 3 Let X = {x1, x2, x3} be the universe. Three sub-
sets A = {x1}, B = {x1, x2} and C = {x1, x2, x3} can,
respectively, be expressed by AIFSs as:

A = {< x1, 1, 0 >,< x2, 0, 1 >,< x3, 0, 1 >},

B = {< x1, 1, 0 >,< x2, 1, 0 >,< x3, 0, 1 >},

C = {< x1, 1, 0 >,< x2, 1, 0 >,< x3, 1, 0 >}.

Given Definition 4 and Definition 5, we have EI (A) =
EI (B) = EI (C) = 0 and EF (A) = EF (B) = EF (C) = 0,
which means these three subsets contain equivalent uncer-
tainty information. But, obviously, the uncertainty degree of
the full set C is largest, while A is a singleton set taking its
uncertainty degree as 0.

This can be further illustrated by an application in tar-
get recognition, where the discernment frame is X =
{x1, x2, x3}, i.e., the unknown target can be recognized as
any subset of X. Three reorganization reports are obtained
as:

R1: the target is {x1};
R2: the target is {x1, x2};
R3: the target is {x1, x2, x3}.
We can notice that R1 is fully precise, while R3 is com-
pletely uncertain providing little knowledge about the target.
So R1 is more useful for decision maker than other two
reports. It is straightforward that the uncertainty degree of
{x1} is 0, and the full set {x1, x2, x3} contains the largest
uncertainty. Such analysis is potential suitable to other
applications. Therefore, all existing entropy measures for
AIFSs cannot discriminate the uncertainty degree for those
special AIFSs, namely classical sets. A general uncertainty
measure suitable for all AIFSs (AIFSs, fuzzy sets and
classical sets) is desirable.

4 General uncertainty measure for AIFSs

We would have in mind that a properly constructed uncer-
tainty measure for AIFSs consists of three kinds of uncer-
tainty: non-specificity, fuzziness, and intuitionism. The non-
specificity is determined by the inverse of the degree to
which an AIFS focuses on one and only one element as
its member. For a classical set, its non-specificity is closely
related to its cardinality. As for an AIFS, we can define its
non-specificity based on the difference between the maxi-
mum membership degree and the sum of other membership
degrees. The fuzziness and intuitionism can be constructed
according to Definition 4 and Definition 5.

4.1 Non-specificity

As mentioned earlier, non-specificity means two or more
alternatives are left unspecified, which represents a degree
of imprecision. It is usually inversely related to degree to
which the true alternative is in the set. So if the set consisting
of all possible alternatives is focusing on one and only one
element, it has the lowest non-specificity degree. Let X =
{x1, x2, · · · , xn} be the universe of discourse. A singleton
element set contains only one element, so it is implicitly
specific, and its non-specificity degree should be zero. Intu-
itively, the full set X = {x1, x2, · · · , xn} representing full
ignorance implies the maximum non-specificity. Since the
fuzziness and intuitionism of a classical set are both 0, the
only measurable uncertainty for a classical set is the non-
specificity, directly referring to its cardinality. Regarding the
well-known Hartley measure [29] shown in next definition
as the standard measure of non-specificity for classical sets,
we can determine the range of non-specificity as [0, log2 n],
with n as the cardinality of universe.

Definition 7 [29]. Let X = {x1, x2, · · · , xn} be the uni-
verse of discourse, and A be any subset of X. Then, the
Hartley measure is defined as:

H(A) = log2 (|A|) (6)

where |·| denotes the cardinality.
Yager [30] has investigated the specificity of AIFSs base

on the relationship between the membership degrees of
different elements. Since the non-specificity is the inverse
concept of specificity, we can define it in the same way.
Motivated by Yager’s work, we can provide the following
procedure for calculating the non-specificity of AIFS A over
X = {x1, x2, · · · , xn}.
(1) Determine the largest of the membership values. α =

max[μA(x1), μA(x2), · · · , μA(xn)]. We can assume
this occurs at x∗, thus α = μA(x∗).

(2) For all x �= x∗, assume MA(x) = min[α, 1 − vA(x)].
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(3) The non-specificity of A is defined as

N(A) = log2

⎛

⎝n +
∑

x �=x∗
(MA(x) − α)

⎞

⎠ (7)

Considering μA(x∗) ≤ 1−vA(x∗), we haveMA(x∗) =
min[α, 1 − vA(x∗)] = α, MA(x∗) − α = 0. So (7) is
equivalent to the following formula:

N(A) = log2

(

n +
∑

x

(MA(x) − α)

)

(8)

This non-specificity measure can be interpreted as follows.
If we use an interval representation [μA(x), 1 − vA(x)] to
express AIFS A, 1 − vA(x) represents the maximum mem-
bership degree of x belonging to A. For x �= x∗, although
its membership degree is less than α, its membership still
can take the value α under the condition of α ≤ 1 − vA(x).
So MA(x) − α reflects the minimum difference between α

and the possible membership degree of x. Moreover, since
MA(x) − α is non-positive, N(A) is capable of depicting
non-specificity of AIFS.

In the following example, we will illustrate the imple-
mentation of this procedure, together with its intuitive
performance.

Example 4 Let A and B be two AIFSs on X =
{x1, x2, x3, x4, x5} given as:

A = {〈x1, 0.3, 0.6〉 , 〈x2, 0.6, 0〉 , 〈x3, 0.4, 0.6〉 ,

〈x4, 0.2, 0.7〉 , 〈x5, 0, 0.5〉} ,

B = {〈x1, 0.3, 0.6〉 , 〈x2, 0, 0.6〉 , 〈x3, 0.4, 0.6〉 ,

〈x4, 0.7, 0.2〉 , 〈x5, 0, 0.5〉} .

For AIFS A, we haveαA =
max[μA(x1), μA(x2), μA(x3), μA(x4), μA(x5)] =
μA(x2) = 0.6. Then we can get:

MA(x1) = min[αA, 1 − vA(x1)] = min[0.6, 0.4] = 0.4;

MA(x3) = min[αA, 1 − vA(x3)] = min[0.6, 0.4] = 0.4;

MA(x4) = min[αA, 1 − vA(x4)] = min[0.6, 0.3] = 0.3;

MA(x5) = min[αA, 1 − vA(x5)] = min[0.6, 0.5] = 0.5.

The non-specificity of A can be obtained as:

N(A) = log2 (5 + (0.4 − 0.6) + (0.4 − 0.6) + (0.3 − 0.6)

+(0.5 − 0.6)) = 2.07.

Analogously, we have αB = max[μB(x1), μB(x2),

μB(x3), μB(x4), μB(x5)] = μB(x4) = 0.7. Then we can
get:

MB(x1) = min[αB, 1 − vB(x1)] = min[0.7, 0.4] = 0.4;
MB(x2) = min[αB, 1 − vB(x2)] = min[0.7, 0.4] = 0.4

MB(x3) = min[αB, 1 − vB(x3)] = min[0.7, 0.4] = 0.4;
MB(x5) = min[αB, 1 − vB(x5)] = min[0.7, 0.5] = 0.5.

The non-specificity of B can be obtained as:

N(B) = log2 (5 + (0.4 − 0.7) + (0.4 − 0.7) + (0.4 − 0.7)

+(0.5 − 0.7)) = 1.96.

Intuitively, we can notice that the degree to which B focuses
on x4 is stronger than the ability of A focusing on x2.
Moreover, if let � be the difference between the largest
membership degree and the second largest membership
degree, we have �A < �B . So B should be more specific
than A. Comparing N(A) and N(B), we find that the pro-
posed non-specificity measure coincides with the intuitive
analysis.

Let us now look at some properties of the proposed non-
specificity measure.

Corollary 1 For arbitrary AIFS A in the universe X =
{x1, x2, · · · , xn}, its non-specificity satisfies N(A) ∈
[0, log2 n].

Proof Since MA(x) ≤ α, we have n+ ∑

x �=x∗
(MA(x) − α) ≤

n

Considering 0 ≤ MA(x) and α ≤ 1, we get:

n +
∑

x �=x∗
(MA(x) − α) = n +

∑

x �=x∗
MA(x) − (n − 1)α

≥ n−(n − 1)α ≥ n − (n − 1)=1.

Hence, 1 ≤ n + ∑

x �=x∗
(MA(x) − α) ≤ n.

Consequently, we obtain N(A) ∈ [0, log2 n].

Corollary 2 If A is a subset of X = {x1, x2, · · · , xn},
its non-specificity measureN(A) coincides with its Hartley
Measure H(A).

Proof Without any loss of generality, we can suppose that
A = {x1, x2, · · · , xm} with 1 ≤ m ≤ n. A can be rewrit-
ten as A = {〈x1, 1, 0〉 , · · · , 〈xm, 1, 0〉 , 〈xm+1, 0, 1〉 , · · · ,

〈xn, 0, 1〉}. So we have α = 1 for all xi ∈ A.
Since no generality will be lost by taking x∗ = x1, we

have MA(x2) = · · · = MA(xm) = 1and MA(xm+1) =
· · · = MA(xn) = 0.
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Then it follows that:

n +
∑

x �=x∗
(MA(x) − α) = n +

∑

x �=x∗
MA(x) − (n − 1)α

= n + (m − 1) − (n − 1) = m.

Hence, N(A) = log2

(

n + ∑

x �=x∗
(MA(x) − α)

)

=
log2 m = log2 (|A|) = H(A).

This indicates that its non-specificity measureN(A)is
analogous to its Hartley MeasureH(A).

Corollary 3 If A is a classical fuzzy set in X =
{x1, x2, · · · , xn}, its non-specificity degree is:

N(A) = log2

⎛

⎝n +
∑

x �=x∗
(μA(x) − α)

⎞

⎠ .

Proof Without loss of generality, we can take α = μA(x1),
i.e., x∗ = x1. Since A is a classical fuzzy set, we
have μA(x) + vA(x) = 1for every x ∈ X. α =
μ(x1) = max[μA(x1), μA(x2), · · · , μA(xn)] indicates that
μA(x1) ≥ μA(x) = 1 − vA(x) ∀x ∈ X.

And then,

MA(x) = min[1 − vA(x), α] = min[1 − vA(x), μA(x1)]
= 1 − vA(x) = μA(x).

Finally we get

N(A) = log2

⎛

⎝n +
∑

x �=x∗
(MA(x) − α)

⎞

⎠

= log2

⎛

⎝n +
∑

x �=x∗
(μA(x) − α)

⎞

⎠ .

Corollary 4 For an AIFS A over X = {x1, x2, · · · , xn},
if there exists at least one x ∈ X such that μ(x) = 1, its
non-specificity degree can be written as:

N(A) = log2

⎛

⎝n −
∑

x �=x∗
vA(x)

⎞

⎠ .

Proof Given μ(x) = 1, we get α = 1 and M(x) =
min[α, 1 − vA(x)] = 1 − vA(x).

Consequently, we have:

N(A) = log2

⎛

⎝n +
∑

x �=x∗
(MA(x) − α)

⎞

⎠

= log2

⎛

⎝n +
∑

x �=x∗
(1 − vA(x) − 1)

⎞

⎠

= log2

⎛

⎝n −
∑

x �=x∗
vA(x)

⎞

⎠ .

Corollary 5 For an AIFS A over X = {x1, x2, · · · , xn},
if α = μA(x∗) = max[μA(x1), μA(x2), · · · , μA(xn)] and
v(x)A ≤ vA(x∗), its non-specificity isN(A) = log2 n.

Proof SinceμA(x∗) + vA(x∗) ≤ 1, then μA(x∗) ≤ 1 −
vA(x∗). Based on vA(x) ≤ vA(x∗), we can also get 1 −
vA(x) ≥ 1 − vA(x∗) ≥ μA(x∗) = α. So we have MA(x) =
min[α, 1 − vA(x)] = α.

Consequently,

N(A) = log2

⎛

⎝n +
∑

x �=x∗
(MA(x) − α)

⎞

⎠

= log2

⎛

⎝n +
∑

x �=x∗
(α − α)

⎞

⎠ = log2 n.

Corollary 5 provides a situation where an AIFS contains
the greatest non-specificity. v(x)A ≤ vA(x∗) implies a
possibility the all elements of AIFS A can take the same
membership degrees, thus, its non-specificity is the maxi-
mum. It is straightforward that when all elements have the
same membership grades and non-membership grades in
A, the non-specificity of A is maximum. This can also be
applied to explain the maximum non-specificity of the full
set X.

Next, we will give the property of function M for a
further investigation on the non-specificity measure.

Corollary 6 [30]. Given AIFS A in X = {x1, x2, · · · , xn},
for each x �= x∗, there exists a value λx ∈ [0, 1] such that
MA(x) = μA(x) + λxπA(x).

Proof By the definition of MA(x) we should consider two
cases. One case happens when α ≥ 1 − vA(x) for x �= x∗.
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Then we have MA(x) = 1 − vA(x) = μA(x) + πA(x), i.e.,
MA(x) = μA(x) + λxπA(x) with λx = 1.

Considering another case where α ≤ 1 − vA(x), we have
μA(x) ≤ MA(x) = α ≤ 1 − vA(x). It is obvious that there
exists a value λx ∈ [0, 1] such that MA(x) = μA(x) +
λx(1 − vA(x) − μA(x)) = μA(x) + λxπA(x).

In the light of this result we can view our formulation for
the non-specificity of an AIFS A as the non-specificity of a
particular classical fuzzy set compatible with A.

Let A be an AIFS in X = {x1, x2, · · · , xn}, and B be a
classical fuzzy set defined as:

μB(x∗) = min
[
μA(x∗), 1 − vA(x)

]
and vB(x) = 1 −

μB(x), for all x ∈ X.
By Corollary 4, we can get the non-specificity of B as :

N(B) = log2

⎛

⎝n +
∑

x �=x∗
(μB(x) − α)

⎞

⎠

= log2

⎛

⎝n +
∑

x �=x∗

(
min

[
μA(x∗), 1− vA(x)

] − α
)
⎞

⎠.

So we have N(A) = N(B). Thus the non-specificity of the
AIFS A is equal to that of B, a particular standard fuzzy set
compatible with A. Then a natural question arises why do
we use this special compatible standard fuzzy set, instead
of using any arbitrary classical fuzzy set F associated with
A satisfying: μF (x) = μA(x) + λxπA(x) with λx ∈ [0, 1].
We will borrow a theorem in [30] and modify it to show the
uniqueness of our choice.

Corollary 7 Assume X = {x1, x2, · · · , xn}. Let
A = {〈x, μA(x), vA(x)〉 |x ∈ X} be an AIFS on X

and α = max [μA(x)] = μA(x∗). B denotes a clas-
sical fuzzy set associated with Asuch that: μB(x∗) =
min

[
μA(x∗), 1 − vA(x)

]
and vB(x) = 1 − μB(x), for all

x ∈ X. F is an arbitrary classical fuzzy set associated with
A satisfying: μF (x) = μA(x) + λxπA(x) with λx ∈ [0, 1].
Then the non-specificity of B is not smaller than that of F ,
i.e., N(F) ≤ N(B).

Proof In this case we have:

N(B) = log2

⎛

⎝n +
∑

x �=x∗
(μB(x) − α)

⎞

⎠

= log2

⎛

⎝n +
∑

x �=x∗
(min [α, 1 − vA(x)] − α)

⎞

⎠ .

For convenience, we assume that β = max [μF (x)] =
μF (x∗∗).

Since μF (x∗) = μA(x∗) + λx∗πA(x∗) ≥ α, we have
β = max [μF (x)] ≥ α.

The non-specificity grades of F and B can be respectively
written as:

N(F) = log2

⎛

⎝n +
∑

x �=x∗∗
(μF (x) − β)

⎞

⎠

= log2

⎛

⎝n −(n −1)β + μF (x∗) +
∑

x �=x∗∗,x∗
μF (x)

⎞

⎠

= log2

⎛

⎝n+ (
μF (x∗) − β

) +
∑

x �=x∗∗,x∗
(μF (x)− β)

⎞

⎠

N(B) = log2

⎛

⎝n +
∑

x �=x∗
(μB(x) − α)

⎞

⎠

= log2

⎛

⎝n +
∑

x �=x∗
(min [α, 1 − vA(x)] − α)

⎞

⎠

= log2

⎛

⎝n − (n − 1)α+
∑

x �=x∗
(min [α, 1 − vA(x)])

⎞

⎠

= log2

⎛

⎝n − (n − 1)α + min
[
α, 1 − vA(x∗∗)

]

+
∑

x �=x∗,x∗∗
(min [α, 1 − vA(x)])

⎞

⎠

= log2

⎛

⎝n + (
min

[
α, 1 − vA(x∗∗)

] − α
)

+
∑

x �=x∗,x∗∗
(min [α, 1 − vA(x)] − α)

⎞

⎠

When x �= x∗, x∗∗, two cases should be considered:

(1) α ≤ 1 − vA(x), then min [α, 1 − vA(x)] − α = 0, thus
μF (x) − β ≤ 0 ≤ min [α, 1 − vA(x)] − α.

(2) α ≥ 1 − vA(x), then min [α, 1 − vA(x)] − α = 1 −
vA(x) − α. Moreover, considering the following rela-
tions: μF (x) = μA(x) + λxπA(x) = μA(x) + λx(1 −
μA(x)− vA(x)) = (1 −λx)μA(x)+λx(1 − vA(x)) ≤
1−vA(x) , we get: μF (x)−β ≤ 0 ≤ 1−vA(x)−β ≤
1 − vA(x) − α.

Thus for any x �= x∗, x∗∗, we have μF (x) − β ≤ 0 ≤
min [α, 1 − vA(x)] − α.

Given 1 − vA(x∗∗) ≥ μA(x∗∗) = β ≥ α, we
have min

[
α, 1 − vA(x∗∗)

] − α = α − α = 0. Compar-
ing with μF (x∗) − β ≤ 0, we obtain μF (x∗) − β ≤
min

[
α, 1 − vA(x∗∗)

] − α.
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Considering both μF (x∗)−β ≤ min
[
α, 1 − vA(x∗∗)

]−
α and μF (x) − β ≤ 0 ≤ min [α, 1 − vA(x)] − α, we have
the result that N(F) ≤ N(B).

Thus we see that our definition for the non-specificity of
an AIFS is equal to the largest non-specificity of any classi-
cal fuzzy subset that is consistent with the AIFS. That is to
say, the non-specificity of an AIFS is greater than any clas-
sical fuzzy sets associated with it, which coincides with our
intuitive cognition.

Then another question arousing our interest is finding the
associated standard fuzzy subset F with the smallest non-
specificity. Inspired by the definition of vortex subset given
by Yager [30], we can conclude that the classical fuzzy set
with the smallest non-specificity must be a vortex. We first
introduce the concept of a vortex subset.

Definition 8 [30]. Let A = {〈x, μA(x), vA(x)〉 |x ∈ X} be
an AIFS on X = {x1, x2, · · · , xn}. F denotes a classical
fuzzy set associated with A. F is called a vortex subset of A

if F satisfies μF (x∗) = 1 − vA(x∗) and μF (x) = μA(x) for
all x �= x∗.

From this definition we can note that there exist n vortex
subsets associated with A. We can denote Fj as the vortex
subset in which x∗ = xj . For the vortex subset focused on
xj , we have:

μF (xj ) = μA(xj )+λxπA(xj ) with λx = 1 and μF (x) =
μA(x) + λxπA(x) for x �= xj with λx = 0.

Corollary 8 Assume A = {〈x, μA(x), vA(x)〉 |x ∈ X} is an
AIFS on X = {x1, x2, · · · , xn}. If F is any consistent clas-
sical fuzzy subset associated with A, there exist some vortex
subsets Fk such that N(Fk) ≤ N(F)

Proof Let μF (xk) = max[μF (x)], then we have:

N(F) = log2

⎛

⎝n +
∑

x �=xk

(μF (x) − μF (xk))

⎞

⎠

Let Fk be the vortex subset of A focusing on xk , then we
have:

μFk
(xk) = 1 − vA(xk) and μFk

(xj ) = μA(xj ) for xj �=
xk .

μF (xk) = μA(xk) + λxk
πA(xk) ≥ μF (x) = μA(x) +

λxπA(x) also indicates that:

μFk
(xk) = μA(xk) + πA(xk) ≥ μA(x) = μFk

(x).

So the non-specificity of Fk is:

N(Fk) = log2

⎛

⎝n +
∑

x �=xk

(
μFk

(x) − μFk
(xk)

)
⎞

⎠ .

For x �= xk , regarding μF (x) = μA(x) + λxπA(x) with
λx ∈ [0, 1] and μFk

(x) = μA(x) + 0 · πA(x), we have
μFk

(x) ≤ μF (x).
Moreover, given μF (xk) = μA(xk) ≤ 1 − vA(xk) =

μFk
(xk), we can get μFk

(x) − μFk
(xk) ≤ μF (x) − μF (xk).

So we can finally get N(Fk) ≤ N(F).

This theorem says that for any classical fuzzy set F

associated with A we can find vortex subsets Fk such that
N(Fk) ≤ N(F). So the classical fuzzy subset with the
smallest non-specificity must be a vortex set.

4.2 Fuzziness and intuitionism

Fuzziness of an AIFS is determined by the difference
between the membership and non-membership degrees.
Definition 5 illustrates the axiomatic requirements of a
fuzziness measure. So any entropy measures satisfying
EF 1- EF 4 can be treated as fuzziness measure of AIFS.
In such sense, many proposed entropy measures for AIFSs
are actually fuzzy measures, such as Szmidt’s entropy [15],
Vlachos’ intuitionistic fuzzy entropy measure [17], and
Xia’s entropy measure [18]. Here we want to define a new
fuzziness measure for AIFS as following.

Definition 9 Let A = {〈x, μA(x), vA(x)〉 |x ∈ X} be an
AIFS in X = {x1, x2, · · · , xn}. Then the fuzziness measure
of A can be defined as:

EF (A) = −1

n

n∑

i=1

[
(μA(xi) + 0.5πA(xi)) log2 (μA(xi)

+0.5πA(xi)) + (vA(xi)

+0.5πA(xi)) log2 (vA(xi) + 0.5πA(xi))
]

(9)

Lemma 1 EF (A) satisfies all properties in Definition 5

Proof EF1: Let A be a set with membership and non-
membership values being either 0 or 1 for all xi ∈ X. Since
πA(xi) = 0 for all xi ∈ X, we obtain EF (A) = 0 from (9).

Suppose EF (A) = 0. Since every term in the summa-
tion is non-positive, we deduce that every term should equal
zero, i.e.,

(μA(xi) + 0.5πA(xi)) log2 (μA(xi) + 0.5πA(xi)) = 0
and (vA(xi) + 0.5πA(xi)) log2 (vA(xi) + 0.5πA(xi)) = 0.

So μA(xi) + 0.5πA(xi) andvA(xi) + 0.5πA(xi) can be
taken 0 or 1.

Taking μA(xi) + 0.5πA(xi) + vA(xi) + 0.5πA(xi) =
μA(xi) + πA(xi) + vA(xi) = 1 into account, we get the
following two cases:

(1) μA(xi) + 0.5πA(xi) = 1, vA(xi) + 0.5πA(xi) = 0,
thus vA(xi) = πA(xi) = 0, μA(xi) = 1;

(2) μA(xi) + 0.5πA(xi) = 0, vA(xi) + 0.5πA(xi) = 1,
thus μA(xi) = πA(xi) = 0, vA(xi) = 1.



766 Y. Song et al.

This set of equations implies that the membership and non-
membership values are either 0 or 1 for all xi ∈ X. So A is
a set.

EF2: Let vA(xi) = μA(xi) for all xi ∈ X. Applying this
condition to μA(xi)+πA(xi)+vA(xi) = 1 yields μA(xi) =
vA(xi) = 0.5(1 − πA(xi)).

So we have:

(μA(xi) + 0.5πA(xi)) log2 (μA(xi) + 0.5πA(xi))

+ (vA(xi) + 0.5πA(xi)) log2 (vA(xi) + 0.5πA(xi))

= 2 (μA(xi) + 0.5πA(xi)) log2 (μA(xi) + 0.5πA(xi))

= 2 (0.5(1 − πA(xi))

+0.5πA(xi)) log2 (0.5(1 − πA(xi)) + 0.5πA(xi))

= 2 · 0.5 log2(0.5) = −1

By (9) we can get EF (A) = 1.
Let us now suppose that EF (A) = 1. Assume μA(xi) −

vA(xi) = tA(xi), tA(xi) ∈ [−1, 1], (9) can be rewritten as:

EF (A) = −1

n

n∑

i=1

[(μA(xi) + 0.5(1 − μA(xi)

−vA(xi))) log2(μA(xi)

+0.5(1 − μA(xi) − vA(xi)))

+(vA(xi) + 0.5(1 − μA(xi)

−vA(xi))) log2(vA(xi)

+0.5(1 − μA(xi) − vA(xi)))]
= 1

n ln 2

n∑

i=1

[−(0.5(1+tA(xi))x) ln(0.5(1+tA(xi)))

−(0.5(1 − tA(xi))) ln(0.5(1 − tA(xi)))] (10)

Consider the following function:

f (t) = − (0.5 + 0.5t)) ln (0.5 + 0.5t)

− (0.5 − 0.5t)) ln (0.5 − 0.5t)

where t ∈ [−1, 1]. Then we have f ′(t) = 0.5 ln(1 −
t) − 0.5 ln(1 + t). Then the following inequalities can be
obtained: f ′(t) ≤ 0 for t ∈ [0, 1] and f ′(t) ≥ 0 for
t ∈ [−1, 0]. So f (t) gets its maximum value 1 when t = 0.

We can observe that f (t) has the same form as (10).
Therefore, EF (A) ≤ 1 and EF (A) get its maximum value 1
if and only if vA(xi) = μA(xi) for all xi ∈ X.

EF3: Evaluating (9) for AC =
{〈x, vA(x), μA(x)〉 |x ∈ X} yields EF (A) = EF (AC).

EF4: Let us reconsider the function f (t). f ′(t) ≤ 0 for
t ∈ [0, 1] and f ′(t) ≥ 0 for t ∈ [−1, 0] indicate that f (t) is
increasing with respect to t for t ∈ [−1, 0] and decreasing
for t ∈ [0, 1]. The condition μA(xi) ≤ μB(xi) ≤ vB(xi) ≤
vA(xi) implies μA(xi) − vA(xi)) ≤ μB(xi) − vB(xi) ≤ 0,
i.e., tA(xi) ≤ tB(xi) ≤ 0. Then it follows that f (tA(xi)) ≤
f (tB(xi)), thus EF (A) ≤ EF (B).

Similarly, considering μA(xi) ≥ μB(xi) ≥ vB(xi) ≥
vA(xi), we have μA(xi) − vA(xi)) ≥ μB(xi) − vB(xi) ≥ 0.
From the monotonicity of f (t), we can obtain f (tA(xi)) ≤
f (tB(xi)), i.e., EF (A) ≤ EF (B).

In the light of property EF 4, we can also get the follow-
ing corollary.

Corollary 9 EF (A) is a decreasing function with respect to
the argument �A(xi) = |μA(xi) − vA(xi)| for all xi ∈ X

Proof For convenience, we assume that μA(xi) − vA(xi) =
tA(xi), tA(xi) ∈ [−1, 1]. Let us consider the following
function:

f (t) = − (0.5 + 0.5t)) ln (0.5 + 0.5t)

− (0.5 − 0.5t)) ln (0.5 − 0.5t) , t ∈ [−1, 1].
Given y = |t | ∈ [0, 1], we have:

f (t) = g(y) = − (0.5 + 0.5y) ln (0.5 + 0.5y) −
(0.5 − 0.5y) ln (0.5 − 0.5y) for t ∈ [0, 1],

f (t) = h(y) = − (0.5 − 0.5y) ln (0.5 − 0.5y) −
(0.5 + 0.5y) ln (0.5 + 0.5y) for t ∈ [−1, 0].

We can note that g(y) and h(y) have identical forms
with f (t). f ′(t) ≤ 0 for t ∈ [0, 1] indicates that f (t) is
decreasing with t in the condition of t ∈ [0, 1]. Since y =
|t | ∈ [0, 1], g(y) and h(y) are decreasing with y. Finally,
from the expression in (10) we obtain that EF (A) is a
decreasing function with respect to the argument �A(xi) =
|μA(xi) − vA(xi)| for all xi ∈ X.

Corollary 10 If A reduces to a classical fuzzy set,
EF (A)reduces to the De LucaTermini entropy EFS

LT

Proof It is straightforward from (9) by assigning πA(xi) =
0 for all xi ∈ X.

Now we come to the concept of intuitionism. As is
discussed earlier, Definition 4 demonstrates the axiomatic
requirements of the intuitionism measure for an AIFS. We
can find that the intuitionism measure is an increasing mea-
sure of hesitancy degree. So any increasing function f :
πA(xi) → [0, 1] satisfying f (0) = 0 and f (1) = 1
can be applied to define a normalized intuitionism measure.
Obviously, the use of the hesitancy degree is straightfor-
ward. Thus, the hesitancy value πA(xi) are commonly used
to define an intuitionism measure. Motivated by its sim-
plicity and good mathematical properties, we also adopt
this form. So the intuitionism measure of an AIFS A =
{〈x, μA(x), vA(x)〉 |x ∈ X} in X = {x1, x2, · · · , xn} can be
defined as:

EI = 1

n

n∑

i=1

πA(xi) (11)
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Obviously, EI is increasing with the value of πA(xi).
Combining EI and EF , we can get the normalize intu-

itionistic fuzzy entropy of an AIFS as:

EIF = 1

2
(EI + EF ) (12)

It is obvious that EIF satisfies all requirements in Definition
6.

To illustrate the property of the proposed fuzziness mea-
sure and intuitionism measure more intuitively, Figs. 1
and 2 depict the fuzziness and intuitionism of AIFSs
in X = {x}, respectively. In each figure, the color of
each point (μA(x), vA(x), πA(x)) on the simplex respec-
tively denotes the value of EF and EI of the set A =
{〈x, μA(x), vA(x)|x〉} corresponding to that point. As a
comparison, Fig. 3 illustrates the intuitionistic fuzzy entropy
EIF defined in (12).

By now, three kinds of uncertainty measure have been
presented. The combination of them can be applied to define
a general uncertainty measure capable of capturing all kinds
of uncertainty. In most cases the actual value is not as
important as the relative uncertainty. This gives us consider-
able freedom in selecting the actual form of the uncertainty
measure to be used. So we can present a form of general
uncertainty measure as:

U(A) = N(A) + EI (A) + EF (A) (13)

We should have in mind that a properly constructed uncer-
tainty measure for the AIFSs is in the interval [0, 1], so
we cannot increase the value above “1” while considering
the general uncertainty measure for AIFSs. Each properly
constructed uncertainty measure for the AIFSs, due to the
very sense of uncertainty, should also be from the inter-

val [0, 1]. So the non-specificity measure of AIFS A in
X = {x1, x2, · · · , xn} should be normalized as:

NN(A) = N(A)/ log2 n (14)

Then a normalized general uncertainty measure of A can be
defined as:

GU(A) = 1

3
(NN(A) + EI (A) + EF (A)) (15)

5 Illustrative examples

In order to illustrate more performance of the proposed
general uncertainty, we will employ the following examples.

Example 5 Let X = {x1, x2, x3, x4, x5} be the universe of
discourse. Five subsets of X are given as:

A1 = {x1}, A2 = {x1, x2}, A3 = {x1, x2, x3},
A4 = {x1, x2, x3, x4}, A5 = {x1, x2, x3, x4, x5}.
These classical sets can be written in forms of AIFSs as:

A1 = {〈x1, 1, 0〉 , 〈x2, 0, 1〉 , 〈x3, 0, 1〉 , 〈x4, 0, 1〉 , 〈x5, 0, 1〉} ,

A2 = {〈x1, 1, 0〉 , 〈x2, 1, 0〉 , 〈x3, 0, 1〉 , 〈x4, 0, 1〉 , 〈x5, 0, 1〉} ,

A3 = {〈x1, 1, 0〉 , 〈x2, 1, 0〉 , 〈x3, 1, 0〉 , 〈x4, 0, 1〉 , 〈x5, 0, 1〉} ,

A4 = {〈x1, 1, 0〉 , 〈x2, 1, 0〉 , 〈x3, 1, 0〉 , 〈x4, 1, 0〉 , 〈x5, 0, 1〉} ,

A5 = {〈x1, 1, 0〉 , 〈x2, 1, 0〉 , 〈x3, 1, 0〉 , 〈x4, 1, 0〉 , 〈x5, 1, 0〉} .

Table 1 gives all kinds of uncertainty for these five
classical sets. We can note that all of the fuzziness, intu-
itionism and intuitionistic fuzzy entropy remain unchanged
for different classical sets, thus they cannot discriminate the
uncertainty hidden in different sets. From A1 to A5, the
non-specificity degree increases, which also bring changes

Fig. 1 Fuzziness measure
EF of AIFSs in X = {x}
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Fig. 2 Intuitionism measure
EI of AIFSs in X = {x}

to the normalized non-specificity and general uncertainty.
Moreover, the increasing general uncertainty coincides with
the positive correlation between the cardinality of a set
and its uncertainty degree. So we can conclude that the
general uncertainty measure is competent to discriminate
uncertainty of classical sets.

Example 6 Let X = {x1, x2, x3, x4, x5}be the universe of
discourse. Two AIFSs in X are given as:

A1 = {〈x1, 0.3, 0.6〉 , 〈x2, 0.6, 0〉 , 〈x3, 0.4, 0.6〉 ,

〈x4, 0.2, 0.7〉 , 〈x5, 0, 0.5〉} ,

A2 = AC
1 = {〈x1, 0.6, 0.3〉 , 〈x2, 0, 0.6〉 , 〈x3, 0.6, 0.4〉 ,

〈x4, 0.7, 0.2〉 , 〈x5, 0.5, 0〉} .

By (7), (9) and (11), we can get:

N(A1) = 2.07, EF (A1) = 0.87, EI (A1) = 0.18;

N(A2) = 2.20, EF (A2) = 0.87, EI (A2) = 0.18.

Considering (14) and Fig. 2, we have:

NN(A1) = 0.89, GU(A1) = 0.65;
NN(A2) = 0.95, GU(A2) = 0.67.

Generally, the information conveyed by an AIFS is differ-
ent from that of its complement set. From this example we
can see that the general uncertainty measure can reflect this
difference due to the participation of non-specificity. The
third properties in Definition 4, Definition 5 and 6 show
that both of fuzziness measure and intuitionism measure,
as well as their combination miss the capability to dis-
criminate an AIFS from its complement. Equation 7 shows
that in most cases the non-specificity grades of an AIFS
and its complement are distinct. In this example, for AIFS
A1, the membership grade of x2 is maximum, and it is
quite different from other membership grades. For AIFS

Fig. 3 Intuitionistic fuzzy
entropy measure EIF of AIFSs
in X = {x}
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Table 1 Uncertainty degree of each classical set in example 5

N EF EI EIF NN GU

A1 0 0 0 0 0 0

A2 1 0 0 0 0.43 0.14

A3 1.58 0 0 0 0.68 0.3

A4 2 0 0 0 0.86 0.29

A5 2.32 0 0 0 1 0.33

A2, although its greatest membership grade is 0.7, occur-
ring in x4, there exist two identical membership grades
μA2(x1) = μA2(x3) = 0.6, which is close to the maximum
value 0.7. So the non-specificity of A2 is greater than that
of A1. Thus A2 should be more uncertain than A1. The gen-
eral uncertainty values obtained by (15) coincide with this
analysis.

Example 7 Let X = {x1, x2}be the universe of discourse. A
typical AIFS in X is defined as: A = {〈x1, a, b〉 , 〈x2, b, a〉}

By the equivalent definition of non-specificity measure
in (8), we can get:

N(A) = log2 (2 + min(1 − b, max(a, b))

+ min(1 − a, max(a, b)) − 2 · max(a, b)) .

Since a + b ≤ 1, we have a ≤ 1 − b and b ≤ 1 − a.
Then the following cases should be considered:
(1) b ≤ a ≤ 1 − b, then b ≤ 0.5, and we have:

(i) For 1 − a ≥ a, i.e., a ≤ 0.5, N(A) =
log2 (2 + a + a − 2 · a) = 1,

(ii) For 1 − a ≤ a, i.e., a ≥ 0.5, N(A) =
log2 (2 + a + (1 − a) − 2 · a) = log2 (3 − 2 · a).

(2) a ≤ b ≤ 1 − a, then a ≤ 0.5, and we have:
(iii) For 1 − b ≥ b, i.e., b ≤ 0.5, N(A) =

log2 (2 + b + b − 2 · b) = 1.
(iv) For 1 − b ≤ b, i.e., b ≥ 0.5, N(A) =

log2 (2 + b + (1 − b) − 2 · b) = log2 (3 − 2 · b).

Taking all cases into account, we can get:

N(A) =
⎧
⎨

⎩

log2 (3 − 2b) , a < 0.5, b > 0.5
log2 (3 − 2a) , a > 0.5, b < 0.5

1, a ≤ 0.5, b ≤ 0.5
.

In this case, n = 2 implies log2 n = 1, thus NN(A) =
N(A). For a more expressive manifestation on the non-
specificity of A, we present Fig. 4 to show the value of
N(A), which is denoted by the color of each point (a, b) on
the simplex.

We can also get the fuzziness, intuitionism, intuitionis-
tic fuzzy entropy, and the normalized general uncertainty
degree of A as:

EF (A) = −
(

1 + a − b

2

)
log2

(
1 + a − b

2

)

−
(

1 − a + b

2

)
log2

(
1 − a + b

2

)
,

EI (A) = 1 − a − b,

EIF (A) = EI (A) + EF (A)

2
,

GU(A) = N(A) + EI (A) + EF (A)

3
.

As a comparison, Figs. 5 and 6 illustrate graphs of EIF (A)

and GU(A), respectively. We can notice that by adding
non-specificity degree to the intuitionistic fuzzy entropy, the
uncertainty of A increases. Moreover, the general uncer-
tainty is more sensitive to the change of A in the cases
of a < 0.5, b > 0.5 and a > 0.5, b < 0.5 by pro-
viding more detailed information about the distribution of
uncertainty. We can also note that the general uncertainty
measure gets its maximum (equal to 1) when both the mem-
bership value and non-membership value are equal to 0. The
general uncertainty degree is equal to 0 for two sets {x1}
({< x1, 1, 0 >,< x2, 0, 1 >}) and {x2} ({< x1, 0, 1 >,<

x2, 1, 0 >}).

6 Application in MADM problems

The uncertainty measure of AIFS can be used in multi-
attribute decision making (MADM) for the determination
of attribute weight in terms of the information content of
attribute [20, 31]. Generally speaking, if an attribute can
discriminate the data more effectively, it is given a higher
weight. In the intuitionistic fuzzy environment, this method
is based on the uncertainty measures of AIFSs, which are
used to measure the uncertainty associated with AIFSs. In
this method, the basic principle of determining weights for
attributes is that the smaller the uncertainty value of the
intuitionistic fuzzy assessment information of alternatives
under an attribute, the bigger the weight should be assigned
to the attribute; otherwise, the smaller the weight should
be assigned to the attribute. Assume that there are n alter-
natives A1, A2, · · · , An to be performed over n attributes
x1, x2, · · · , xn. The intuitionistic fuzzy decision matrix D is
expressed as follows:

D = (〈
μij , vij

〉)
m×n

=

x1 x2 · · · xn

A1
A2
.
.
.

Am

⎛

⎜⎜⎜
⎝

〈μ11, v11〉 〈μ12, v12〉 · · · 〈μ1n, v1n〉
〈μ21, v21〉 〈μ22, v22〉 · · · 〈μ2n, v2n〉

.

.

.
.
.
.

. . .
.
.
.

〈μm1, vm1〉 〈μm2, vm2〉 · · · 〈μmn, vmn〉

⎞

⎟⎟⎟
⎠

(16)



770 Y. Song et al.

In terms of above principle, the attribute weights can be
determined as follows:

wj = 1 − UNj

n − ∑n
j=1 UNj

, j = 1, 2, · · · , n (17)

where UNj is the uncertainty degree value of the AIFS Ij ={〈
Ai, μij , vij

〉
, |Ai ∈ A

}
, A = {A1, A2, · · · , An}.

Next, we use a numerical example to illustrate the
proposed method for determining objective weights in a
MADM problem.

Example 8 Suppose that the MADM problem refers to
four alternatives on six attributes. The intuitionistic fuzzy
decision matrix D is given as follows:

Fig. 4 The value of N(A)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

a

b

0

0.2

0.4

0.6

0.8

1

D =

x1 x2 x3 x4 x5 x6

A1

A2

A3

A4

⎛

⎜⎜
⎝

< 0.39, 0.33 > < 0.31, 0.46 > < 0.11, 0.35 > < 0.24, 0.69 > < 0.36, 0.16 > < 0.01, 0.53 >

< 0.13, 0.58 > < 0.27, 0.49 > < 0.31, 0.68 > < 0.91, 0.08 > < 0.01, 0.14 > < 0.04, 0.72 >

< 0.39, 0.49 > < 0.70, 0.10 > < 0.47, 0.02 > < 0.21, 0.62 > < 0.01, 0.04 > < 0.26, 0.11 >

< 0.54, 0.34 > < 0.95, 0.00 > < 0.08, 0.02 > < 0.22, 0.27 > < 0.19, 0.02 > < 0.08, 0.46 >

⎞

⎟⎟
⎠

.

Then we can get the AIFSs Ij (j = 1, 2, · · · , 6):

I1 = {< A1, 0.39, 0.33 >,< A2, 0.13, 0.58 >,

< A3, 0.39, 0.49 >,< A4, 0.54, 0.34 >} ,

I2 = {< A1, 0.31, 0.46 >,< A2, 0.27, 0.49 >,

< A3, 0.70, 0.10 >,< A4, 0.95, 0.00 >} ,

I3 = {< A1, 0.11, 0.35 >,< A2, 0.31, 0.68 >,

< A3, 0.47, 0.02 >,< A4, 0.08, 0.02 >} ,

I4 = {< A1, 0.24, 0.69 >,< A2, 0.91, 0.08 >,

< A3, 0.21, 0.62 >,< A4, 0.22, 0.27 >} ,

I5 = {< A1, 0.36, 0.16 >,< A2, 0.01, 0.14 >,

< A3, 0.01, 0.04 >,< A4, 0.19, 0.02 >} ,

I6 = {< A1, 0.01, 0.53 >,< A2, 0.04, 0.72 >,

< A3, 0.26, 0.11 >,< A4, 0.08, 0.46 >} .

By (15), we can get the uncertainty values of Ij (j =
1, 2, · · · , 6) as following:

GU(I1) = 0.7091, GU(I2) = 0.5686, GU(I3) = 0.7960,

GU(I4) = 0.5631, GU(I5) = 0.9173, GU(I6) = 0.7580.

By employing above uncertainty values into (17), we can
get the attribute weights as:

w1 = 0.1723, w2 = 0.2556, w3 = 0.1208, w4 = 0.2589,
w5 = 0.0490, w6 = 0.1434.

In the following, a real-life example adapted from [32]
is provided for a further discussion on the application of
our proposed uncertainty measure in decision making under
uncertainty.

Example 9 Located in Central China and the middle reaches
of the Changjiang (Yangtze) River, Hubei Province is
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Fig. 5 Graph of EIF(A)
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distributed in a transitional belt where physical conditions
and landscapes are on the transition from north to south and
from east to west. Thus, Hubei Province is well known as
“a land of rice and fish” since the region enjoys some of
the favorable physical conditions, with a diversity of natu-
ral resources and the suitability for growing various crops.
At the same time, however, there are also some restrictive
factors for developing agriculture such as a tight man–land
relation between a constant degradation of natural resources
and a growing population pressure on land resource reserve.
Despite cherishing a burning desire to promote their stan-
dard of living, people living in the area are frustrated
because they have no ability to enhance their power to accel-
erate economic development because of a dramatic decline
in quantity and quality of natural resources and a deteriorat-
ing environment. Based on the distinctness and differences

in environment and natural resources, Hubei Province can
be roughly divided into seven agro-ecological regions:

A1: Wuhan–Ezhou–Huanggang; A2: Northeast of Hubei;
A3: Southeast of Hubei; A4: Jianghan region; A5: North of
Hubei; A6: Northwest of Hubei; A7: Southwest of Hubei.

In order to prioritize these agro-ecological regions Ai

(i = 1, 2, · · · , 7) according to their comprehensive func-
tions, a committee comprised of three decision makers
(DMs) dk (k = 1, 2, 3) has been formed with a weighting
vector λ = (0.5, 0.2, 0.3)T . The attributes which are con-
sidered here in the assessment of Ai (i = 1, 2, · · · , 7) are:
c1 – ecological benefit; c2 – economic benefit; c3 – social
benefit.

Assume that the importance of the attributes cj ( j =
1, 2, 3) is completely unknown. The individual opinions of
the DM dk on the agro-ecological regions Ai with respect

Fig. 6 Graph of GU(A)
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to the attribute cj are expressed as an individual decision

matrix R(k) =
(
r
(k)
ij

)

7×3
, where r

(k)
ij =

〈
μ

(k)
ij , v

(k)
ij

〉
(i =

1, 2, · · · , 7, j = 1, 2, 3) are IFVs.

R(1) =

c1 c2 c3

A1

A2

A3

A4

A5

A6

A7

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

< 0.8, 0.1 > < 0.9, 0.1 > < 0.7, 0.2 >

< 0.7, 0.3 > < 0.6, 0.2 > < 0.6, 0.1 >

< 0.5, 0.4 > < 0.7, 0.3 > < 0.6, 0.1 >

< 0.9, 0.1 > < 0.7, 0.1 > < 0.8, 0.2 >

< 0.6, 0.1 > < 0.8, 0.2 > < 0.5, 0.1 >

< 0.3, 0.6 > < 0.5, 0.4 > < 0.4, 0.5 >

< 0.5, 0.2 > < 0.4, 0.6 > < 0.5, 0.5 >

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

R(2) =

c1 c2 c3

A1

A2

A3

A4

A5

A6

A7

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

< 0.9, 0.1 > < 0.8, 0.2 > < 0.8, 0.1 >

< 0.8, 0.2 > < 0.5, 0.1 > < 0.7, 0.2 >

< 0.5, 0.5 > < 0.7, 0.2 > < 0.8, 0.2 >

< 0.9, 0.1 > < 0.9, 0.1 > < 0.7, 0.3 >

< 0.5, 0.2 > < 0.6, 0.3 > < 0.6, 0.2 >

< 0.4, 0.6 > < 0.3, 0.4 > < 0.5, 0.5 >

< 0.3, 0.5 > < 0.5, 0.3 > < 0.6, 0.4 >

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

R(3) =

c1 c2 c3

A1

A2

A3

A4

A5

A6

A7

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

< 0.7, 0.1 > < 0.9, 0.1 > < 0.9, 0.1 >

< 0.9, 0.1 > < 0.6, 0.2 > < 0.6, 0.2 >

< 0.4, 0.5 > < 0.8, 0.1 > < 0.7, 0.1 >

< 0.8, 0.1 > < 0.7, 0.2 > < 0.9, 0.1 >

< 0.6, 0.3 > < 0.8, 0.2 > < 0.7, 0.2 >

< 0.2, 0.7 > < 0.5, 0.1 > < 0.3, 0.1 >

< 0.4, 0.6 > < 0.7, 0.3 > < 0.5, 0.5 >

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

In the following our developed uncertainty measure GU in
(15) is used to derive the attribute weighting vector w, with
which the alternative agro-ecological regions are finally
ranked.

Step 1 Aggregate all of the individual opinions into a
group one by using the intuitionistic fuzzy weighted
averaging (IFWA) operator [33]. The group opinion is
denoted by R = (

rij
)

7×3, where

rij = IFWAλ

(
r
(1)
ij , r

(2)
ij , r

(3)
ij

)

=
〈

1 −
3∏

k=1

(
1 − μ

(k)
ij

)λk

,

3∏

k=1

(
v

(k)
ij

)λk

〉

.

Thus the group opinion is shown as:

R =

c1 c2 c3
A1
A2
A3
A4
A5
A6
A7

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

< 0.803, 0.100 > < 0.885, 0.115 > < 0.801, 0.141 >

< 0.801, 0.199 > < 0.582, 0.174 > < 0.622, 0.141 >

< 0.472, 0.447 > < 0.734, 0.199 > < 0.681, 0.115 >

< 0.877, 0.100 > < 0.759, 0.123 > < 0.824, 0.176 >

< 0.582, 0.160 > < 0.770, 0.217 > < 0.590, 0.141 >

< 0.294, 0.628 > < 0.465, 0.264 > < 0.394, 0.309 >

< 0.435, 0.334 > < 0.530, 0.424 > < 0.522, 0.478 >

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

.

Step 2 Calculate the fuzzy entropy for each attribute cj

(j = 1, 2, 3) by using the formula (17). Consider-
ing the general uncertainty measure GU, we can get the
weights of all attributes cj (j = 1, 2, 3). The weighting
vector is w = (0.345, 0.346, 0.309)T .

Step 3 With the obtained w and R = (
rij

)
7×3, make

a group assessment ri on each alternative Ai (i =
1, 2, · · · , 7) by using the IFWA operator again, where

ri = IFWAw (ri1, ri2, ri3)

=
〈

1 −
3∏

j=1

(
1 − μij

)wj ,

3∏

j=1

(
vij

)wj

〉

,

i = 1, 2, · · · , 7.

Thus the group assessments on the agro-ecological
regions are shown as:

r1 = < 0.836, 0.117 >, r2 =< 0.686, 0.171 >,

r3 = < 0.644, 0.222 >,

r4 = < 0.827, 0.128 >, r5 =< 0.662, 0.171 >,

r6 = < 0.472, 0.374 >, r7 =< 0.497, 0.405 > .

Step 4 In order to rank the alternatives, evaluate the val-
ues of ri (i = 1, 2, · · · , 7) by the following technique
[34]:

z(rr ) =
(

1 − 1

2
πri

)(
μri + 1

2
πri

)

= 1

4

(
1 + μri + vri

) (
1 + μri − vri

)

where the larger the value of z(ri) ∈ [0, 1], the better the
alternative corresponding to ri .

Then we can get:

z(r1) = 0.839, z(r2) = 0.704, z(r3) = 0.663,

z(r4) = 0.830, z(r5) = 0.683, z(r6) = 0.507,

z(r7) = 0.519.

Step 5 Finally, rank all agro-ecological regions with
respect to the set of attributes in terms of the values of
z(ri) (i = 1, 2, · · · , 7). We can get the preference order
of seven agro-ecological regions is:

A1 � A4 � A2 � A5 � A3 � A7 � A6.

With the weighting vectors pre-assigned by subjectiv-
ity, Xu and Yager [32] ranked all of the alternatives by the
combination of the dynamic intuitionistic fuzzy weighted
averaging (DIFWA) operator and the closeness coefficients.
It is worth noticing that our ranking list is exactly identical
to theirs. To further examine the effectiveness of our uncer-
tainty measure, we compare this result with those results
listed in [35], where several different entropy measures are
used to derive the weights on the attributes cj (j = 1,
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Table 2 Main results of
Example 9 by different entropy
measures

Entropy measure Attribute weights Ranking of the alternatives

Esk,1[15] w = (0.325, 0.358, 0.317)T A1 � A4 � A2 � A5 � A3 � A7 � A6

Eldl [36] w = (0.331, 0.351, 0.318)T A1 � A4 � A2 � A5 � A3 � A7 � A6

Ezj [37] w = (0.316, 0.350, 0.334)T A1 � A4 � A2 � A5 � A3 � A7 � A6

EGS [35] w = (0.332, 0.342, 0.326)T . A1 � A4 � A2 � A5 � A3 � A7 � A6

2, 3). The main results by these measures [15, 36, 37] are
shown in Table 2. It is clear that attribute c2 is considered
as the most important attribute by all measures. Together
with the result obtained based on our uncertainty measure,
four out of five measures take attribute c1 as the second
most important attribute. Table 2 shows that the ranking
orders are exactly the same as it did by our general uncer-
tainty measure. So our proposed uncertainty measure can be
applied well in practical application.

7 Conclusions

We have presented a general uncertainty measure associ-
ated with Atanassov’s intuitionistic fuzzy sets. Firstly, we
critically reviewed existing axiomatic definitions of entropy
measures and pointed out that they cannot capture all kinds
of uncertainty implying in Atanassov’s intuitionistic fuzzy
sets. Then we argued that an Atanassov’s intuitionistic fuzzy
set has three kinds of uncertainty, namely non-specificity,
fuzziness, and intuitionism. The non-specificity is deter-
mined by the inverse of the degree to which an intuitionistic
fuzzy set points to one and only one element as its mem-
ber. Then we defined a non-specificity measure based on
the difference between the maximum membership grade
and other membership grades. We have proved that this
non-specificity measure can also be applied to quantify non-
specificity of classical sets. Its other properties are also pre-
sented with their proofs. Following existing axiomatic char-
acterizations of fuzzy entropy, we define a new measure to
depict the fuzziness of an intuitionistic fuzzy set. For its sim-
plicity and good mathematical properties, hesitancy degree
is straightforward used to define the intuitionism mea-
sure. Finally, we give an expression of general uncertainty
measure based on the mean value of the non-specificity,
fuzziness and intuitionism. Performance of the proposed
general uncertainty measure is demonstrated by examples.

The proposed uncertainty can be applied to quantify
uncertainty of classical sets, fuzzy sets, as well as AIFSs.
It is a general uncertainty measure for these three kinds of
sets. However, it is worth noticing that not only the forms
of non-specificity measure, fuzziness measure, and intu-
itionism measure, but also the style of their combination
are not unique. There must be many other measures that
can be used to construct a general uncertainty measure to

capture all kinds of uncertainty. In fact, our proposed non-
specificity measure is the maximum non-specificity of sets.
So the follow-up research is dedicated to looking for more
general non-specificity measures. In the future, we shall also
continue working on the application of the general uncer-
tainty measure in real-life domains.
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