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Abstract In this paper, we propose a novel fuzzy infer-
ence system on picture fuzzy set called picture inference
system (PIS) to enhance inference performance of the tra-
ditional fuzzy inference system. In PIS, the positive, neutral
and negative degrees of the picture fuzzy set are computed
using the membership graph that is the combination of
three Gaussian functions with a common center and dif-
ferent widths expressing a visual view of degrees. Then,
the positive and negative defuzzification values, synthe-
sized from three degrees of the picture fuzzy set, are used
to generate crisp outputs. Learning in PIS including train-
ing centers, widths, scales and defuzzification parameters
is also discussed. The system is adapted for all architec-
tures such as the Mamdani, the Sugeno and the Tsukamoto
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fuzzy inferences. Experimental results on benchmark UCI
Machine Learning Repository datasets and an example in
control theory - the Lorenz system are examined to verify
the advantages of PIS.
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1 Introduction

Inference is the process of formulating a nonlinear mapping
from a given input space to output space, which provides
a basis from which decisions can be made. The process
of fuzzy inference involves all the membership functions,
operators and if–then rules [30]. Fuzzy inference system
(FIS) is also called as fuzzy rule based system, fuzzy expert
system, fuzzy associative memory, fuzzy controller, fuzzy
model or simply fuzzy system on the basis of the target for
which the system is designed [7]. For instance, if the target
of a system consists of temperature controlling tasks then
the fuzzy system will be called as fuzzy controller and if the
target is an expertise in medicine then the designed system
is called fuzzy expert system [7].

Fuzzy inference systems are widely applicable in eco-
nomic, scientific and engineering application areas due to
the intuitive nature of the system and ability to analyze
human judgments. For example, Khan, Daachi & Djouani
[14] presented a fault detection for wireless sensor networks
based on modeling a sensor node by Takagi–Sugeno–Kang
(TSK) FIS, where a sensor measurement of a node is
approximated by a function of the sensor measurements
of the neighboring nodes. Nayak et al. [25] developed a
FIS for predicting customer buying behavior where three
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different methods namely grid partitioning, fuzzy c-means
and subtractive clustering were used to get the member-
ship values during the fuzzification of inputs. Öztaysi et al.
[26] described potential applications of FIS in disaster
response, which is one of the critical stages of disaster man-
agement, which necessitates spontaneous decision making
when a disaster occurs. There are numbers of FIS appli-
cations in various fields as shown in [31] ranging from
computer networks design, diagnosis of prostate cancer,
umbilical cord acid–base analysis, implementing onboard
planning and scheduling for autonomous small satellite, to
the applications in power systems.

A number of researchers in FIS have suggested how such
systems can be tuned to enhance inference performance
[2]. The first attempt involves the deterministic nature of
the system. Cai, Hao & Yang [5] proposed an architec-
ture for high-order fuzzy inference systems combining the
kernel-based fuzzy c-means clustering and support vector
machine. Chaudhari & Patil [7] proposed a multilayer sys-
tem with defuzzification and weighted average, which can
reduce the cost of defuzzification and lack of output expres-
sivity that causes risk when used as a controller. Luo, Wang
& Sun [20] introduced a novel adaptive stability scheme for
a class of chaos system with uncertainties. Mieszkowicz-
Rolka & Rolka [24] used a flow graph representation of a
decision table with linguistic values. Pancho et al. [27] pro-
posed visual representations of fuzzy rule-based inference
for expert analysis of comprehensibility. Ton-That, Cao &
Choi [24, 45] extended fuzzy associative memory, which
can be viewed as the combination of associative memory
and fuzzy logic. A series of works by Liu et al. in [8, 12,
16–19, 44] have presented some adaptive fuzzy controller
designs for nonlinear systems. In [18], the systems are of
the discrete-time form in a triangular structure and include
the backlash and the external disturbance. A MIMO con-
troller, composed of n subsystems nested lower triangular
form and dead-zone nonlinearly inputs in non-symmetric
nonlinear form was shown in [19]. Fuzzy logic systems
were employed to approximate the unknown functions and
the differential mean value theorem was used to separate
dead-zone inputs herein [19].

It is obvious that learning capability is an influential
factor to characterize efficient fuzzy rule based systems.
Inference parameters include the central tendency and dis-
persion of the input and output fuzzy membership functions,
the rule base, the cardinality of the fuzzy membership func-
tion sets, the shapes of the membership functions and the
parameters of the fuzzy AND and OR operations [2]. Liu
et al. [17, 44] designed controlled systems which are in a
strict-feedback frame and contain unknown functions and
non-symmetric dead-zone. A reinforcement learning algo-
rithm based on the utility functions, the critic designs, and
the back-stepping technique was used to develop an optimal

control signal [17]. Likewise, evolutionary algorithms such
as genetic algorithm, particle swarm optimization, differen-
tial evolution and bees algorithm have been used in [13, 15,
28]. Iman, Reza & Yashar [13] combined the Sugeno fuzzy
inference system and glow worms algorithm for the diagno-
sis of diabetes. Khoobipour & Khaleghi [15] compared the
capability of four evolutionary algorithms including genetic
algorithm, particle swarm optimization, differential evolu-
tion and bees algorithms to improve the capability of a
new strength fuzzy inference system for nonlinear func-
tion approximation. Rong, Huang & Liang [28] evaluated
the learning ability of the batch version of Online Sequen-
tial Fuzzy Extreme Learning algorithm to train a class of
fuzzy inference systems which cannot be represented by the
Radial Basis Function networks. Fuzzy logic systems for
the optimal tracking control problem were used to approx-
imate the long-term utility function with the support of
direct heuristic dynamic programming (DHDP) setting [12]
and the fuzzy-neural networks and the back-stepping design
technique [8, 16].

Despite having reasonable results in comparison with
FIS, those relevant researches should be intensified on
advanced fuzzy sets to achieve better performance [23].
Castillo, Martı́nez-Marroquı́n, Melin, Valdez & Soria [6]
compared several bio-inspired algorithms applied to the
optimization of type-1 and type-2 fuzzy controllers for an
autonomous mobile robot. Maldonado, Castillo & Melin
[21] used particle swarm optimization for average approxi-
mation of interval type-2 FIS. Melin [22, 23] implemented
a new type-2 FIS method, which is a FIS on type-2 fuzzy
set, for the detection of edges. It is indeed that extending
FIS on advanced fuzzy sets has grasped a great attention [6,
22, 23]. Recently, a generalized fuzzy set namely picture
fuzzy set (PFS) has been proposed in [9]. It is a generaliza-
tion of fuzzy set (FS) of Zadeh [47] and intuitionistic fuzzy
set (IFS) of Atanassov [3] with the debut of the positive, the
negative, the neutral and the refusal degrees showing various
possibilities of an element to a given set. PFS has a vari-
ety of applications in real contexts such as the confidence
voting and personnel selection. Deploying fuzzy rule-based
systems and soft computing methods on PFS would result
in better accuracy [33]. Some preliminary researches on the
soft computing methods on PFS have clearly demonstrated
the usefulness of PFS in the modeling and performance
improvement over traditional fuzzy tools [32–42, 46]. Thus,
our objective in this research is to extend FIS on PFS in
order to achieve better accuracy.

In this paper, a novel fuzzy inference system on PFS
called picture inference system (PIS). In PIS, the positive,
the neutral and the negative degrees of the picture fuzzy set
are computed using the membership graph that is the com-
bination of three Gaussian functions with a common center
and different widths to express a visual view of degrees.
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Then, the positive and negative defuzzification values, syn-
thesized from three degrees of the picture fuzzy set, are
used to generate crisp outputs. Learning for PIS including
training centers, widths, scales and defuzzification param-
eters is also discussed to build up a well-approximated
model. The proposed method is empirically validated
on the benchmark UCI Machine Learning Repository
datasets [4].

The rests of the paper are organized as follows. Section 2
introduces the preliminary knowledge including the descrip-
tions about the types of FIS and basic notions of PFS.
Section 3 presents the new picture inference system includ-
ing the design and the learning method. Section 4 shows
the validation on both the Lorenz system and the Hous-
ing dataset. Section 5 gives the conclusions and delineates
further works.

2 Preliminary

In this section, some types of FIS including the Mam-
dani, the Sugeno and the Tsukamoto fuzzy inferences are
described in Section 2.1. Section 2.3 introduces the basic
notions of PFS.

2.1 Types of fuzzy inference systems

There are three types of fuzzy inference systems [30] such
as:

• Mamdani fuzzy inference,
• Sugeno (or Takagi-Sugeno) fuzzy inference,
• Tsukamoto fuzzy inference.

A Mamdani fuzzy inference consists of two inputs x and y
and a single output z. Each input x, y and output z has N, M

and L membership functions, respectively. The system has
R rules in the form:

k: If x is A
(k)
i and y is B

(k)
j then z is C

(k)
l (1)

where k = 1..R, i = 1..N, j = 1..M and l = 1..L. N,
M and L are the numbers of membership functions for
inputs and output, respectively. N, M, L can take any value
depending on the model we construct, in this example:
N=M=L=2. In this system, max/min is the most common
rule of composition and the centre of method is used for
defuzzification.

A Sugeno fuzzy inference has R rules in the form:

k: If x is A
(k)
i and y is B

(k)
j then z(k) = f (x,y) (2)

where k = 1..R, i = 1..N and j = 1..M. N and M are the num-
bers of membership functions for inputs. This system uses
the weighted average operator or the weighted sum operator
for defuzzification.

In the Tsukamoto fuzzy inference, the consequent of each
fuzzy if–then rule is represented by a monotonic member-
ship function.

k: If x is A
(k)
i and y is B

(k)
j then z is C

(k)
l , (3)

The Tsukamoto fuzzy model aggregates each rule’s out-
put by the method of weighted averages. Figure 1 illustrates
a zero-order Sugeno inference.

Several researchers have compared the performances of
those FIS systems in [10, 11, 29]. The results demon-
strated the performance comparison of the three systems and
the advantages of using Sugeno-type over Mamdani-type.
Moreover, in fuzzy controllers, the root sum square infer-
ence engine is one of the most promising strategies and has
better performance over the max-product and the max-min.

Fig. 1 Zero-order Sugeno fuzzy
inference [30]
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2.2 Picture fuzzy sets

Definition 1 A picture fuzzy set (PFS) [9] in a non-empty
set X is,

A = {〈x, μA (x) , ηA (x) , γA (x)〉 |x ∈ X} , (4)

where μA (x) is the positive degree of each element x ∈ X,
ηA (x) is the neutral degree and γA (x) is the negative degree
satisfying the constraints,

μA (x) , ηA (x) , γA (x) ∈ [0, 1] , ∀x ∈ X, (5)

0 ≤ μA (x) + ηA (x) + γA (x) ≤ 1, ∀x ∈ X. (6)

The refusal degree of an element is calculated as
ξA (x) = 1 − (μA (x) + ηA (x) + γA (x)), ∀x ∈ X. In cases
ξA (x) = 0 PFS returns to the traditional IFS set. It is obvi-
ous that PFS is an extension of IFS where the refusal degree
is appended to the definition.

Example 1 [36, 38, 39]. In a democratic election station, the
council issues 500 voting papers for a candidate. The voting
results are divided into four groups accompanied with the
number of papers that are “vote for” (300), “abstain” (64),
“vote against” (115) and “refusal of voting” (21). Group
“abstain” means that the voting paper is a white paper reject-
ing both “agree” and “disagree” for the candidate but still
takes the vote. Group “refusal of voting” is either invalid

voting papers or did not take the vote. This example hap-
pened in reality and IFS could not handle it since the refusal
degree (group “refusal of voting”) does not exist.

Now, some basic picture fuzzy operations, picture dis-
tance metrics and picture fuzzy relations are briefly pre-
sented [9]. Let PFS(X) denote the set of all PFS sets on
universe X.

Definition 2 For A, B ∈ PFS(X), the union, intersec-
tion, complement and inclusion operations are defined as
follows.

A∪B = {〈x, max {μA (x) , μB (x)} , min {ηA (x) , ηB (x)} ,

min {γA (x) , γB (x)}〉 |x ∈ X} , (7)

A ∩ B = {〈x, min {μA (x) , μB (x)} , min {ηA (x) , ηB (x)},
max {γA (x) , γB (x)}〉 |x ∈ X} , (8)

A = {〈x, γA (x) , ηA (x) , μA (x)〉 |x ∈ X} , (9)

A ⊆ B iff ∀x ∈ X : μA (x) ≤ μB (x) and ηA (x) ≤ ηB (x)

andγA (x) ≥ γB (x) , (10)

A = B iff A ⊆ B and B ⊆ A. (11)

Definition 3 For A, B ∈ PFS(X), some operators on PFS
are:

A + B = {〈x, μA (x) + μB (x) − μA (x) .μB (x) , ηA (x) .ηB (x) , νA (x) .νB (x)〉 |x ∈ X} (12)

A.B = {〈x, μA (x) .μB (x) , ηA (x) .ηB (x) , νA (x) + νB (x) − νA (x) .νB (x)〉 |x ∈ X} (13)

A@B =
{〈

x,
1

2
(μA (x) + μB (x)) ,

1

2
(ηA (x) + ηB (x)) ,

1

2
(νA (x) + νB (x))

〉
|x ∈ X

}
(14)

A$B =
{〈

x,
√

μA (x) .μB (x),
√

ηA (x) .ηB (x),
√

νA (x) .νB (x)
〉
|x ∈ X

}
(15)

A#B =
{〈

x,
2μA (x) .μB (x)

μA (x) + μB (x)
,

2ηA (x) .ηB (x)

ηA (x) + ηB (x)
,

2νA (x) .νB (x)

νA (x) + νB (x)

〉
|x ∈ X

}
(16)

A ∗ B =
{〈

x,
μA (x) + μB (x)

2 (μA (x) .μB (x) + 1)
,

ηA (x) + ηB (x)

2 (ηA (x) .ηB (x) + 1)
,

νA (x) + νB (x)

2 (νA (x) .νB (x) + 1)

〉
|x ∈ X

}
(17)

Remark 1 For a scalar c and a PFS A, the c×A is performed
according to (12), for instance c = 2:

2 × A = 2.A

= A + A

=
{〈

x, 2μA (x) − μ2
A (x) , η2

A (x) , ν2
A (x)

〉}
(18)

Definition 4 For A, B ∈ PFS(X), the Cartesian product
of these PFS sets is,

A ×1 B = {〈(x, y) , μA (x) .μB (y) , ηA (x) .ηB (y) , γA (x) .γB (y)〉 |x ∈ A, y ∈ B} , (19)

A ×2 B = {〈(x, y) , μA (x) ∧ μB (y) , ηA (x) ∧ ηB (y) , γA (x) ∨ γB (y)〉 |x ∈ A, y ∈ B} . (20)
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Definition 5 The distances between A, B ∈ PFS(X)

are the normalized Hamming distance and the normalized
Euclidean in formulae (21–22), respectively.

dp (A, B) = 1

N

N∑
i=1

(|μA (xi) − μB (xi)| + |ηA (xi) − ηB (xi)| + |γA (xi) − γB (xi)|), (21)

ep (A, B) =
√√√√ 1

N

N∑
i=1

(
(μA (xi) − μB (xi))

2 + (ηA (xi) − ηB (xi))
2 + (γA (xi) − γB (xi))

2). (22)

Definition 6 The picture fuzzy relation R is a picture fuzzy
subset of A × B, given by

R = {〈(x, y) , μR (x, y) , ηR (x, y) , γR (x, y)〉 |x
∈ A, y ∈ B} , (23)

μR, ηR, γR : A × B → [0, 1] , (24)

μR (x, y) + ηR (x, y) + γR (x, y) ≤ 1, (25)

∀ (x, y) ∈ A × B.

PFR(A × B) is the set of all picture fuzzy subset on
A × B.

Definition 7 (Zadeh extension principle for PFS) For i =
1, 2, .., n, Ui is a universe and V �= ϕ. Let f : U1 ×2 .. ×2

Un → V be a mapping, where y = f (z1, .., zn). Let zi is a
linguistic variable on Ui for i = 1, 2, .., n. Suppose, for all
i, zi is Ai where Ai is a PFS on Ui . Then, the output of the
mapping f is B, which is a PFS on V defined for ∀y ∈ V

by,

B(y) =

⎧⎪⎨
⎪⎩

( ∨
D(y)

(
n∧

i=1
μAi

(ui )

)
,
∧

D(y)

(
n∧

i=1
ηAi

(ui )

)
,
∧

D(y)

(
n∨

i=1
νAi

(ui )

))
if f −1(y) �= 0

(0, 0, 0) if f −1(y) = 0

⎫⎪⎬
⎪⎭ (26)

D(y) = f −1(y) = {u = (u1, ..., un) : f (u) = y}. (27)

Remark 2 a) For some PFSs- A1, .., An and a function- f ,
the positive degree, neutral degree and negative degree of
the PFS- f (A1, .., An) are

μB (y) =
⎧⎨
⎩
∨

D(y)

(
n∧

i=1
μAi

(ui )

)
if f −1(y) �= 0

0 if f −1(y) = 0
,

ηB (y) =
⎧⎨
⎩
∧

D(y)

(
n∧

i=1
ηAi

(ui )

)
if f −1(y) �= 0

0 if f −1(y) = 0
,

νB (y) =
⎧⎨
⎩
∧

D(y)

(
n∨

i=1
νAi

(ui )

)
if f −1(y) �= 0

1 if f −1(y) = 0
,

where D(y) = f −1(y) = {u = (u1, ..., un) : f (u) = y}.
b) It is obvious that the product operations of the PFSs

in Definition 4 are a special case of the Zadeh extension
principle for PFS in Definition 7. We will prove this remark
as follows.

Proof Consider the Cartesian product in (20). For A, B ∈
PFS(X), assume that U1 = U2 = X, z1 = A, z2 = B and
f is a bijective then,

μf (A,B) (y) = μA×2B (y)

=
⎧⎨
⎩
∨

D(y)

(μA(u1) ∧ μB(u2)) if f −1(y) �= 0

0 if f −1(y) = 0

= μA(u1) ∧ μB(u2),

νf (A,B) (y) = νA×2B (y) = γA (u1) ∨ γB (u2) ,

ηf (A,B) (y) = ηA×2B (y) = ηA (u1)
∧

ηB (u2) ,

where D(y) = f −1(y) = {u = (u1, u2) : f (u) = y}. Thus,
A ×2 B is a special case of the Zadeh extension principle
for PFS in Definition 7. Similarly, for A, B ∈ PFS(X),
A×1 B is a special case of the Zadeh extension principle for
PFS in Definition 7 with the product t-norm instead of the
minimum t-norm.
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3 Picture inference system

Picture inference system including design and learning phase
is discussed in this section. The design of PIS is given in
Section 3.1. Section 3.2 shows the learning method for PIS.

3.1 PFS design

According to Definition 1, PFS constitutes of three degrees
of positive, neutral and negative memberships simulating
different states of human’s feeling such as agree, neutral
and disagree. Using the three degrees, it is convenient to
estimate and make better approximation for FIS. In this
section, a novel fuzzy inference system on PFS called pic-
ture inference system (PIS) including the design based on
the membership graph and the general picture inference
scheme is proposed. The advantage of the new system is
that the set of rules can be reused without any change. The
rule set is exactly the same, but the inference is more com-
plex and requires more effort to deal with other degrees.
Each rule generates a firing degree with three equivalent val-
ues namely positive, neutral and negative. There is no clear
method to combine them or to use them for defuzzification
or aggregation step so that in this section those steps are
invoked to gain the crisp value.

In a classic fuzzy system, each linguistic variable is
represented by a membership function that generates a
membership degree when the corresponding input variable
is given a crisp value. In the new model, to be able to gain
three values as mentioned above, a membership graph that
is the combination of three lines giving a visual view of each
degree is used. Figure 2 shows the membership graph where
the lowest, the medium and the highest lines respectively
expressed the positive, neutral and negative degree. For sim-
plicity, it is assumed that these lines use the same form of
function. In the other words, the Gaussian function with a
common center and different widths is used for the lines.
There are some reasons for us to construct such the graph. In

Fig. 2 The membership graph of PFS where (μ, η, ν) are the positive
, neutral and negative degrees

real life as in Example 1, the graph could be a good approx-
imation for elections where the number of people who vote
for is the largest at the center and the number of people
who abstain and vote against are quite low. In weather now-
casting, the membership graph is useful to demonstrate the
main direction and the right and left expansion. Herein, the
orientations in next hours are dependent on both the main
direction and expansions of the current state with equiva-
lent probabilities. In two sides of the center, the number of
people who vote for decreases significantly, the number of
people who abstain increases slightly and then decreases,
and the number of people who vote against only increases
as the opposite idea is getting sharp. Visually, the red area
in Fig. 2 represents a normal membership degree.

The formulae for the positive, neutral and negative
degrees are expressed in (28–30) respectively.

μA(x) = exp

(
− (x − c)2

2σ 2
μ

)
, (28)

ηA(x) = exp

(
− (x − c)2

2σ 2
η

)
− μA(x), (29)

νA(x) = 1 − exp

(
− (x − c)2

2σ 2
ν

)
, (30)

where c is the center of all three functions, σμ (resp. σησν)
is the width value (i.e., the standard deviation) of positive
(resp. neutral, negative ) function. From now on, for shorter
denotation, the membership graph is denoted as set three
functions - (f(x), g(x), h(x)) that describe three lines in the
graph. It is clear that

μA(x) = fA(x), (31)

ηA(x) = gA(x) − fA(x), (32)

νA(x) = 1 − gA(x). (33)

The general picture inference scheme is described in
Fig. 3

Some steps are drawn as follows.

Step1: Compute the positive, the neutral and the negative
degrees using the membership graph.

Obviously, with n crisp values of one vector input, each
rule generates n sets of three degrees. To extract the firing
strength of each rule, the following formulae (34–36) are
used.

μ
(r)
0 = min

j
(μ

(r)
j (x)), (34)

η
(r)
0 = min

j
(η

(r)
j (x)), (35)

ν
(r)
0 = max

j
(ν

(r)
j (x)). (36)
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Fig. 3 General picture
inference scheme where (1..4)
refer to steps

In these formulae, r is the index of rule and j is the index
of variable. Remember that the operations of three formulae
are presented in [9], which guarantee the property (6).

Step 2: Distribute the neutral degree to the positive and
negative degrees.

After extracting the firing strength, it is required to
defuzzify them into a single crisp value. People who abstain
do not either vote for or vote against; hence they are divided
into half: one for the group of people who vote for, one for
the group of people who vote again. As apply the idea in our
model, we gain:

ν(r) = v(r)
0 + η

(r)
0

2
, (37)

μ(r) = μ
(r)
0 + η

(r)
0

2
. (38)

In formulae (37–38), μ(r), ν(r) are the final positive and
negative degrees. Next, those values are mixed and defuzzi-
fied by formula (39), which in essence is the weighted
average method.

y(r) = μ(r).C
(r)
μ + ν(r).C

(r)
ν

μ(r) + ν(r)
. (39)

Step 3: Find the positive and negative defuzzification values.

In Fig. 3, C
(r)
μ , C

(r)
ν are the defuzzification values asso-

ciated with rule r-th. In the Mamdani model, C
(r)
μ , C

(r)
ν are

constants; in the Sugeno model, they can be constants or
the values computed from defuzzification. Denote Cr

μ (Cr
ν )

is the positive (negative) defuzzification value. It is clear

that the power of fuzzy systems is from the parameters that
make up the systems, but fuzzy systems are affected to the
initial values of parameters. Therefore, picking up suitable
defuzzification values should be taken into consideration.
The process is presented for all architectures as follows.

• In the Mamdani model:

C(r)
ν =

∑
p,Label(p)�=Label(r)

C
(p)
μ

L − 1
, (40)

where L is the number of labels of the output variable. For-
mula (40) means that C

(r)
ν is set to the average of other C

(p)
μ

having different labels.

• In the Sugeno model:

The recipe can be reused if many rules share the same
label of defuzzification. If each rule has its own function,
the following strategy is applied.

f (r)(x) =

∑
p �=r

f (p)(x)

R − 1
. (41)

Again, the upper indices r and p are indexed of a rule. The
positive and negative defuzzification values are calculated
using defuzzification function. Picking up initial defuzzi-
fication parameters is not simple; fortunately, they can be
adjusted easily in the learning phase.

• In the Tsukamoto model:

The negative defuzzification functions are not needed to
find because the classic model often consists of two oppo-
site monotonic functions with respect to two terms of the
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linguistic output variable. For each rule, we can find the neg-
ative defuzzification value using the opposite function to the
function of the current rule.

Step 4: Aggregate to find the crisp value of output.

What we have now is the crisp value for one rule only. To
mix all these crisp values, the following formulae are used.

y =
∑
r

y(r)(μ(r) + ν(r))

∑
r

(μ(r) + ν(r))
. (42)

Rewrite (42) as,

y =
∑
r

(μ(r).C
(r)
μ + ν(r).C

(r)
ν )

∑
r

(μ(r) + ν(r))
. (43)

3.2 Learning phase

In this section, the learning phase in PIS is discussed. Learn-
ing is an important process to adjust parameters to build
up a well-approximated model. There are existing methods
for learning in FIS such as the back-propagation, which is
a powerful tool to train. However in our case, it is possible
that constrain (6) is violated throughout the learning pro-
cess. In Section 3.1, we use the membership graph with the
following conditions being held to guarantee constraint (6).

σμ ≤ ση ≤ σν, (44)

where σμ, ση, σν are the width values of positive, neutral,
negative functions in formulae (28–30), respectively. These
values follow the rule in formulae (45–46) where |α|, |β| are
absolute values of numbers.

ση = σμ(1 + |α|), (45)

σν = ση(1 + |β|). (46)

It seems that the requirement is met but the system may
not run smoothly since the derivatives in back-propagation
must be computed. Thus, smooth functions like square val-
ues in formulae (47–48) should be used instead of absolute
values.

ση = σμ(1 + α2), (47)

σν = ση(1 + β2). (48)

Finally, in learning process, some parameters such as the
centers c, the width μ of positive degree and the scales α

and β for each linguistic term have to be optimized. We now
present here two main steps and formulae of learning. If
denoting the index of input vector as i, the index of rule as r,
the index of input variable as j and the input of membership
function as k then μ

(ir)
jk is the positive degree of variable j

in input vector i with the rule- r and the index of member-
ship function −k. Note that k is determined through r and j

as in the formula (49).

k = R(r, j). (49)

R is a matrix that represents the rule set of the dataset
implying relationship between three indices r , j , k.

3.2.1 Phase 1: learning centers, widths and scales

We start the learning phase with the definition of error of
each input vector.

ei = y
(i)
d − y(i), (50)

where y
(i)
d is the desired output and y(i) is the output

calculated from system. The objective function is,

E = 1

2N

∑
i

e2
i . (51)

N is the number of input vectors. Taking the derivative of
(51), we have

∂E

∂y(i)
= −ei

N
. (52)

The partial derivatives of y(i) with respect to μ(ir)and
ν(ir) are,

∂y(i)

∂μ(ir)
=

∂

∑
r

(μ(ir).C
(ir)
μ +ν(ir).C

(ir)
ν )

∑
r

(μ(ir)+ν(ir))

∂μ(ir)

=
C

(ir)
μ

∑
r

(μ(ir)+ν(ir))−∑
r

(μ(ir).C
(ir)
μ +ν(ir).C

(ir)
ν )

(∑
r

(μ(ir) + ν(ir))

)2

=

C
(ir)
μ

∑
r

(μ(ir)+ν(ir))

∑
r

(μ(ir)+ν(ir))
−

∑
r

(μ(ir).C
(ir)
μ +ν(ir).C

(ir)
ν )

∑
r

(μ(ir)+ν(ir))∑
r

(μ(ir) + ν(ir))

= C
(ir)
μ − y(r)∑

r

μ(ir) + ν(ir)
, (53)

Analogously:

∂y(i)

∂ν(ir)
= y(r) − C

(ir)
ν∑

r

μ(ir) + ν(ir)
. (54)

From formulae (37–38), it follows that

∂μ(ir)

∂μ
(ir)
0

= 1, (55)

∂ν(ir)

∂ν
(ir)
0

= 1. (56)
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From (53–56), we have

∂E

∂μ
(ir)
0

= ∂E

∂y(i)

∂y(i)

∂μ(ir)

∂μ(ir)

∂μ
(ir)
0

= −ei

N

y(r) − C
(ir)
μ∑

r

μ(ir) + ν(ir)
, (57)

Analogously

∂E

∂ν
(ir)
0

= −ei

N

C
(ir)
ν − y(r)∑

r

μ(ir) + ν(ir)
. (58)

From formulae (37–38), we obtain

∂E

∂η
(ir)
0

= 1

2

(
∂E

∂μ
(ir)
0

+ ∂E

∂ν
(ir)
0

)
. (59)

Note that

∂μ
(ir)
0

∂μ
(ir)
jk

=
{

1, if μ
(ir)
0 = min

j
( μ

(ir)
jk )

0, otherwise
, (60)

∂η
(ir)
0

∂η
(ir)
jk

=
{

1, if η
(ir)
0 = min

j
( η

(ir)
jk )

0, otherwise
(61)

∂ν
(ir)
0

∂ν
(ir)
jk

=
{

1, if ν
(ir)
0 = max

j
( ν

(ir)
jk )

0, otherwise
. (62)

The partial derivatives with respect to centercjk are
expressed in formulae (63–65). Note that the Gaussian func-
tions are used where σjk represents for the width of positive
function.

∂μ
(ir)
jk

∂cjk

= exp

⎛
⎜⎝−

(
x

(i)
j − cjk

)2

2σ 2
jk

⎞
⎟⎠ (x

(i)
j − cjk)

σ 2
jk

= μ
(ir)
jk

(x
(i)
j − cjk)

σ 2
jk

, (63)

∂η
(ir)
jk

∂cjk

=
∂

(
exp

(
−
(
x

(i)
j −cjk

)2

2
(
(1+α2

jk)σjk

)2

)
− exp

(
−
(
x

(i)
j −cjk

)2

2σ 2
jk

))

∂cjk

= exp

⎛
⎜⎝ −

(
x

(i)
j − cjk

)2

2
(
(1 + α2

jk)σjk

)2

⎞
⎟⎠

(
x

(i)
j − cjk

)
(
(1 + α2

jk)σjk

)2

−∂μ
(ir)
jk

∂cjk

, (64)

∂ν
(ir)
jk

∂cjk

=
∂

(
1 − exp

(
−
(
x

(i)
j −cjk

)2

2
(
(1+β2

jk)(1+α2
jk)σjk

)2

))

∂cjk

= − exp

⎛
⎜⎝ −

(
x

(i)
j − cjk

)2

2
(
(1 + β2

jk)(1 + α2
jk)σjk

)2

⎞
⎟⎠

(x
(i)
j − cjk)(

(1 + β2
jk)(1 + α2

jk)σjk

)2
. (65)

The upgrade scheme for center cjk is,

�cjk = −η
∂E

∂cjk

= −η

⎛
⎝∑

i,r

∂E

∂μ
(ir)
0

∂μ
(ir)
0

∂cjk

+
∑
i,r

∂E

∂η
(ir)
0

∂η
(ir)
0

∂cjk

+
∑
i,r

∂E

∂ν
(ir)
0

∂ν
(ir)
0

∂cjk

⎞
⎠

= −η
∑
i,r

∂E

∂μ
(ir)
0

∂μ
(ir)
0

∂μ
(ir)
jk

∂μ
(ir)
jk

∂cjk

+ − η
∑
i,r

∂E

∂η
(ir)
0

∂η
(ir)
0

∂η
(ir)
jk

∂η
(ir)
jk

∂cjk

+ − η
∑
i,r

∂E

∂ν
(ir)
0

∂ν
(ir)
0

∂ν
(ir)
jk

∂ν
(ir)
jk

∂cjk

(66)

where η is learning rate. Similarly, the partial derivatives of
three types of degrees with respect to width σjk are,

∂μ
(ir)
jk

∂σjk

=
∂ exp

(
−
(
x

(i)
j −cjk

)2

2σ 2
jk

)

∂σjk

= exp

⎛
⎜⎝−

(
x

(i)
j − cjk

)2

2σ 2
jk

⎞
⎟⎠ .

(
x

(i)
j − cjk

)2

σ 3
jk

= μ
(ir)
jk

(x
(i)
j − cjk)

2

σ 3
jk

, (67)

∂η
(ir)
jk

∂σjk

=
∂

(
exp

(
−
(
x

(i)
j −cjk

)2

2
(
(1+α2

jk)σjk

)2

)
− exp

(
−
(
x

(i)
j −cjk

)2

2σ 2
jk

))

∂σjk

= exp

⎛
⎜⎝ −

(
x

(i)
j − cjk

)2

2
(
(1 + α2

jk)σjk

)2

⎞
⎟⎠

(
x

(i)
j − cjk

)2

(
(1 + α2

jk)σjk

)3

(1 + α2
jk) − ∂μ

(ir)
jk

∂σjk

, (68)
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∂ν
(ir)
jk

∂σjk

=
∂

(
1 − exp

(
−
(
x

(i)
j −cjk

)2

2
(
(1+β2

jk)(1+α2
jk)σjk

)2

))

∂σjk

=− exp

⎛
⎜⎝ −

(
x

(i)
j − cjk

)2

2
(
(1 + β2

jk)(1 + α2
jk)σjk

)2

⎞
⎟⎠

(x
(i)
j − cjk)

2

(
(1 + β2

jk)(1 + α2
jk)σjk

)3
(1 + α2

jk)(1+β2
jk). (69)

Similar to formula (62), the upgrade scheme for width
σjk is,

�σjk = −η
∂E

∂σjk

= −η
∑
i,r

∂E

∂μ
(ir)
0

∂μ
(ir)
0

∂μ
(ir)
jk

∂μ
(ir)
jk

∂σjk

+ − η
∑
i,r

∂E

∂η
(ir)
0

∂η
(ir)
0

∂η
(ir)
jk

∂η
(ir)
jk

∂σjk

+ − η
∑
i,r

∂E

∂ν
(ir)
0

∂ν
(ir)
0

∂ν
(ir)
jk

∂ν
(ir)
jk

∂σjk

(70)

The scale α appears in neutral and negative degrees only
so that the positive degree can be ignored in this case.

∂η
(ir)
jk

αjk

=
∂

(
exp

(
−
(
x

(i)
j −cjk

)2

2
(
(1+α2

jk)σjk

)2

)
− exp

(
−
(
x

(i)
j −cjk

)2

2σ 2
jk

))

∂σjk

= exp

⎛
⎜⎝ −

(
x

(i)
j − cjk

)2

2
(
(1 + α2

jk)σjk

)2

⎞
⎟⎠ (x

(i)
j − cjk)

2

(
(1 + α2

jk)σjk

)3
σjk2αjk, (71)

∂ν
(ir)
jk

αjk

=
∂

(
1 − exp

(
−
(
x

(i)
j −cjk

)2

2
(
(1+β2

jk)(1+α2
jk)σjk

)2

))

∂αjk

= − exp

⎛
⎜⎝ −

(
x

(i)
j − cjk

)2

2
(
(1 + β2

jk)(1 + α2
jk)σjk

)2

⎞
⎟⎠

(x
(i)
j − cjk)

2

(
(1 + β2

jk)(1 + α2
jk)σjk

)3
σjk(1 + β2

jk)2αjk. (72)

Similarly to formula (70), the upgrade scheme of αjk is,

�αjk = −η
∂E

∂αjk

= −η
∑
i,r

∂E

∂η
(ir)
0

∂η
(ir)
0

∂η
(ir)
jk

∂η
(ir)
jk

∂αjk

+ − η
∑
i,r

∂E

∂ν
(ir)
0

∂ν
(ir)
0

∂ν
(ir)
jk

∂ν
(ir)
jk

∂αjk

(73)

Similarly, the partial derivative with respect to βjk is,

∂ν
(ir)
jk

βjk

=
∂

(
1 − exp

(
−
(
x

(i)
j −cjk

)2

2
(
(1+β2

jk)(1+α2
jk)σjk

)2

))

∂βjk

= − exp

⎛
⎜⎝ −

(
x

(i)
j − cjk

)2

2
(
(1 + β2

jk)(1 + α2
jk)σjk

)2

⎞
⎟⎠

(x
(i)
j − cjk)

2

(
(1 + β2

jk)(1 + α2
jk)σjk

)3
σjk(1 + α2

jk)2βjk. (74)

Finally, we get the upgrade scheme for βjk which is
similar to the upgrade scheme of αjk .

�βjk = −η
∂E

∂βjk

= η
∑
i,r

∂E

∂ν
(ir)
0

∂ν
(ir)
0

∂ν
(ir)
jk

∂ν
(ir)
jk

∂βjk

. (75)

3.2.2 Phase 2: Learning defuzzification parameters

It is infeasible if we ignore optimizing the positive and nega-
tive defuzzification parameters. This step is very simple, not
time-consuming and quite trivial so that we do not mention
here. The only thing has to be kept in mind is that optimizing
can be different between the Mamdani and Sugano models
in determining negative.

Being noted that initializing the parameter in FIS is much
simpler than in PIS, a trick that could be used to improve
the two-step learning phase above is to initialize parame-
ters from trained FIS which means picking up a very small
value of α and a very large value of β. The following steps
describe such the improvement.

Step 1: Training positive functions.

In this step we actually train the center and width.

Step 2: Training defuzzification parameters correspond-
ing to positive degrees.

Step 3: Training the height of each positive function.

In FIS, each membership function has the same height
value, e.g. 1. A height value is added to the membership
function as follows.

μ0(x) = hμ exp

(
− (x − c)2

2σ 2
μ

)
, (76)

where hμ is height of the positive function, c is center of
all three functions and σμ is width of the positive function.
Each function should have its own height value, which aims
to adjust the rule set and fixes the relation between rules.

Step 4: Initializing neutral degrees.



662 L. H. Son et al.

At first, neutral values are randomly set up and then
repeated many times until a set of degrees that gives less
error than that of the previous step is found. Neutral degrees
do not need to be too small so that they are initialized with
sizes of positive degrees. It is obvious that neutral degrees
are equally distributed to positive and negative degrees so
no matter how large neutral values are, positive (resp. nega-
tive) degrees still have large (resp. small) values. The neutral
degree function is defined as follows,

η0(x) = hημ0(x), (77)

where hη is height of neutral function.

Step 5: train neutral degrees.

This step trains the raw neutral degrees.

Step 6: Initialize and train the original negative degrees.

Since the minimum (resp. maximum) operator is used on
positive (resp. negative) degrees, it is required to set up a
very small value of the negative degree by some methods
such as the triangular function as in formula (78).

v0(x) = hv(1 − f�(x, c, σv)), (78)

where f� is a symmetric triangular membership function
with center c and width σν .

f�(x, c, σv) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 if x < c − σv
x − c + σv

σv

if c − σv ≤ x < c

−x + c + σv

σv

if c ≤ x < c + σv

0 if c + σv ≤ x

(79)

c is center of the three functions and σν is width of the
negative function.

Step 7: Train the defuzzification parameter correspond-
ing to negative degrees.

After having all degrees, the last defuzzification parame-
ters are trained accordingly.

By these steps, we are able to train parameters of the PIS
model. Note that after the learning phase, some membership
values could be negative. We have to control this by check-
ing the learning strictly, for example setting up the absolute
values for those negative memberships after each round of
height learning. The problem that the sum of memberships
can be greater than 1 can be fixed by normalization.

3.3 Remarks

Although PIS is more advantages than FIS, there are some
counter-examples showing the reverse. Consider an example:

x1 + x2 = y with x1, x2 ∈ [0, 10] and 4 fuzzy
rules:

R1: If x1 is small and x2 is small then y is small.

R2: If x1 is small and x2 is large then y is medium.

R3: If x1 is large and x2 is small then y is medium.

R4: If x1 is large and x2 is large then y is large. (80)

Assume that the membership functions for those rules
are:

μSMALL(x1) = μSMALL(x2)=
⎧⎨
⎩

1 if x < 0
1 − 0.1x if 0 ≤ x ≤ 10

0 if 10 < x

μLARGE(x1) = μLARGE(x2)=
⎧⎨
⎩

0 if x < 0
0.1x if 0 ≤ x ≤ 10

1 if 10 < x

, (81)

μSMALL(y) =
⎧⎨
⎩

1 if y < 0
1 − 0.05y if 0 ≤ y ≤ 20

0 if 20 < y

μMEDIUM(y) =

⎧⎪⎪⎨
⎪⎪⎩

0 if y < 0
0.1y if 0 ≤ y < 10

2 − 0.1y if 10 ≤ y < 20
0 if 20 ≤ y

μLARGE(y) ==
⎧⎨
⎩

0 if y < 0
0.05y if 0 ≤ y ≤ 20

1 if 20 < y

. (82)

The defuzzification values for (43) are:
Rule Cμ Cν

R1 0 20
R2 10 20
R3 10 0
R4 20 0

Assume that the negative degree:

γȦ (x) = 1 − μȦ (x) , ∀x ∈ X. (83)

For a discrete case: x1 = 3 and x2 = 7, we calculate
the outputs of each rule according to the Sugeno model as
follows.
Rule μ ν FIS PIS

μ(x1) ν(x1) min μ(x2) ν(x2) max Cμ ∗ μ Cν ∗ ν

R1 0.7 0.3 0.3 0.3 0.7 0.7 0.3*0 0.7*20
R2 0.7 0.7 0.7 0.3 0.3 0.3 0.7*10 0.3*20
R3 0.3 0.3 0.3 0.7 0.7 0.7 0.3*10 0.7*0
R4 0.3 0.7 0.3 0.7 0.3 0.7 0.3*20 0.7*0

Then, the outputs calculated by FIS and PIS are:

FIS = 0.3 ∗ 0 + 0.7 ∗ 10 + 0.3 ∗ 10 + 0.3 ∗ 20

0.3 + 0.7 + 0.3 + 0.3
= 10 (84)

PIS= 0.7 ∗ 20 + 0.3 ∗ 20 + 0.7 ∗ 0 + 0.7 ∗ 0

0.7 + 0.3 + 0.7 + 0.7
= 8.33 (85)

The accurate result of this case is 10, which is identical to
that of FIS. This clearly shows that FIS is better than PIS in
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this example. FIS performs better than PIS because it only
uses the positive degree, which is well-oriented by the data.
In real life situations where data may be variant and complex
as shown in Example 1 and the weather nowcasting prob-
lem (the negative and neutral memberships appear therein),
PIS is more effective than FIS because it can handle these
membership degrees concurrently. In the next section, we
will validate the performance of PIS through experiments.

4 Evaluation

4.1 An illustration on the Lorenz system

Control is a practical area and there are various investiga-
tions on solving the control problem using fuzzy systems. In
this section, PIS is applied to solve a classic control problem
- the Lorenz system defined below.

dx

dt
= σ(y − x), (86)

dy

dt
= x(ρ − z) − y, (87)

dz

dt
= xy − βz, (88)

where σ , ρ, β are positive constants and often set as: σ =
10, ρ = 28, β = 8/3 [1, 43]. It is noted that the system has
an equilibrium point at the origin of coordinate. The compo-
nent x with signal u is controlled. The change of x affects the
whole system, which is proven to be asymptotically stable.
Rewrite formula (86) as follow.

dx

dt
= σ(y − x) + u. (89)

In formula (89), there are only variables x and y so that to
construct the rule set we do not need to create the member-
ship graph for z. In this part, to study and design the system
that is stable under the control of signal u, the Lyapunov
theory [43] is used. In that way, the system will be stable
in Lyapunov sense. The dynamical system in the interval
[−40, 40]3 is examined as well. Each variable (x or y) has 3
linguistic terms: N, Z and P.

Table 1 The membership graph of linguistic term

Term Parameters

N ((16,−40), (20, −40), (800, −40))

Z ((4, 0),(5, 0),(200, 0))

P ((16, 40),(20, 40),(800, 40))

Table 2 Bad parameter functions for classic fuzzy controllers

Term Parameters

N (−16,40)

Z (5,5)

P (16,40)

Applying the algorithm in [43], the candidate function to
design the controller is found.

V (x, y, z) = 1

2
(x2 + y2 + z2). (90)

From the candidate function, the complete set of rules is
described as follows.

If x is P and y is P then u = −y(ρ + σ) (91)

If x is N and y is N then u = −y(ρ + σ) (92)

If x is P and y is N then u = −1 (93)

If x is N and y is P then u = 1 (94)

If x is P and y is Z then u = σx + y2 + βz2

x
− 10(σ + ρ)

(95)

If x is N and y is Z then u = σx + y2 + βz2

x
+ 10(σ + ρ)

(96)

If x is Z and y is P then u = −y(ρ + σ) (97)

If x is Z and y is N then u = −y(ρ + σ) (98)

If x is Z and y is Z then u = −y(ρ + σ) (99)

where N, Z, P are the negative, zero and the positive degrees
respectively. The Gaussian function is used to make the
membership graph and it does not change the rules above.

This function is dependent on center c and width σ so let
us denote (σ , c) instead of writing a full exponential form

Fig. 4 Radius versus time of bad fuzzy controller
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Table 3 Bad membership graph for picture fuzzy controller

Term Parameters

N ((16, −40), (20, −40), (800, −40))

Z ((4, 5),(5, 5),(200, 5))

P ((16, 40),(20, 40),(800, 40))

of the function. x and y have the same membership graph as
in Table 1. In this table, the short denotations for the mem-
bership graph and Gaussian function are used. The problem
needed to solve is determining the defuzzification values.
This could be a problem to picture fuzzy controller because
in PIS, initial parameters are adjusted by training but cannot
be done as in picture fuzzy controller. In order to calculate
the defuzzification values, the formulae (40–41) are used.
Note that some functions are the same but they have differ-
ent meanings; this is the reason we should use the formulae
(40–41).

Recall that we do not have any idea about the parameters
so that random values for centers and widths of membership
graphs were chosen and expressed in Table 1. There is no
exact way to know how the system runs but we can use the
Runge - Kutta (RK) method especially RK-4 to approximate
the states of Lorenz system. Denote

X = (x, y, z)T . (100)

The system is rewritten as,

dX

dt
= ·

X = f (X), (101)

where
·
X is the partial derivative of width respect to time.

We can estimate X(t) by

Xn+1(t) = Xn(t) + h

6
(k1 + 2k2 + 2k3 + k4) , (102)

where Xn(t) is state of the system at nth

iteration. k1, k2, k3, k4 are the functions of Xn(t) with

Fig. 5 Radius versus time of bad picture fuzzy controller

Fig. 6 Variable x versus time

different intervals. Specifically, k1 is the function on the
slope at the beginning of interval. k2 is the function at the
midpoint of interval (h/2). Likewise, k3 is at the midpoint
but starting from k2. Lastly, k4 is the function at the end of
interval.

k1 = f (Xn(t)) , (103)

k2 = f

(
Xn(t) + h

2
k1

)
, (104)

k3 = f

(
Xn(t) + h

2
k2

)
, (105)

k4 = f (Xn(t) + hk3) . (106)

The step-size (h) is a positive constant. Pick h = 0.01 and
examine the system in 10 seconds. The start points are x =
20, y = 20, z = 20.

Remind that design is very important and requires care-
ful selection. For example, if the center for Z (zero) is not

Fig. 7 Variable y versus time
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Fig. 8 Variable z versus time

equal to zero, the controller may not be able to lead the sys-
tem to the equilibrium point. Thus, the comparison of the
effects of two controller systems especially on the bad selec-
tion should be investigated. The first controller uses fuzzy
set with the parameters shown in Table 2. Note that each
term has only one membership function associated with, and
the same notations described in Table 1 are used. The bad
design point is the center of the term being not zero.

As shown in Fig. 4, because the controller has the rule
set designed by Lyapunov theory, the system converges to
(x, y, z) = (0.0221, 0.6178, 0.0051) that is very near to the
equilibrium point.

The second controller uses picture fuzzy set with the
bad design shown in Table 3. The results are illustrated in
Fig. 5. It is clear that the system finally converges to the ori-
gin even the bad parameters are selected. Since the neutral
and negative degrees are utilized, they pull the convergence

Fig. 9 Radius versus time

Fig. 10 The first learning iteration of PIS on Housing dataset

point back to the actual equilibrium point. This shows the
advantages of using PFS to FIS.

We need to talk about the reason why the parameters in
Table 1 are chosen. Intuitively, origin is the point at which
the system is stable. Moreover, it is a crisp value to make
the graph for Z (zero) thin. N and P do not show any dif-
ference in Lorenz system so that the symmetric across the
zero is made. It is not necessary to make the graphs of x and
y identical but in the example, we would like to simplify
the computation. We now have the so-called “good design”
parameters.

We have shown in this example the good parameters (in
Table 1) and the bad ones (in Tables 2–3) to illustrate that
using PIS would result in more accurate solutions than FIS.
Starting from random initial parameters, by employing the

Fig. 11 The first learning iteration of FIS on Housing dataset
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Fig. 12 The second learning iteration of PIS on Housing dataset

membership graph with the learning strategy of PIS, good
parameters can be achieved within small amount of time.
The comparisons from Figs. 6, 7, 8 and 9 show that the
convergence rate under control signal of PIS is fast with
x coordinate being unstable in the few first seconds but
quickly stable afterward (Fig. 6). Similar facts are found for
y and z coordinates and time (Figs. 7–9). This depicts the
advantage of PIS.

4.2 The comparative results

In Section 2.1, we have discussed the Sugeno model, which
is more general and has more advantages than Mamdani’s
[10, 11, 29]. Sugeno model is not only general but also very
flexible with the performance of defuzzification functions.
Each rule may have its own function increasing the power of
the model. Therefore, this section compares PIS and FIS on
the Sugeno model. The experiments are taken on the bench-
mark UCI Machine Learning Repository namely Housing,
Iris, Glass and Breast Cancer [4]. The rule set consists of
140 rules. Constant function is not linear or higher-order.
Additionally, the same function is shared for each rule to
avoid over-fitting. The cross-validation method is Hold-out.

The results of the first learning iteration of PIS and FIS
on Housing dataset are shown in Figs. 10 & 11, respectively.

Fig. 13 The second learning iteration of FIS on Housing dataset

Table 4 RMSE values of PIS to FIS in various datasets

Datasets PIS FIS

Housing 3.430 4.060

Iris 0.1779 0.1988

Glass 0.8594 0.8695

Breast Cancer 0.2670 0.2759

It is clear that PIS has the same power as FIS does. Note
that both models are strongly affected by the initial val-
ues of parameters. If the initial values are slightly changed,
the result of PIS is better than that of FIS. It is clear from
the figures that the error of PIS at the first time is higher
than that of FIS (resp. 9.4 vs. 6.7). However, PIS quickly
reduces the error and reaches the stable state after 600 sec-
onds (sec) while FIS needs more than 2000 sec even though
it starts from better parameters. The experimental results
clearly show that PIS performance is better than that of FIS.

The results of the second learning iteration of PIS and
FIS are shown in Figs. 12 & 13, respectively. It is indicated
that PIS performance is better than that of FIS. It takes PIS
few rounds of training to get the error of 4.8, then 8000
rounds to reduce the error down to 4.66. The error differ-
ence is small but valuable because the smaller the error is,
the harder the optimizing step runs. Back to FIS, it takes FIS
30 rounds to get to the optimal value and the model cannot
be optimized more. In this learning step, computational time
is not the problem because each row consumes a little time
but preciseness matters. This gives us a hint of when to stop
learning for a given error value.

By similar processes with those learning iterations, we
gain the final error values of PIS and FIS on testing datasets
as in Table 4.

The findings of experiments are as follows: PIS is better
than FIS in term of RMSE. Table 4 shows the compared
results of PIS and FIS. It is obvious that the values of PIS
are smaller than those of FIS with the reduced percentages
in comparison with FIS being 15.5 %, 10.5 %, 1.2 % and
3.2 %, respectively. This clearly shows the advantages of
PIS over FIS.

5 Conclusions

In this paper, we proposed picture inference system (PIS)
that integrates fuzzy inference system (FIS) with picture
fuzzy sets. PIS was designed based on the membership
graph and the general picture inference scheme. The pro-
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posed system is adapted for all architectures such as the
Mamdani fuzzy inference, the Sugeno fuzzy inference and
the Tsukamoto fuzzy inference. Learning for PIS including
training centers, widths, scales and defuzzification param-
eters is also discussed to build up a well-approximated
model. The novel contribution of this paper – PIS model
including the design and the learning method on picture
fuzzy set was attributed to have better performance than
those of FIS model. In the evaluation, the new system
was validated on a classic example in control theory - the
Lorenz system and on the benchmark UCI Machine Learn-
ing datasets. The findings from experimental results are as
follows: i) PIS is capable to effectively perform a classic
controller like the Lorenz system; ii) PIS is better than FIS
in term of RMSE as shown in the experiments.

Further works of this research can be investigated in the
following ways:

Firstly, other strategies of learning in PIS should be
investigated. As being observed from the paper, PIS used
the gradient method to train the parameters. This method
has the advantage of fast processing but produces local opti-
mal solutions. In order to achieve (global) better solutions,
evolutionary algorithms such as genetic algorithm, particle
swarm optimization, differential evolution and bees algo-
rithm can be applied to improve the inference performance.
For instance, the learning of parameters for the member-
ship graph in phase 1 namely the centers, width and scales
can be done through particle swarm optimization. Therein,
a particle is encoded as the combination of three param-
eters. The swarm of particles is gradually optimized until
stopping conditions hold. Analogously, the defuzzification
parameters in phase 2 can be trained using harmony search.
However, this must cooperate with the previous training
from phase 1 in order to utilize the optimal results. This
strategy initiates the idea of a hybrid training for PIS in
further works.

Secondly, we should take into account the high order PIS
with picture fuzzy rules. From step 3 in the description of
PIS in Section 3.1, the fuzzy rule is represented and used
in first order which is quite simple. In order to handle with
complex control processes, high order fuzzy rules should
be utilized. But more than that, as we are working on the
picture fuzzy set, picture fuzzy rules should be designed
and used instead of the traditional fuzzy rules. Picture fuzzy
rules are characterized by three membership degrees namely
the positive, neutral and negative. It is indeed necessary to
take into account those degrees simultaneously in the com-
putation. In the current PIS method, the positive, negative
and neutral degrees are combined to adapt with a single
output of traditional fuzzy inferences. This should be ame-
liorated if we would like to not only enhance the inference
performance but also provide more information to the con-

trol process. Even though the empirical results of PIS are
better than FIS, the combination of high order and picture
fuzzy rules is a good choice to help us significantly improve
the performance.

Finally, since real-life applications are often compli-
cated; therefore how to apply and adapt the proposed PIS
system to those is in high demand. In this paper, we just
applied PIS to a popular control problem - the Lorenz
system. When applying PIS to other ones, we should
make trial-and-test of appropriate parameters as well as
find appropriate functions for the membership graph. For
instance, we can use Bell function for three lines in the
membership graph instead of Gaussian. Similarly, the trape-
zoid and triangular functions can be used also. The mix
between those functions is possible for certain kinds of
applications. It is very useful if we can compare the per-
formance of various membership graphs using different
functions above.
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