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Abstract This paper presents an efficient ν-Twin Support
Vector Machine Based Regression Model with Automatic
Accuracy Control (ν-TWSVR). This ν-TWSVR model is
motivated by the celebrated ν-SVR model (Schlkoff et al.
1998) and recently introduced ε-TSVR model (Shao et al.,
Neural Comput Applic 23(1):175–185, 2013). The ν-TSVR
model can automatically optimize the parameters ε1 and
ε2 according to the structure of the data such that at most
certain specified fraction ν1(respectively ν2) of data points
contribute to the errors in up (respectively down) bound
regressor. The ν-TWSVR formulation constructs a pair of
optimization problems which are mathematically derived
from a related ν-TWSVM formulation (Peng, Neural Netw
23(3):365–372, 2010) and making use of an important
result of Bi and Bennett (Neurocomputing 55(1):79–108,
2003). The experimental results on artificial and UCI bench-
mark datasets show the efficacy of the proposed model in
practice.
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1 Introduction

The last decade has witnessed the evolution of Support
Vector Machines (SVMs) as a powerful paradigm for pat-
tern classification and regression [1–4, 15]. SVMs emerged
from the research in statistical learning theory on how to
regulate the trade off between structural complexity and
empirical risk. SVM classifiers attempt to reduce gener-
alization error by maximizing the margin between two
separating hyperplanes [1–4].

Support Vector Regression (SVR) is a technique for han-
dling regression problem which is similar in principle to
SVM. The standard ε-SVR is an ε-insensitive model which
sets an epsilon tube around the data points. The data points
outside the epsilon tube contribute to the errors which are
penalized in the objective function via a user specified
parameter. Therefore, an appropriate choice of ε should be
supplied beforehand in order to meet the desired accuracy.
Bi and Bennett [5] have developed a geometric framework
for SVR showing that it can be related to an appropri-
ate SVM problem. This result of Bi and Bennett [5] is
very significant as it allows to explore the possibilities of
deriving new regression models corresponding to existing
classification models.

Twin Support Vector Machine(TWSVM) [6] is a novel
binary classification method that determines two non-
parallel hyperplanes, each of them are proximal to its
own class and has at least unit distance from the opposite
class. TWSVM is faster than SVM as it solves two related
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SVM-type problems each of which is smaller than the con-
ventional SVM. The ν-TWSVM [11] model modifies the
TWSVM formulation. It finds a pair of the non-parallel
hyperplanes, each of them are proximal to its own class and
is as far as possible from the points of opposite class.

In an attempt to extend twin methodology to the regres-
sion problem, Peng [7] proposed a novel algorithm which
he termed as Twin Support Vector Machine for Regression
(TSVR). However in a recent paper, Khemchandani et al.
[8] observed that the model of Peng [7] is not in the true
spirit of twin methodology. They [8] presented a new twin
support vector machine based regression and termed it as
TWSVR model. It is interesting to note that the TWSVR
model can be derived mathematically using an important
result of Bi and Bennett [5] together with the TWSVM for-
mulation. Later, Shao et al. [9] presented another twin model
for regression termed as ε-TSVR. The formulation of the ε-
TSVR [9] is different from that of Peng [7] and is justified
on the basis of different empirical risk functionals. Later, Xu
et al. [14] proposed the K-nearest neighbor-based weighted
twin support vector regression by using the local informa-
tion present in the samples for improving the prediction
accuracy.

In this paper, we have proposed a novel ν-TWSVM based
regression formulation termed as ν-TWSVR. Some of the
important features of ν-TWSVR are as follows.

(i) The proposed ν-TWSVRmodel automatically adjusts
the values of ε1 and ε2 in order to achieve the desired
accuracy level to the data in hand.

(ii) It provides an efficient way to control the fraction of
errors and support vectors by adjusting the values of
ε1 and ε2 via the user specified parameters ν1 and ν2.

(iii) The proposed ν-TWSVR formulation is in the true
spirit of ν-TWSVM [11]. Thus, the two QPPs in
the formulation of ν-TWSVR can be mathemati-
cally derived using an important result of Bi and
Bennett [5].

(iv) As a consequence of our derivation, it can be shown
that the ε-TSVR formulation of Shao et al. [9] is also
in the true spirit of twin methodology and can be
derived using Bi and Bennett approach [5].

(v) The experimental results on artificial and UCI-
benchmark real world datasets show that ν-TWSVR
outperforms ε-TSVR model in practice.

The rest of this paper is organized as follows. Section 2
introduces notations used in the paper and briefly describes
ν-SVR model [10]. Section 3 discusses the linear ν-
TWSVM [11] while Section 4 briefly describes ε-TSVR
[9]. Section 5 proposes the linear ν-Twin Support Vector
Machine Based Regression(ν-TWSVR) and its extension
for the non-linear case. Section 6 describes the experimental
results while Section 7 is devoted to the conclusions.

2 Support vector regression models

2.1 ε-support vector regression

Let the training samples be denoted by a set of l row vec-
tors A = (A1, A2, ..., Al) where the ith sample Ai =
(Ai1, Ai2, ..., Ain) is in the n-dimensional real space R

n.
Also let Y = (y1, y2, ..., yl) denote the response vector of
training samples where yi ∈ R. Let ξ = (ξ1, ξ2, .., ξl) and
ξ∗ = (ξ∗

1 , ξ∗
2 , .., ξ∗

l ) be l dimensional vector which will be
used to denote the errors and e is column vector of ‘ones’ of
appropriate dimension.

Linear ε-SVR finds a linear function f (x) = wT x + b,
where w ∈ R

n and b ∈ R. It minimizes the ε-insensitive
loss function with a regularization term 1

2‖w‖2 which makes
the function f (x) as flat as possible. The ε-insensitive loss
function ignores the error up to ε. The Support Vector
Regression(SVR) solves following optimization problem

min
w,b,ξ,ξ∗

1

2
‖w‖2 + C

l∑

i=1

(ξi + ξ∗
i )

subject to,

yi − (Aiw + b) ≤ ε + ξi, (i = 1, 2, .., l),

(Aiw + b) − yi ≤ ε + ξ∗
i , (i = 1, 2, .., l),

ξi ≥ 0, ξ∗
i ≥ 0 , (i = 1, 2, .., l), (1)

where C > 0 is the user specified parameter that balances
the trade off between the fitting error and the flatness of the
function.

2.2 Support vector regression with automatic accuracy
control

In ε-SVR, a good choice of ε should be specified before-
hand in order to meet desired level of accuracy. A bad choice
of ε can lead to poor accuracy. In [10] author proposes Sup-
port Vector Regression with Automatic Accuracy Control
(ν−SVR) which automatically minimizes the size of ε-tube
and adjusts the accuracy level according to the data in hand.
For the linear case ν-SVR solves the following optimization
problem

min
w,b,ε,ξ1,ξ2

1

2
‖w‖2 + C

(
v.ε + 1

l

l∑

i=1

(ξi + ξ∗
i )

)

subject to,

yi − (Aiw + b) ≤ ε + ξi, (i = 1, 2, .., l),

(Aiw + b) − yi ≤ ε + ξ∗
i , (i = 1, 2, .., l),

ξi ≥ 0, ξ∗
i ≥ 0 , (i = 1, 2, .., l). (2)

The tube size ε is traded off against the model complexity
and slack variables via a constant ν ≥ 0. Using the K.K.T.
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optimality conditions, the Wolfe dual of the optimization
problem (2) is obtained as follows

min
α,α∗

1

2

l∑

i=1

l∑

j=1

(α∗
i − αi)(α

∗
j − αj )A

T
i Aj −

l∑

i=1

yi(α
∗
i − αi)

subject to,
l∑

i=1

(α∗
i − αi) = 0 ,

l∑

i=1

(α∗
i + αi) ≤ Cν,

0 ≤ αi ≤ C

l
, 0 ≤ α∗

i ≤ C

l
. (3)

After finding the optimal values of α and α∗, the esti-
mated regressor for the test point x is given by

f (x) =
l∑

i=1

(α∗
i − αi)A

T
i x + b.

3 A ν-twin support vector machine
for classification

Peng [11] proposed a modification of TWSVM, termed as
ν-TWSVM and introduced the two new parameters ν1 and
ν2 instead of the trade-off parameters c1 and c2 of TWSVM.
Similar to the ν-SVM [12], the parameters ν1 and ν2 in
the ν-TWSVM controls the bounds on the number of sup-
port vectors and the margin errors. ν−Twin Support Vector
Machine (ν-TWSVM) modifies the optimization problem
of TWSVM as follows

(ν-TWSVM-1)

min
w1,b1,ρ+,ξ1

1

2
||Aw1 + e1b1||2 − v1ρ+ + 1

l2
eT
2 ξ1

subject to,

−(Bw1 + e2b1) ≥ e2ρ+ − ξ1,

ξ1 ≥ 0, ρ+ ≥ 0, (4)

and
(ν-TWSVM-2)

min
w2,b2,ρ−,ξ2

1

2
||Bw2 + e2b2||2 − v2ρ− + 1

l1
eT
1 ξ2

subject to,

(Aw1 + e1b1) ≥ e1ρ− − ξ2,

ξ2 ≥ 0, ρ− ≥ 0, (5)

where A and B are (l1 × n) and (l2 × n) matrices repre-
senting data points belonging to class +1 (positive) and class
-1 (negative) respectively. Here ξ1 and ξ2 are l-dimensional
error vector. The introduction of the variables ρ+ and ρ−
provides an efficient way to control the number of sup-
port vectors in TWSVM. In practice rather than solving

the primal optimization problems (4) and (5), we solve
their respective Wolfe duals by using the K.K.T. optimality
conditions.

4 An ε-twin support vector machine for regression

On the lines of TWSVM, ε-Twin Support Vector Machine
for Regression(ε-TSVR) [9] also finds two ε-insensitive
proximal functions f1(x) = wT

1 x + b1 and f2(x) =
wT
2 x + b2, which are obtained by solving following pairs of

optimization problems

(ε-TSVR-1)

min
w1,b1,ξ

c3
2

(||w1||2 + b21

) + 1
2 ||(Y − (Aw1 + eb1)||2

+c1e
T ξ

subject to,

Y − (Aw1 + eb1) ≥ −ε1e − ξ, ξ ≥ 0, (6)

and

(ε-TSVR-2)

min
w2,b2,η

c4
2

(||w2||2 + b22

) + 1
2 ||(Y − (Aw2 + eb2)||2

+c2e
T η

subject to,

(Aw2 + eb2) − Y ≥ −ε2e − η, η ≥ 0, (7)

where parameters ε1, ε2, c1, c2, c3 and c4 are user supplied
positive numbers. Defining G = [

A, e
]
and using the

K.K.T optimality conditions, the Wolfe dual of (ε-TSVR-1)
can be obtained as follows

(Dual ε-TSVR-1)

min
α

1

2
αT G(c3I + GT G)−1GT α

−YT G(GT G + c3I )−1GT α + (eT ε1 + YT )α

subject to, 0 ≤ α ≤ c1e, (8)

where α is vector of Lagrangian multipliers.
The Wolfe dual of the optimization problem (ε-TSVR-2)

is obtained as

(Dual ε-TSVR-2)

min
γ

1

2
γ T G(c4I + GT G)−1GT γ + YT G(GT G +

c4I )−1GT γ − (Y T − eT ε2)γ

subject to , 0 ≤ γ ≤ c2e, (9)

where γ is vector of Lagrange multipliers.
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After solving the optimization problems (8) and (9), the

augmented vector v1 =
[

w1

b1

]
and v2 =

[
w2

b2

]
are

obtained as

v1 = (c3I + GT G)−1GT (Y − α), (10)

and

v2 = (c4I + GT G)−1GT (Y + λ). (11)

The final regressor is then obtained by

f(x)= 1

2
(f1(x)+f2(x))= 1

2
(w1+w2)

T x+ 1

2
(b1+b2). (12)

For the non-linear case, the ε-TSVR considers following
kernel generated surfaces

f1(x) = K(xT , AT )u1 + b1, (13)

and

f2(x) = K(xT , AT )u2 + b2,

which are obtained by solving following pairs of QPPs

(Kernel ε−TSVR-1)

min
u1,b1,ξ

c3
2

(||u1||2 + b21

) + 1
2 ||(Y − (K(A, AT )u1 + eb1)||2

+c1e
T ξ

subject to,

Y − (K(A, AT )u1 + eb1) ≥ −ε1e − ξ, ξ ≥ 0, (14)

and
(Kernel ε−TSVR-2)

min
u2,b2,η

c4
2

(||u2||2 + b22

) + 1
2 ||(Y − (K(A,AT )u2 + eb2)||2

+c2e
T η

subject to,

(K(A,AT )u2 + eb2) − Y ≥ −ε2e − η, η ≥ 0.(15)

Similar to the linear case, the (Kernel ε−TSVR-1) and
(Kernel ε−TSVR-2) are solved in their dual forms using the
K.K.T. optimality conditions.

5 ν-TWSVM based regression

Similar to ε-SVR model, in TWSVR model also, a good
choice of ε1 and ε2 should be supplied beforehand in order
to meet the desired accuracy. A bad choice of ε1 and ε2
could lead to poor results. The ν-TWSVM based Regres-
sion (ν-TWSVR ) finds the optimal choices of ε1 and ε2
by trading off the values of ε1 and ε2 in the two respective
optimization problems via the user specified parameters ν1
and ν2. The value of ν1 (respectively ν2) specifies an upper
bound on the fraction of points allowed to contribute to the

error ξ (respectively η) and specifies a lower bound on the
number of support vectors for up (respectively down) bound
function.

5.1 Linear ν-TWSVM based regression

Similar to the TSVR model, ν-TWSVR also solves a pair of
optimization problems which are as follows

(ν-TWSVR-1)

min
w1,b1,ε1,ξ

c1
2

(||w1||2 + b21

) + 1
2 ||(Y − (Aw1 + eb1)||2

+ c2(ν1ε1 + 1
l
eT ξ)

subject to,

Y − (Aw1 + eb1) ≥ −ε1e − ξ,

ξ ≥ 0, ε1 ≥ 0, (16)

and
(ν-TWSVR-2)

min
w2,b2,ε2,η

c3
2

(||w2||2 + b22

) + 1
2 ||(Y − (Aw2 + eb2)||2

+c4

(
ν2ε2 + 1

l
eT η

)

subject to,

(Aw2 + eb2) − Y ≥ −ε2e − η,

η ≥ 0, ε2 ≥ 0, (17)

where ν1, ν2, c1, c2, c3 and c4 are user specified positive
parameters.

In the above optimization problems, the size of ε1
(respectively ε2) tubes is traded off against the model com-
plexity and other terms via positive parameters ν1 (respec-
tively ν2) which allows them to automatically adjust accord-
ing to the structure of data. Preposition-1 gives a theoretical
interpretations of parameters ν1 and ν2. The derivation of
the above formulation of ν-TWSVR from an appropriately
constructed ν-TWSVM classification problem is given in
Appendix B. This derivation is based on the work of Bi and
Bennett [5] and Khemchandani et al. [8].

In order to get the solution of optimization problems (16)
and (17), we derive their dual problems. We first consider
(ν-TWSVR-1) and its corresponding Lagrangian function

L(w1, b1, ε1, ξ, α, β, γ ) = c1

2

(
||w1||2 + b21

)

+1

2
||(Y − (Aw1 + eb1)||2 + c2

(
ν1ε1 + 1

l
eT ξ

)

+αT (−Y + (Aw1 + eb1) − eε1 − ξ) − βT ξ − γ ε1 ,(18)
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where α = (α1, α2, ..., αl), β = (β1, β2, ..., βl) and γ are
Lagrange multipliers. The K.K.T. optimality conditions are
given by

∂L

∂w1
= −AT (Y −(Aw1 + eb1))+c1w1 + AT α = 0,(19)

∂L

∂b1
= −eT (Y − (Aw1 + eb1)) + c1b + eT α = 0, (20)

∂L

∂ξ
= c2

l
e − α − β = 0, (21)

∂L

∂ε1
= c2ν1 − eT α − γ = 0, (22)

Y − (Aw1 + eb1) ≥ −eε1 − ξ , ξ ≥ 0, ε1 ≥ 0, (23)

αT (Y − (Aw1 + eb1) + eε1 + ξ) = 0, (24)

βT ξ = 0, γ ε1 = 0, (25)

α ≥ 0, β ≥ 0, γ ≥ 0. (26)

Since β ≥ 0, therefore from (21) and (26) we have

0 ≤ α ≤ c2

l
e. (27)

Also, since γ ≥ 0, so (22) would lead to

eT α ≤ c2ν1. (28)

ConsiderG = [
A, e

]
and v1 =

[
w1

b1

]
. Then combining

(19) and (20) would result in following equation

− GT Y + (GT G + c1I )v1 + GT α = 0, (29)

or

v1 = (c1I + GT G)−1GT (Y − α). (30)

After substituting the value of v1 in (18) and using the
above K.K.T optimality conditions the dual problem of the
(ν-TWSVR-1) can be obtained as

(Dual ν-TWSVR-1)

min
α

1

2
αT G(c1I + GT G)−1GT α

−YT G(c1I + GT G)−1GT α + YT α

subject to,

0 ≤ α ≤ c2

l
e,

eT α ≤ c2ν1. (31)

In a similar way, the dual of the problem (ν-TWSVR-2)
can be obtained as

(Dual ν-TWSVR-2)

min
λ

1

2
λT G(c3I + GT G)−1GT λ

+ YT G(c3I + GT G)−1GT λ − YT λ

subject to.

0 ≤ λ ≤ c4

l
e,

eT λ ≤ c4ν2, (32)

where λ is the vector of the Lagrange multipliers. The

augmented vector v2 =
[

w2

b2

]
is given by

v2 = (c3I + GT G)−1GT (Y + λ). (33)

After obtaining the solution of the dual problems (31)
and (32), the decision variables v1 and v2 can be obtained
by using (30) and (33) respectively. For the given x ∈ R

n,
the estimated regressor is obtained as follows

f (x) = 1

2
(f1(x) + f2(x)) = 1

2
(w1+w2)

T x+ 1

2
(b1 + b2).

5.2 ν-TWSVM based regression for non-linear case

For finding the non-linear regressor, the ν-TWSVR consid-
ers the following kernel generated functions

f1(x) = K(xT , AT )u1 + b1,

and f2(x) = K(xT , AT )u2 + b2,

where K is an appropriately chosen kernel function. For
the non-linear case, the Kernel ν-TWSVR-1 and Kernel
ν-TWSVR-2 can be formulated as

(Kernel ν-TWSVR-1)

min
u1,b1,ε1,ξ

c1

2
(||u1||2 + b21) + 1

2
||(Y −(K(A, AT )u1 + eb1)||2

+c2(ν1ε1 + 1

l
eT ξ)

subject to,

Y − (K(A, AT )u1 + eb1) ≥ −ε1e − ξ,

ξ ≥ 0 , ε1 ≥ 0, (34)

and

Table 1 Performance metrics and their calculations

Metrics Calculation

RMSE =
√

1
l

∑l
i=1(yi − y′

i ).
2

SSE =
∑l

i=1(yi − y′
i )
2

SST =
∑l

i=1(yi − y)2

SSR =
∑l

i=1(y
′
i − y)2



ν-twin support vector machine based regression 675

(Kernel ν-TWSVR-2)

min
u2,b2,ε2,η

c3

2
(||u2||2 + b22) + 1

2
||(Y −(K(A, AT )u2 + eb2)||2

+c4

(
ν2ε2 + 1

l
eT η

)

subject to,

(K(A, AT )u2 + eb2) − Y ≥ −ε2e − η

η ≥ 0 , ε2 ≥ 0. (35)

Working on the lines similar to the linear case, the dual
problems corresponding to the primal optimization prob-
lems (Kernel-ν-TWSVR-1) and (Kernel-ν-TWSVR-2) can
be obtained as

min
α

1

2
αT H(c1I + HT H)−1HT α

−YT H(c1I + HT H)−1HT α + YT α

subject to,

0 ≤ α ≤ c2

l
e,

eT α ≤ c2ν1, (36)

and

min
λ

1

2
λT H(c3I + HT H)−1HT λ

+YT H(c3I + HT H)−1HT λ − YT λ

subject to,

0 ≤ λ ≤ c4

l
e,

eT λ ≤ c4ν2, (37)

respectively.
Here H=

[
K(A, AT ), e

]
and the augmented vectors

v1 =
[

w1

b1

]
and v2 =

[
w2

b2

]
are given as

v1 = (c1I + HT H)−1HT (Y − α), (38)

and

v2 = (c3I + HT H)−1HT (Y + λ). (39)

Fig. 1 Performance of ν-TWSVR (a) for ν = 0.01 on Type 1 dataset (b) for ν = 0.01 on Type 2 dataset (c) for ν = 0.1 on Type 1 dataset (d) for ν

= 0.1 on Type 2 dataset (e) for ν = 0.9 on Type 1 dataset and (f) for ν = 0.9 on Type 2 dataset



676 R. Rastogi et al.

Fig. 2 Performance of ν-TWSVR (a) for σ = 0.01 on Type 1 dataset (b) for σ = 0.01 on Type 2 dataset (c) for σ = 0.2 on Type 1 dataset (d) for
σ = 0.2 on Type 2 dataset (e) for σ = 0.5 on Type 1 dataset and (f) for σ = 0.5 on Type 2 dataset for fixed value of ν = 0.01

For a given value x ∈ R
n, the estimated regressor is

obtained as

f (x) = 1

2
(f1(x) + f2(x))

= 1

2
(u1 + u2)

T K(A, x) + 1

2
(b1 + b2).

Proposition 1 Suppose ν-TWSVR is applied on a dataset
which results ε1(respectively ε2) > 0, then following state-
ments hold.

(a) v1( respectively v2) is an upper bound on fraction of
error ξ ( respectively η).

Fig. 3 a ν-TWSVR for different value of ν, b ν-TWSVR for different value of σ on Type 1 dataset
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Fig. 4 a ν-TWSVR for different value of ν, b ν-TWSVR for different value of σ on Type 2 dataset

(b) v1( respectively v2) is a lower bound on fraction
of support vectors for up bound (respectively down
bound) regressor.

Proof The proof of the proposition is described in
Appendix A.

Remark 1 ν1(respectively ν2) can be used to control the
number of points allowed to contribute to errors. Fur-
thermore, it has been experimentally observed that if
ν1(respectively ν2) > 1 then ε1(respectively ε2)= 0. For
ν1(respectively ν2) < 1, it can still happen that ε1( respec-
tively ε2)= 0 if the data is noise free.

6 Experimental results

This section experimentally verifies claims made in this
paper. To show the efficacy of our proposed algorithm,
we have considered artificial and UCI-benchmark datasets

[13]. We have also compared the proposed algorithm with
ε-TSVR and shown that the proposed algorithm outper-
forms it in practice. All the simulations have been per-
formed in Matlab 12.0 environment (http://in.mathworks.
com/) on Intel XEON processor with 16.0 GB RAM.
Throughout these experiments we have used the RBF kernel

exp
(−||x−y||2

q

)
where q is the kernel parameter.

One of the issues with the ε-TSVR model is that it
involves a large number of parameters which should be
tunned in order to meet the desired accuracy level. To
reduce the computational complexities of parameter selec-
tion involved in ε-TSVR, we have set c1 = c2, c3 = c4 and
ε1 = ε2. We have also set c1 = c3, c2 = c4 and ν1 = ν2
for the proposed method for all kinds of experiments. For
artificial datasets, we have considered two type of synthetic
training dataset (xi, yi) for i = 1, 2, .., l as follow

Type 1

yi = sin(xi)

xi

+ ξi ξi ∼ N(0, σ ) , xi ∈ U [−4π, 4π ].

Fig. 5 Plot of ν versus fraction of support vectors and fraction of errors (a) for up bound regressor and (b) for down bound regressor on Type 1
dataset

http://in.mathworks.com/
http://in.mathworks.com/
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Fig. 6 Plot of ν versus fraction of support vectors and fraction of errors (a) for up bound regressor and (b) for down bound regressor on Type 2
dataset

Type 2

yi = x
2
3
i + ξi ξi ∼ N(0, σ ) , xi ∈ U [−2, 2].

Table 1 list the different performance metrics for a regres-
sion model where y ′

i is the predicted value of yi and y

denotes the mean of yi for i = 1 , 2 ,...l.
To avoid the biased comparison, ten independent groups

of noisy samples are generated randomly using the Mat-
lab toolbox for synthetic datasets which consists of 100
training samples and 655 non-noise testing samples. For
artificial datasets, we have also solved the primal problem
of ν-TWSVR as we have to retrieve the value of ε1 and ε2.

Figure 1 shows the performance of ν-TWSVR for dif-
ferent values of ν on Type 1 and Type 2 synthetic datasets.

In the figures, the size of ε1 and ε2 tubes decreases as the
value of ν increases. For ν=0.9, the ε-tubes almost vanish.
Figure 2 shows the performance of ν-TWSVR on Type 1
and Type 2 synthetic datasets for the different noise coeffi-
cients σ = 0.01, σ = 0.2 and σ = 0.5. It can be easily seen
that for the fixed value of ν = 0.01, the tube width automat-
ically adjust for the different value of σ . Figures 3a and 4a
show the plot of ν versus ε1 and ε2 for the Type 1 and Type
2 synthetic datasets respectively. It is evident that as value
of ν increases, the value of ε1 and ε2 decreases. In view of
the proposition (1), it can be inferred that as the value of
ν increases, the proposed method reduces the size of one
sided ε-tube in order to control the number of points lying
outside the ε-tubes. Figures 3b and 4b show that for a fixed
value of ν, the size of one sided ε-tubes increases as more

Fig. 7 a Plot of fraction of support vectors and fraction of errors versus log c1 for up bound regressor. b Plot of fraction of support vectors and
fraction of errors versus log c2
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Fig. 8 Performance of ε-TSVR for (a) σ = 0 and (b) σ = 0.5 for ε = 0.2

Table 2 Result on synthetic dataset type 1

ν1 = ν2 0.0100 0.0500 0.1000 0.1500 0.2000 0.2500 0.3000 0.3500 0.4000 0.4500

ε1 0.7799 t0.6860 0.5333 0.4566 0.3849 0.2995 0.3815 0.1822 0.0581 0.0239

ε2 1.1786 0.6396 0.5888 0.3957 0.3152 0.2520 0.1986 0.1639 0.1046 0.0603

SV1 1.0000 5.0000 10.0000 15.0000 20.0000 25.0000 30.0000 35.0000 40.0000 45.0000

SV2 1.0000 5.0000 10.0000 15.0000 20.0000 25.0000 30.0000 35.0000 40.0000 45.0000

Error1 0.0000 5.0000 10.0000 14.0000 19.0000 24.0000 29.0000 34.0000 39.0000 44.0000

Error2 1.0000 5.0000 9.0000 13.0000 18.0000 23.0000 27.0000 31.0000 38.0000 43.0000

SSE 17.3123 17.3394 17.2985 17.3210 17.2969 17.3728 17.3873 17.3737 17.3732 17.3577

SSE/SST 0.0914 0.0915 0.0913 0.0914 0.0913 0.0917 0.0918 0.0917 0.0917 0.0916

SSR/SST 1.0266 1.0269 1.0264 1.0261 1.0261 1.0265 1.0270 1.0269 1.0265 1.0275

Table 3 Result on synthetic dataset type 2

ν1 = ν2 0.01 0.05 0.1 0.15 0.2 0.25 0.35 0.45

ε1 2.4021 1.5809 1.2009 1.0755 0.6968 0.6010 0.3094 0.0152

ε2 1.8982 1.6023 1.2076 1.0851 0.6605 0.5442 0.3454 0.1576

SV1 1.0000 5.0000 10.0000 15.0000 20.0000 25.0000 35.0000 45.0000

SV2 1.0000 5.0000 10.0000 15.0000 20.0000 25.0000 35.0000 45.0000

Error1 0.0000 4.0000 9.0000 14.0000 19.0000 24.0000 34.0000 44.0000

Error2 0.0000 5.0000 9.0000 14.0000 20.0000 24.0000 34.0000 44.0000

SSE1 8.7497 8.7503 8.7502 8.7503 8.7493 8.7492 8.7493 8.7486

SSE/SST 0.0827 0.0827 0.0827 0.0827 0.0827 0.0827 0.0827 0.0827

SSR/SST 0.8568 0.8568 0.8568 0.8568 0.8568 0.8568 0.8568 0.8568

Table 4 Result on servo dataset

ν1 = ν2 0.0500 0.1000 0.1500 0.2000 0.2500 0.3000 0.3500 0.4000 0.4500 0.5

ε1 0.5757 0.4572 0.3314 0.2389 0.1640 0.1154 0.0789 0.0449 0.0140 0.0124

ε2 0.6430 0.4135 0.3232 0.2575 0.1937 0.1604 0.1093 0.0856 0.0558 0.0258

SV1 8.0000 15.4000 23.0000 30.3000 38.0000 45.3000 53.0000 60.5000 67.7000 69.3

SV2 8.0000 15.3000 23.2000 30.3000 38.2000 45.5000 53.3000 60.5000 68.2000 75.6

Error1 7.0000 14.3000 21.8000 29.6000 36.7000 44.3000 51.4000 59.0000 65.9000 67.9

Error2 7.0000 14.4000 21.8000 29.6000 36.6000 44.3000 51.6000 59.1000 66.7000 74.2

SSE 5.9472 5.9487 5.9479 5.9479 5.9480 5.9480 5.9479 5.9482 5.9481 5.9481

SSE/SST 0.1836 0.1836 0.1836 0.1836 0.1836 0.1835 0.1835 0.1836 0.1836 0.1835
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Table 5 Result on machine CPU dataset

ν1 = ν2 0.0100 0.0500 0.1000 0.1500 0.2000 0.2500 0.3000 0.3500 0.4000 0.4500

ε1 0.7799 0.6860 0.5333 0.4566 0.3849 0.2995 0.3815 0.1822 0.0581 0.0239

ε2 1.1786 0.6396 0.5888 0.3957 0.3152 0.2520 0.1986 0.1639 0.1046 0.0603

SV1 1.0000 5.0000 10.0000 15.0000 20.0000 25.0000 30.0000 35.0000 40.0000 45.0000

SV2 1.0000 5.0000 10.0000 15.0000 20.0000 25.0000 30.0000 35.0000 40.0000 45.0000

Error1 0.0000 5.0000 10.0000 14.0000 19.0000 24.0000 29.0000 34.0000 39.0000 44.0000

Error2 1.0000 5.0000 9.0000 13.0000 18.0000 23.0000 27.0000 31.0000 38.0000 43.0000

SSE 17.3123 17.3394 17.2985 17.3210 17.2969 17.3728 17.3873 17.3737 17.3732 17.3577

SSE/SST 0.0914 0.0915 0.0913 0.0914 0.0913 0.0917 0.0918 0.0917 0.0917 0.0916

SSR/SST 1.0266 1.0269 1.0264 1.0261 1.0261 1.0265 1.0270 1.0269 1.0265 1.0275

noise is introduced in the data for Type 1 and Type 2 datasets
respectively. It can be also seen that RMSE increases as the
more noises is added in the data. Figure 5a and b show the
plot of ν versus fraction of support vectors and errors for up
and down bound regressor on the Type 1 synthetic dataset
respectively. Figure 6a and b show the plot of ν versus frac-
tion of support vectors and errors for up and down bound
regressor on the Type 2 synthetic dataset respectively. It ver-
ifies claims made in Preposition-1. Figure 7a and b show the
plot of fraction of support vectors and errors versus log2c2
and log2c4 for up bound and down bound regressor recep-
tively for the Type 1 synthetic dataset. It can be observed
that the bounds specified in Proposition 1 get loser as the
value of c1 and c2 increases.

Figure 8 shows the performance of ε-TSVR for the fixed
value of ε1 = 0.2 and ε2 = 0.2 for the noise coefficient σ = 0
and σ = 0.5. It can been seen that the ε-TSVR performs
well for σ = 0 but as the noise increases it fails to predict
accurately. So in the case of ε- TWSVR, a good choice of
ε1 and ε2 should be supplied beforehand in order to have
accurate result which is not the case of ν-TWSVR.

For further evaluation, we test six UCI benchmark
datasets namely, Boston Housing, Auto-Price, Machine-
CPU, Servo, Concrete CS. These datasets are commonly
used in testing machine learning algorithms. For all datasets,
feature vectors were normalized in the [−1, 1]. Tables 2
and 3 show the performance of the proposed algorithm
on different values of ν on synthetic datasets Type 1 and
Type 2 for the noise coefficient σ = 0.5. Tables 4 and 5
show the results of the proposed algorithm on Servo and
Machine-CPU datasets for different value of ν. In these
tables following abbreviations are used.

SV1 : Number of Support Vectors for up bound Regres-
sor.

SV2 : Number of Support Vectors for down bound
Regressor.

Error1 : Number of points lying outside of the one sided
ε1 tube for up bound regressor.

Error2 : Number of points lying outside of the ε2 tube for
down bound regressor.

The numerical results of the tables verify the claim made
in the Preposition-1. These tables also show how the size of
one sided ε-tubes decrease as the value of ν increases, which
further affect the values of SSE, SSE/SST and SSR/SST.

To compare the proposed algorithm with ε-TSVR, we
have downloaded the code of ε-TSVR from http://www.
optimal-group.org/Resource. We have tunned the parame-
ters of ε-TSVR and proposed method through the set of
values {2i |i = −9, −8, ... , 10 } by tuning a set comprising
of random 10 % of the dataset.

Table 6 lists the mean of SSE/SST and SSR/SST of
the the proposed method with the ε-TSVR on five differ-
ent UCI-benchmark datasets. For these datasets the ten-fold
cross validation method was used to report the results. It can
be easily observed that the proposed method outperform the
ε-TSVR in practice. Table 7 lists our findings about the best
value of parameters for the ε-TSVR and ν-TWSVR for the
above mentioned UCI-datasets.

Table 6 Comparision of proposed ν-TWSVR with ε-TSVR on UCI
datasets

Datasets Regressor SSE/SST SSR/SST

Servo 167 × 4 ε-TSVR 0.2366 0.7394

ν-TWSVR 0.1909 0.8937

Boston Housing 506 × 14 ε-TSVR 0.1224 0.8938

ν-TWSVR 0.0991 0.9166

Machine CPU 209 × 8 ε-TSVR 0.0218 0.9802

ν-TWSVR 0.0167 0.9733

AutoPrice 205 × 26 ε-TSVR 0.1641 0.9065

ν-TWSVR 0.1468 0.9050

Concrete CS 1030 × 9 ε-TSVR 0.1485 0.8583

ν-TWSVR 0.1404 0.8707

http://www.optimal-group.org/Resource
http://www.optimal-group.org/Resource
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Table 7 Tunned parameters of
ε-TSVR and ν-TWSVR Dataset ε-TSVR – – ν-TWSVR – – –

q ε1 = ε2 c1 = c2 c3 = c4 q ν1 = ν2 c2 = c4 c1 = c3

Servo 0.5 0.002 128 2 0.5 0.1 0.5 0.1

Machine CPU 4 0.002 256 0.002 4 0.1 0.002 0.001

Boston Housing 4 64 0.5 0.002 2 0.001 1024 0.001

Auto Price 4 0.002 0.001 0.002 4 0.1 0.02 0.001

Concrete CS 2 32 0.002 0.002 2 0.1 0.002 0.002

7 Conclusions

In this paper, we have proposed a ν-Twin Support Vector
Machine Based Regression Model (ν-TWSVR) which is
capable of automatically optimizing the parameters ε1 and
ε2 appearing in the recently proposed ε-TSVR model of
Shao et al. [9]. It has been proved mathematically that
the parameters ν1 and ν2 can be used for controlling the
fraction of data points which contribute to the errors and
support vectors. It has also been shown experimentally that
ν-TWSVR outperforms ε-TSVR as it automatically adjusts
the parameter ε1(ε2) according to noise present in the data.

The optimization problems appearing in the ν-TWSVR
formulation have been derived by employing an important
result of Bi and Bennett [5] which connects a regres-
sion problem to an appropriately constructed classification
problem. This development also gives a mathematical justi-
fication to the ε-TSVR formulation and thereby establishes
that similar to TWSVR formulation [8], the ε-TSVR formu-
lation is also in the true spirit of TWSVM methodology.

Acknowledgments The authors are extremely thankful to the
learned referees whose valuable comments have helped to improve the
content and presentation of the paper.

Appendix A

Proposition 1 Suppose ν-TWSVR is applied on a dataset
which results ε1(respectively ε2) > 0, then following state-
ments hold.

(a) v1( respectively v2) is an upper bound on fraction of
error ξ ( respectively η).

(b) v1( respectively v2) is a lower bound on fraction
of support vectors for up bound (respectively down
bound) regressor.

Proof

(a) Using the KKT conditions (21) and (25) for up bound
regressor, we can find that for ξi > 0, βi = 0 and
αi = c2

l
.

Since from (22) and (26), eT α ≤ c2v1, so there may
exist at most lv1 points for which ξi 	= 0. In the similar
way using the K.K.T. optimality conditions for down
bound regressor we can prove that there are at most lv2
points for which ηi 	= 0.

(b) Using the KKT conditions (22) and (25) for ε1 	= 0 we
find that γ = 0. This implies that eT α = c2v1.

Since 0 ≤ αi ≤ c2
l

so there must be at least
lv1 points for which αi 	= 0. In similar way using
the K.K.T conditions for down bound regressor we
can prove that there are at least lv2 points for which
λi 	= 0 .

Appendix B: ν-TWSVR via ν-TWSVM

Bi and Bennett [5] have shown the equivalence between a
given regression problem and an appropriately constructed
classification problem. They have shown that for a given
regression training set (A,Y), a regressor y = wT x + b is
an ε-insensitive regressor if and only if the set D+ and D−
locate on different sides of n + 1 dimensional hyperplane
wT x − y + b = 0 respectively where

D+ = {(Ai, yi + ε), i = 1, 2, ..., l}
D− = {(Ai, yi − ε), i = 1, 2, ..., l}.

In veiw of this result of Bi and Bennett [5], the regression
problem is equivalent to the classification problem of sets
D+ and D− in Rn+1. If we use the TWSVM methodology
[6] for the classification of these two sets D+ and D− then
we can find TWSVM based Regression [8]. It is relevant
to mention here that the classification of set D+ and D−
is a special case of classification where we have following
privilege informations.

(a) D+ and D− classes are symmetric in nature and have
equal number of sample points.

(b) Points in the class D+ and D− are separated by the
distance 2ε.
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These privileged informations must be exploited for the
better classification as better classification of the setD+ and
D− will eventually lead to better regressor. The classifica-
tion of the set D+ and D− in Rn+1 using ν-TWSVM results
into following QPPs

Min
(w1,η1,b1,ρ+)

c1
2

(||w1||2+η21 + b21

)+ 1
2 ||Aw1+η1(Y + εe)+eb1||2

−c2v1ρ+
subject to,

(Aw1 + η1(Y − εe) + eb1) + ρ+e ≤ 0,

ρ+ ≥ 0, (40)

and

Min
(w2,η2,b2,ρ−)

c3

2

(
||w2||2 + η22 + b22

)
+ 1

2
||Aw2

+η2(Y − εe) + eb2||2 − c4v2ρ−
subject to,

(Aw2 + η2(Y + εe) + eb2) − ρ−e ≥ 0,

ρ− ≥ 0.

(41)

Let us first consider the problem (40). Here we note that
η1 	= 0 and therefore, without loss of generality, we can
assume that η1 > 0. The constraint of (40) can be rewriteen
as[
−A

(−w1

η1

)
+(Y − εe)− e

(−b

η1

)]
+ ρ+e

η1
≤ 0, ρ+ ≥ 0

On replacing w1 := −w1/η1, b1 := −b1/η1 and noting
that η1 ≥ 0, (40) reduces to

Min
(w1,b1,ρ+)

1

2
||w1||2 + b21 + ||(Y + εe)−(Aw1 + eb1)||2 − c2v1ρ+

subject to,

Aw1 + eb1 + εe ≥ Y + ρ+e
η1

,

ρ+ ≥ 0. (42)

Next, if we replace eb1 := eb1−εe in (42) then it reduces
to

Min
(w1,b1,ρ+)

1

2
||w1||2 + b21 + ||Y − (Aw1 + eb1)||2−c2v1ρ+

subject to,

Aw1 + eb1 ≥ Y −
(
2εe − ρ+e

η1

)

ρ+ ≥ 0. (43)

Let
(
2eε − ρ+

η1

)
:= eε1 then it will reduce to

Min
w1,b1,ε1

1
2 ||w1||2 + b21 + 1

2 ||(Y − (Aw1 + eb1)||2
+c2v1ε1

subject to, (Aw1 + eb1) − Y ≥ −ε1e. (44)

In the similar manner, assuming η2 > 0 and using the
replacement w2 := −w2/η2, b2 := −b2/η2, problem (41)
can be written as

Min
(w2,b2,ρ−)

1

2
||w2||2 + b22 + 1

2
||(Y − εe)−(Aw2 + eb2)||2 − c4v2ρ−

subject to,,

(Aw2 + eb2) − εe ≤ Y − ρ−
η2

e,

ρ− ≥ 0.

If we replace eb2 := eb2 + εe and (2eε − ρ−
η2

) := eε2
then problems reduces to

Min
w2,b2,ε2

1
2 ||w2||2 + b22 + 1

2 ||(Y − (Aw2 + eb2)||2
+c4v1ε2

subject to, Y − (Aw2 + eb2) ≥ −ε2e. (45)

Looking at problems (44) and (45 ) we observe that our
approach is valid provided we can show that ε1 = (2ε −
2ρ+
η1

) ≥ 0 and ε2 = (2ε − 2ρ−
η2

) ≥ 0. We can prove this
assertion as follow.

As the first hyperplane wT x + η1y + b1 = 0 is the least
square fit for the class D+ so there certainly exists an index
j such that

η1(yj + ε) + wT
1 xj + b1 ≥ 0. (46)

Also from (40),

η1(yi − ε) + wT
1 xj + b1 + ρ+ ≤ 0, for all i (47)

In particular, taking (47) for j we get

η1(yj − ε) + wT
1 xj + b1 + ρ+ ≤ 0,

i.e. − η1(yj − ε) − wT
1 xj − b1 − ρ+ ≥ 0 (48)

Adding (47) and (48) we get ε1 =
(
2ε − ρ+

η1

)
≥ 0.

Similarly we can prove that ε2 =
(
2ε − ρ−

η2

)
≥ 0.

Remark 2 The above proof can be appropriately modi-
fied to show that ε-TSVR formulation of Shao et al. [9]
also follows from Bi and Bennett [5] results and TWSVM
methodology.

References

1. Burges JC (1998) A tutorial on support vector machines for pattern
recognition. Data Min Knowl Disc 2(2):121–167

2. Cortes C, Vapnik V (1995) Support vector networks. Mach Learn
20(3):273–297

3. Bradley P, Mangasarian OL (2000) Massive data discrimina-
tion via linear support vector machines. Optim Methods Softw
13(1):1–10

4. Cherkassky V, Mulier F (2007) Learning from data: concepts,
theory and methods. Wiley, New York



ν-twin support vector machine based regression 683

5. Bi J, Bennett KP (2003) A geometric approach to support vector
regression. Neurocomputing 55(1):79–108

6. Jayadeva, Khemchandani R, Chandra S (2007) Twin support vec-
tor machines for pattern classification. IEEE Trans Pattern Anal
Mach Intell 29(5):905–910

7. Peng X (2010) TSVR: an efficient twin support vector machine
for regression. Neural Netw 23(3):365–372

8. Khemchandani R, Goyal K, Chandra S (2016) TWSVR: regres-
sion via twin support vector machine. Neural Netw 74:14–21

9. Shao YH, Zhang C, Yang Z, Deng N (2013) An ε-twin sup-
port vector machine for regression. Neural Comput & Applic
23(1):175–185

10. Schölkopf B, Bartlett P, Smola AJ,Williamson RC (1998) Support
vector regression with automatic accuracy control. In: ICANN,
vol 98. Springer, London, pp 111–116

11. Peng X (2010) A ν-twin support vector machine (ν-TSVM)
classifier and its geometric algorithms. Inf Sci 180(20):3863–3875

12. Schölkopf B, Smola AJ, Williamson RC, Bartlett PL (2000) New
support vector algorithms. Neural Comput 12(5):1207–1245

13. Blake CI, Merz CJ (1998) UCI repository for machine learning
databases, http://www.ics.uci.edu/*mlearn/MLRepository.html

14. Xu Y, Wang L (2014) K-nearest neighbor-based weighted twin
support vector regression. Appl Intell 41(1):299–309

15. Vapnik V (1998) Statistical learning theory, vol 1. Wiley, NewYork

http://www.ics.uci.edu/*mlearn/MLRepository.html

	-twin support vector machine based regression
	Abstract
	Introduction
	Support vector regression models
	-support vector regression
	Support vector regression with automatic accuracy control

	A -twin support vector machine for classification
	 An -twin support vector machine for regression
	-TWSVM based regression
	Linear -TWSVM based regression
	-TWSVM based regression for non-linear case

	Experimental results
	Conclusions
	Acknowledgments
	Appendix A 
	 -TWSVR via -TWSVM 
	Appendix B -TWSVR via -TWSVM 
	References


