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Abstract Variable selection is important in high-dime-
nsional data analysis. The Lasso regression is useful since
it possesses sparsity, soft-decision rule, and computational
efficiency. However, since the Lasso penalized likelihood
contains a nondifferentiable term, standard optimization
tools cannot be applied. Many computation algorithms
to optimize this Lasso penalized likelihood function in
high-dimensional settings have been proposed. To name
a few, coordinate descent (CD) algorithm, majorization-
minimization using local quadratic approximation, fast iter-
ative shrinkage thresholding algorithm (FISTA) and alter-
nating direction method of multipliers (ADMM). In this
paper, we undertake a comparative study that analyzes rela-
tive merits of these algorithms. We are especially concerned
with numerical sensitivity to the correlation between the
covariates. We conduct a simulation study considering fac-
tors that affect the condition number of covariance matrix of
the covariates, as well as the level of penalization. We apply
the algorithms to cancer biomarker discovery, and compare
convergence speed and stability.
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1 Introduction

Variable selection in high-dimensional data analysis is
an important issue in various fields of science including
genetics, compressed censing, and machine learning. For
instance, if we want to detect a disease from a person’s gene
expressions measured by microarray, tens of thousands of
genes are possible predictors while only a few of them are
relevant to the disease. A systematic method to select these
genes are in need.

Statistically, this is a variable or model selection prob-
lem in regression. A classical approach is to apply the best
subset method, which selects the best model by examin-
ing the models created from all possible combinations of
the predictor variables based on a predictive performance
criterion such as the Akaike information criterion (AIC)
[1], the Bayesian information criterion (BIC) [19], or the
adjusted coefficient of determination (R2). Applied to high-
dimensional data, however, best subset method becomes
erratic because of the unavoidable multicollinearity among
the predictor variables. A reason for this instability is that
the best subset method selects models in a discrete man-
ner, hence the selected models may be very different in
the presence of noise. Furthermore, the number of subsets
of variables to be compared increases exponentially as the
number of predictor variables becomes larger. To overcome
these difficulties, “soft” versions of variable selection meth-
ods that continuously select models, have been extensively
studied. Among these, the Lasso, which penalizes the sum
of residual squares or other loss functions by the l1 norm
of the regression coefficients, has received a considerable
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attention [23]. The l1 norm penalty makes many of the esti-
mated coefficients exactly zero, which is why this method
is broadly used for variable selection in high-dimensional
data. Furthermore, the Lasso allows the coefficients to vary
continuously with the level of regularization, rendering
itself a stable soft model selector. The Lasso also shrinks the
coefficients toward zero and thus exhibits a better predictive
performance than ordinary least square estimators.

For these reasons, the Lasso has found many applica-
tions, including face recognition [26, 28], speech recogni-
tion [9], and estimation of gene networks [29].

Computationally, the Lasso problem is to minimize the
objective function

f (β) = (1/2)‖y − Xβ‖22 + λ‖β‖1, (1)

where y is an n × 1 vector of the observations, X is
an n × p data matrix of the levels of the predictor vari-
ables, and λ > 0 is the regularization parameter; β is a
p-dimensional vector of the regression coefficients, which
is the optimization variable. We wish to find the vector
β̂ that minimizes f (β). The l1 norm penalty function is
non-differentiable at the origin, and standard optimization
methods based on derivatives such as the Newton-Raphson
and the gradient descent methods cannot be used. Vari-
ous algorithms to compute the Lasso solutions have been
studied. Among these, the homotopy algorithm [6], while
widely used for problems of small to moderate dimensions,
is often inapplicable to high-dimensional problems because
it requires repetitive Cholesky decompositions. To meet the
needs of efficient and stable computation, iterative meth-
ods, which reduce the original optimization problem to a
series of simpler problems and successively refine solutions,
have been of interest. Many algorithms have been devel-
oped, including the majorization-minimization using local
quadratic approximation (MM-LQA) algorithm [12], alter-
nating direction method of multipliers (ADMM) [4], fast
iterative shrinkage thresholding algorithm (FISTA) [2]. For
individual algorithm, its scalability for the high-dimensional
data and applicability for various types of penalties are well-
studied. There are a few of comparative studies for the
computation times of the algorithms as well [8, 27, 28].
However, studies that compare the merits and the drawbacks
of these algorithms in a systematic fashion are scarce.

In this paper, we conduct studies that compare compu-
tational algorithms for high-dimensional Lasso, to find the
factors that affect the performance and convergence of the
algorithms. In practice, covariates in regression analysis for
the high-dimensional data usually contain highly correlated
variables. While there exist other penalized statistical pro-
cedures, it is worth investigating the numerical sensitivity of
algorithms to the correlation between the covariates.

We compare four computational algorithms suitable for
high-dimensional Lasso, that is, the coordinate descent

(CD) algorithm (shooting algorithm), MM-LQA, FISTA,
and ADMM. We analyze the sensitivity of these algorithms
to the correlation between the covariates to see the rela-
tive merits of each algorithm. We found that MM-LQA
and ADMM are quite robust to correlation. These algo-
rithms also show stable convergence for a wide range of the
regularization parameter. On the contrary, CD and FISTA
may behave unstably when the correlation becomes high;
this unstability is improved as regularization parameter gets
larger. We also report empirical conditions for the CD
algorithm to fail to converge.

Section 2 reviews the four algorithms for solving Lasso.
In Section 3 we conduct the comparative numerical study. In
Section 4, we apply the four algorithms to a study for cancer
biomarker discovery, and compare their performance.

2 Preliminaries

In this section, we provide an overview of the iterative
optimization methods to be compared in the following
sections.

2.1 Coordinate descent algorithm (CD)

CD is devised to minimize an objective function that is
separable with respect to each coordinate of the variable.
It iteratively updates the variable from β(k) to β(k+1) by
choosing a single coordinate, and then performs univariate
minimization with the other coordinates held fixed at the
values of the previous step. In other words, write f (β) =
f (β1, · · · , βp). At the k-th iteration, choose an appropriate
j ∈ {1, · · · p}, and set
β

(k+1)
j = argmin

βj ∈R
f (β

(k+1)
1 , ..., β

(k+1)
j−1 , βj , β

(k)
j+1, ..., β

(k)
p ).

For the Lasso, the objective function is convex and separable
because so are the sum of residual squared and the l1 norm,
rendering the following decomposition possible,

f (β) = (1/2)‖y − Xβ‖2 + λ‖β‖1
= (1/2)

∑n
i=1(yi − ∑p

j=1 Xijβj )
2 + λ

∑p

j=1 |βj |
= (1/2)

∑n
i=1(yi − ∑

l �=j Xilβl − Xijβj )
2

+λ
∑

l �=j |βl | + λ|βj |.
(2)

If all the coefficients except for βj are fixed at
{
β̃l , l �= j

}
,

(2) becomes a convex, piecewise quadratic function in βj .
This univariate function is minimized by

β∗
j = Sλ(

∑n
i=1 Xij (yi − ỹi(j)))

∑n
i=1 X2

ij
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where ỹi(j) = ∑
l �=j Xil β̃l , and Sλ(·) is the soft-

thresholding operator:

Sλ(x) = sign(x) · max(|x| − λ, 0). (3)

This coordinate-wise minimization step is repeated with
respect to all j (1 ≤ j ≤ p) until relative error is below
determined tolerance, making a full iteration. The resulting
algorithm for the Lasso is as follows.

Since each coordinate-wise minimization step is very
efficiently computed, Friedman et al. [8], Wu and Lange
[27] devised path algorithms based on CD with the warm
start strategy that successively use the previous solution as
an initial value of the current solution in the path. They
report the CD-based path algorithms show better perfor-
mance than LARS [6] in high dimensional settings.

CD can be accelerated by the active shooting strategy
[17], which reduces the computational cost by maintaining
a set of nonzero solutions, called an active set. The detailed
steps are described as follows.

2.2 Majorization-Minimization using Local Quadratic
Approximation (MM-LQA)

The majorization-minimization (MM) algorithm is based on
the idea of iteratively minimizing series of surrogate func-
tions, which majorizes the objective function f (β) at the
current iteration point. A surrogate function at the current

point β(k), denoted by f ∗(β, β(k)), must majorize f (β).
Majorization is defined as the following property: a function
f ∗(·, ·) majorizes f (·) at β(k) if

f (β) ≤ f ∗(β, β(k)),∀β ∈ R
p

with equality holding when β = β(k).
Let β(k+1) denote a minimizer of f ∗(β, β(k)). The map-

ping β(k) → β(k+1) generates a sequence
{
β(k)

}
for which

the sequence of objective function values
{
f (β(k))

}
is

non-increasing. In particular, we have

f (β(k+1)) ≤ f ∗(β(k+1), β(k)) ≤ f ∗(β(k), β(k)) = f (β(k))

This descent property provides a basis for the numerical
stability of the MM algorithm. Choosing an appropriate
majorizing function is crucial for the success of an MM
algorithm [11].

For the Lasso, a majorizing function can be constructed
from a local quadratic approximation (LQA) of the l1 norm.
Recall that

‖β‖1 =
p∑

j=1

|βj |.

Then it can be easily seen that the quadratic function in x

p∗(x, x0) = |x0| + x2 − x2
0

2|x0| , x, x0 ∈ R

majorizes |x| at x0 �= 0, hence
∑p

j=1 p∗(βj , β
(k)
j )majorizes

‖β‖1. It immediately follows that

f ∗(β, β(k)) = 1

2
‖y − Xβ‖22 + λ

p∑

j=1

p∗(βj , β
(k)
j )

majorizes f (β) at β(k) �= 0. Unfortunately, this majorizing
function is undefined at β(k) = 0. To overcome this dif-
ficulty, Hunter and Li [12] propose to minimize a slightly
perturbed version of (1):

fε(β) = 1

2
‖y − Xβ‖22 + λ

p∑

j=1

pε(βj )

where

pε(βj ) = |βj | − ε

∫ |βj |

0

1

ε + t
dt, ε > 0

It can be shown that

f ∗∗(β, β(k)) = 1

2
‖y − Xβ‖22 + λ

p∑

j=1

p∗∗
ε (βj , β

(k)
j )

majorizes fε(β) at β(k), where

p∗∗
ε (βj , β

(k)
j ) = pε(β

(k)
j ) + β2

j − (β
(k)
j )2

2(|β(k)
j | + ε)

.
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This majorizing function is defined for all β ∈ R
p. The

optimality condition to minimize f ∗∗(β, β(k)) for β is given
by

(XT X + D(k))β = XT y, (4)

where D(k) is a diagonal matrix, D(k)
ii = λ/(|β(k)

i | + ε).
To solve this linear equation, the preconditioned conju-

gate gradient (PCG) algorithm is utilized due to its well-
known efficiency. The PCG algorithm is also used for the
ADMM introduced in the sequel; see Appendix for the
details of the PCG algorithm.

2.3 Fast iterative shrinkage thresholding algorithm
(FISTA)

FISTA is a variant of the proximal gradient algorithm [16]
applied to the Lasso [2]. Proximal algorithms minimize an
objective function of the form of f (β) = g(β) + h(β), β ∈
R

p. Typically, h(β) is convex and non-smooth and g(β) is
smooth convex function whose gradient is Lipschitz contin-
uous with Lipschitz constant L. These algorithms have been
applied to problems difficult to solve with standard smooth
optimization methods since it can deal with non-smooth
function [16].

The proximal gradient algorithm successively applies the
proximal operator, defined below, to a quadratic majorizing
function QL(β, β(k)) of f (β) at β = β(k):

QL(β, β(k)) = g(β(k)) + 〈β − β(k), ∇g(β(k))〉
+(L/2)‖β − β(k)‖2 + h(β)

The proximal operator for QL is its minimizer in β:

pL(β(k)) = argminQL(β, β(k))

= argminβ h(β)

+(L/2)‖β − (β(k) − (1/L)∇g(β(k)))‖2

Applying the map β(k+1) = pL(β(k)) iteratively gener-
ates a sequence of non-increasing objective function values{
f (β(k))

}
, yielding the proximal gradient algorithm [16].

This is another instance of the MM algorithm.
Recall that for the Lasso, the objective function

f (β) = 1

2
‖y − Xβ‖2 + λ‖β‖1,

can be divided into two parts:

g(β) = 1

2
‖y − Xβ‖2,

and

h(β) = λ‖β‖1.
Accordingly, the proximal operator pL reduces to the soft-
thresholding operator and the updating mechanism for β is
given by

β(k+1) = Sλ/L(β(k) − (1/L)XT (Xβ(k) − y)), (5)

where Sλ/L is the vector version of the soft-thresholding
operator in which (3) is applied element-wisely. This is
the iterative shrinkage thresholding algorithm (ISTA) [16].
FISTA is a variation of ISTA with an accelerated conver-
gence rate. In this algorithm, a real sequence {tk} is updated
by the formula

tk+1 =
1 +

√
1 + 4t2k
2

and β(k+1) is updated by a point interpolating β(k) and
β(k−1) depending on the value of t (k). In ISTA, the update
for β depends only upon its previous value β(k), while in
FISTA it depends on the two previous values. In general,
ISTA iteration converges at the rate of O(1/k), whereas,
FISTA converges at the rate of O(1/k2), achieving faster
convergence.

In practice, the Lipschitz constant L is difficult to find
or expensive to compute, and backtracking is used to deter-
mine a reasonable upper bound. The resulting is given in
Algorithm 4.

2.4 Alternating direction method of multipliers
(ADMM)

ADMM is devised to minimize objective function that can
be represented as a sum of two convex functions, similar
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to FISTA. In general, one of the two convex functions is
smooth and the other is non-smooth. For the Lasso,

f (β) = 1

2
‖y − Xβ‖2 + λ‖β‖1 = g(β) + h(β),

where

g(β) = 1

2
‖y − Xβ‖22 = 1

2
βT XT Xβ − yT Xβ + 1

2
yT y,

h(β) = λ‖β‖1.

Minimizing f (β) is equivalent to the following constrained
optimization problem

minimize g(β) + h(γ ) subject to β = γ

To solve this, the augmented Lagrangian

Lμ(α, β, γ ) = g(β) + h(γ ) + αT (γ − β) + μ

2
‖β − γ ‖22

is constructed. Here μ > 0 is a small fixed parameter.
The quadratic term involving μ enforces the constraint in
a smoother fashion than the ordinary Lagrangian (μ = 0).
The multiplier α is the dual variable.

The saddle point condition is given by

(β∗, γ ∗) = argmin
β,γ

Lμ(α∗, β, γ ) (primal)

α∗ = argmax
α

Lμ(α, β∗, γ ∗) (dual) (6)

ADMM solves (6) by a fixed-point iteration scheme, for
which the dual variable is updated by gradient ascent.
Specifically, the scheme consists of

• β-update

β(k+1) = argminβ Lμ(α(k), β, γ (k))

= argminβ βT XT Xβ/2 − yT Xβ

−α(k)T β + (μ/2)‖β − γ (k)‖22= (XT X + μI)−1(XT y + μγ (k) + α(k))

(7)

In computing the final equation, PCG algorithm in
Appendix can be employed.

• γ -update

γ (k+1) = argminγ Lμ(α(k), β(k+1), γ )

= argminγ λ‖γ ‖1 + α(k)T γ

+(μ/2)‖β(k+1) − γ ‖22= Sλ/μ(β(k+1) + α(k)/μ)

(8)

• α-update

α(k+1) = α(k) + μ(β(k+1) − γ (k+1)) (9)

3 Numerical study

3.1 Method

In this section, we conduct a numerical study comparing
the sensitivity of the five algorithms of Section 2 (includ-
ing CD with the active shooting strategy) to the correlation
between the covariates and to the regularization parameter
λ, and the ratio between the number of variables (p) and
the sample size (n). We measure the sensitivity of an algo-
rithm by the number of iterations required for numerical
convergence, the corresponding computation time, and the
converged objective function value. Note that the warm start
strategy is not considered because our primary goal is to
compare the algorithms for a fixed value of λ; the warm start
strategy can be applied to any algorithm by simply setting
the initial value of β for the new λ as the final (optimized)
value for the previous λ.

3.1.1 Design of numerical study

To study the effect of correlations between the covariates,
we control the condition number of population covariance
matrix of the covariates, denoted by �. The condition num-
ber of a positive definite matrix is defined as the ratio of the
largest eigenvalue to the smallest eigenvalue of the matrix.
The larger the condition number is, the more correlated the
covariates are. The data matrix,X, sampled from a p-variate
distribution with covariance matrix �, is likely to be highly
correlated if � is so. For the numerical study, we consider
the following four types of population covariance matrices:

(�1) Smallest condition number: an identity matrix (Ip)
of size p × p whose condition number is 1.

(�2) Small condition number: a symmetric banded matrix
of bandwidth 1,

�2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 0.45 0 · · · 0
0.45 1 0.45 · · · 0
0 0.45 1 · · · 0
...

...
. . .

...
...

0 0 · · · 0.45 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.
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The condition number of �2 is approximately 19 for
all the dimensions considered in this study.

(�3) Moderate condition number: a modification of �2

so that the largest eigenvalue is 100. Specifically,

�3 =
p−1∑

i=1

λ(i)uiu
T
i + λ̃upuT

p , (10)

where λ(i) is the ith smallest eigenvalue of �2, ui is
an eigenvector of �2 corresponding to λ(i), and λ̃ =
100. The condition number of �3 is approximately
1000.

(�4) Large condition number: similar to�3, but λ̃ is set to
10000 so that the condition number is approximately
100000.

For the dimensions, we consider p = 100, 500, and
2500, and set the number of samples as 500. Thus, the ratio
p/n takes values of 0.2, 1, and 5, respectively. Note this
ratio affects the condition number of the sample covariance
matrix XT X.

To take into account the influence of the regularization
parameter λ, we consider λ = 0.1, 1, 10, and 100 for all the
cases.

3.1.2 Data generation

For each combination of the two factors p/n and �, we
generate n = 500 observations of a p-dimensional covari-
ate vector x from the multivariate normal distribution with
mean 0 and covariance matrix�i, i = 1, 2, 3, 4. To simulate
sparse regression models, pre-selected 10 % of the coordi-
nates of the p-dimensional coefficient vector β are set to
be nonzero. Nonzero coefficients in β is sampled from the
standard normal distribution. The response y is generated
from the linear model

y = xT β + ε,

where ε is from the standard normal distribution.

3.1.3 Algorithm parameters

For a fair comparison of the algorithms, we use β(0) =(
(
∑n

i=1 Xijyi)/(
∑n

i=1 X2
ij )

)
1≤j≤p

as the common initial
value and impose a common convergence criterion. The four
algorithms stop when the relative error

|f (β(k)) − f (β(k−1))|
|f (β(k−1))|

is below the pre-specified tolerance 10−7. For each combi-
nations of the factors, each algorithm is repeated 10 times
with different random seeds and then the means and the
standard errors of the objective function values, the number
of iterations and the computation times are taken.

For algorithm-specified parameters, we set the perturba-
tion constant ε = 10−10 for MM-LQA, backtracking factor
η = 2 for FISTA, and augmented Lagrange multiplier μ =
10 for ADMM. For PCG used with MM-LQA and ADMM,
we use a diagonal matrix whose diagonal entries are those
of the matrix to solve, i.e, diag(XT X+D(k)) for MM-LQA,
and diag(XT X + μI) for ADMM, as the preconditioner.

All algorithms we consider are implemented in MAT-
LAB and the computation times are measured on a desktop
PC (Intel i7-4770 (3.40 GHz) and 16.0 GB RAM). The code
that implements the algorithms in this paper is available at
https://sites.google.com/site/dhyeonyu/software.

3.2 Results of numerical study

In this section, we summarize the results of comparisons of
the sensitivity of the MM-LQA, CD, ADMM and FISTA
algorithms to the correlations between covariates, the ratio
p/n, and the regularization parameter λ. We report the aver-
ages and the standard errors of the numbers of iterations, the
computation times, the objective function values (F-value),
and the number of nonzero solutions (sparsity) for the com-
binations of the covariance matrices and the regularization
parameters with p = 100, 500, and 2500 in Tables 1–3,
respectively. Note that MM-LQA and ADMM utilize the
PCG method to solve the inner linear system; the average
and standard errors of the inner iterations are reported for
these algorithms only.

It is interesting to note that CD with the active shooting
strategy (referred to as “CD-act”) accelerated the CD for
all the cases although CD-act needed much larger iterations
than CD. Other than this, CD-act is basically equivalent to
the CD except for the order of updates and we omit the
comparison of the CD-act in this section.

To visualize the convergence properties, we plot the rela-
tive error of each algorithm with respect to the iteration for
λ = 10 and p = 100, 500, and 2500 in Figs. 1, 2, and 3. For
a fair comparison, the relative error curves for MM-LQA
and ADMM are represented as step functions to take into
account the inner iterations for each outer iteration. Note
that the plots are taken from one of the 10 simulations, as
the other 9 exhibit similar patterns.

3.2.1 Sensitivity to the condition number of population
covariance matrices

It is worth noting that overall, MM-LQA and ADMM
show relatively stable convergence compared to CD and
FISTA. The convergence speed of CD and FISTA consider-
ably slows down as the condition number of the population
covariance matrix increases, which means that these algo-
rithms are sensitive to the correlation between the covari-
ates. Notably, CD fails to converge for the case of p = 2500,

https://sites.google.com/site/dhyeonyu/software
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) � = �4, and λ = 0.1, 1, 10 (Table 3). For a relatively

high level of regularization (λ = 100), however, the CD and
the FISTA algorithms show relatively stable performance.
While not shown in the Tables, for an even larger value
of regularization parameter (λ = 1000), the CD converges
within 124570.6 iterations.

In summary, convergence speed of the MM-LQA and
the ADMM algorithms are less sensitive to the correla-
tion between the covariates than those of the CD and the
FISTA algorithms. This can be attributed to the fact that the
MM-LQA and ADMM algorithms employ PCG to solve
a linear system involving the sample covariance matrix
XT X. For a high-dimensional setting (p/n � 1), this
matrix becomes ill-conditioned, and the surface of objec-
tive function is flat. This makes coordinate-wisely mov-
ing algorithms like CD to slow down due to the reduced
step size. In FISTA, the step size is inversely propor-
tional to the Lipschitz constant L which is related to the
maximum eigenvalue of XT X, hence FISTA also needs
more iterations to converge. On the contrary, precondi-
tioning alleviates ill-conditioning of the matrix XT X in
MM-LQA.

3.2.2 Sensitivity to the ratio p/n

Here we examine the effect of the sample covariance matrix
XT X which becomes ill-conditioned as the dimension
increases. The ill-conditioning is most severe when p/n >

1, because this matrix is singular. Thus, we expect that MM-
LQA and ADMM are more stable than CD and FISTA.
Simulation results meet the expectation. For instance, for
� = �1 and λ = 10, as the dimension varies from 100 to
500 and to 2500 (Tables 1–3), average iterations of the CD
algorithm sharply increases from 7.9 to 35.7 and to 1070.2.
For FISTA those are 30.4, 195.7, and 8620.6. On the con-
trary, the average iteration counts for MM-LQA are 39.4,
77.4 and 317.6.

To examine the effect of the dimensions more carefully,
we conducted an additional numerical study with p = 1000,
1500 and 2000 for � = �1 and λ = 10. We chose this
combination of � and λ to avoid the effect of the underly-
ing covariance structure and that of too small or too large
regularization parameter. We report the averages and stan-
dard errors of the the number of iterations and computation
time for p/n = 0.2, 1, 2, 3, 4, 5 in Table 4. While both
the number of iterations and the computation time for MM-
LQA, CD, and FISTA increase as the dimension increases,
ADMM does not show this tendency: the number of iter-
ations are 373.0, 433.0, 847.0, 583.5, 406.6, and 379.0.
MM-LQA shows an almost linear increase in convergence
speed: the average numbers of iterations are 39.4, 77.4,
126.1, 195.9, 270.7, and 317.6. Compared to MM-LQA, CD
and FISTA have a fast drop in the performance. For instance,
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when dimension increases from 500 to 1000, the average
number of iterations for CD are 35.7 and 119.8, and that of
FISTA are 195.7 and 959.3, while that of MM-LQA are 77.4
and 126.1.

3.2.3 Sensitivity to the regularization parameter

It is interesting to observe that ADMM and FISTA exhibit
opposite phenomena with respect to the regularization
parameter λ. For large λ, ADMM shows slow convergence.
For example, in p=2500, � = �4 (Table 3), the itera-
tion count increases steeply from 342.6, to 1030.3, and to
2213.9 as λ grows from 10 to 100, and to 1000. In con-
trast, FISTA needs less iterations to converge for large λ.
For instance, as λ increases from 0.1 to 1000, iterations are
diminishing as 1152791.5, 739028.0, 230375.9, 39686.1,
and 13904.6. To understand these phenomena, look at the
updating mechanism for ADMM in (8). The part related to
regularization parameter is the soft-thresholding operation
for updating the added primal variable γ , meant to be equal
to the original primal variable β. However, the amount of
shrinkage to zero increases as λ increases, pulling β and
γ apart. Since the dual variable α converges only when
difference of β and γ is extremely small, large λ hinders
convergence of α. On the contrary, updating mechanism in
(5) only involves the β. Since a threshold is proportional to
λ in soft-thresholding operator, large λ makes many of the
components of β to zero. That is, less iteration is needed for
large λ.

3.2.4 Accuracy

In terms of the minimized objective function value, MM-
LQA obtains the smallest objective function value for most
cases considered and the other algorithms have slightly
larger values than MM-LQA. In high dimensions (p=500,
2500), the objective function values FISTA significantly dif-
fer from those of the other algorithms even though they
satisfy the convergence criterion. For instance, the objective
function value of FISTA is 7.33 % larger than that of MM-
LQA for p = 2500,� = �4, and λ=10 (Table 3), and 8.8 %
larger for p = 500, � = �4, and λ = 0.1 (Table 2).
The inaccuracy of FISTA becomes worse as the condition
number of the population covariance matrix gets larger. In
Table 1, the maximum relative differences of FISTA are
1.06 % with �1, 1.01 % with �2, 4.97 % with �3, and 7.33
% with �4.

3.2.5 Computation time

In lieu of Figs. 1–3, in which the number of inner-iterations
for MM-LQA and ADMM is taken into account, CD per-
forms the best for �1 and �2 and MM-LQA does the best
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Fig. 1 Comparison of Convergence rate among four methods in p = 100 cases
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Fig. 2 Comparison of Convergence rate among four methods in p = 500 cases
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Fig. 3 Comparison of Convergence rate among four methods in p = 2500 cases

for �3 and �4. In terms of computation times, however,
MM-LQA is faster than CD for all the covariance matri-
ces and dimensions except for the cases of �1 and �2 and
p = 100, 500, 2500 at λ = 10, 100 (Tables 1–3). Note that
CD is at most 1.12 second faster than MM-LQA for the case
of �2 and λ = 100 (Table 3).

3.2.6 Oscillation of ADMM

What is noticeable in Figs. 1–3 is the oscillation of the rela-
tive error for ADMM. This oscillatory pattern is due to that
ADMM allows β(k) �= γ (k), leaving the objective function
infeasible before a sufficient number of iterations.

Table 4 Number of iterations and operation counts with respect to the dimension (p), n=500, �1, λ=10

P Value MM-LQA CD CD-Act ADMM FISTA

100 Time 0.010 (0.000) 0.006 (0.000) 0.010 (0.002) 0.090 (0.003) 0.003 (0.000)

Iteration 39.4 (1.1) 7.9 (0.1) 14.8 (0.4) 373.0 (8.2) 30.4 (3.3)

500 Time 0.14 (0.01) 0.13 (0.01) 0.19 (0.01) 0.90 (0.07) 0.04 (0.01)

Iteration 77.4 (2.2) 35.7 (0.8) 78.4 (5.5) 433.0 (39.6) 195.7 (20.3)

1000 Time 0.56 (0.02) 0.86 (0.03) 1.09 (0.10) 3.65 (0.41) 0.34 (0.01)

Iteration 126.1 (3.6) 119.8 (3.6) 244.7 (24.1) 847.0 (103.3) 959.3 (27.5)

1500 Time 1.48 (0.06) 3.54 (0.19) 4.06 (0.25) 4.51 (0.80) 1.39 (0.11)

Iteration 195.9 (8.4) 328.6 (12.4) 698.1 (50.4) 583.5 (101.0) 2427.5 (95.1)

2000 Time 3.29 (0.14) 9.31 (0.48) 10.40 (0.64) 4.92 (0.27) 7.45 (0.56)

Iteration 270.7 (12.3) 664.5 (26.0) 1423.0 (149.2) 406.6 (27.4) 6979.5 (152.4)

2500 Time 5.79 (0.25) 18.2 (0.82) 18.60 (0.80) 6.5 (0.52) 15.4 (0.60)

Iteration 317.6 (16.4) 1070.2 (41.3) 2008.6 (176.6) 379.0 (32.8) 8654.7 (233.7)
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3.2.7 Non-convergence

We found that CD does not converge when λ is small and
condition number (κ) of covariance matrix is large (Table 3).
For p=2500, � = �4, CD does not satisfy the con-
vergence criterion even after 2 million iterations. To see
the pattern, we investigated similar cases. For p=2500,
� = �2, �3, λ=0.1 (Table 3), CD algorithm spends
189482.4 and 304744.0 iterations to converge. Furthermore,
for p=2500, � = �4, λ=100 (Table 3), it needs 124570.6
iterations to converge. A similar phenomenon is found in
low dimensions (p=100, 500). For p=500, � = �4, λ=0.1,
1 (Table 2), 1032160.8 and 231004.6 iterations are needed
to converge, and 90007.4, 39520.6 iterations are needed for
p=100, � = �4, λ=0.1, 1 (Table 1).

4 Application to cancer biomarker discovery

In this section, we apply the Lasso regression model to dis-
cover possible biomarkers for the lung cancer. Lung cancer
is the leading cause of death from cancer and notorious for
low survival rate; its 5-year survival rate is approximately 15 %
[14]. Moreover, in the early stage, progression of the lung
cancer varies greatly between patients. To make a proper
treatment, it is important to classify the progression and
metastasis for individual patient. Recently, cancer is consid-
ered as a disease of genomic alterations. Many prognostic
or predictive biomarkers have been identified, which allow
calculation of risk and precise classification of individual
lung cancer patients [22]. For more accurate prognosis or
treatments, it is useful to discover genes regulated by known
biomarkers of lung cancer [5, 7]. The Lasso can be a useful
tool for this purpose. To see the feasibility, we analyzed the
gene expression dataset from theLungCancer Consortium [20].

4.1 Method

The dataset measures the gene levels in 442 lung cancer
adenocarcinoma patients using the Affymetrix U133A plat-
form. For preprocessing, we applied the robust multiarray

average (RMA) algorithm and quantile-quantile normaliza-
tion [13]. All gene expression values were log2 transformed.
The Entrez IDs were used to map genes across microar-
ray platforms. The annotated genes from this probe set, and
their expression values were calculated using the average
values of related probe sets.

To focus on the survival-related genes, we used univariate
Cox regression to identify the gene sets that are significantly
correlated with a patient’s overall survival time. In order to
deal with the multiple comparison issue, we controlled the
false discovery rate (FDR) [3], by fitting p-values using a
Beta-Uniform model [18]. We identified a subgroup of 3093
genes whose expression levels had been shown to be associ-
ated with patients’ overall survival time (p-value < 0.0663,
with estimated FDR <0.2).

Among the identified 3093 genes, the ROS1 gene is
known as a biomarker for lung cancer [5, 7]. We consider
the expression levels of the ROS1 gene as a response vari-
able and the expression levels of the other 3092 genes as
covariates. Both the response variable and covariates were
standardized.

We chose the optimal regularization parameter λ that
minimizes the BIC [19]

BIC(λ; β̂λ) = n log

⎛

⎜
⎝

n∑

i=1

⎛

⎝yi −
p∑

j=1

β̂λ,jXij

⎞

⎠

2
⎞

⎟
⎠

+ log n

p∑

j=1

I (β̂λ,j �= 0),

where I (·) denotes the indicator function, and β̂λ refers
to the estimated Lasso coefficients with the regularization
parameter λ.

4.2 Results

For the purpose of the comparison of the computational
algorithms, we measured the total computation time includ-
ing the selection of λ using the BIC. As mentioned in

Table 5 Total computation times and number of iterations for calculating BIC

Algorithm Total computation time Average number of iterations

Cold start Warm start Cold start Warm start

CD 1061.91 31.64 534.8 14.3

CD-Act 825.43 4.22 550.7 14.9

FISTA 1079.96 12.11 4802.7 48.1

MM-LQA 499.62 162.67 380.7 122.2

ADMM 2667.13 1165.6 1266.8 644.7
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Fig. 4 Computation time vs. tuning parameter for the cold start (a) and warm start (b), for each algorithm

Section 2.1, the warm start strategy improves the overall
computational efficiency when the solution path is sought.
The results in Table 5 are made with both the warm and cold
start strategies. In this Table, we see that MM-LQA shows
the best performance both in convergence and computation
time with the cold start strategy. On the other hand, CD with
active shooting becomes the fastest when the warm start
strategy is employed. This is because the active shooting

strategy greatly reduces the number of variables to update
for a high level of regularization.

We also plot the computation time for each tuning param-
eter in Fig. 4 for both strategies. It can be seen that the warm
start strategy makes every algorithm faster. With increas-
ing sparsity level, the speed of CD, CD-act, and FISTA
increase; that of MM-LQA is almost static; and that of
ADMM becomes worse.

Fig. 5 Cross validation based
on BIC criteria
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In computing the BIC, each algorithm produced slightly
different numbers due to the difference in convergence
properties; see Fig. 5. Based on these plots, we chose λ = 60
since this value is close enough to the respective optima for
all the algorithms. CD, FISTA, and ADMM selected exactly
the same 24 variables, while MM-LQA selected two addi-
tional variables. We report the identified 24 genes and their
regression coefficients in Table 6. Among the identified
genes, the HLF, the PTPN13, the SFTPD, and the SLC34A2
genes were reported as lung cancer-related or lung injury-
related genes in the literature [15, 25, 29]. Interestingly,
these genes exhibit relatively strong interaction with ROS1
than the other genes in Table 6.

In addition, we investigated the functionality of the 3092
genes and their association with lung-related diseases using
the DAVID, a well-known gene annotation tool [10]. From
this investigation we found that there are 149 genes reported
to be associated with lung diseases. If we consider this
as the gold standard, consequently, the recall (sensitivity)
and accuracy of our analysis can be said to be 2.68 %
and 94.66 %, respectively. Yet, the full functionality of the
3092 genes has not been completely understood and much
research efforts are currently being made in order to estab-
lish their functions and association with the diseases. To

the best of of our knowledge, the genes reported in our
manuscript are the only genes known to be related with
the lung cancer or lung injuries such as the pulmonary
embolism. We also would like to remark that our regres-
sion analysis can only find genes associated with the known
oncogene ROS1, and it is unlikely that all the genes associated
with lung diseases are necessarily associated with this gene.
This may explain the low true positive rate of the our study.

5 Discussion

We have compared numerical performance of the CD,
MM-LQA, FISTA, and ADMM algorithms for solving
high-dimensional Lasso problems. Among these, MM-LQA
show stable performance in both convergence and compu-
tation time. Its convergence speed does not depend much
on the numerical condition of the data matrix, or the cor-
relations between the covariates, both of which can be
high in the high-dimensional setting. This is because a
preconditioner of PCG employed in the inner iteration of
the algorithm reduces the effect of ill-conditioning of the
matrix. We used a simple preconditioner; use of a tailored
preconditioner specific to the application may yield a better

Table 6 List of the identified
genes interacting with the gene
ROS1 and their estimated
coefficients from the LASSO

No. Gene Estimated coefficient

1 SFTPD 0.165

2 HLF 0.159

3 SLC34A2 0.096

4 MACF1 0.048

5 FLAD1 -0.048

6 PTPN13 0.043

7 KCNJ15 0.042

8 C12orf44 -0.034

9 ALPL 0.029

10 GULP1 -0.027

11 MARK4 -0.024

12 SRSF4 0.018

13 MDFIC 0.018

14 PIGR 0.017

15 PFN2 -0.016

16 DTYMK -0.016

17 GGA2 0.015

18 SLC35A1 0.015

19 IL6ST 0.012

20 CPA3 0.012

21 NPC2 0.008

22 DRAM1 0.007

23 PIK3R1 0.006

24 ADH1B 0.005
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performance. Still, relative insensitivity to the choice of the
preconditioner makes MM-LQA an attractive option.

Similar to MM-LQA, ADMM is also immune to the
covariance structure and the dimension-to-sample size ratio.
However, its lack of the descent property raises a caution
when applying this to problems that needs precision.

CD is simple to implement and can be considerably
accelerated by the active shooting algorithm. With either
relatively high level of regularization or the warm start
strategy, CD is competitive when the covariance matrix is
well-conditioned, but it may take too long to produce the
solution when the covariance matrix is ill-conditioned.

Table 7 Comparison of the
algorithms with and without
applying the basic strong rule
for p = 2500, n = 500, and
� = �4, λ = 0.75λmax and
0.9λmax

λ Method Strong rule Time F-value Sparsity Discarded

0.75λmax MM-LQA 9.5 63386.7 26.7

(1.7) (21593.6) (7.4)

• 6.5 63386.7 26.7 330.8

(1.0) (21593.6) (7.4) (12.9)

CD 62.0 63385.1 6.3

(3.6) (21592.8) (1.2)

• 56.7 63385.1 6.5 330.8

(3.3) (21592.9) (1.3) (12.9)

CD-Act 50.3 63385.1 6.4

(2.4) (21592.8) (1.2)

• 46.3 63385.1 6.3 330.8

(1.7) (21592.8) (1.2) (12.9)

ADMM 9.4 63391.9 6.1

(0.5) (21595.0) (1.1)

• 7.5 63402.1 204.8 330.8

(0.4) (21592.6) (198.4) (12.9)

FISTA 23.6 63428.0 19.6

(5.8) (21610.9) (4.6)

• 8.4 63419.9 17.3 330.8

(0.8) (21604.9) (3.5) (12.9)

0.9λmax MM-LQA 8.0 65769.7 18.2

(1.5) (22771.7) (5.4)

• 7.6 65769.7 18.3 938.2

(1.5) (22771.8) (5.4) (147.6)

CD 50.8 65768.1 2.5

(2.9) (22771.0) (0.3)

• 19.7 65768.1 2.6 938.2

(2.6) (22771.0) (0.4) (147.6)

CD-Act 41.7 65768.1 2.6

(1.9) (22771.0) (0.4)

• 16.0 65768.1 2.6 938.2

(2.2) (22771.0) (0.4) (147.6)

ADMM 13.2 65776.3 2.7

(0.6) (22772.2) (0.4)

• 6.3 65776.7 2.7 938.2

(0.8) (22771.2) (0.4) (147.6)

FISTA 11.7 65796.7 12.9

(1.3) (22785.9) (3.6)

• 2.1 65790.1 10.4 938.2

(0.3) (22782.2) (2.6) (147.6)

Numbers within parentheses represent the standard errors of performance measures considered
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FISTA has the fastest per-iteration computation time, but
is susceptible to the regularization parameter. In addition,
the inaccuracy of the solution is a weak point, and this is
worsened with ill-conditioned covariance matrices.

5.1 Active set strategies

While the focus of this paper is a comparative study of the
considered algorithms per se, in practice these algorithms
can be combined with an active set strategy, which reduces
the number of variables before the algorithm runs by set-
ting the coefficients of the discarded variables to zero. For
example, the CD algorithm with the active shooting strat-
egy (Algorithm 2) can be considered an instance of this
approach specialized to the CD algorithm. On the other
hand, the “strong rules” [24] are based on the Karush-Kuhn-
Tucker (KKT) optimality conditions and are independent
of a particular algorithm. Thus the strong rules can be
applied to all of the algorithms considered in order to reduce
computation time.

To see the potential of this active set strategy, we have
conducted an additional numerical study with and without a
strong rule for p = 2500, n = 500 and � = �4 defined
in Section 3.1.1. We consider the “basic strong rule”, as
our interest is a fixed value of the tuning parameter λ.
The basic strong rule discards variables satisfying the con-
dition |XT

j y| < 2λ − λmax, where λmax = maxi |XT
i y|

is that with which all the coefficients are zero. Because
the basic strong rule is valid for λmax/2 < λ < λmax,
we consider two large tuning parameters, 0.75λmax and
0.9λmax, which lead highly sparse estimates. We report the
average computation times, objective function values, spar-
sity levels, and number of discarded variables by the basic
strong rule in Table 7, which indicates that the basic strong
rule indeed improves computational efficiency of all the
algorithms.
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Appendix

A Preconditioned conjugate gradient (PCG)
method

Conjugate gradient (CG) is a method to resolve positive def-
inite linear equations, Ax = b, applied to sparse system that
has too large data to solve with Cholesky Decomposition.

Instead of directly solving linear equations, this method is
to minimize the following function f (x),

f (x) = 1

2
xT Ax − bT x.

For a positive definite A, two nonzero vectors u, v are
said to be conjugate with respect to A, if they satisfy

〈u, v〉A � uT Av = 0.

If P is defined as

P = {pk : ∀i �= k, 〈pi, pk〉A = 0} ,

it means the set of n number of mutually conjugate direc-
tional vectors. Thus, the set P becomes a basis of Rn and x

is represented in the form of

x =
n∑

i=1

αipi.

By multiplying both sides by matrix A, b is decomposed by

b = Ax =
n∑

i=1

αiApi.

Multiplying an arbitrary directional vector pk ∈ P ,

pT
k b = pT

k Ax =
n∑

i=1

αip
T
k Api = αkp

T
k Apk.

Accordingly, the explicit form of αk can be derived as
followed,

αk = pT
k b

pT
k Apk

= 〈pk, b〉
‖pk‖2A

.

If mutually conjugate directional vectors are not given, con-
jugate gradient (CG) solves the problem iteratively. Set x0
as an initial value of x, and a linear equation given by

Az = b − Ax0

becomes a target function to solve. If we regarding rk =
b − Axk as k-th residual, rk becomes a negative gradient of
convex function x = xk , ∇f (x) given by,

∇f (xk) = Axk − b,

which means that conjugate gradient method moves toward
the direction of rk . Since all directional vectors should sat-
isfy the condition that all vectors are conjugate with respect
to A, then k-th direction pk is given by,

pk = rk −
∑

i>k

pT
i Ark

pT
i Api

pi.

Following this direction, next value of x is updated as
followed,

xk+1 = xk + αkpk,
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where

αk = pT
k b

pT
k Apk

= pT
k rk−1

pT
k Apk

.

Convergence rate of conjugate gradient method depends
on condition number of A and especially eigenvalues of
A [21]. Accordingly, Ax = b problem can be regarded
same as linear equation that multiply by inverse matrix of
preconditioner given by

M−1Ax = M−1b.

In choosing an appropriate preconditioner, it should satisfy
some necessary conditions.

• M is both symmetric and positive definite matrix.
• M−1A is well conditioned and hardly has extreme

eigenvalues.
• Mx = b is easy to solve.

Widely used preconditioners that satisfy these conditions
are the followings;

1) Diagonal: M = diag(1/A11, ..., 1/Ann),
2) Incomplete(approximate) Cholesky factorization: M =

Â−1, where Â = L̂L̂T .
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