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Abstract Averaged one-dependence estimators (AODE) is
a type of supervised learning algorithm that relaxes the
conditional independence assumption that governs standard
naı̈ve Bayes learning algorithms. AODE has demonstrated
reasonable improvement in terms of classification perfor-
mance when compared with a naı̈ve Bayes learner. How-
ever, AODE does not consider the relationships between
the super-parent attribute and other normal attributes. In
this paper, we propose a novel method based on AODE
that weighs the relationship between the attributes called
weighted AODE (WAODE), which is an attribute weight-
ing method that uses the conditional mutual information
metric to rank the relations among the attributes. We
have conducted experiments on University of California,
Irvine (UCI) benchmark datasets and compared accuracies
between AODE and our proposed learner. The experimen-
tal results in our paper show that WAODE exhibits higher
accuracy performance than the original AODE.
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1 Introduction

A Bayesian network (BN) is also called a belief network
and is a directed acyclic graphical model that belongs to the
family of probabilistic graphical models. BN can present
probabilistic relations among variables [8] and can present
causal structures induced from datasets of regular attributes,
in practice. However, learning the optimal BN structure
from an arbitrary BN search space of discrete variables
is considered non-deterministic polynomial time-hard (NP-
hard) [2]. In [2], the author suggested that research should
be directed away from the search for a general, exactly pre-
sented algorithm and toward the design of efficient special-
case, average-case, and approximate-case algorithms. Many
researchers have followed these suggestions and have pro-
posed some relatively reasonable algorithms that restrict
the complexity of the structures of BNs, such as naı̈ve
Bayes tree (NBTree) [11], tree-augmented naı̈ve Bayes
(TAN) [6], hidden naı̈ve Bayes (HNB) [10], and and aver-
aged one-dependence estimators (AODE) [19]. Examples
of the networks naı̈ve Bayes, AODE, TAN, and HNB are
shown in Fig. 1a, b, c, and d respectively. We will discuss
the naı̈ve Bayes learning algorithm at the beginning of this
paper because it is efficient and has the simplest structure of
a BN among the aforementioned learning algorithms based
on BNs.

A naı̈ve Bayes learner is a supervised learning method
based on the Bayes rule. It runs on labeled training exam-
ples and is driven by the strong assumption that all attributes
in the training examples are independent of each other
given the class: the so-called naı̈ve Bayes conditional
independence assumption. Naı̈ve Bayes has demonstrated
high performance and rapid classification speed in huge
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Fig. 1 Bayesian net structures of naı̈ve Bayes, AODE, TAN, and HNB

training instances with many attributes [14]. These benefits
essentially originate from the naı̈ve Bayes conditional inde-
pendence assumption. In practice, classification accuracy
could be affected by the conditional independence assump-
tion, which is often violated in real-world applications.
However, because of the attractive advantages of efficiency
and simplicity, both originating from the class conditional
independence assumption of attributes, many researchers
have proposed effective methods to further improve the per-
formance of naı̈ve Bayes learners by weakening this strict
attribute independence assumption without neglecting its

advantages. From the perspective of BN, the methods used
to weaken the attribute independence assumption for the
naı̈ve Bayes learner would prefer to learn a BN’s structure
from a constrained BN search space rather than arbitrary BN
search space.

Webb et al. [19] proposed a novel method called AODE.
In AODE, the conditional probability of test instances
given the class is tuned by a normal attribute (a super-
parent of any other attribute). AODE has demonstrated
significant improvement compared with naı̈ve Bayes learn-
ers in two respects: The AODE classifier aggregates a
set of weak classifiers and AODE relatively relaxes the
independence assumption without learning the structure of
a BN.

However, AODE does not consider the relationships
between a super-parent node attribute, which is also called
a one-dependence attribute in AODE, and other normal
attributes. It is plausible that, for any pair of features Ai

and Aj , the higher the dependence on each other, the more
confidence there is in the probabilistic estimated values
of P(Aj |Ai) and P(Ai |Aj). Hence, we propose weighted
AODE (WAODE), which is an algorithm based on the
AODE framework, and we expect it to improve the perfor-
mance of AODE by considering the relation among features
in real-world datasets. We expect that, based on our work,
human experts can use their expertise to further tune the
parameters that reflect the relationship among the pairs of
attributes.

Zheng and Webb [21] proposed an improved AODE
method called lazy elimination (LE) for AODE. LE
is an interesting method that is simple, efficient, and
can be applied to any Bayesian classifier. LE defines
the specialization-generalization relationship between pairwise
attributes and indicates that deleting all generalization
attribute-values before training a classifier can relatively
improve the performance of a Bayesian classifier. Zheng
and Webb [21] proved that there is no information loss
in the prediction after deleting the generalization attribute-
values in the dataset. However, storing the generalization
attribute-values (useless data) in the training datasets can
cause prediction bias under the independence assumption
because the independence assumption has the bias per se,
which is violated in real-world problems.

Jiang and Zhang [9] proposed an algorithm called
weightily averaged one-dependence estimators, which
assigns weights to super-parent nodes according to the
relationship between the super-parent node and class. The
method proposed by [9] is different from our proposed
method, WAODE, because the weight values in our paper
indicate the relationships between the super-parent node and
other normal attributes given the class.

Jiang et al. [10] proposed an algorithm called HNB,
which is a structure extending method of naı̈ve Bayes.
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In HNB, each feature in a dataset has one hidden parent
that is a mixture of the weighted influences from all other
attributes. HNB and our WAODE apply the same attribute
weighting method to measure the relationship between a
pair of attributes using the conditional mutual information
metric. Additionally, both HNB and WAODE avoid direct
learning of the BN structure. However, WAODE is differ-
ent from HNB in two respects: first, in HNB, the probability
estimator of an attribute relies on the hidden parent of that
attribute, but in WAODE, the probability estimator of an
attribute depends on the training data sampling. In fact, this
difference originates from the BN’s structural difference
between HNB and AODE. The second difference relates
to the attribute weighing form: the weight is considered
as a multiplier in the HNB learner, but as an exponent in
WAODE.

Zaidi et al. [20] proposed a weighted naive Bayes
algorithm called Weighting attributes to Alleviate Naive
Bayes’ Independence Assumption (WANBIA), that opti-
mizes weights to minimize either the negative conditional
log likelihood or the mean squared error objective functions.
WAODE and its variants use simple functions of conditional
mutual information as weight multipliers.

There are two contributions of this paper:

– We conduct a brief survey on improving AODE.
– We propose a novel attribute weighting for AODE

called WAODE. WAODE not only retains the advan-
tages of AODE, but also considers the dependence
among the attributes using conditional mutual informa-
tion measure methods.

Our experimental results show that the WAODE learn-
ing algorithm provides an effective improvement when
compared with standard AODE.

The remainder of this paper is organized as follows:
we briefly discuss AODE and attribute weighting forms in
Section 2. In Section 3, we explain WAODE. In Section 4,
we describe the experiments and results in detail. Finally,
we draw the conclusions of our study and describe future
work in Section 5.

2 AODE and attribute weighting forms

In this section, we provide a brief overview of AODE.
AODE is a supervised learning algorithm based on a naı̈ve
Bayes learner, which extends the learner by a limited relax-
ation of the conditional independence assumption. Averaged
one-attribute-dependence is the main feature of AODE.
Because AODE is extended from a naı̈ve Bayes learner,
we briefly introduce the naı̈ve Bayes learner first. At the
final part of this section, we discuss the forms of attribute
weighting.

2.1 Naı̈ve Bayes learner

In supervised learning, consider a training dataset D ={
x(1), . . . , x(n)

}
composed of n instances, where each

instance x = 〈x1, . . . , xm〉 ∈ D (m-dimensional vector)
is labeled with a class label y ∈ Y . For the posterior
probability of y given by x,

p(y|x) = p(x|y) · p(y)

p(x)
∝ p(x|y). (1)

Note that it is usually difficult to estimate the likelihood
p(x|y) directly from D because there are insufficient data,
in practice. Naı̈ve Bayes uses the attribute independence
assumption to alleviate this problem. From the assumption,
p(x|y) can be estimated as follows:

p(x|y) = p(x1, . . . , xm|y) ≈
m∏

i=1

p(xi |y). (2)

Then, the classifier of naı̈ve Bayes is

arg max
y∈Y

p̂(y)

m∏

i=1

p̂(xi |y). (3)

2.2 AODE

AODE structurally extends naı̈ve Bayes by applying an
averaged one-attribute-dependence method. The details of
AODE are described as follows:

Given a test instance x = 〈x1, . . . , xi, . . . , xm〉, we have
p(y, x) = p(y|x)p(x). Then

p(y|x) = p(y, x)

p(x)
= p(y)p(x|y)

p(x)
. (4)

Assuming that there exists a training dataset with suffi-
cient data, a test instance x should be included in the training
dataset. Because the attribute xi is in x,

p(y, x) = p(x, xi, y) = p(y, xi)p(x|y, xi). (5)

By combining (4) and (5),

p(y|x) = p(y, xi)p(x|y, xi)

p(x)
. (6)

Based on (6) and the attribute independence assumption,
it follows that

p(x|y, xi) ≈
m∏

j=1

p(xj |y, xi), (7)

where both xj and xi are the attribute-values in the test sam-
ple x. Hence, the classifier of AODE can be described as
follows:

arg max
y∈Y

⎛

⎝
∑

i:1≤i≤m∧F(xi )≥g

p̂(y, xi)

m∏

j=1

p̂(xj |y, xi)

⎞

⎠ , (8)
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where F(xi) is the count of attribute-value xi in the training
set and g is the minimum sample size for meaningful statis-
tical inference. Following [19], we set g to 30, which is one
of the widely used values.

2.3 Attribute weighting forms

Because AODE is an extended learning algorithm based on
naı̈ve Bayes, we discuss our forms of attribute weighting
based on naı̈ve Bayes as preliminary background informa-
tion.

Essentially, there are several formulations of naı̈ve Bayes
attribute weighting schemes. First, the weight for each
attribute is defined as follows:

p̂(c|x) = p̂(c)

m∏

i=1

p̂(xi |c)wi . (9)

If the weight depends on an attribute and class, the
corresponding formula is as follows:

p̂(c|x) = p̂(c)

m∏

i=1

p̂(xi |c)wci . (10)

The following formula is used for the case in which the
weight depends on an attribute value:

p̂(c|x) = p̂(c)

m∏

i=1

p̂(xi |c)wi,xi . (11)

Referring back to (9), when ∀wi = w, the formula is as
follows:

p̂(c|x) = p̂(c)

m∏

i=1

p̂(xi |c)w. (12)

Note that, in these weighting forms, if each weight is one,
then each weighting form is simply naı̈ve Bayes. For exam-
ple, (12) is considered to be an extended version of the naı̈ve
Bayes classifier given that it will be the naı̈ve Bayes classi-
fier if each attribute Ai has the same weight ∀wi = w = 1.
Similarly, in (8), we can regard p(xj |y, xi) of the AODE
classifier to be analogous to p(xi |y) of naı̈ve Bayes.

3 WAODE

In this section, we introduce our four forms of attribute
weighting for AODE and then discuss the corresponding
attribute-weight generating methods that can be used in
AODE with our four proposed forms. Finally, we discuss
our proposed WAODE algorithm.

3.1 Attribute weighting forms for AODE

In (8), we observe that the AODE learner does not con-
sider the relation between attribute-j and attribute-i, which
is also called the one-dependence attribute in AODE. Essen-
tially, we propose using a set of parameters wij to indicate
the relatively suitable relation values between the pairs of
attributes i and j under a particular attribute weighting form
in AODE.

Thus, we propose four forms of attribute weighting for
AODE:

p(y, xi)

m∏

j=1

(
p(xj |y, xi) · wij

)
, (13)

p(y, xi)

m∏

j=1

p(xj |y, xi)
wij , (14)

p(y, xi)

m∏

j=1

p(xj |y, xi)
√

wij , (15)

and

p(y, xi)

m∏

j=1

(
p(xj |y, xi) · √

wij

)
. (16)

Note that each form of attribute weighting for AODE has
a corresponding WAODE classifier shown as follows:

arg max
y∈Y

⎛

⎝
∑

i:1≤i≤m∧F(xi )≥g

p̂(y, xi)

m∏

j=1

p̂(xj |y, xi) · wij

⎞

⎠ ,

(17)

arg max
y∈Y

⎛

⎝
∑

i:1≤i≤m∧F(xi )≥g

p̂(y, xi)

m∏

j=1

p̂(xj |y, xi)
wij

⎞

⎠ ,

(18)

arg max
y∈Y

⎛

⎝
∑

i:1≤i≤m∧F(xi )≥g

p̂(y, xi)

m∏

j=1

p̂(xj |y, xi)
√

wij

⎞

⎠ ,

(19)

and

arg max
y∈Y

⎛

⎝
∑

i:1≤i≤m∧F(xi )≥g

p̂(y, xi)

m∏

j=1

p̂(xj |y, xi) · √
wij

⎞

⎠ ,

(20)

where wij is the weight value that describes the relation
between attribute-i and attribute-j . The details of wij are
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discussed in Section 3.2. The definitions of the remaining
parameters in (13)–(20) were discussed in Section 2.

3.2 WAODE

Some methods to generate attribute weights have been used
in attribute weighting for the naı̈ve Bayes classifier. Lee
et al. [13] generated feature weights using the Kullback–
Leibler measurement. Orhan et al. [16] used the least
squares approach to weight attributes in naı̈ve Bayes. Zaidi
et al. [20] proposed a weighted naı̈ve Bayes algorithm called
weighting attributes to alleviate the naı̈ve independence
assumption (WANBIA), which selects weights to maxi-
mize the conditional log-likelihood or minimize the mean
squared error for the corresponding objective functions.

For AODE, we expect that the attribute weight in AODE
should indicate the relation between a pair of attributes: wij

should be assigned with a higher value when attribute-i, as
a dependence attribute to attribute-j , provides more support
to attribute-j and vice versa. Figure 2 shows the weighting
form that our WAODE algorithm uses.

The conditional mutual information metric is used to
generate this type of attribute weight. In our WAODE algo-
rithm, weight wij , which is the weight value of the ith

attribute given the j th attribute, is formulated as follows:

wij = IP (Ai; Aj |Y )
∑m

i=1
∑m

j=2,j>iIP (Ai; Aj |Y )
· m, (21)

where m is the number of attributes and IP (Ai; Aj |Y ) is
the conditional mutual information among attribute-i and
attribute-j given class Y . IP (Ai; Aj |Y ) is shown as follows:

IP (Ai; Aj |Y ) =
∑

i,j,y

p(xi, xj , y) log
p(xi, xj |y)

p(xi |y)p(xj |y)
,

(22)

where xi and xj are the attribute-values that correspond
to the ith attribute and j th attribute, respectively. Note
that wij = wji because IP (Ai; Aj |Y ) = IP (Aj ; Ai |Y ).

Fig. 2 The weighting model and structure of WAODE: Y is the class
attribute and wij is a weight value of the pair of attributes Ai and Aj

Furthermore, the likelihood in AODE, p(xj |y, xi), equals
one when i = j .

(23)

Hence, we only need to calculate wij , such that i = 1 . . . m

and j > i. For example, consider a simple dataset with three
attributes and (23) shows the matrix of attribute weights. In
this case, we only need to calculate the upper (or lower)
triangular part with the exception of the diagonal elements
of the attribute matrix W. We choose the part of W in
this paper, which is shown in (23).

Now, we propose WAODE, whose attribute weights are
generated by (21). The classifier of WAODE is shown as
follows:

CWAODE(t) = arg max
y∈Y

⎛

⎝
∑

i:1≤i≤m∧F(xi)≥g

p̂(y, xi)

m∏

j=1

(
p̂(xj |y, xi) · wij

)
⎞

⎠ . (24)

The learning algorithm of WAODE is shown in Fig. 3.
According to (18)–( 20), we obtain the following classi-

fiers, CWAODE1, CWAODE2, and CWAODE3, respectively,
which are shown as follows:

CWAODE1(t) = arg max
y∈Y

⎛

⎝
∑

i:1≤i≤m∧F(xi )≥g

p̂(y, xi)

m∏

j=1

p̂(xj |y, xi)
wij

⎞

⎠ , (25)

CWAODE2(t) = arg max
y∈Y

⎛

⎝
∑

i:1≤i≤m∧F(xi )≥g

p̂(y, xi)

m∏

j=1

p̂(xj |y, xi)
√

wij

⎞

⎠ , (26)

and

CWAODE3(t) = arg max
y∈Y

⎛

⎝
∑

i:1≤i≤m∧F(xi )≥g

p̂(y, xi)

m∏

j=1

p̂(xj |y, xi) · √
wij

⎞

⎠ . (27)

During the training time, WAODE requires two cardinal
time-consuming steps: first, to estimate p(y), p(xi, y), and
p(xi, xj , y), it requires time complexity O(tn2). Addition-
ally, compared with AODE, WAODE needs more time to
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Fig. 3 Weighted averaged
one-dependence estimators
(WAODE) algorithm

calculate weights for all pairs of attributes, which requires
time complexity O(kn2v2). The classification of a single
example requires the calculation of (24) and is of time com-
plexity O(kn2). Table 1 displays the time complexity of
WAODE and the other algorithms discussed.

4 Evaluation

We conducted experiments on 25 datasets from the Univer-
sity of California, Irvine (UCI) Machine Learning Reposi-
tory [1] to compare the performance of WAODE with that of
naı̈ve Bayes, AODE, NBTree, HNB, TAN, WANBIACLL,
and the variations of WAODE: WAODE1, WAODE2, and
WAODE3. The UCI benchmark datasets that we used are
shown in Table 2. We discretized all numeric attributes to
each dataset.

Table 1 Computational complexity, where k is the number of classes,
n is the number of attributes, v is the average number of values for an
attribute, and t is the number of training examples

Algorithm Training time Classification time

NB O(nt) O(kn)

AODE O(tn2) O(kn2)

TAN O(tn2 + kn2v2 + n2log n) O(kn)

HNB O(tn2 + kn2v2) O(kn2)

WAODE O(tn2 + kn2v2) O(kn2)

Table 2 Description of datasets used in the experiments

No. Dataset Instances Attributes Classes Missing Numeric

1 anneal 898 39 6 Y Y

2 balance-scale 625 5 3 N Y

3 breast-cancer 286 10 2 Y N

4 breast-w 699 10 2 Y N

5 credit-a 690 16 2 Y Y

6 dermatology 366 35 6 Y Y

7 diabetes 768 9 2 N Y

8 glass 214 10 7 N Y

9 heart-c 303 14 5 Y Y

10 heart-h 294 14 5 Y Y

11 heart-statlog 250 14 2 N Y

12 hepatitis 155 20 2 Y Y

13 hypothyroid 3772 30 4 Y Y

14 ionosphere 351 35 3 N Y

15 kr-vs-kp 3196 37 2 N N

16 labor 57 12 2 Y Y

17 letter 20000 17 26 N Y

18 lymph 148 19 4 N Y

19 primary-tumor 339 18 21 Y N

20 sick 3772 30 2 Y Y

21 sonar 208 61 2 N Y

22 splice 3190 62 3 N N

23 vehicle 846 19 4 N Y

24 vote 435 17 2 Y N

25 waveform-5000 5000 41 3 N Y
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Table 3 Experimental results in terms of classifier accuracies; accuracies are estimated using 10-fold cross-validation with a 95 % confidence
interval

Data Naı̈ve Bayes AODE NBTree HNB TAN WANBIA

MI BIC CLL

(a) Results of algorithms except WAODE

anneal 93.99±1.55 97.77±0.97 98.66±0.75 98.89±0.69 98.89±0.69 98.01±0.91
Balance-scale 91.36±2.20 89.60±2.39 91.36±2.20 90.08±2.34 86.56±2.67 74.06±3.44
Breast-cancer 71.68±5.22 71.68±5.22 70.98±5.26 N/A 69.58±5.33 N/A
Breast-w 97.28±1.21 97.00±1.27 96.57±1.35 N/A 95.14±1.59 96.57±1.35
Credit-a 85.94±2.59 87.54±2.46 86.38±2.56 N/A 87.25±2.49 86.20±2.57
Dermatology 97.81±1.50 98.09±1.40 97.81±1.50 97.27±1.67 96.72±1.82 98.10±1.40
Diabetes 77.47±2.95 76.04±3.02 77.47±2.95 75.65± 3.04 76.43±3.00 78.49±2.91
Glass 77.10±5.63 78.97±5.46 71.96±6.02 74.30±5.85 78.50±5.50 82.43±5.10
Heart-c 85.81±3.93 84.82±4.04 84.82±4.04 N/A 83.17±4.21 N/A
Heart-h 86.39±3.92 86.05±3.96 85.17±4.00 N/A 86.39±3.92 82.99±4.29
Heart-statlog 83.70±4.41 84.07±4.36 82.59±4.52 84.44±4.32 82.22±4.56 N/A
Hepatitis 89.03±4.92 89.68±4.79 85.81±5.49 N/A 87.74±5.16 85.48±5.55
Hypothyroid 95.68±0.65 95.86±0.64 95.84±0.64 N/A 95.84±0.64 99.17±0.29
Ionosphere 92.02±2.83 93.45±2.59 92.31±2.79 93.45±2.59 94.02±2.48 92.21±2.80
Kr-vs-kp 87.89±1.13 91.24±0.98 97.09±0.58 92.46±0.92 92.05±0.94 93.04±0.88
Labor 91.23±7.34 82.46±9.87 87.72±8.52 N/A 84.21±9.47 94.56±5.89
Letter 72.84±0.62 85.20±0.49 83.09±0.52 86.46±0.47 84.20±0.51 75.16±0.60
Lymph 85.81±5.62 85.81±5.62 84.46±5.84 83.78±5.94 82.43±6.13 81.99±6.19
Primary-tumor 50.15±5.32 49.56±5.32 46.02±5.31 N/A 45.13±5.30 N/A
Sick 97.48±0.50 97.51±0.50 97.56±0.49 N/A 97.64±0.48 97.37±0.51
Sonar 99.04±1.33 99.04±1.33 99.04±1.33 100.00±0.00 96.15±2.61 83.12±5.09
Splice 95.36±0.73 96.21±0.66 95.36±0.73 96.18±0.67 95.49±0.72 95.89±0.69
Vehicle 66.67±3.18 73.52±2.97 72.22±3.02 76.95±2.84 76.83±2.84 67.11±3.17
Vote 90.11±2.80 94.25±2.19 95.63±1.92 N/A 94.94±2.06 95.48±1.95
Waveform-5000 64.04±1.33 64.02±1.33 64.04±1.33 63.78±1.33 63.34±1.34 N/A

Mean 85.04±2.94 85.98±2.95 85.60±2.95 86.69±2.33 85.23±3.06 87.87±2.78

(b) Results of the WAODE algorithms

Data WAODE1 WAODE2 WAODE3 WAODE(MI)
Anneal 76.17±2.79 84.74±2.35 97.44±1.03 97.44±1.03
Balance-scale 91.04±2.24 90.08±2.34 89.60±2.39 89.60±2.39
Breast-cancer 72.38±5.18 74.13±5.08 73.08±5.14 72.03±5.20
Breast-w 95.99±1.45 97.14±1.24 97.00±1.27 97.00±1.27
Credit-a 84.49±2.70 86.67±2.54 87.39±2.48 87.10±2.50
Dermatology 93.17±2.58 97.81±1.50 97.81±1.50 97.81±1.50
Diabetes 69.92±3.24 75.39±3.05 76.04±3.02 76.04±3.02
Glass 71.96±6.02 74.30±5.85 78.97±5.46 78.97±5.46
Heart-c 84.49±4.08 84.16±4.11 84.82±4.04 85.48±3.97
Heart-h 83.33±4.26 83.67±4.22 85.37±4.04 85.37±4.04
Heart-statlog 81.85±4.60 83.70±4.41 83.33±4.45 83.70±4.41
Hepatitis 79.35±6.37 89.03±4.92 89.03±4.92 89.68±4.79
Hypothyroid 92.29±0.85 92.29±0.85 95.89±0.63 95.89±0.63
Ionosphere 90.31±3.09 92.88±2.69 92.02±2.83 93.45±2.59
Kr-vs-kp 79.72±1.39 87.67±1.14 91.33±0.98 91.27±0.98
Labor 91.23±7.34 89.47±7.97 85.96±9.02 85.96±9.02
Letter 77.71±0.58 80.89±0.54 85.20±0.49 85.20±0.49
Lymph 81.08±6.31 85.14±5.73 87.16±5.39 86.49±5.51
Primary-tumor 29.50±4.85 47.20±5.31 49.85±5.32 50.15±5.32
Sick 93.88±0.76 93.88±0.77 97.38±0.51 97.38±0.51
Sonar 88.94±4.26 99.04±1.33 99.04±1.33 99.04±1.33
Splice 52.04±1.73 91.76±0.95 95.71±0.70 95.67±0.71
Vehicle 69.62±3.10 71.39±3.05 73.52±2.97 73.52±2.97
Vote 90.57±2.75 92.87±2.42 94.25±2.19 94.25±2.19
Waveform-5000 63.92±1.33 64.06±1.33 64.02±1.33 64.02±1.33

Mean 79.40±3.36 84.37±3.03 86.05±2.94 86.10±2.93

The number in boldface indicates the algorithm with the highest performance
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In the implementation of our algorithm, all the estimated
probabilities, including p̂(y), p̂(xi, y), and p̂(xi, xj , y)

, were filtered using Laplacian smoothing estimations
because of the zero count of the probabilistic calculation.
The details are as follows:

p̂(y) = F(y) + 1

n + c(Y )
, (28)

p̂(xi, y) = F(xi, y) + 1

ni + c(attri i) × c(Y )
, (29)

p̂(xi, xj , y) = F(xi, xj , y) + 1

nij + c(attri i) × c(attri j) × c(Y )
,

(30)

where n is the number of training examples for which the
class value is known; ni is the number of training examples
for which both attribute i and the class are known; nij is the
number of training examples for which all the classes, and
attributes i and j are known; c(•) is the cardinality value of
•; and F(•) is the frequency of •.

We conducted experiments on the proposed algorithms,
standard naı̈ve Bayes, AODE [19], NBTree [11], HNB [10],
and TAN [6]. To compare the performance of the algo-
rithms, we used a t-test with 10-fold cross-validation. We
applied all algorithms to the same training datasets and
test datasets. We directly copied the experimental results of
WANBIACLL from [20].

Note that there are missing results for some datasets for
HNB because the datasets have missing values. Addition-
ally, there are missing results for WANBIACLL that are not
in [20].

Table 3 shows the accuracy results of WAODE, vari-
ations of WAODE, and previous developed algorithms
on 25 UCI benchmark datasets. The average accuracies
and 95 % confidence interval on all datasets are sum-
marized at the bottom of the table. Conditional mutual
information was used for WAODE, WAODE1, WAODE2,
WAODE3, and HNB. Bayesian information criteria (BIC)

were used for TAN. Conditional log-likelihood was used
for WANBIACLL. Some results are missing for the HNB
algorithm because HNB cannot effectively manage datasets
with missing values. Instead of using traditional methods
to fill in the missing values or considering each missing
value as a new attribute value, we simply omitted HNB from
the experiments of datasets with missing values for a fair
comparison. The results of dataset “breast-cancer,” “heart-
c,” “heart-statlog,” “primary-tumor,” and “waveform-5000”
are missing for WANBIACLL because we did not locate
the results in the paper. For a fair comparison, we omit-
ted the results of the five datasets mentioned above for
WANBIACLL.

In Table 3, we observe that the classification performance
of WAODE is better than all the other algorithms regarding
the mean of the accuracy. Both WAODE1 and WAODE2,
in which the weights are the exponential in the classi-
fier, demonstrate worse results when compared with the
other algorithms. WAODE3, which is same with WAODE,
the weight as a multiplicator in its classifier, demon-
strates relatively better performance than WAODE1 and
WAODE2.

Win(w)/tie(t)/lose(l) are summarized in Table 4. We
observe that WAODE provides comparable and sometimes
better performance than naı̈ve Bayes with a win/tie/lose
record of 13/4/8. WAODE only demonstrates slightly bet-
ter performance, with a win/tie/lose record of 8/10/7 when
compared with AODE, and 11/0/9, when compared with
WANBIACLL.

Despite the missing results for HNB and WANBIACLL,
WAODE did not outperform them for several datasets. We
checked the results and found that the training accuracy of
WAODE was usually higher than that of HNB. This implies
that over-fitting degraded the performance of WAODE.
However, WAODE can be used more broadly than HNB
because WAODE can manage missing values more prop-
erly than HNB. Additionally, because we directly copied
the experimental results of WANBIACLL from [20], our
comparison in this paper may not be fair and accurate.

Table 4 Win/tie/lose results of standard naı̈ve Bayes, AODE, NBTree, HNB, TAN, and WANBIACLL

win/tie/lose Naı̈ve Bayes AODE WAODE1 WAODE2 WAODE3 NBTree HNB TAN WANBIACLL

AODE 14/3/8 — — — — — — — —

WAODE1 4/1/20 3/0/22 — — — — — — —

WAODE2 7/4/14 5/0/20 20/2/3 — — — — — —

WAODE3 11/4/10 6/10/9 23/0/2 15/3/7 — — — — —

NBTree 8/7/9 8/2/14 22/0/2 12/2/10 10/3/11 — — — —

HNB 9/0/5 8/1/5 12/0/2 10/1/3 10/0/4 7/0/6 — — —

TAN 11/1/13 9/0/16 19/0/6 13/0/12 8/0/17 9/1/14 2/1/11 — —

WANBIACLL 13/0/7 8/0/12 15/0/5 10/0/10 10/0/10 6/0/12 4/0/8 9/0/11 —

WAODE(MI) 13/4/8 8/10/7 22/0/3 17/3/5 6/14/5 13/2/9 4/1/9 16/0/9 11/0/9
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Table 5 Experimental results in terms of classifiers’ bias2

Data Naı̈ve Bayes AODE NBTree HNB TAN
MI BIC

(a) Bias results of algorithms except WAODE
Anneal 0.1529 0.1520 0.0912 0.0698 0.0717
Balance-scale 0.1345 0.1653 0.1473 0.1858 0.1875
Breast-cancer 0.2345 0.2381 0.2204 N/A 0.2144
Breast-w 0.0259 0.0296 0.0259 N/A 0.0416
Credit-a 0.1447 0.1476 0.1133 N/A 0.1320
Dermatology 0.0575 0.0534 0.0569 0.0476 0.0605
Diabetes 0.1899 0.1975 0.1920 0.2183 0.1906
Glass 0.2136 0.2159 0.1773 0.1655 0.1845
Heart-c 0.1285 0.1272 0.1135 N/A 0.1205
Heart-h 0.1488 0.1465 0.1443 N/A 0.1425
Heart-statlog 0.1414 0.1554 0.1405 0.1494 0.1433
Hypothyroid 0.0791 0.0777 0.0662 N/A 0.0772
Ionosphere 0.0835 0.0820 0.0722 0.0686 0.0732
Kr-vs-kp 0.1991 0.1803 0.1024 0.1503 0.1272
Letter 0.4882 0.4807 0.4455 0.4550 0.4307
Primary-tumor 0.3908 0.3926 0.3827 N/A 0.4003
Sick 0.0606 0.0604 0.0469 N/A 0.0385
Sonar 0.0429 0.0526 0.0307 0.0130 0.0463
Splice 0.1240 0.1334 0.1338 0.1250 0.2253
Vehicle 0.2739 0.2521 0.2230 0.2166 0.2424
Vote 0.0838 0.0479 0.0483 N/A 0.0439
Waveform-5000 0.3905 0.3841 0.2659 0.2708 0.2632

Average 0.1722 0.1715 0.1473 0.1643 0.1572

(b) Bias results of WAODE algorithms
Data WAODE1 WAODE2 WAODE3 WAODE(MI)
Anneal 0.2381 0.2245 0.1534 0.1534
Balance-scale 0.1508 0.1563 0.1653 0.1653
Breast-cancer 0.2868 0.2621 0.2315 0.2288
Breast-w 0.0555 0.0340 0.0294 0.0290
Credit-a 0.1734 0.1570 0.1447 0.1450
Dermatology 0.1994 0.0776 0.0646 0.0712
Diabetes 0.2613 0.2148 0.1975 0.1975
Glass 0.3003 0.2469 0.2159 0.2159
Heart-c 0.1447 0.1321 0.1281 0.1276
Heart-h 0.1912 0.1603 0.1462 0.1478
Heart-statlog 0.2008 0.1633 0.1531 0.1509
Hypothyroid 0.0779 0.0779 0.0777 0.0778
Ionosphere 0.1050 0.0935 0.0834 0.0835
Kr-vs-kp 0.1989 0.1866 0.1817 0.1818
Letter 0.5009 0.4872 0.4807 0.4807
Primary-tumor 0.5016 0.4048 0.3919 0.3913
Sick 0.0610 0.0610 0.0604 0.0605
Sonar 0.1445 0.0746 0.0526 0.0526
Splice 0.3638 0.1325 0.1472 0.1525
Vehicle 0.2493 0.2523 0.2521 0.2521
Vote 0.0704 0.0600 0.0479 0.0480
Waveform-5000 0.4158 0.4030 0.3841 0.3841

Average 0.2223 0.1847 0.1722 0.1726

The number in boldface indicates the algorithm with the highest performance
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Table 6 Experimental results in terms of classifiers’ variance

Data Naı̈ve Bayes AODE NBTree HNB TAN

MI BIC

(a) Variance results of algorithms except WAODE

Anneal 0.0286 0.0278 0.0533 0.0365 0.0280
Balance-scale 0.1165 0.1283 0.1473 0.1572 0.1796
Breast-cancer 0.0514 0.0510 0.0722 N/A 0.0933
Breast-w 0.0058 0.0151 0.0058 N/A 0.0524
Credit-a 0.0305 0.0288 0.0473 N/A 0.0626
Dermatology 0.0760 0.0751 0.1093 0.0685 0.1036
Diabetes 0.1065 0.1122 0.1322 0.1339 0.1253
Glass 0.0876 0.0867 0.1302 0.1007 0.1179
Heart-c 0.0407 0.0441 0.0755 N/A 0.0851
Heart-h 0.0245 0.0318 0.0537 N/A 0.0554
Heart-statlog 0.0400 0.0443 0.0710 0.0715 0.0897
Hypothyroid 0.0018 0.0001 0.0109 N/A 0.0009
Ionosphere 0.0099 0.0122 0.0183 0.0176 0.0262
Kr-vs-kp 0.0829 0.0870 0.1312 0.0870 0.1114

Letter 0.3259 0.3126 0.3666 0.3038 0.3675

Primary-tumor 0.2190 0.2170 0.2708 N/A 0.2826

Sick 0.0017 0.0006 0.0110 N/A 0.0126

Sonar 0.0707 0.0747 0.0828 0.0275 0.0715

Splice 0.1220 0.1446 0.2171 0.1259 0.2644

Vehicle 0.1395 0.1468 0.1797 0.1514 0.1715

Vote 0.0075 0.0108 0.0251 N/A 0.0309

Waveform-5000 0.2090 0.2131 0.2141 0.1984 0.2279

Average 0.0817 0.0848 0.1102 0.1138 0.1164

Data WAODE1 WAODE2 WAODE3 WAODE(MI)

(b) Variance results of WAODE algorithms

Anneal 0.000 0.0062 0.0279 0.0279

Balance-scale 0.1083 0.1153 0.1283 0.1283

Breast-cancer 0.0160 0.0332 0.0500 0.0530

Breast-w 0.0151 0.0119 0.0149 0.0144

Credit-a 0.0478 0.0282 0.0285 0.0286

Dermatology 0.0989 0.0893 0.0747 0.0731

Diabetes 0.0636 0.0980 0.1122 0.1122

Glass 0.0940 0.0917 0.0867 0.0867
Heart-c 0.0464 0.0435 0.0436 0.0443

Heart-h 0.0515 0.0371 0.0303 0.0290

Heart-statlog 0.0468 0.0460 0.0428 0.0454

Hypothyroid 0.0000 0.0000 0.0001 0.0001

Ionosphere 0.0071 0.0072 0.0104 0.0099

Kr-vs-kp 0.1714 0.1037 0.0868 0.0868

Letter 0.3321 0.3183 0.3126 0.3126

Primary-tumor 0.1640 0.1995 0.2177 0.2175

Sick 0.0000 0.0000 0.0006 0.0006

Sonar 0.1426 0.0951 0.0747 0.0747

Splice 0.0606 0.1287 0.1583 0.1630

Vehicle 0.1872 0.1563 0.1468 0.1468

Vote 0.0135 0.0130 0.0108 0.0109

Waveform-5000 0.2082 0.2076 0.2131 0.2131

Average 0.0852 0.0832 0.0851 0.0854

The number in boldface indicates the algorithm with the highest performance
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Table 7 Experimental results in terms of the weighted average of AUC: average AUCs are estimated using 10-fold cross-validation with a 95 %
confidence interval

Data Naı̈ve Bayes AODE NBTree HNB TAN
MI BIC

(a) Results of the algorithms except WAODE
Anneal 0.994±0.01 0.997±0.00 0.991±0.01 1.000±0.00 0.999±0.00
Balance-scale 0.962±0.01 0.949±0.02 0.962±0.01 0.966±0.01 0.941±0.02
Breast-cancer 0.701±0.05 0.718±0.05 0.691±0.05 N/A 0.665±0.05
Breast-w 0.993±0.01 0.993±0.01 0.991±0.01 N/A 0.986±0.01
Credit-a 0.930±0.02 0.939±0.02 0.924±0.02 N/A 0.942±0.02
Dermatology 0.999±0.00 0.999±0.00 0.996±0.01 0.999±0.00 0.999±0.00
Diabetes 0.844±0.03 0.836±0.03 0.844±0.03 0.826±0.03 0.830±0.03
Glass 0.932±0.03 0.942±0.03 0.926±0.04 0.949±0.03 0.940±0.03
Heart-c 0.931±0.03 0.931±0.03 0.931±0.03 N/A 0.924±0.03
Heart-h 0.927±0.03 0.926±0.03 0.921±0.03 N/A 0.919±0.03
Heart-statlog 0.922±0.03 0.921±0.03 0.906±0.04 0.924±0.03 0.907±0.04
Hepatitis 0.951±0.03 0.954±0.03 0.912±0.04 N/A 0.941±0.04
Hypothyroid 0.899±0.01 0.906±0.01 0.895±0.01 N/A 0.904±0.01
Ionosphere 0.978±0.02 0.988±0.01 0.972±0.02 0.993±0.01 0.987±0.01
Kr-vs-kp 0.952±0.01 0.974±0.01 0.993±0.00 0.982±0.00 0.981±0.00
Labor 0.965±0.05 0.936±0.06 0.930±0.07 N/A 0.900±0.08
Letter 0.976±0.00 0.995±0.00 0.984±0.00 0.996±0.00 0.993±0.00
Lymph 0.919±0.04 0.931±0.04 0.925±0.04 0.920±0.04 0.920±0.04
Primary-tumor 0.835±0.04 0.837±0.04 0.817±0.04 N/A 0.819±0.04
Sick 0.962±0.01 0.963±0.01 0.956±0.01 N/A 0.960±0.01
Sonar 1.000±0.00 1.000±0.00 1.000±0.00 1.000±0.00 0.997±0.01
Splice 0.993±0.00 0.995±0.00 0.993±0.00 0.995±0.00 0.992±0.00
Vehicle 0.874±0.02 0.931±0.02 0.892±0.02 0.939±0.02 0.933±0.02
Vote 0.973±0.02 0.990±0.01 0.985±0.01 N/A 0.986±0.01
Waveform-5000 0.813±0.01 0.813±0.01 0.813±0.01 0.816±0.01 0.814±0.01

Mean 0.929±0.02 0.935±0.02 0.926±0.022 0.950±0.01 0.927±0.02

Data WAODE1 WAODE2 WAODE3 WAODE(MI)
(b) Results of the WAODE algorithms
Anneal 0.985±0.01 0.995±0.00 0.996±0.00 0.996±0.00
Balance-scale 0.949±0.02 0.949±0.02 0.949±0.02 0.949±0.02
Breast-cancer 0.714±0.05 0.713±0.05 0.714±0.05 0.717±0.05
Breast-w 0.993±0.01 0.993±0.01 0.992±0.01 0.992±0.01
Credit-a 0.928±0.02 0.934±0.02 0.942±0.02 0.942±0.02
Dermatology 0.998±0.00 0.999±0.00 0.999±0.00 0.999±0.00
Diabetes 0.837±0.03 0.838±0.03 0.836±0.03 0.836±0.03
Glass 0.932±0.03 0.937±0.03 0.942±0.03 0.942±0.03
Heart-c 0.925±0.03 0.926±0.03 0.931±0.03 0.931±0.03
Heart-h 0.924±0.03 0.926±0.03 0.924±0.03 0.924±0.03
Heart-statlog 0.914±0.03 0.917±0.03 0.918±0.03 0.920±0.03
Hepatitis 0.923±0.04 0.937±0.04 0.955±0.03 0.956±0.03
Hypothyroid 0.901±0.01 0.901±0.01 0.904±0.01 0.904±0.01
Ionosphere 0.976±0.02 0.982±0.01 0.978±0.02 0.981±0.01
Kr-vs-kp 0.961±0.01 0.962±0.01 0.975±0.01 0.975±0.01
Labor 0.961±0.05 0.959±0.05 0.942±0.06 0.942±0.06
Letter 0.976±0.00 0.989±0.00 0.995±0.00 0.995±0.00
Lymph 0.925±0.04 0.927±0.04 0.928±0.04 0.928±0.04
Primary-tumor 0.823±0.04 0.833±0.04 0.836±0.04 0.836±0.04
Sick 0.959±0.01 0.966±0.01 0.962±0.01 0.962±0.01
Sonar 0.999±0.00 1.000±0.00 1.000±0.00 1.000±0.00
Splice 0.990±0.00 0.994±0.00 0.995±0.00 0.995±0.00
Vehicle 0.888±0.02 0.914±0.02 0.931±0.02 0.931±0.02
Vote 0.978±0.01 0.984±0.01 0.990±0.01 0.991±0.01
Waveform-5000 0.795±0.01 0.810±0.01 0.813±0.01 0.813±0.01
Mean 0.926±0.02 0.931±0.02 0.934±0.02 0.934±0.02

The number in boldface indicates the algorithm with the highest performance
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Compared with NBTree and TAN, WAODE exhibits
comparable and sometimes better performance, with
win/tie/lose records of 13/2/9 and 16/0/9, respectively.

For the detailed analysis, we have performed bias-
variance decomposition [12, 18] results to compare the
performance of the classifiers with varying amount of data.
Following [12], we calculated bias2 and variance using 2-
fold cross-validation and listed the results in Tables 5 and 6
respectively.

Bias2 shows the quadratic loss which is calculated by
squared difference between the average of actual output and
the average of predicted output. Variance is a non-negative
value that reflects the variability to measure how much the
learner is sensitive to changes in the training set. Variance
is zero if the learner makes consistent prediction regard-
less of the training set. The results of datasets “hepatitis”,
“labor” and “lymph” are not included because they have
too few instances (less than 200 instances) for statistically
significant bias-variance decomposition.

It can be seen that NBTree shows the least bias and naı̈ve
Bayes shows the smallest variance among the learning algo-
rithms. This indicates that NBTree might exhibit relatively
low error for large data and naı̈ve Bayes might produce rel-
atively low error for small data. Note that we do not include
the bias and variance results of WANBIACLL from [20]
because their paper has different experimental settings and
datasets. WAODE(MI) algorithm and its variants do not
show remarkable superiority or inferiority compared with
other algorithms in terms of bias and variance. In Table 8,
we will discuss these results in more detail with appropriate
statistical tests.

The receiver operating characteristic (ROC) curve [5] is
an effective tool to illustrate the behavior of binary classifiers.

The ROC curve is widely used in binary classification
because it does not degrade itself on imbalanced datasets.
The area under the ROC curve (AUC) reflects the probabil-
ity that the classifier ranks a random positive instance higher
than a random negative instance. AUC can be formulated as
a Gini index minus one divided by two [7]. AUC is usually
an effective measure but is not always a more valued mea-
sure than accuracy because of several drawbacks [7, 15].
Despite those drawbacks, the ROC curve and its AUC are
still widely used for measuring classifiers’ performance.

One main drawback of the ROC curve for measuring
classifiers’ performance is that it is usually effective for
binary classification. Because most benchmark datasets we
have tested are multiclass datasets, it is difficult to measure
performance with AUC for multiclass classifiers. In Table 7,
we list the weighted averages of the AUCs of WAODE and
the remaining algorithms. Because the ROC curve and AUC
can be calculated for binary classification, we followed a
one-vs-rest approach for the AUC calculations.

From the results of Table 7, it can be seen that the over-
all results are somewhat mixed. WAODE(MI) shows much
slightly lower or similar performance than AODE within
the confidence interval. Again HNB shows slightly higher
performance than AODE and WAODE(MI). As aforemen-
tioned, it is because over-fitting of WAODE and its vari-
ants reflected from its high training accuracy. Overall, we
can see that AUC is generally too high for most classi-
fication results to effectively discriminate the classifiers’
performance, which complies the arguments of [7, 15].

For the statistical comparison of the classifiers, we
employ binomial sign test and compare WAODE(MI) with
other algorithms in Table 8. Following [19], we have cal-
culated one-tailed p value for Naı̈ve Bayes, and for other

Table 8 Win/Tie/Loss records of WAODE(MI) and other algorithms with binomial sign test

Win/Tie/Loss p-value Win/Tie/Loss p-value Win/Tie/Loss p-value

Naı̈ve Bayes AODE NBTree

Accuracy 13/4/8 0.1917 7/11/7 1.2095 15/2/8 0.2100

Bias 10/1/11 0.5000 5/7/10 0.3018 1/0/21 < 0.0001

Variance 8/1/13 0.1917 6/9/7 1.0000 21/0/1 < 0.0001

AUC 14/5/6 0.0577 5/10/10 0.3018 19/3/3 0.0009

HNB TAN WANBIACLL

Accuracy 5/1/8 0.2668 16/0/9 0.2295 11/0/9 0.8238

Bias 2/0/11 0.0225 4/0/18 0.0043 — —

Variance 8/0/5 0.5811 21/0/1 < 0.0001 — —

AUC 2/3/9 0.0654 17/3/5 0.0169 — —
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algorithms, we have reported two-tailed p values. Over-
all, WAODE(MI) shows higher performance than naı̈ve
Bayes. Compared with AODE, WAODE(MI) shows com-
parable performance with statistically approvable intervals.
WAODE(MI) outperforms NBTree and TAN in accuracy,
variance and AUC, but WAODE(MI) exhibits that it has
high bias compared with them. As we noted before, overall,
HNB shows higher performance than WAODE(MI). How-
ever, HNB does not always outperform WAODE(MI) and,
considering the results with HNB in Table 8, reducing the
bias error and avoiding over-fitting using proper regulariza-
tion might lead WAODE(MI) to a promising direction.

5 Conclusion

In this paper, we proposed a novel Bayesian model called
WAODE. Using our method, we considered the relation-
ships between the super-parent attribute and other attributes.
We conducted a systematic experiment to measure the
classification accuracies of our WAODE algorithm, naı̈ve
Bayes, AODE, NBTree, HNB, TAN, WANBIACLL, and
three variations of WAODE (WAODE1, WAODE2, and
WAODE3) on 25 UCI benchmark datasets. The experimen-
tal results showed that WAODE exhibited higher perfor-
mance when compared with naı̈ve Bayes, AODE, and the
other algorithms. We observed that, in WAODE, the design
of the weight was the core issue. The quality of the weight
dominated the classification performance of WAODE. We
used the conditional mutual information metric to generate
weights in WAODE.

In our future work, we will explore more effective meth-
ods to estimate weights from data to improve our WAODE
performance. Furthermore, note that we currently con-
sider the relationship between the parent node and child
node only to generate weights. It will be interesting if we
may add other factors in generating weights. For exam-
ple, a hybrid weighting scheme may possibly enhance the
relationship between the child nodes. The experimental
results indicate that WAODE has high bias value compared
with NBTree and TAN. Finding an optimal trade-off point
between bias and variance will be an essential problem of
WAODE. Additionally, we will further compare the perfor-
mance of our algorithms with ensemble learning methods
[3, 4, 17].
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