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Abstract In the last decade, several algorithms have been
proposed to solve the problem of community detection in
complex networks. Many of them are based on swarm
intelligence and evolutionary algorithms. Most of these
algorithms use the modularity density as a fitness function
to maximize. However, these algorithms attempt to find the
best solution without taking into consideration the structure
of the network. In this paper, a new discrete modified Fire-
works Algorithm (FWA) has been developed to solve the
problem of community detection. A new initialization strat-
egy and new mutation strategies are proposed, based on the
label propagation strategy to enhance the algorithm and to
speed up its convergence. The proposed algorithm has been
evaluated on real-world and synthetic networks. Experi-
mental results compared with three other known algorithms
show the effectiveness of using our proposed algorithm for
solving the problem of detecting communities in complex
networks.
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1 Introduction

Complex networks have known an enormous interest by
researchers from different fields in recent years, since
many real-world complex systems take the form of com-
plex networks including: Internet, Biology, Physics, Neural
Networks and Communications. Networks are presented as
graphs where vertices represent individual objects and edges
represent the interactions between them. Individual objects
could be users of a social networking website, website
pages or sensors, whereas interactions could be friendship
relations, URL links or data communication respectively.
Networks are usually found to group into strongly con-
nected groups, with a high density of within-group edges
and a lower density of between-group edges. This impor-
tant property of networks is called community structure.
Detecting these groups, also known as clusters, partitions
or communities, is called community detection, which is
one of the primary topics in the field of networks analy-
sis. It helps to get a clear global view of individual objects
interactions in the network.

Community detection in networks can be a difficult com-
putational task; the communities have different sizes, and
their number is usually unknown. Even with these dif-
ficulties, several methods and algorithms for community
detection have been proposed and applied to many real
world problems. Traditional methods can be classified into
two types: Graph partitioning and Hierarchical clustering.
The graph partitioning methods usually cluster a network
into a predetermined number of communities with equal
size. These methods require the number and the size of
communities before partitioning. The Kernighan-Lin algo-
rithm [33] is one of the earliest methods proposed for graph
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partitioning. The hierarchical clustering methods cluster a
network into groups of nodes based on their similarity,
which means similar nodes are grouped into communities
according to a similarity measure. Cosine similarity, Ham-
ming distance, and Jaccard index [26, 32] are frequently
used measures, and these methods can be classified into two
categories:

1. Agglomerative algorithms: Initially, each node repre-
sents a partition of its own, then partitions are suc-
cessively merged until the desired network partition
structure is obtained.

2. Divisive algorithms: All nodes initially belong to
one partition, then the partition is divided into sub-
partitions, which are successively divided into their
sub-partitions. This process continues until the desired
network partition structure is obtained.

Hierarchical methods have the advantage of not requir-
ing a predefined number and size of partitions. However,
they do not provide a way to choose the better partition
that represents the community structure of the network from
those obtained by the procedure. A detailed classification of
community detection algorithms can be found in [7]

In the last decade, the problem of community detection
has been extensively studied by many researchers from dif-
ferent domains, and several approaches and algorithms have
been proposed to detect communities in complex networks.
The Girvan-Newman algorithm is one of the most famous
ones; it was proposed by Girvan and Newman in [10,
25]. This algorithm continuously removes edges from the
original network, until no connected edges are found. The
algorithm chooses edges to remove by using the between-
ness measure. This measure counts the number of shortest
paths from all nodes to all others that pass through that edge.
At each iteration, the edge with the highest betweenness
value is removed. This process is repeated until reaching a
stop criterion. Newman presents the modularity as a stop
criterion, which has been widely used later in many other
methods.

The great success of different evolutionary and swarm
intelligence optimization algorithms on solving various real
world problems has influenced many researchers to apply
them to community detection problems. The GA-Net is
one of the first approaches which has been proposed by
Pizzuti in [27]. This method uses a genetic algorithm to
detect communities in complex networks by maximizing the
community score as a single-objective optimization prob-
lem. Pizzuti also proposed a multi-objective optimization
method to solve this problem in [28]. In recent years, many
researchers have proposed several methods for detecting
communities by maximizing the modularity value using dif-
ferent evolutionary algorithms, including [4, 11, 20, 21,

31, 36]. However, the modularity has been found to have
many disadvantages. First, Brandes et al. [1] proves that
the maximization of the modularity value is an NP-hard
problem. Second, authors in [15] found that large modu-
larity value does not mean necessarily better community
structure. Third, Fortunato and Barthelemy [8] show the big
disadvantage that modularity has a resolution limitation.

To overcome this limitation, the modularity density
(denoted as D) has been proposed by Li [19]. The modu-
larity density is a quantitative measure that uses the aver-
age modularity degree to evaluate a community structure;
the larger the value of D, the more accurate a partition
is. Authors also proved that maximizing modularity den-
sity could overcome the resolution limit of modularity.
As a result, many algorithms have been proposed to find
partitions in networks by maximizing the modularity den-
sity value including [3, 12, 13, 16]. A detailed survey on
community detection using evolutionary algorithms can be
found in [2].

The Fireworks Algorithm (FWA) is one of the latest
swarm intelligence optimization algorithms, which simu-
lates the explosion of fireworks and the generation of sparks
in the sky. It was proposed originally by Tan [35] as an evo-
lutionary algorithm for continuous optimization problems.
In this paper, a novel discrete fireworks algorithm variant is
proposed to solve community detection problems by maxi-
mizing the modularity density function. We propose a new
initialization and mutation strategy based on the influence
of node neighborhood.

The rest of this paper is organized as follows: Section 2
introduces the community detection problem and gives
some basic notations used in this paper. Section 3 presents
the fireworks algorithm in detail. Section 4 gives a detailed
description of our proposed algorithm. Section 5 shows
and discusses the obtained results from evaluating our pro-
posed algorithm on synthetic and real-world networks, it
also shows the comparison of the proposed algorithm with
others. Finally, the conclusion is summarized in Section 6.

2 Community detection problem

This section presents the problem of community detection
and gives some definitions.

A network can be presented by a graph G(V, E), where
V = {v1, v2 . . . vn} represents vertices or nodes and E ⊆
V × V represents edges. The network structure can be pre-
sented by a n×n adjacency matrix A. Each element Aij can
be either 1 or 0, Aij = 1 if there is an edge eij between ver-
tices vi and vj otherwise Aij = 0. Assume that S ⊂ G is a
subgraph where node i belongs to it, kin

i = ∑
i,j∈S Aij and

kout
i = ∑

i∈S,j /∈S Aij are respectively the internal and the
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external degree of node i, then the community represented
by the subgraph S has usually the following property:

∑

i∈S

kin
i >

∑

i∈S

kout
i (1)

This property means that the sum of all degrees within the
community is larger than the sum of all degrees toward the
rest of the network.

The community detection problem can be formulated as a
modularity (Q) maximization problem. The modularity (Q)

was proposed by Newman in [24] to evaluate a community
structure of a network. Q is mathematically described by
the following equation:

Q = 1

2m

∑

ij

(Aij − kikj

2m
)δ(i, j) (2)

Where ki and kj are respectively degrees of nodes i and j ,
m is the total number of nodes in the network. δ(i, j) = 1 if
nodes i and j are in the same community, otherwise 0. Large
Q value means better community structure. Otherwise, the
structure is more ambiguous. Li [19] proposed another
mathematical form for writing the modularity, described as
follows:

Q =
N∑

i=1

[
L(Vi, Vi)

L(V, V )
−

(
L(Vi, V )

L(V, V )

)2
]

(3)

Where N is the number of communities, L(Vn, Vm) =∑
i∈Vn,j∈Vm

Aij , L(V, V ) = 2m and L(Vi, V ) =∑
j∈Vi,k∈V Ajk

The modularity has been used in many community detec-
tion methods as an objective function to maximize or as an
evaluation criterion. Until, when Fortunato and Barthelemy
[8] prove that the modularity has a resolution limitation. To
overcome this limitation Li et al. [19] proposed the modu-
larity density (D) which is based on the average modularity
degree, and it is defined as follows:

D =
N∑

i=1

L(Vi, Vi) − L(Vi, V )

|Vi | (4)

Where L(Vi ,Vi )|Vi | and L(Vi ,V )
|Vi | represent the average internal

and external degrees of the ith community, D aims to max-
imize the internal degree and minimize the external degree
of the community structure.

In this paper, we propose a new method for detecting
communities in complex networks based on the fireworks
algorithm by maximizing the value of modularity density
(D).

3 Fireworks algorithm (FWA)

Fireworks Algorithm (FWA) [35] is a metaheuristic swarm
intelligence optimization algorithm proposed by Tan in
2010, initially inspired by the explosion of the fireworks and
firecrackers in the sky, especially in Chinese spring festivals
where many fireworks are triggered to generate sparks. The
basic idea behind the fireworks algorithm is that the way
fireworks explode in sky is similar to the way of searching
for the optimal solution in swarm intelligence algorithms.
When a firework explodes, a number of sparks are gener-
ated around it. The number and the amplitude of generated
sparks change from one firework to another, according to
their quality. Fireworks with good quality generate more
sparks within a smaller amplitude, and fireworks with bad
quality generate fewer sparks within a larger amplitude.
Fig. 1 shows two examples of firework’s explosion, bad and
good explosion.

Similar to other swarm intelligence algorithms, the fire-
works algorithm comprises four parts: the explosion opera-
tor, the mapping rule, the mutation operator, and the selec-
tion strategy. The algorithm generates initially a population
of N random fireworks, also called a population of individ-
uals. Then, every firework in the population explodes and
generates sparks around it. The number and the amplitude
of these generated sparks are determined by the explosion
operator. After that, a Gaussian mutation operator will be
applied to every spark to keep the diversity of the popula-
tion. Finally, the algorithm keeps the best individual in the
population and selects the rest (N − 1) individuals for the
next generation based on their distances. These parts and
strategies are described in detail as follows:

3.1 Explosion operator

At the first iteration, the FWA generates N random fire-
works, then, each firework generates sparks using explosion
operations. The explosion operator plays a key role in the
FWA algorithm. It is responsible for calculating the number

(a) (b)

Fig. 1 Example showing two firework’s explosion



376 M. Guendouz et al.

and amplitude of generated sparks. The explosion operator
consists of two parameters; the first one is the number of
sparks Si and it is calculated using the following equation:

Si = m × Ymax − f (xi) + ε
∑N

i=1(Ymax − f (xi)) + ε
(5)

Where Si is the number of sparks for each individual
or firework, m is a constant represents the total number of
sparks and Ymax is the fitness value of the worst individual
among the N individuals in the population. Function f (xi)

represents the fitness of individual xi , while the last param-
eter ε is used to prevent the denominator from becoming
zero.

The second parameter is the amplitude of sparks Ai ; it is
calculated as follows:

Ai = Â × f (xi) − Ymin + ε
∑N

i=1(f (xi) − Ymin) + ε
(6)

Where Ai denotes the amplitude of each individual, Â

is a constant number that represents the sum of all ampli-
tudes, while Ymin is the fitness value of the best individual
among the N individuals. The meaning of function f (xi)

and parameter ε are the same as mentioned in the previous
definition.

The explosion amplitude will be used to determine the
displacement of each generated spark around the exploded
firework. FWA generates different random movements to
ensure the diversity of the population based on the number
of sparks and explosion amplitude of each firework. The
displacement operation is defined as:

�xk
i = xk

i + U(−Ai, Ai) (7)

Where U(−Ai, Ai) denotes the uniform random number
within the intervals of the amplitude Ai , and xk

i represents
the kth position of the ith firework.

3.2 Mapping rule

The mapping rule is used to keep sparks inside the feasible
search space, if a spark lies out the boundary, then its posi-
tion will be mapped to a new feasible one inside the border.
The mapping rule is defined as follows:

xi = xmin + |xi | mod (xmax − xmin) (8)

Where xi represents the ith position of the spark, while
xmax and xmin stand for the maximum and minimum bound-
ary of position i.

3.3 Gaussian mutation operator

The Gaussian mutation operator is used to keep the diver-
sity of the population and to make the algorithm search in

all the global search space, given a position of an individ-
ual denoted by xk

i , the Gaussian operator is calculated as
follows:

xk
i = xk

i × g (9)

Where g is a random number in Gaussian distribution.

g = Gaussian(1, 1) (10)

3.4 Selection strategy

After applying the explosion operator, the mutation opera-
tor, and the mapping rule, the FWA selects the best gener-
ated sparks to be passed to the next generation. In FWA,
the best spark is always kept and the rest N − 1 sparks
are selected using a distance-based strategy. Usually, the
Euclidean method is used to calculate distance between two
sparks; it is denoted by d and defined as follows:

d(xi, xj ) = |f (xi) − f (xj )| (11)

Where f (xi) and f (xj ) are fitnesses of individuals xi

and xj respectively.
Finally, a roulette wheel method is used to calculate the

possibility of selecting an individual.

p(xi) = R(xi)
∑

j∈k R(xj )
(12)

Where R(xi) = ∑K
j=1 d(xi, xj ) represents the sum of

distances between individual xi and all the other individu-
als, K is a set, contains all generated sparks as well as the
N fireworks. Fig. 2 shows the flowchart of the fireworks
algorithm.

Since its development in 2010, the fireworks algorithm
has attracted the attention of many researchers from differ-
ent fields, and it was successfully applied to solve many
real-world problems such as TSP problem [34], data pertur-
bation [29] and Oil crop production [42]. Many modifica-
tions and enhancements have been proposed to it including
[18, 39–41, 43] and a GPU-based parallel implementation
[6].

4 The proposed discrete fireworks algorithm

Since the fireworks algorithm is designed to deal only
with real-valued optimization problems, it cannot be applied
directly to solve the community detection problem, which
is a discrete optimization problem. Therefore, we propose
in this paper a novel discrete modified fireworks algorithm,
named DMFWA, to solve this problem.

This section is organized as follows: First, the solution
encoding format is given. Next, the objective function of the
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Fig. 2 Flowchart of the Fireworks Algorithm (FWA)

algorithm is presented. After that, our proposed initializa-
tion strategy and mutation operator are described. Finally,
the framework of the proposed algorithm is elaborated.

4.1 Individual representation

Generally, in swarm intelligence algorithms, the representa-
tion of individuals, also called, the encoded form or solution
encoding, has a significant impact on solving the prob-
lem itself. In FWA, a good representation of fireworks can
reduce the search space and speed up the convergence of
the algorithm. In this paper, we adopt the string-based rep-
resentation. In this representation, the number of positions
is equal to the number of nodes in the network. An arbitrary
individual Xi represents the community structure of the net-
work where each position Xk

i represents the label L(k) of
node k. For instance, if X1

i = X3
i = 1, then nodes 1 and 3

are in the same community labeled by 1, we can also write,
L(1) = L(3) = 1. This representation schema is easier to
code and decode. Also, the number of communities will be
automatically determined, and will be equal to the number
of unique labels.

An example of the solution encoding and its correspond-
ing network is shown in Fig. 3. As indicated by Fig. 3a, the

network consists of six nodes numbered from 1 to 6. A pos-
sible optimal solution is given in Fig. 3b. Nodes 1 to 4 are
clustered into the first community labeled by 1, while nodes
5 and 6 are in the second community labeled by 2. This
solution is translated in the community structure shown in
Fig. 3c.

4.2 Objective function

Several objective functions have been proposed to solve
community detection problems. In this paper, the mod-
ularity density (D) is used as an objective function for
our proposed algorithm. The modularity density has been
explained in detail in Section 2.

4.3 Fireworks initialization

The initialization of the first population plays an important
role; better initialization can generate good solutions and
reduce the searching time. The FWA uses a random strat-
egy to initialize the first population of fireworks; it does
not take any prior knowledge about the specified problem
into consideration. In this paper, we introduce a new fire-
works initialization strategy that takes the original network
structure into consideration. This approach is based on the
influence of node’s neighbors. The strategy is as follows:

1. Initialize a population of N fireworks (N is equal to 50
fireworks).

2. For each firework Xi , Xk
i = k; each node will be in its

community.
3. For each firework, select a random node j , get node

k from neighbors of j which has the highest degree.
Assign all neighbors of k to the same community.

If the randomly chosen node j has no neighbors, the
algorithm selects another one.

4.4 The mutation operator

The mutation is an important operation in the fireworks
algorithm. It is responsible for updating individual’s posi-
tions after each iteration. The displacement operator and
the Gaussian mutation strategy are usually used to update
individual’s position in the original fireworks algorithm.
However, these two operators have been designed initially
to deal with continuous values, and they can not be used in
our proposed algorithm where values are in a discrete search
space.

In this paper, we propose a new mutation operator based
on the label propagation strategy introduced in [14]. This
strategy uses labels to assign each node to a community,
and the nodes with the same label are considered to be in
the same community. The label propagation strategy update
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Fig. 3 Solution encoding

(a)

(b)

(c)

node’s label, based on its neighborhood labels. The label
which frequently appears in its neighborhood, is used as its
new label.

The newly defined mutation operator is defined as fol-
lows:

xk
i =

{
xk
i if random(0, 1) ≥ sigmoid(Ai)

Nbestj if random(0, 1) < sigmoid(Ai)
(13)

Where xk
i is the current kth position of firework i, which

is representing the current label of node k. random(0, 1)

is a randomly generated number between 0 and 1. Nbestk
is the most common used label by neighbors of node k.
sigmoid(Ai) is the sigmoid function of the amplitude Ai of
firework i. The amplitude Ai is calculated as in the original
fireworks algorithm by using (6). The sigmoid function is
defined as:

sigmoid(x) = 1

1 + exp−x
(14)

An illustrative example of this newly defined mutation
operator for discrete fireworks algorithm can be found in
Fig. 4. In this figure, Xi(t) represents the current location of
firework Xi . The label of node 3 is 2, which means that it is
in the community labeled by 2 with node 6. When updating
the current firework location to the new location Xi(t + 1),
the label of node 3 is changed to 1 because the label 1 is the
mot frequently used one in its neighborhood nodes.

Fig. 4 Description of the proposed mutation strategy

4.5 Framework of the proposed algorithm

After describing all the strategies in detail, the complete
framework of the proposed DMFWA for community detec-
tion in complex networks is given in Algorithm 1

5 Experimental results and discussion

This section presents and discusses the obtained results from
evaluating our proposed method on synthetic and real-world
networks. It also shows the results from comparing our
method with the other three methods: CNM, Infomap, and
GA-Net.

The CNM algorithm is a fast greedy modularity opti-
mization method, which was proposed by Clauset et al. in
[5]. This method is in fact a fast implementation of the orig-
inal Girvan-Newman algorithm. This algorithm is abbrevi-
ated by CNM acronym which represents the first characters
of author’s names. The second algorithm is Infomap, which
was proposed by [30]. This algorithm uses a new informa-
tion theory to detect communities in a complex network.
The last one is the GA-Net algorithm. It was proposed by
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Pizzuti [27]. This algorithm uses a single-objective genetic
algorithm to optimize a fitness function, called community
score (CS), for detecting communities inside a network.

5.1 Experimental settings

We chose two evaluation criteria to evaluate our proposed
method: the modularity (Q), and the Normalized Mutual
Information (NMI).

The normalized mutation information (NMI) measures
the similarity between two communities, the truly known
community of the network and the detected one. Suppose
that A and B are two partitions of a network and C is the
confusion matrix, where Cij is the number of nodes that
are in both communities i and j of partitions A and B

respectively. Then NMI(A,B) is calculated as follows:

NMI(A, B) = −2
∑CA

i=1

∑CB

j=1 Cij log(CijN/Ci.C.j )
∑CA

i=1 Ci. log(Ci./N) + ∑CB

j=1 C.j log(C.j /N)
(15)

Where CA(CB) is the number of communities in partition
A(B), Ci.(C.j ) is the sum of elements of C in row i (column
j ), and N is the number of nodes of the network. If A = B,
then NMI(A,B) = 1; if A and B are totally different, then
NMI(A,B) = 0.

5.2 Experiments on GN extended benchmark networks

We first evaluated our proposed method on the GN extended
benchmark networks to see its effectiveness against other
methods. The GN extended benchmark networks proposed
by Lancichinetti et al. [17] is an extension of the classical
GN benchmark network proposed by Girvan and Newman
in [24]. It consists of 128 nodes divided into four communi-
ties with equal size of 32 nodes. The average degree of each
node is 16. μ is a mixing parameter, used to control the per-
centage of node links between the nodes of its community
and the total nodes of the network. When μ < 0.5, the net-
work has a strong community structure. On the contrary, the
community structure is ambiguous, and the detection of its
structure will be difficult.

We have compared our proposed method (DMFWA)
against Informap, CNM, and GA-Net algorithms on 10 GN
extended networks by ranging the μ mixing parameter value
from 0.05 to 0.5. Results of these experiments are given in
Figs. 5 and 6.

Figure 5 shows the average NMI values obtained from
different algorithms over 30 runs, with μ mixing parameter
ranging from 0.05 to 0.5. We can observe from this figure
that when μ ≤ 0.2, the proposed algorithm and the three
other algorithms can successfully detect the exact commu-
nity structure of the network. When μ > 0.2, the network
community structure becomes more and more ambiguous.

Infomap, CNM, and GA-Net algorithms rapidly became
unsuccessful and failed to detect the exact network com-
munity structure. Infomap first shows its weakness, and its
detection capacity decreases dramatically from μ ≥ 0.2.
CNM and GA-Net algorithms detection capacity fall from
μ ≥ 0.25 and μ ≥ 0.3 respectively. On the contrary, our
proposed algorithm shows its dominance over the compared
algorithms, and its detection capacity is stable.

Obtained average modularity (Q) values from different
algorithms are shown in Fig. 6. From reported values in this
figure, we can observe that when μ ≤ 0.15. All algorithms,
detect with great success the community structure of every
generated network. However, starting from μ = 0.2, the
detection task becomes difficult, and the detection capac-
ity of each algorithm is decreased. CNM algorithm gave
the worst detection result among the other algorithms, when
μ = 0.2. Obtained modularity value from this algorithm
is equal to 0.5, which is smaller than other values obtained
from, GA-Net (0.5201), Infomap (0.5598), and our method
(0.5982). This decrease in modularity values continues con-
siderably, and reaches the max at μ = 0.35. At this value
of μ, the community structure of the generated network is
very ambiguous. Infomap, CNM, and GA-Net algorithms
fail to detect the communities. At the same time, our pro-
posed algorithm succeed in detecting them, with a value of
modularity equal to 0.3236, greater than the other values,
including: Infomap (0.2063), GA-Net (0.1659), and CNM
(0.1336).

These reported modularity values in Fig. 6, clearly
exhibit the advantage of our proposed algorithm against the
other compared algorithms.

Table 1 shows the statistical modularity values obtained
over 30 individual runs of each algorithm on the GN
extended benchmark networks with different μ values. A
non-parametric statistical test using the Wilcoxon’s rank
sum test [9, 37] has also been performed at 5 % (0.05)
significance level on the modularity (Q) data. As a null
hypothesis (H0), we assumed that there is no significant dif-
ference between the mean values of the two observations
sets (modularity values). While the alternative hypothesis
(H1) is that there is a significant difference in the aver-
age values of the two sets. When the p-value is less than
0.05, the null hypothesis will be rejected. This indicates that
our method performs statistically more efficiently than the
compared algorithm.

All the p-values recorded in Table 1 are smaller than
0.05, this is against the null hypothesis. This means that the
null hypothesis will be rejected, and the average modular-
ity values obtained by our proposed method are statistically
significant. From these p-values, we conclude that our
proposed method outperforms the three other algorithms
on the GN extended benchmark networks. Except for the
first experiment where the p-values are close enough to 1,
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Fig. 5 Average NMI values
over 30 runs on GN extended
benchmark networks

Fig. 6 Average Q values over
30 runs on GN extended
benchmark networks

Table 1 Statistical results
obtained over 30 runs on GN
extended benchmark networks.
The “p-value” is produced by
Wilcoxons rank sum test taking
comparing our proposed
method with other algorithms

Network Index Proposed Algorithm Infomap GA-net CNM

GN (μ = 0.1) Qavg 0.6638 0.6638 0.6638 0.6638

p-value × 0.8493 0.8483 0.8653

GN (μ = 0.2) Qavg 0.5982 0.5598 0.5201 0.5000

p-value × 0.0388 0.0254 0.0198

GN (μ = 0.3) Qavg 0.5121 0.4825 0.4683 0.4205

p-value × 0.0238 0.0191 0.0138

GN (μ = 0.4) Qavg 0.2138 0.0895 0.0425 0.0369

p-value × 0.0205 0.0175 0.0126

GN (μ = 0.5) Qavg 0.1265 0.0098 0.0056 0.0028

p-value × 0.0385 0.0162 0.0119
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Fig. 7 Convergence of our
proposed algorithm

which means that there is no significant difference between
the modularity values obtained by the four algorithms.
The average Q values reported in the same Table prove
that.

To examine the convergence of our proposed algorithm,
we evaluated it on the GN extended benchmark networks
with mixing parameter μ ∈ [0.1, 0.2, 0.3, 0.4, 0.5] over a
number of iterations ranging from 10 to 100. Results from
this experiment are shown in Fig. 7. As is shown in this
figure, we can observe that our proposed algorithm con-
verges rapidly to a stable value of NMI, regardless the
value of μ, starting from iteration 30. This is due to the
impact of the initialization strategy and the mutation opera-
tor proposed in this paper that make the algorithm faster in
converging to an optimal solution. One conclusion that can
be drawn from results shown in Figs. 5, 6, and 7, is that our
proposed algorithm considerably surpasses all other com-
pared algorithms and has a high capacity of detecting the
network community structure.

We presented in this section the experimental results
obtained from our proposed method and three other well-
known algorithms on the GN extended benchmark net-
works. However, this synthetic benchmark shows some
limitations, such as the size of each community, which
is the same for all communities. So some important fea-
tures of real networks cannot be reflected. Due to this,
we have performed another experiments on real-world

Table 2 Characteristics of used real-world networks

Network Nodes Edges Real communities

Karate 34 78 2

Dolphin 62 159 2

Politics 105 613 3

Football 115 616 12

networks. Results from these experiments will be presented
in the next section.

5.3 Experiments on real-world networks

We present now, the results from evaluating our proposed
algorithm (DMFWA) on four real-world networks with
known community structures including Zachary’s karate
club network [38], Dolphins social network [22], Krebs’
Books on US Politics network 1, and American College
Football network [10]. These networks are described as
follows:

1. Zachary’s Karate Club This is one of the most popular
networks that has been widely used in literature. This
network represents a social network of a karate club
members studied by [38]. It consists of 34 nodes, with
each node representing a member of this club. However,
during this study a dispute occurred between the admin-
istrator (node 34) and the instructor (node 1), which
led to separate the club members into two smaller club
groups. One group, formed around the administrator,
contains 16 members. The other 18 members formed a
group around the instructor.

2. Dolphins social network This social network, repre-
sents results from studying the behavior of 62 bot-
tlenose dolphins among seven years in Doubtful Sound,
New Zealand [23].

3. Krebs’ Books Krebs’ Books on politics network con-
tains 105 US politics books, collected by Krebs and that
have been sold by Amazon.com.

4. American College Football American College Football
network [10], which consists of 115 US Football teams

1Books about US Politics: http://networkdata.ics.uci.edu/data.php?
d=polbooks

http://networkdata.ics.uci.edu/data.php?d=polbooks
http://networkdata.ics.uci.edu/data.php?d=polbooks
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Table 3 Experiment result on
real-world networks with
comparison to Infomap, CNM,
and GA-Net algorithms

Network Evaluation criterion Proposed Algorithm Infomap CNM GA-net

Karate NMImax 1 0.7851 0.7691 0.6921

NMIavg 1 0.7672 0.7603 0.6805

Qmax 0.4198 0.4091 0.4084 0.4103

Qavg 0.4038 0.3991 0.3989 0.4022

p-value × 0.0388 0.0358 0.0392

Dolphin NMImax 0.9650 0.7049 0.6980 0.8069

NMIavg 0.9542 0.705 0.6873 0.8005

Qmax 0.5093 0.4312 0.4569 0.4743

Qavg 0.5013 0.4308 0.4498 0.4704

p-value × 0.0328 0.0348 0.0382

Politics NMImax 0.7981 0.5218 0.5301 0.6809

NMIavg 0.7971 0.5125 0.5298 0.6795

Qmax 0.5271 0.4265 0.4298 0.5816

Qavg 0.5081 0.4201 0.4193 0.5803

p-value × 0.0326 0.0342 0.0674

Football NMImax 0.9230 0.6853 0.7695 0.9120

NMIavg 0.9205 0.6845 0.7687 0.9105

Qmax 0.6046 0.3494 0.5386 0.6012

Qavg 0.6041 0.5485 0.5381 0.6007

p-value × 0.0219 0.0291 0.0315

from 12 different regions of the USA, playing a cham-
pionship game between each other during the season
of fall 2000. Each link represents a game between two
teams, a total 616 games have been played.

Table 2 gives characteristics of each network.

Results from these evaluations are shown in Table 3
along with the p-values obtained by the Wilcoxon’s rank
sum test at 5 % (0.05) significance level on the modularity
(Q) data. We can observe from this table that our proposed
algorithm performs well on these real-world networks and
outperforms other compared algorithms. However, the

Fig. 8 Community structure of Zachary’s Karate Club network obtained by our proposed algorithm
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GA-Net algorithm shows a better performance over our
proposed algorithm on the Krebs’ Books on US Politics net-
work, with an average value of modularity equal to 0.5803,
and 0.5081 for our algorithm. This small difference in value
is due to the fact, that the CNM algorithm optimizes an
efficient fitness function, called community score, to detect
communities inside a network which has worked well on
that network.

Always from Table 3, we can observe that there is an
interesting difference between NMI values obtained from
our proposed algorithm, and the three other ones. This dif-
ference is clearly seen on the Karate club network, when our
proposed algorithm successfully detects the correct commu-
nity structure. The obtained NMI value on this network is
equal to 1 for our algorithm, 0.7851 for Infomap, 0.7691
for CNM, and 0.6921 for GA-Net algorithm. From obtained
NMI values on the Krebs’ Books on US Politics network,
we can observe that our algorithm gives the best NMI value,
equal to 0.7981. Which means that our proposed algorithm,
succeed in detecting a community structure that is close
enough to the correct one.

From the p-values in Table 3, which are all less than 0.05,
we conclude that our proposed method performs statistically
more efficiently than the other three algorithms on all the
presented networks, except for the Politics Books network,
where the GA-Net algorithm shows better results with a p-
value equal to 0.0674.

Figure 8 shows the community structure of the Zachary’s
Karate Club network obtained by our algorithm. As is
shown in this figure, the network is divided into four com-
munities with a value of modularity Q equal to 0.4198.
Nodes with blue color represent members who have joined
the group of the administrator of the club (node 34).
While nodes with green color are members who joined the
group of the instructor (node 1). Node with red and yel-
low colors, are members who chose to stay away from the
dispute.

6 Conclusion

The Fireworks Algorithm (FWA) is a new evolutionary
swarm intelligence algorithm which has been widely used
in many fields as a continuous optimization algorithm.
However, its applications to discrete problems are almost
missing. In this paper, we present a new discrete modified
variant of the fireworks algorithm to solve the problem of
community detection in complex networks by maximizing
the modularity density value. Our main contributions are on
the design of a new initialization and mutation strategies,
based on the label propagation method.

Results from evaluating our proposed algorithm on real-
world and synthetic networks compared to three other

algorithms, show the superiority of our proposed algorithm
over the others.

As future works, the proposed algorithm in this paper
uses the modularity density as a single-objective function.
However, it can be extended to a multi-objective optimiza-
tion technique. We also plan to test our proposed algorithm
on signed networks since the experiments presented in this
paper are all done on unsigned networks.
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