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Abstract Collaborative Filtering (CF) is the most popular
recommendation technique that uses preferences of users
in a community to make personal recommendations for
other users. Despite its popularity and success, CF suffers
from the data sparsity and cold-start problems. To allevi-
ate these issues, in recent years, there has been an upsurge
of interest in exploiting trust information to improve the
performance of CF. In general, trust has a number of dis-
tinct properties such as asymmetry, transitivity, dynamicity
and context-dependency. However, conventional trust-based
CF systems do not address trust computation by consid-
ering all the properties of trust. Particularly, the context-
dependency property has received less attention in the exist-
ing approaches. The consideration of all these properties
leads to more accurate recommendations since the qual-
ity of the inferred is improved. In this paper, we propose
a novel trust-based approach, called Semantic-enhanced
Trust based Ant Recommender System (STARS), which
satisfies all the properties mentioned above. Using ant
colony optimization, the proposed system performs a depth-
first search for the optimal trust paths in the trust net-
work and selects the best neighbors of an active user to
provide better recommendations. To consider the context-
dependency property, trust inference in STARS depends on
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the semantic descriptions of items. Incorporation of both
global and local trust in CF-based recommender systems
in addition to the trust computation based on the semantic
features of items allows STARS to alleviate the data spar-
sity, cold-start and “multiple-interests and multiple-content”
problems of CF. Experimental results on real-world data sets
show that STARS outperforms its counterparts in terms of
prediction accuracy and recommendation quality and can
overcome the above problems.
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1 Introduction

The rapid increase in the amount of information over the
World Wide Web has made it difficult to search and find
objects that may be of interest to users. One solution to this
information overload problem is the use of Recommender
Systems (RSs). RSs intend to provide users with recommen-
dations of products, services, and information they might
like, taking into account their needs or preferences. In recent
years, RSs have become increasingly popular and have been
applied to diverse domains [1].

Two basic entities in all recommender systems are the
user and the item. A user who utilizes the recommender
system is called an active user. An active user provides
her opinion about a variety of items, usually expressed in
the form of ratings. The recommender system applies a
filtering algorithm on the input ratings and generates sug-
gestions about new items (i.e., target items) for the active
user [2]. Collaborative Filtering (CF) is one of the most pop-
ular techniques in recommender systems. CF is the process
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of filtering items using the known preferences of a group
of users. CF has been used fairly successfully in various
domains. However, it has main limitations such as the data
sparsity [3–5] and cold-start [6–9] problems. Data sparsity
arises when the number of ratings obtained from users is
very small compared to the number of ratings that must
be predicted, and so it becomes difficult to find a signif-
icant overlap between the items rated by two users [10].
Cold-start users are new users who have provided none, or a
small number of ratings. CF fails to generate reliable recom-
mendations for cold users due to the lack of enough initial
ratings.

Beside the mentioned problems discussed by many
researchers, as another limitation, CF is not adaptive to envi-
ronments in which users have many different interests, and
at the same time, items have completely different contents.
In such cases, CF provides poor recommendations because
the target item for the active user may not be consistent
with the common interests of her neighbors. This problem is
called Multiple-Interests and Multiple-Content (denoted as
MIMC) [11]. More specifically, in traditional CF methods,
the similarities between users are computed based on all co-
rated items, even those items that are not related to the target
items. In this way, neighbors of an active user will be iden-
tical for all target items. However, a reasonable assumption
is that, for different predicted items, neighbors of the same
active user are likely to be different [12].

Due to the inherent problems with CF approaches, many
researchers have shifted their attention to hybrid approaches
that incorporate additional external information, such as
demographic information [2], semantic information [10,
13], and trust information [14, 15]. More recently, semantic-
based CF systems have successfully been used in different
domains. Such systems can take advantages of seman-
tic reasoning to provide much more reasonable recom-
mendations in the case of newly added item or in very
sparse data sets [16]. In recent years, semantic-based rec-
ommender systems have been applied to several different
domains such as health [17], tourism/leisure [13, 18], news
[19], sound/movie/music [20–22], etc. Furthermore, as a
new direction, several researches have suggested that the
incorporation of social trust information into the traditional
CF method can resolve the data sparsity and cold-start
problems and improve the quality of recommendations [14,
23–29].

In the context of recommender systems, trust can be
defined as “one’s belief toward others in providing accurate
ratings relative to the preferences of the active user” [30]. In
general, trust has a number of distinct properties [31]:

i. Asymmetry: trust is personal and subjective. More
specifically, if user u trusts user v, v does not necessar-
ily trust u.

ii. Transitivity: an important property of trust which says
if user u trusts v, and v trusts p, it can be inferred
that user u trusts p to some extent. This property
helps to identify new neighbors for an active user by
propagating trust in the network.

iii. Dynamicity: trust between two persons often changes
over time. Trust can be increased with positive experi-
ences and decreased with negative experiences.

iv. Context-dependency: trust is context-dependent,
which means trust relations should be determined
with respect to a particular situation. For example, a
user who provides satisfying recommendations in the
movie domain may not be an expert in the domain of
digital cameras. The context can refer to the type of
items that users give ratings or the condition in which
ratings are issued, such as the location of users or
items. In this paper, contextual information refers to
the content descriptions of items.

Trust-based recommender systems employ trust relation-
ships between users in a social network, known as a trust
network, to produce recommendations for users based on
people they trust. Within the trust network, trust can be
modeled locally or globally. Global trust models compute
reputation of a user within the whole network. In other
words, such models estimate how the community as a whole
considers a certain user. In contrast, local trust models com-
pute a user’s trustworthiness with respect to every other
user [32]. Actually, local trust models derive trust values
between users based on their ratings on co-rated items. In
general, while local trust models can be more precise and
personalized than global models, they are computationally
more expensive [23]. Also, local trust models suffer from
the cold-start problem [33] since it is difficult to identify
trustworthy users using an insufficient number of co-rated
items.

Two main trust-based filtering approaches have been
adopted in the current literature: implicit trust and explicit
trust. In the former approach, trust is inferred from user
behaviors such as the provided ratings whereas in the latter,
trust is directly specified by users [30]. Although explicit
trust-based systems tend to be more accurate than the
implicit ones, they require additional user effort, and thus,
explicit trust statements may not always be available [24].
So, this paper focuses on the implicit trust in the proposed
approach.

There are many trust inference approaches (or in other
words, trust metrics) proposed to calculate the implicit
trust from user ratings. Among the proposed approaches,
some representative and popular trust metrics [14, 23, 25–
29] have been studied by Guo et al. [31] in terms of
the trust properties. Their study reveals that these metrics
are not asymmetric since they derive trust values based
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on similarity or error measures which are symmetric in
nature. Although all these metrics [14, 23, 25–29] are tran-
sitive, none of them explicitly consider the dynamicity
and context-dependency properties of trust. In summary,
the proposed approaches partially cover trust properties,
and new metrics are needed to better satisfy the seman-
tics of trust [31]. Among the proposed approaches, the
work of Shambour and Lu’s [14] is relatively close to ours
since it fuses the trust and semantic information of users
and items within the CF framework. They proposed an
innovative Trust–Semantic Fusion (TSF)-based recommen-
dation approach, which merges two hybrid recommendation
approaches: the user-based trust-enhanced CF and the item-
based semantic-enhanced CF. The former approach utilizes
trust information to alleviate the data sparsity and cold-start
problems, whereas the latter approach employs the seman-
tic features of items to address these problems. Therefore,
in the TSF approach, two separate modules use the trust
information and semantic information, and thus, trust val-
ues are computed independently of semantic features of
items. In contrast, in our proposed approach, trust inference
relies on the items’ semantic descriptions in order to han-
dle the context-dependency of trust. It is remarkable that
TSF only satisfies the transitivity property [31]. As will
be shown in our experiments, ignoring the main proper-
ties of trust in TSF results in predictions with less accuracy
and recommendations with lower quality compared to our
approach.

It has been recently shown that by applying Ant Colony
Optimization (ACO) algorithms [34, 35] to trust-based
recommender systems, it is possible to handle the dynam-
icity of trust [36]. Ant colony algorithms are a group
of meta-heuristic optimization algorithms based on the
ants’ efforts for seeking food in nature. These algorithms,
which utilize random procedures and reinforcement learn-
ing, are extremely satisfactory in dynamic environments.
Ant colony algorithms are based on emulation of behav-
ior of real ants. In nature, real ants aim to find the
optimal path between a food source and their nest with-
out direct communications, adapting to changes in the
environment. One factor that the ants benefit from is
pheromone deposition. Ants are attracted by pheromones
coming from fellow type ants. As the time passes, paths
with higher pheromone levels are chosen with a higher
probability than those that have a weaker amount of
pheromone deposit. This collaborative behavior between
fellow type ants is similar to the collaborative world as peo-
ple mostly collect opinions from their like-minded friends
(or neighbors) [36].

In the context of trust-based CF recommender systems,
ACO can be applied on a directed trust graph in order
to search optimal trust paths. Actually, ACO selects the
paths with the maximal propagated trust values as the most

trustworthy paths. These trustworthy paths help to identify
the best neighbors of an active user because a chain of users
with high propagated trust values can provide more pre-
cise opinions for the active user. To be more specific, the
active user is considered as the ants’ nest and her trusted
neighbors as the food sources. So, the artificial ants are dis-
patched from the active user node into the trust network
to imitate the foraging behavior of real ants in search for
a valuable food source. Dynamicity of trust, as an impor-
tant property for improving the quality of recommendations,
can be effectively handled using the pheromone updating
strategy of ants to analyze the trust intensity among users
over time. Based on this strategy, the pheromone value
associated with trustworthy neighbors is increasing, while
this value for the other users is decreasing. The applica-
tion of ACO to the area of implicit trust-based filtering
approaches has been studied in the Bedi and Sharma’s
work [36] where they addressed time-based trust computa-
tion using the pheromone updating strategy. They proposed
the Trust based Ant Recommender System (TARS) which
produces valuable recommendations by incorporating the
notion of dynamic trust between users and selecting the
best neighborhood based on the biological metaphor of ant
colonies. As time passes, TARS produces recommenda-
tions by continuously updating the dynamic trust between
users. TARS satisfies asymmetry, transitivity and dynamic-
ity properties but not context-dependency property. It also
has some other limitations that will be briefly explained in
Section 2.3.

In conclusion, the literature on trust-based CF systems
reveals the absence of a recommender system that would
take into account all the properties of trust, especially,
context-dependency which has not yet been investigated by
any of the previous implicit trust-based filtering approaches
in an empirical manner. In order to fill the current gap, we
extend TARS developed by Bedi and Sharma [36] and pro-
pose STARS (Semantic-enhanced Trust based Ant Recom-
mender System) which satisfies all the properties of trust.
Using semantic information and clustering items based on
their semantic similarities, STARS incorporates the con-
text information in trust computation. More specifically, for
each item cluster c, STARS creates a directed Implicit Trust
Graph (ITG). An ITGc is a directed graph where the nodes
are users (So, we use the words “node” and “user” inter-
changeably in the paper). The edges are weighted according
to the degree of trust from one user to another user in the
context of item cluster c. In order to find the best neigh-
bors of an active user for target item x, STARS applies ACO
on ITGε, where ε refers to the cluster that item x belongs
to. Thus, implicit trust values between users depend on the
semantic features of the target item. In other words, for dif-
ferent target items, trusted neighbors of the same active user
may be different.
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STARS works in two phases: offline and online. Start-
ing at time t = t0, it creates a set of initial ITGs based on
each item cluster in the offline mode. In order to create ini-
tial ITGs, STARS uses a global trust model. In the online
phase, STARS first determines which semantic cluster the
target item belongs to, and then uses the ITG associated with
that cluster to implement ACO for selecting the best neigh-
bors of the active user. In order to control the maximum
search depth, STARS uses a tunable trust propagation limit.
After neighborhood formation, STARS predicts the active
user’s ratings for target items and produces a list of recom-
mendations. Finally, using the ACO pheromone updating
strategy, STARS updates each ITG such that the pheromone
increases for the trustworthy neighbors and decreases for
other users. It should be noted that the updating step is also
accomplished offline.

In comparison with research efforts found in the litera-
ture, our work has the following differences:

• A novel implicit trust-based filtering approach, called
STARS, which satisfies all the distinct properties of
trust, especially, context-dependency. To the best of our
knowledge, this is the first trust-based CF system that is
asymmetric, transitive, dynamic and is able to leverage
context information in trust computation.

• A novel ant-inspired search algorithm for finding the
best neighbors of an active user with respect to a spe-
cific target item x at each time step. This algorithm
utilizes both trust and similarity information in the con-
text of cluster ε that item x belongs to. Trust and
similarity information is represented by pheromone lev-
els on the edges and heuristic values of the nodes in
ITGε, respectively.

• A novel ant-inspired algorithm for updating the
dynamic trust (through pheromone evaporation and
deposition) between the active user and other users in
ITGε at each time step. In this algorithm, the amount of
pheromone to be deposited depends on: (1) the inferred
trust values through the best trust paths in ITGε, and (2)
the amount of confidence which is directly related to
the number of co-rated items between two users.

• A new method for considering both global and local
trusts in a recommender system. More specifically,
STARS uses global trust at the initial stage (time t =
t0), and as the time passes (time t > t0), it locally
updates the dynamic trust value between the active user
and others. Using the global trust at the initial stage,
the system can provide reasonable recommendations
for cold users with a few or even no ratings. As the
time passes and the active user provides more infor-
mation about her preferences (e.g., rates an item x),
STARS locally adjusts the weight of her outgoing links

in ITGε so that her most trusted neighbors have a higher
probability of selection in future.

Incorporation of both the global and local trusts into CF
along with the trust computation based on the semantic
features of items contributes to the success of STARS in
alleviating the data sparsity, cold-start and MIMC problems
of CF. An exhaustive set of temporal experiments on the
Movielens data sets empirically evaluated the performance
of the proposed approach over time and demonstrated its
advantages over benchmark algorithms. In order to incor-
porate time into our experiments, we used rating timestamp
available in the Movielens data sets.

The rest of this paper is organized as follows. The related
work is reviewed in the following section. In Section 3,
the STARS approach and its components are elaborated.
Section 4 demonstrates the experiments and their results.
Finally, we present our conclusions and outline the future
lines of research in Section 5.

2 Background

In this section, the related subjects to the proposed rec-
ommender system are explained. First, a short introduction
about ACO is presented. Then, we review the literature
related to the CF recommender systems and the hybrid sys-
tems. The studied hybrid systems exploit additional sources
of knowledge (such as trust relations between users and/or
semantic features of items) to improve the performance of
CF.

2.1 Ant colony optimization

Swarm intelligence is a computational and behavioral
metaphor for problem solving that takes inspiration from the
social behavior of insects or other animals. ACO is one of
the most powerful optimization methods that takes inspira-
tion from the foraging behavior of real ants [37]. In nature,
ants deposit pheromone on the ground in order to commu-
nicate each other. The deposited pheromone helps the ants
to find the shortest path between the nest and the food.
More specifically, in searching for a food source, ants smell
the pheromone left by previous ants of the same colony
and tend to follow the paths marked by strong pheromone
concentrations. In other words, ants choose their path by a
probabilistic decision guided by the amount of pheromone:
the larger the amount of pheromone on a trail, the higher the
probability that ants follow that trail when choosing their
path.

During the return trip, the amount of pheromone
deposited on the trail depends on the quantity and quality of
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the food source. This indirect communication among ants
helps them to find the shortest path. Since the shorter paths
take less time to be traversed, they are reinforced more with
the greater amount of pheromone. Therefore, the shorter
paths become more favored over time. It should be noted
that the pheromone gradually evaporates. Thus, the longer
paths lose their pheromone intensity and become less attrac-
tive over time. The final result is that the majority of the ants
will quickly trace the shortest path between the nest and a
food source [38–40].

Various ACO algorithms exploit a similar mechanism for
solving optimization problems. Ant colony problems are
usually modeled with a decision graph [37]. In an ACO
algorithm, each artificial ant constructs a candidate solu-
tion by a sequence of probabilistic decisions. The decisions
are biased by the amount of pheromone deposited on the
edges, and available heuristic information. The sequence
of decisions for constructing a solution can be viewed as
a path through the corresponding decision graph. Finding
good solutions for the problem is done in an iterative pro-
cess. In each iteration, the solutions found by the ants guide
the process of solution construction in the following iter-
ations. More specifically, in each iteration, the pheromone
trails are updated to guide the ants towards paths that are
more likely to result in good solutions. This process con-
tinues until some stopping criterion is met. For example,
stopping criteria could include reaching a maximum number
of iterations or finding a solution of a given quality [41].

2.2 CF recommender systems

CF is one of the most popular techniques in recom-
mender systems [14]. CF approaches are divided into
two categories: memory-based approaches and model-based
approaches. In memory-base approaches, the entire rating
matrix is used to make recommendations. In model-base
approaches, a model is driven from the previous ratings.
Then, the driven model is used to make the predictions [42].
Memory-based approaches can be further classified into two
main classes: User-based CF (UCF) [43] and Item-based CF
(ICF) [44]. In UCF approaches, a subset of users is chosen
based on their similarity to the active user (this subset is
called the neighborhood). Then, a weighted combination of
the neighbors’ ratings is used to predict the ratings for the
active user. ICF approaches are similar to UCF approaches,
except that the former ones employ the similarity between
the items instead of users [45]. Despite the popularity of
CF approaches, they suffer from data sparsity, cold-start
and MIMC problems [11, 14, 30]. Among these problems,
MIMC has received less attention in the existing works. This
problem is occurred when users are interested in a variety
of items that have different content. In such cases, CF cannot

provide accurate recommendations because the target item
for the active user may not be consistent with the common
interests of her neighbors [11]. MIMC problem can be alle-
viated by considering the similarity between items when
finding neighbors of an active user. For example, Li et al.
[11] proposed a hybrid approach by integrating both UCF
and ICF methods. This approach is able to filter the dissimi-
lar items to the target item and select neighbors of the active
user based on the similar items to the target. In [12], a new
similarity function has been proposed to select neighbors
who are more appropriate according to each specific target
item. In the proposed function, the rating of a user on an
item is weighted based on the similarity between this item
and the target item.

Many successful approaches have been developed over
the past few years to alleviate the data sparsity and cold-start
problems. These approaches explained in the subsequent
sections usually rely on additional sources of knowledge,
such as items’ semantic descriptions [10, 13] and/or users’
trust information [14, 15].

2.3 Semantic-based CF recommender systems

In recent years, reasoning techniques borrowed from the
Semantic Web have been adopted in the context of rec-
ommender systems in order to overcome the data sparsity
and cold-start problems [10]. Traditional syntactic-based
recommender systems miss a lot of useful knowledge dur-
ing the recommendation process. Therefore, their recom-
mendations only include items very similar to those the
user already knows. Semantic-based recommender systems
can overcome this problem by inferring implicit semantic
relationships between items [46]. The cornerstone of the
Semantic Web is the use of taxonomies or ontologies to
classify and describe concepts in a particular domain. Using
product taxonomies and ontologies allows the system to rea-
son about the semantics of items and to discover the hidden
semantic associations between them [10]. Semantic-based
CF approaches [10, 13, 20, 47, 48] provide two primary
advantages over traditional CF approaches. First, the seman-
tic attributes of items allow the system to make inferences
based on the underlying reasons for which a user may or
may not be interested in a particular item. Second, in the
case of a new item or in very sparse data sets, the system
can still use the semantic information to provide reasonable
recommendations for users [16].

2.4 Trust-based CF recommender systems

As another approach to alleviate the problems of traditional
CF approaches (such as the data sparsity and cold-start),
trust information has been widely used in CF methods.
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The resulting hybrid systems typically explore the trust net-
work and find a neighborhood of users trusted (directly
or indirectly) by a user and generate recommendations by
aggregating their ratings [15]. As mentioned earlier, there
are two main trust-based filtering methods: explicit trust
and implicit trust. Since in explicit approaches trust val-
ues are obtained from pre-existing social links between
users, asymmetry of the trust is always satisfied. In con-
trast, implicit approaches are often symmetric since they are
based on the similarity or error measures which are sym-
metric in general [31]. According to [49], the performance
of using implicit trust information is slightly worse than
applying explicit trust information. Nevertheless, explicit
trust-based filtering approaches encounter two major limi-
tations [14]: (1) they require extra user efforts to label the
trust statements. Accordingly, explicit trust statements may
not always be available; (2) they suffer from the cold-start
problem since new users should specify explicitly whom
they trust before the filtering becomes effective. These lim-
itations make the implicit trust-based filtering approaches
more feasible to use [14]. Hence, the present work focuses
on the implicit trust.

Most of the trust-based recommendation approaches use
the transitivity of trust and propagate trust to indirect neigh-
bors in the social network. However, the dynamicity and
context-dependency of the trust have been often ignored
in the proposed approaches. Here, we review some major
and popular implicit trust-based filtering approaches. Due
to space restrictions, we only present related works on the
implicit trust. To the best of our knowledge, there is not
any explicit trust-based recommender system that takes all
distinct properties of trust into account.

Implicit trust-based filtering approaches derive trust
values based on users’ ratings on items. For instance,
O’Donovan and Smyth [28] define the “profile-level” and
“item-level” trust as the percentage of correct predictions
that a profile has made “in general” or “with respect to
a particular item”, respectively. Pitsilis and Marshall [29]
proposed a model of implicit derivation of the user’s trust
from an evidence that describes her rating behavior. In the
proposed model, trust is expressed in the form of opin-
ion which is always subjective and uncertain. Papagelis
et al. [26] developed a trust computational model permit-
ting to consider the subjective notion of trust associations by
applying confidence and uncertainty properties. Lathia et al.
[25] proposed a trusted k-nearest recommenders algorithm
allowing users to learn how much to trust one another by
evaluating the utility of the rating information they receive.
Hwang and Chen [23] proposed an implicit trust metric
deriving trust scores directly from the ratings data based
on the users’ prediction accuracy in the past. Yuan et al
confirmed the small-world property of the trust network
[50] and developed an implicit TrustAware Recommender

System (iTARS) [27] based on this property. This prop-
erty indicates that the trust propagation distance between
any two randomly selected users of the trust network is
short. Shambour and Lu [14] proposed the TSF recom-
mendation approach providing more effective results, in
terms of prediction accuracy and coverage, compared to
the user-based and item-based benchmark algorithms. As
mentioned before, this approach fuses the “user-based trust-
enhanced CF” with the “item-based semantic-enhanced CF”
approaches. The previously mentioned implicit trust metrics
do not handle dynamicity, context-dependency and asym-
metry [31]. The recent work conducted by Fang et al. [51]
takes into account the context-dependency of trust. The
authors focused on predicting implicit trust and distrust val-
ues according to interpersonal and impersonal aspects of
trust and distrust. In their proposed model, interpersonal
aspects are computationally modeled based on users’ his-
torical ratings, while impersonal aspects are computed on
the basis of users’ explicit trust and distrust network. In this
model, competence, as one of the interpersonal trust aspects,
is computed under a specific context. In other words, the
user receiving a high competence belief from the trustor is
capable of providing satisfactory recommendations to the
trustor in a specific context. However, the authors did not
take into account the context information in their experi-
ments. Also, the dynamic aspect of trust was not considered
in their model.

It has been recently shown that by applying ACO to
trust-based recommender systems, it is possible to handle
the dynamicity of trust [36, 52, 53]. This property can be
viewed as the trust intensity between users. The trust inten-
sity between an active user and each of her neighbors may
change depending on recommendations generated by the
neighbor. The pheromone updating strategy in ACO algo-
rithms can be used to analyze the trust intensity among users
over time. Based on this strategy, the pheromone value asso-
ciated with trustworthy neighbors is increasing, while this
value for the other users is decreasing [36]. The first suc-
cessful application of ACO to the context of trust-enhanced
recommender systems is T-BAR (Trust-Based Ant Recom-
mender) [52]. T-BAR is a dynamic algorithm based on
the probabilistic model of ACO algorithms, which its abil-
ity to increase the accuracy and coverage of predictions
has been proven. In T-BAR, explicitly expressed trust val-
ues are used as heuristic information. In addition, using
the trust information in the network, the pheromone level
of each edge is locally initialized before an ant encoun-
ters it. However, this algorithm suffers from its inability to
deal with cold users. To overcome this problem, the authors
proposed DT-BAR (Dynamic T-BAR) [53], a dynamic trust-
based recommender that solves the new user problem by
allowing the ants to share information about the traversed
edges.
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The application of ACO to the context of implicit trust-
based filtering approaches has been studied in TARS [36].
TARS produces valuable recommendations by incorporat-
ing a notion of dynamic trust between users and selecting
the best neighborhood based on the biological metaphor of
ant colonies. In TARS, the pheromone level on edges repre-
sents the strength of connectedness, i.e., the trust intensity
between the two recommendation partners; also, heuris-
tic values depend on the level of connectedness from the
active user node to another node chosen by ants. The initial
pheromone level is computed by combining similarity and
confidence measures. The combination of similarity with
confidence reduces data sparsity and creates asymmetric
trust values. As the time passes, TARS produces recommen-
dations by continuously updating the dynamic trust between
users.

Nevertheless, the major limitation of TARS stems from
the fact that it performs a modified breadth-first search
in the trust network to generate recommendations. More
specifically, TARS initially selects the best neighborhood
only among the direct neighbors (i.e., users at distance 1
from the active user). The active user’s rating for an item is
generated by aggregating the ratings of selected neighbors
for that item. If some items are not rated by any of the direct
neighbors, then TARS moves to the next level and explores
the child nodes of the most trustworthy user. This process is
repeated until the ratings of all unrated items are predicted.
So, due to the proceeding of the search in a breadth-first
manner, if direct neighbors have rated an item, then TARS
is unable to use possible valuable ratings of the users with-
out direct trust link to the active user. The other limitation of
this approach is that the use of distance metric in comput-
ing heuristic values would not be effective in distinguishing
between trusted and untrusted friends in a breath-first search
process. Also, TARS does not take into account changes in
user interests over time. Actually, it considers user interest
profiles only during the initial stage (i.e., at time t = t0) in
which it uses similarity between profiles for computing the
initial trust values. After that, at time t > t0, it does not con-
sider new or changed interests of the active user; it updates
the trust information only based on the involvement or non-
involvement of other users as a recommender for the active
user over a period of time. As the final shortcoming, TARS
does not take into account the context information in its trust
model.

As seen, the literature on trust-based CF systems reveals
the absence of a recommender system that takes all distinct
properties of trust into account. In order to fill this gap,
we propose a novel implicit trust-based filtering approach,
called STARS, which is asymmetric, transitive, dynamic
and is able to leverage the context information in trust
computation. Using the ant colony optimization, STARS
performs a depth-first search for the optimal trust paths in

the trust network and selects the best neighbors of the active
user. In this approach, trust can be passed from one mem-
ber to another in the trust network, creating trust chains,
based on the propagative and transitive nature of the trust.
STARS considers the contextual information by inferring
trust values based on the semantic descriptions of items.
This approach also handles the asymmetry and dynamicity
properties using the pheromone updating strategy. Based on
this strategy, at each time step, the pheromone value associ-
ated with the best neighbors of the active user in a specific
context is increased, while this value for the other users
is decreased. As will be shown in the following sections,
STARS adapts itself to dynamically changing user interests
and mitigates the data sparsity, cold-start and MIMC issues.

3 STARS: semantic-enhanced trust based ant
recommender system

STARS is a dynamic recommender system which considers
contextual (i.e., content descriptions of items) and tempo-
ral information for selecting the most trustworthy neighbors
of the active user according to her current interests in spe-
cific types of items. To infer context-dependent trust values,
STARS uses the semantic descriptions of items. Actually,
STARS clusters items based on their semantic similarities
and finds trusted neighbors of an active user with respect
to a specific cluster. Let I = {i1, i2, ...., im}, m > 1, be
a given set of items and U = {u1, u2, ...., un}, n > 1,
be a given set of users. By clustering items based on their
semantic similarities, we have a set of z item clusters C =
{c1, c2, ...., cz}, z > 1, such that each cluster cj contains at
least one item (i.e.,

∣
∣cj

∣
∣ ≥ 1, where

∣
∣cj

∣
∣ denotes the num-

ber of items in cluster cj ). Each cluster represents a specific
context. In the rest of the paper, wherever we mention a
context c, it refers to cluster c.

Temporal information is incorporated into STARS by
exploiting timestamps of ratings. In other words, STARS
observes the ratings over time. Let R(t) be an n × m user-
item rating matrix which stores the ratings made on and
before time slot t . Each element ru,i of this matrix represents
the rating of item i by user u. Besides, ru,i is associated with
a timestamp. Let matrix S(t) with the same size of R(t)

involve the corresponding timestamp of ratings. Each ele-
ment tu,i of matrix S(t) is the timestamp of the rating made
by user u on item i. So, as a dynamic recommender system,
STARS continuously collects users’ feedbacks over a long
period of time. In this paper, we use time values with day
granularity. Starting at time t0 = x (i.e., x days from the first
rating), STARS is iteratively updated at every μ days. So,
the length of the first time slot (i.e., time slot t0) is equal to x

days, while the length of other time slots is equal to μ days.
At each time step t , the task of STARS is to predict ratings
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of the active user for target items at time slot t + 1, produce
a list of top-N recommendations, and update dynamic trust
values for the next time slot.

As mentioned before, STARS leverages context informa-
tion in neighborhood formation at time slot t by considering
users’ interest in each item cluster. In other words, STARS
infers multiple trust relationships between two users, each
of which corresponds to a specific context. For this purpose,
STARS splits the rating matrix R and timestamp matrix S
into z sub-matrices, each of which corresponds to a clus-
ter of items. Considering cluster cj , STARS produces an
n × ∣

∣cj

∣
∣ sub-matrix, called Rcj (t), which contains user rat-

ings for all items in cluster cj up to time t . It also produces a
sub-matrix Scj (t) with the same size of Rcj (t), which con-
tains the corresponding timestamp of ratings. At the initial
time slot t0, STARS uses Rcj (t0) in order to compute the ini-
tial global trust values between users in the context of cluster
cj . Using a global trust model at the initial stage, users can
benefit from opinions of globally trusted users. This is espe-
cially useful for the cold users who have only rated a small
number of items. As the time passes and users provide infor-
mation about their preferences for items belonging to cluster
cj , STARS uses Rcj (t) and Scj (t) to locally update the
dynamic trust values between users in this context.

Using the ACO algorithm, STARS applies the following
information for selecting the most trustworthy neighbors of
the active user in a specific context c at each time slot:

1) The previously learned trust knowledge based on the
global reputation and involvement of users in gener-
ating recommendations in context c in the past. This
knowledge is memorized in the form of pheromone
trails. Based on this knowledge, users who have been
selected more frequently as the trusted neighbors of
an active user have a higher probability of selection
compared to other users.

2) The similarity between users according to the current
interests of users in items belonging to context c. This
knowledge is represented as the heuristic value of nodes
(users) in a trust network during the neighborhood
selection process. In order to compute the similarities
between users, STARS exploits timestamps of ratings.
The reason is that STARS is a dynamic recommender
system, and thus, the existing users’ preferences are
not static and may change over time. With respect to
the fact that implicit trust is positively correlated with
user interests, the changes in users’ preferences affect
the users’ tendencies to trust or not to trust others. To
be able to adapt to such changes, when the recom-
mendations are requested, STARS computes similarity
between users using a temporal relevance measure [54].

This measure gives more importance to recent obser-
vations and reduces the effect of old ratings since the
recent ratings could better reflect the user’s current
interest [54]. The utilization of the time-based similar-
ity information (as the heuristic values) helps STARS
to select more accurate neighbors and better update the
trust pheromone values according to the users’ current
preferences. So, STARS is able to adapt to dynamically
changing user interests and select the most trustworthy
neighbors of the active user according to her current
interests in specific types of items.

In the following sections, the architecture of STARS
is described, and each of its components is discussed in
detail. Then, the computational complexity of STARS is
analyzed.

3.1 The architecture of STARS

As shown in Fig. 1, STARS contains two main components:
database and recommendation engine. The first component
involves the development and storage of the item ontology
and data structures. The item ontology helps to classify,
describe and interrelate the universe of relevant concepts
in a specific domain [10]. The second component gener-
ates a list of top-N recommendations for users. It enables
the system to reason about the semantic descriptions of
the available items and to infer hidden semantic relation-
ships between them [46]. The recommendation engine has
three modules, namely preprocessor, recommender and trust
network updater. Initially, at time t = t0, the preproces-
sor module, which works in the offline mode, computes
the similarity between every two items based on their
semantic descriptions, as given in the item ontology. Then,
the preprocessor module clusters the items according to
their semantic similarities by the k-medoids algorithm [55].
Finally, this module creates a set of initial ITGs based on
the global trust values between users in each item cluster.
In the online mode, at each time slot t , the recommender
module first retrieves context-specific data (i.e., trust and
rating data) and implements ACO for selecting the best
neighbors of the active user in each context. After neigh-
borhood formation, it predicts unknown ratings of the active
user and produces a list of recommendations. Finally, the
third module uses the ACO pheromone updating strategy to
update the ITG related to each context. The third module
works offline. As the result of this update, the pheromone
increases for the trustworthy neighbors and decreases for
other users in that context. In the following sections,
we describe each module of the recommendation engine
in detail.
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Fig. 1 The architecture of the STARS approach

3.1.1 Preprocessor module

The aim of this module is to incorporate the context infor-
mation into STARS using semantic profiles of items. For
this purpose, this module first generates item clusters based
on their semantic similarities and then creates an ITG for
each cluster. The main intuition behind this idea is that the
trust value between two users depends on the content of the
existing items. For example, a user who provides valuable
recommendations for purchasing cars may not be an expert
in the movie domain. In other words, a trustworthy user is
capable of providing satisfactory recommendations to the
trustor only in specific contexts [51].

Calculating implicit trust values based on the seman-
tic features of items makes STARS adaptive to multiple-
interests environments. Actually, the implicit trust is posi-
tively correlated with user interests. Thus, when users have
many different interests, and items have completely differ-
ent content, multiple trust relationships may exist between
users. Each of these trust relationships corresponds to a
different context. By applying context-dependent trust rela-
tionships, selected neighbors of a specific active user may be
different with respect to different target items, which results
in alleviating the MIMC problem.

In order to create initial ITGs, the preprocessor mod-
ule uses a global trust model. Global trust models predict a
global “reputation” score that estimates how the community
as a whole considers a certain user [32]. The application of

the global trust model at the initial stage helps to provide
more neighbors for every single user. This method is useful
when there is not enough rating information (such as in the
case of new users or very sparse data sets).

Semantic similarity calculation In order to utilize the
semantic information of items, we first have to represent
item characteristics with a domain ontology. The item ontol-
ogy implemented in our system includes the typical con-
cepts and relationships of the movie domain. Although our
approach can potentially be used for other domains with dif-
ferent item ontologies, it has been implemented in the movie
domain because it is a well-known domain and there are a
large number of relationships between the concepts involved
in this domain (such as movies, actors, directors, writers,
genres, etc.). We use the Movie Ontology1 which has been
developed according to the Ontology Web Language (OWL)
standard by the University of Zurich. The Movie Ontology
provides a controlled vocabulary to semantically describe
movie related concepts (such as Actor, Director, Genre, etc.)
and their associated individuals. Through this ontology, it is
possible to link, hierarchically and non-hierarchically, ele-
ments belonging to the domain of the movies. The main
class of the ontology is class “Movie”. All the movies are
instances of this class. For instantiating the Movie Ontology,

1http://www.movieontology.org/

http://www.movieontology.org/
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we use the Internet Movie Database2 and gather required
data using a web crawler.

The similarity between two items a and b is computed
based on their semantic descriptions, as given in the item
ontology. For this purpose, we use the semantic similarity
formula presented by Carrer-Neto et al. [56]:

Semsim(a, b) =
|P|
∑

i=1

(
common(a, b, P [i])

max(deg(a, P [i]), deg(b, P [i]))
)

×Weight (P [i]) (1)

where P is a vector that contains a set of datatype proper-
ties and object properties of the Movie class representing
the “target” of the recommender engine; deg(a, p) rep-
resents the number of instances associated with item a

through property p; common(a, b, p) denotes the number
of common instances associated with items a and b through
property p; and Weight(p) indicates the importance of prop-
erty p. The weights of the properties should be determined
subjectively according to the given domain. For example, in
the movie domain, the Genre of a movie is more important
than its filming locations.

The main datatype and object properties that are used
in our system are as follows: belongsToGenre, hasActor,
hasDirector, hasProducer, isAwardedWith, nominatedFor,
hasFilmLocation, isProducedBy, and isFromDecade. For
detailed information about these properties, refer to Carrer-
Neto et al. [56] (Section 3.1.1).

Item clustering For semantic clustering of items, we have
adopted the k-medoids algorithm [55] due to its simplic-
ity and high accuracy. Similar to the k-means algorithm
[57], k-medoids is a partition based clustering algorithm.
However, in contrast to k-means, k-medoids chooses objects
as centers (medoids) instead of taking the mean value of
the objects, and it can work with an arbitrary matrix of
distances between objects. Since the k-medoids algorithm
minimizes the summation of pairwise distances within a
cluster, it is more robust to the noise and outliers compared
to the k-means algorithm. Moreover, k-medoids is not gen-
erally influenced by the presentation order of objects. In this
paper, we have adopted the k-medoids algorithm in order to
preserve items’ semantic information during the clustering
process described as follows.

First, the k-medoids algorithm randomly selects k items
as the initial medoids. Then, it proceeds by alternating
between two steps. In the first step, each item is assigned to
the cluster associated with the nearest medoid. In particular,
the semantic similarity is used as the distance metric to mea-
sure the closeness of two items. The item distance between

2http://www.imdb.com/

two items a and b, denoted by dist (a, b), is computed by
dist (a, b) = 1 − Semsim(a, b). In the next step, within
each cluster, each of the non-medoid items is swapped with
the medoid. If the sum of within-cluster distances decreases
using a non-medoid item as the medoid, then that item is
chosen as a new medoid. The algorithm repeats these steps
until the medoids become fixed.

Generating initial trust graphs After generating item
clusters, the preprocessor module creates a directed implicit
trust graph for each cluster. The implicit trust graph ITGc(t)

is a directed graph where the nodes are users and the edges
are implicit trust relationships. In this graph, the edges are
weighted according to the degree of the trust between each
pair of users at time slot t , considering only items belong-
ing to cluster c. In order to create initial ITGs, a global trust
model is used. A user’s global trust can be computed as the
average of the local trust scores given by direct neighbors of
the user [23].

As described before, STARS derives the implicit trust
values from context-related data. At time t = t0, the initial
ITGcj (t0) is created based on the available ratings in sub-
matrix Rcj (t0). Each ITGcj (t0), j ∈ 1, 2, ..., z, is created as
the following steps:

Step 1: Normalize rating data

Because ratings are determined not only by user interests
but also by rating habits of users, it is important to nor-
malize ratings of different users to the same scale [58]. In
STARS, user ratings are normalized in the range [0,1] using
the Min–Max Normalization method. Here, this method lin-
early transforms an original rating value r of data set X to a
new value r ′ which fits in the range [0,1] as follows:

r ′ = r − min(X)

max(X) − min(X)
(2)

where min(X) and max(X) denote the minimum and the
maximum value of ratings in data set X, respectively.

Step 2: Compute the initial local trust

Local trust models consider the personal and subjective
views of the users and predict personalized trust scores from
each single user’s point of view [32]. In this step, STARS
uses the rating matrix and calculates the direct implicit trust
score of every pair of users. In particular, STARS derives
the local trust score by averaging the prediction error on
co-rated items. Therefore, if two users have no co-rated
item, then there is no direct trust relationship between them.
STARS modifies the metric proposed by Shambour and Lu
[14] for computing the implicit trust values. This metric [14]
uses the Mean Squared Differences (MSD) method [59] to
measure the degree of trust between two users by averaging
the prediction error on co-rated items. Also, in this metric,

http://www.imdb.com/
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the proportion between the common ratings and the total
rated items are taken into consideration to derive the implicit
trust values [14].

Let I
cj
u (t0) be the set of items in cluster cj rated by user

u until time t0, and
∣
∣
∣I

cj
u (t0)

∣
∣
∣ represents the number of ele-

ments in set I
cj
u (t0). According to the available normalized

ratings in sub-matrix Rcj (t0), the direct trust score assigned
by user u to user v in the context of cluster cj at time t = t0,
trust

cj
u→v(t0) ∈ [0, 1], is computed as:

trust
cj
u→v(t0) =

⎛

⎜
⎝1 −

∑

i∈D∩E

(pv
u,i − ru,i)

2

|D ∩ E|

⎞

⎟
⎠

× |D ∩ E|
|D| + |E| − |D ∩ E| , D = I

cj
u (t0), E = I

cj
v (t0)

(3)

where D ∩ E is the set of items in cluster cj that have
been commonly rated by both users u and v; and pv

u,i is
the predicted rating of item i for user u by only considering
neighborhood user v; pv

u,i is calculated by:

pv
u,i = ru + (rv,i − rv) (4)

where ru and rv are the mean ratings of users u and v for
items belonging to cluster cj , respectively.

Step 3: Compute the initial global trust

In this step, STARS computes the global trust score of
each user v as the average of the local trust scores given by
direct neighbors of this user in the trust network [23]. So, in
the context of cluster cj , the global trust score of user v at
time t = t0, called Gtrust

cj
v (t0) ∈ [0, 1], is:

Gtrust
cj
v (t0) = 1

∣
∣
∣NB

cj
v

∣
∣
∣

∑

u∈NB
cj
v

trust
cj
u→v(t0) (5)

where NB
cj
v is the set of direct neighbors of user v in context

cj .

Step 4: Create the initial directed ITG

In this step, the initial ITGcj = (V , E) is created. V is
the set of vertices correspond to the users and E is the set of
edges connecting users. The weights on incoming links to
each node v are equal to the global trust score of that node:

∀u ∈ U, u �= v W
cj
uv(t0) = Gtrust

cj
v (t0) (6)

where W
cj
uv(t0) denotes the weight of the link from node u

to node v in ITGcj (t0). Therefore, at the beginning, STARS
predicts the same value of trustworthiness of user v for every
user. As the time passes and more data is collected about
the preference of the users for items belonging to cluster cj ,
STARS locally adjusts the weight of corresponding links in
this graph.

3.1.2 Recommender module

This module is in charge of retrieving context-specific data,
analyzing the retrieved data to select the best neighborhoods
using the ant colony metaphor, and suggesting matching
items that users might like. In the following subsections, the
process of this module is described in detail.

Retrieving context-specific data In the online phase, in
order to create a list of top-N recommendations for active
user u, the appropriate trust and rating data are first retrieved
from the database. Let Ĩu(t) = {i ∣

∣ i ∈ I and ru,i = null } be
a set of target items which user u had not rated until time

slot t , and C̃u(t) = {c
∣
∣
∣ c ∈ C and (Ĩu(t) ∩ c) �= ∅} be a set

of target clusters each of which contains at least one target
item i ∈ Ĩu(t). The context-related data for user u at time
slot t is as follows:

(1) Tu(t) = {ITGc(t)

∣
∣
∣ c ∈ C̃u(t)} , a set of trust graphs

required for generating recommendations for active
user u at time slot t such that each graph corresponds
to a target cluster c.

(2) Ru(t) = {Rc(t)

∣
∣
∣ c ∈ C̃u(t)} , a set of rating sub-

matrices required for generating recommendations for
active user u at time slot t such that a sub-matrix Rc(t)

contains available normalized user ratings, up to time
t , for items in a target cluster c.

(3) Su(t) = {Sc(t)

∣
∣
∣ c ∈ C̃u(t)} , a set of timestamp sub-

matrices required for generating recommendations
for active user u at time t such that a sub-matrix
Sc(t) contains corresponding timestamps of ratings in
Rc(t).

This contextual data is the key input to our ant-inspired
neighborhood selection algorithm as detailed in the next
subsection.

Selecting the best neighborhood using ACO In this step,
the recommender module selects the best neighborhood of
active user u for each target item i ∈ Ĩu(t). For this purpose,
STARS uses a novel ant-inspired search algorithm which
performs a depth-first search in the trust network to select
the best neighbors of the active user. In the proposed algo-
rithm, trust can be passed from one member to another in a
trust network, creating trust chains, based on its propagative
and transitive nature. In each context c ∈ C̃u(t), the trust
value between active user u and each of the other users is
iteratively learned and memorized as the pheromone value
of the edge connecting their nodes in ITGc(t). During the
search process, the heuristic value of a node depends on
the similarity between this node and the active user node.
This similarity is calculated with respect to users’ current
interests in context c. To place more emphasis on the recent
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ratings, STARS incorporates the temporal relevance of the
ratings into the similarity computation. Using the available
data in sub-matrices Rc(t) and Sc(t), STARS measures
time-weighted similarities in context c. Therefore, STARS
relies on both trust and similarity information to form the
neighborhood of active user u in context c at time t . Actu-
ally, in each node a ∈ ITGc(t), the probability of choosing
the next node b ∈ ITGc(t) depends on both “the trust value
assigned by node a to node b” and “similarity between node
b and the active user node in this context”.

The utilization of the similarity information, as the
heuristic knowledge about the nodes, along with the learned
trust knowledge, memorized in the form of pheromone
trails, results in some advantages:

(1) In a sparse rating matrix, the propagation of trust over
the network helps to alleviate the data sparsity prob-
lem by providing extra information for neighborhood
selection.

(2) The utilization of global trust values allows STARS to
provide more trusted neighbors for cold users with a
few or even no ratings.

(3) The utilization of the time-weighted user similarities
helps STARS to adapt itself to dynamically changing
user interests. Actually, as long as the active user’s
rating data is insufficient, she benefits from opin-
ions of globally trusted users. As the time passes and
the active user provides more information about her
preferences, the probability of selecting her locally
similar neighbors increases, and consequently, the
pheromone value associated with the selected neigh-
bors increases. Whenever the active user’s interests
change, the heuristic knowledge reflects this change
and helps to select more accurate neighbors.

In the proposed ant-inspired neighborhood search algo-
rithm, selection of the best solutions is accomplished by
computing the “path trust” [53] for each constructed solu-
tion. The path trust is a function of the number of co-rated
items and the trust value between two adjacent nodes in
ITGc(t). The detailed steps of this algorithm are shown in
Algorithm 1.

The input parameters of Algorithm 1 are as follows: the
set of users U , target items Ĩu(t), target clusters C̃u(t),
the contextual trust data Tu(t), the rating data Ru(t), and
the timestamp data Su(t) for active user u, the number of
ants (γ ), the time decay weight (θ), the maximum trust
propagation distance (ϕ), the maximal number of the best
trust paths (bpn), the relative importance of the pheromone
trail (α) and heuristic value (β). As will be detailed later,
parameter θ is a decay factor to emphasize users’ recent
preference. ϕ is a tunable parameter that is used to control
the maximum distance from the active user to where the
trust is propagated. Parameter bpn is used for identifying the

best solutions (i.e., solutions with a high path trust value).
Finally, α and β are two parameters that control the relative
importance of trust (i.e., the pheromone value) versus sim-
ilarity (i.e., the heuristic information) during neighborhood
formation. Proper values of these parameters are selected by
performing sensitivity analysis (see Section 4.1).

By the mentioned inputs, this algorithm finds the best
neighbors of active user u at time t for each target item
i ∈ Ĩu(t). For this purpose, in each context c ∈ C̃u(t), it
first identifies the best trust paths that start from node u in
ITGc(t), and creates a sub-graph from the identified best
paths, called TG Bestcu(t) (lines 2–27). Then, for each tar-
get item i ∈ c, those nodes of graph TG Bestcu(t) which
have a rating for item i are selected as the neighbors of user
u for item i at time t ; this set of selected neighbors is repre-
sented by Neighu,i(t) (lines 29–35). The mentioned whole
procedure is repeated for each target cluster.

Considering a target cluster c ∈ C̃u(t), Algorithm 1 starts
with the initialization step (lines 2–6). In this step, ITGc(t)

is used as a graph which models the ant colony problem
(line 2). In this graph, the weight of edgeab represents the
pheromone level on this edge at time t :

τ c
ab(t) = Wc

ab(t) (7)

where τ c
ab(t) denotes the pheromone level on edge ab in

ITGc(t). As mentioned in Section 3.1.1, at time t = t0, for
each node a ∈ ITGc(t), Wc

ab(t) is equal to the global trust
score of user b in the context of cluster c.

In the initialization step and after determining the under-
lying trust graph, the active user node, e.g., node u, is taken
as the ants’ nest (line 3), a heuristic value is assigned to each
node (line 4), and γ artificial ants are dispatched from node
u (lines 5–6). In order to determine the heuristic value of a
node a, we need to compute the rating similarity between
user a and active user u . In the context of cluster c, this sim-
ilarity is computed using the user rating profiles available in
sub-matrix Rc(t). To be able to adapt to changes in users’
preferences, STARS incorporates the temporal information
in similarity computation via weighting each rating with
its temporal relevance. For this purpose, it uses a tempo-
ral relevance function which assigns a weight to each rating
according to its age (time distance) with respect to the cur-
rent time. In the context of cluster c, the timestamp of each
observed rating until time t is available in sub-matrix Sc(t).
At current time slot t , the temporal relevancefu,i(t) of the
observed rating ru,i is computed as follows [54]:

fu,i(t) = e−θ(t−tu,i ) (8)

where θ ∈ [0, 1] controls the decaying rate. Under the
assumption that older ratings are generally less correlated
with the users’ current tastes and interests, the above func-
tion decreases the relevance of rating ru,i with the amount
of time that has passed since the rating date.
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To compute user similarities by incorporating time-based
weights, STARS uses a modified cosine similarity measure
as follows [54]:

T WCc
ua(t) =

∑

i∈D∩E

(fu,i(t) · ru,i)(fa,i(t) · ra,i)

√
∑

i∈D

(fu,i(t) · ru,i)2
∑

i∈E

(fa,i(t) · ra,i)2
,

D = I c
u(t), E = I c

a (t) (9)

where T WCc
ua(t) ∈ [0, 1] represents the time-weighted

cosine similarity between users u and a in context c.
T WCc

ua(t) is computed using the available data in Rc(t)

and Sc(t). The cosine similarity metric only considers the
value of ratings, and does not regard the proportion of com-
monly rated items. So, when the number of items that have
been commonly rated by two users is very small, their sim-
ilarity value will be high. To solve this issue, we need to
consider the number of common ratings between two users.
For this purpose, we use the user-based Jaccard similarity
metric [14] as a weighting factor to adjust T WCc

ua(t). The
Jaccard metric measures the similarity based on the propor-
tion between the number of common ratings and the total
rated items up to time t , as given by:

Jaccardc
ua(t) = |D ∩ E|

|D| + |E| − |D ∩ E| ,
D = I c

u(t), E = I c
a (t) (10)

Jaccardc
ua(t), which represents the user-based Jaccard

similarity between users u and a in context c, is com-
puted using the available data in Rc(t). The combination of
T WCc

ua(t) and Jaccardc
ua(t) is used to calculate the sim-

ilarity simc
ua(t) between users a and u in context c at time

t . So, the heuristic value of node a in ITGc(t), denoted as
ηc

a(t), is computed as follows:

ηc
a(t) = simc

ua(t) = Jaccardc
ua(t) × T WCc

ua(t) (11)

After the initialization step, Algorithm 1 continues with the
creation of solutions (Step 2). In this step, each ant performs
a depthfirst search in graph ITGc(t) to select the best neigh-
bors of the active user (lines 7–18). According to parameter
ϕ which represents the maximum trust propagation distance,
the iterative process of solution creation will continue until
each ant explores a solution with depth ϕ. In other words,
each ant creates a chain of trust relationships with the max-
imum size of ϕ. The constructed solutions are stored in
a γ × (ϕ + 1) matrix, namely Solution, where each row
contains the solution created by an ant (line 7). More specif-
ically, considering an ant k, Solutionk,∗ (i.e., the kth row of
matrix Solution) consists of an ordered sequence of nodes
selected by ant k. The starting node of each ant (here, node
u) is placed in the first cell of each row of matrix Solution
(line 8). In order to construct a solution by an ant, STARS

combines the trust information with the similarity informa-
tion in a probabilistic transition rule. Considering an ant k

located at node a ∈ ITGc(t), the following probabilistic
transition rule [35] is used for selecting the next movement
(line 12):

probk
ab(t) =

⎧

⎨

⎩

(1+τ c
ab(t))

α(1+ηc
b(t))

β

∑

f ∈Fk

(1+τ c
af (t))α(1+ηc

f (t))β
if b ∈ Fk

0 otherwise
(12)

where probk
ab(t) represents the probability of selecting

node b ∈ ITGc(t), and Fk is the set of nodes that have not
yet been visited by ant k. In (12), we use 1 + η instead of η

for the following reason: when the active user has no rating,
all the nodes have heuristic value equal to zero. If we use
η in (12), then the probability of selecting any node will be
equal to zero, and therefore, ants will be unable to choose
their next movement. So, in this case, the system cannot pro-
vide any recommendation for the active user. Also, when
the active user has a small number of ratings, the number of
possible choices for the next movement will be significantly
reduced, affecting the recommendation quality. Actually, in
such cases, a cold user cannot benefit from opinions of glob-
ally trusted users. In order to prevent these problems, we use
1 + η instead of η in (12). For the sake of being in the same
range, τ is also incremented accordingly. In this way, when
the similarity between two users cannot be defined, only the
trust knowledge memorized in the form of pheromone trails
is considered.

After computing transition probabilities, each ant k

chooses the next node to move to (line 14). To implement
a probabilistic selection, we use the classical roulette-wheel
procedure [60], where the nodes with higher probability
have a higher chance of being the next node. When a simple
linear search is used, the complexity of selection is of O(n),
where n is the number of users. After selecting the next node
(line 14), ant k stores this new node in one of the cells of
the kth row of matrix Solution (line 15), and moves to the
selected node (line 16).

The next step of Algorithm 1 is the solution evaluation
(lines 19–23) in which each constructed solution is evalu-
ated by computing the corresponding path trust [53]. The
path trust of solutions constructed by ants is stored in an
array of length γ , namely PT (line 19). As mentioned above,
each constructed solution is a sequence of nodes starting
from the active user node. For each constructed solution, the
path trust is a function with two parameters:

1- the number of co-rated items between every two adja-
cent nodes x and y, and

2- the trust value issued by node x towards node y.

The paths with a high value of propagated trust can be con-
sidered as the best solutions. Actually, a chain of users with
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high path trust value can provide more precise opinions
for the active user. Considering solution Solutionk,∗ con-

structed by the kth ant at time t , the path trust is computed
as follows (line 21):

ptrustk =
∑

pair(x,y) of adjacent elements in Solution k,∗

(∣
∣
∣I c

x (t) ∩ I c
y (t)

∣
∣
∣ × τ c

xy(t)
)

∑

pair(x,y) of adjacent elements in Solution k,∗

(∣
∣
∣I c

x (t) ∩ I c
y (t)

∣
∣
∣

) (13)

ptrustk represents the path trust of the ant k’s solution; x

and y refer to two adjacent nodes in the constructed solution.
The computed path trust of the ant k’s solution is stored in
PT[k] (line 22).

The last step of Algorithm 1 is the best solutions selec-
tion (lines 24–35). In this step, bpn number of solutions
with the highest path trust value are added to a set, called
Best paths, which stores the best solutions (lines 24–25).
Here, we use the median of medians algorithm [60], that is
an optimal algorithm for selecting m largest elements in a
list with the linear time complexity in the worst case. After-
ward, Algorithm 1 must identify the best neighbors of user
u for each target item belonging to the current cluster. For
this purpose, it first creates a sub-graph from the best paths
in ITGc(t) starting from node u, according to the selected
solutions in Best paths (line 26). Since this graph, called
TG Bestcu(t), is used as a key input to our ant-inspired trust
updating algorithm (Section 3.1.3), it is saved to an output
set, called BGSu(t) (line 27), for later use. In the next step,
for each target item i ∈ c, neighbors Neighu,i(t) of user u

are determined as follows: each node of graph TG Bestcu(t)
which has a rating for item i is selected as a neighbor of user
u for item i at time t (lines 29–31). All identified neighbors
for different target items are stored in an output set, called
NSu(t) (line 34). Finally, NSu(t) and BGSu(t) are returned
as outputs (line 37).

After the execution of Algorithm 1 in the online mode,
the pheromone values must be updated according to
the selected neighbors. More specifically, the pheromone
update process occurs after the neighborhood formation
process at each time step. Using this process, at each time
step, the pheromone value associated with the best neigh-
bors of the active user in a specific context is increased,
while this value for the other users is decreased. The update
process, which is performed offline, is detailed in Algorithm
2 of the following section.

In the following, a simple example is given to illustrate
how Algorithm 1 works.

Example 1 Suppose that there are 13 items (i1 to i13, m =
13) and 10 users (u1 to u10, n = 10). Suppose that t0 = 20
(i.e., 20 days after the first rating). A sample user-item rating
matrix at time t0 = 20, R10×13(t0), is depicted in Table 1.

The ratings are integers ranged from 1 to 5. We use sym-
bol? to state that a user has not rated an item yet. A sample
timestamp matrix of the observed ratings, S10×13(t0), is also
depicted in Table 2. Time is measured with the day gran-
ularity, and timestamps are ranged from 1 (the first known
rating time) to 20 (the current time). We assume that item
clusters obtained based on the semantic similarities are c1 =
{i1, i2}, c2 = {i3, i4, i5, i6, i7}, c3 = {i8, i9, i10, i11} and
c4 = {i12, i13}. So, there are four rating sub-matrices at time
t = t0: Rc1

10×2(t0), Rc2
10×5(t0), R

c3
10×4(t0) and Rc4

10×2(t0).
Also, we have four timestamp sub-matrices at time t = t0:
Sc1

10×2(t0), S
c2
10×5(t0), Sc3

10×4(t0) and Sc4
10×2(t0).

Based on the available ratings in a rating sub-matrix,
STARS computes the global trust score of each user in
the related context using (5). As shown in Table 3, users
u4, u7, u8 and u5 are the most globally trusted users in
the context of clusters c1, c2, c3 and c4, respectively. After
that, STARS creates four initial ITGs, namely ITGc1(t0),

ITGc2(t0), ITGc3(t0) and ITGc4(t0). Each ITG is a fully
connected directed graph that consists of 10 nodes and
90 (i.e., 10 × (10 − 1)) edges. Based on the calculated
trust scores (Table 3), the initial weight of each edge in
an ITG is determined using (6). As mentioned before, in
the initial ITGs, the estimated trust in a certain user is
the same for every user. As the time passes and users
provide more information about their preferences, STARS
locally adjusts the weight of corresponding links in the
ITGs.

Now, we assume that user u10 is the active user. Based
on Table 1, target items and target clusters for this user
at t = t0 are Ĩu10(t0) = {i1, i2, i3, i6, i8}and C̃u10(t0) =
{c1, c2, c3}, respectively. In the context of cluster c1, user
u10 is an extreme cold user since she has not provided any
rating. The context-related data for this user at time t = t0
consists of Tu10(t0) = {ITGc1(t0), ITGc2(t0), ITGc3(t0)},
Ru10(t0) = {Rc1(t0), Rc2(t0), Rc3(t0)}, and Su10(t0) =
{Sc1(t0), Sc2(t0), Sc3(t0)}. We apply Algorithm 1 in order
to determine the best neighbors of user u10 for each target
item at time t = t0.

Let γ = 10, θ = 0.3, ϕ = 2, bpn = 6, α = 2, and β = 1.
In the initialization step (lines 2–6), Algorithm 1 determines
the underlying trust graph to apply the ACO algorithm, and
initializes heuristic values using (11). The result is shown
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Table 1 The user–item rating matrix at time t = t0

User Cluster

c1 c2 c3 c4

Item

i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11 i12 i13

u1 ? ? 4 3 5 ? 3 1 ? 4 5 2 ?

u2 3 5 3 ? 4 ? 1 ? ? 5 3 ? ?

u3 ? 3 ? ? 2 1 3 2 4 ? 2 ? 3

u4 1 2 2 ? 3 4 ? 3 4 5 ? ? ?

u5 ? ? 1 ? ? 4 ? ? 3 1 ? 4 2

u6 ? 2 ? 2 5 3 ? 2 5 ? ? ? 1

u7 3 ? 2 ? 4 ? 3 ? 3 ? 1 3 4

u8 1 4 ? 3 ? 3 ? ? 2 2 3 ? ?

u9 ? ? 1 ? 2 5 ? 3 ? 4 3 ? ?

u10 ? ? ? 3 5 ? 2 ? 2 5 3 4 1

Table 2 The timestamp matrix at time t = t0

User Cluster

c1 c2 c3 c4

Item

i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11 i12 i13

u1 − − 17 17 2 − 2 11 − 11 6 19 −
u2 19 15 2 − 1 − 1 − − 3 7 − −
u3 − 14 − − 20 20 20 9 13 − 13 − 10

u4 15 11 14 − 20 6 − 10 10 8 − − −
u5 − − 4 − − 12 − − 2 19 − 10 7

u6 − 14 − 18 3 1 − 20 1 − − − 13

u7 11 − 10 − 2 − 2 − 4 − 15 7 4

u8 19 3 − 5 − 7 − − 11 15 11 − −
u9 − − 4 − 18 4 − 3 − 3 8 − −
u10 − − − 19 1 − 1 − 18 2 8 1 19

Table 3 The initial global trust
score of each user according to
different item clusters

User Gtrust
c1
v (t0) Gtrust

c2
v (t0) Gtrust

c3
v (t0) Gtrust

c4
v (t0)

u1 0 0.4510 0.4374 0.4767

u2 0.6840 0.4860 0.4503 0

u3 0.6075 0.3791 0.4553 0.6075

u4 0.6870 0.4762 0.4599 0

u5 0 0.3330 0.3748 0.6680

u6 0.6075 0.3818 0.3520 0.6075

u7 0.4767 0.5032 0.3910 0.6470

u8 0.6630 0.2950 0.5423 0

u9 0 0.4402 0.4688 0

u10 0 0.4012 0.5197 0.6390
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Table 4 Similarity between
active user u10 and another
user a in different contexts

User sim
c1
u10a(t0) sim

c2
u10a(t0) sim

c3
u10a(t0)

u1 0 0.7499 0.2565

u2 0 0.4954 0.6539

u3 0 0.4120 0.4625

u4 0 0.2000 0.4182

u5 0 0 0.0256

u6 0 0.4999 0.2500

u7 0 0.4828 0.1215

u8 0 0.2500 0.3103

u9 0 0.2000 0. 4999

Table 5 The constructed probabilistic solutions for active user u10 in each trust graph

Ant Trust graph

ITGc1 (t0) ITGc2 (t0) ITGc3 (t0)

Solution10×3 Solution10×3 Solution10×3

k1 u10 u3 u6 u10 u7 u2 u10 u8 u9

k2 u10 u8 u3 u10 u6 u1 u10 u4 u9

k3 u10 u4 u6 u10 u2 u9 u10 u9 u3

k4 u10 u2 u7 u10 u7 u6 u10 u2 u4

k5 u10 u8 u2 u10 u2 u6 u10 u8 u3

k6 u10 u8 u2 u10 u1 u6 u10 u2 u4

k7 u10 u4 u3 u10 u2 u4 u10 u4 u3

k8 u10 u2 u4 u10 u1 u9 u10 u8 u4

k9 u10 u3 u4 u10 u1 u4 u10 u9 u8

k10 u10 u4 u6 u10 u2 u1 u10 u2 u9

Table 6 The path trusts of
constructed solutions for active
user u10 in each trust graph

Ant Trust graph

ITGc1 (t0) ITGc2 (t0) ITGc3 (t0)

PT[k] PT[k] PT[k]

k1 0.6075 0.4929 0.5129

k2 0.6075 0.4164 0.4643

k3 0.6075 0.4631 0.4620

k4 0.4767 0.4627 0.4535

k5 0.6840 0.4513 0.5075

k6 0.6840 0.4233 0.4535

k7 0.6075 0.4811 0.4576

k8 0.6870 0.4466 0.5093

k9 0.6870 0.4611 0.5055

k10 0.6075 0.4650 0.4595
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Table 7 The best trust paths
starting from node u10 in each
trust graph

Trust graph Best paths

ITGc1 (t0) {Solution1,∗, Solution2,∗, Solution5,∗, Solution6,∗, Solution8,∗, Solution9,∗}
ITGc2 (t0) {Solution1,∗, Solution3,∗, Solution4,∗, Solution7,∗, Solution9,∗, Solution10,∗}
ITGc3 (t0) {Solution1,∗, Solution2,∗, Solution3,∗, Solution5,∗, Solution8,∗, Solution9,∗}

in Table 4 as the similarity between u10 and other users
according to different target clusters.

In Step 2 of Algorithm 1, each ant selects its next hop
using (12) and constructs a trust path of length ϕ = 2 (lines
7–18). Table 5 shows the probabilistic solutions constructed
by ants in each trust graph. To evaluate each solution (lines
19–23), Algorithm 1 computes its path trust using (13);
the results are given in Table 6. As an example related
to graph ITGc2(t0), consider the solution Solution2,∗ =
[u10, u6, u1] constructed by the second ant. Recall that the
kth row of matrix Solution contains the solution constructed
by ant k. The path trust of Solution2,∗ is computed as fol-
lows: PT[2] = (0.3818×2+0.4510×2)/(2+2) = 0.4164.
In the next step, bpn = 6 number of solutions with the high-
est path trust value are added to set Best paths (line 25), as
shown in Table 7.

For instance, the results presented in Table 6 show that in
the context of cluster c2, the solutions constructed by ants
1, 3, 4, 7, 9 and 10 have the highest path trust value, so they
are selected as the best solutions in this context . According
to the selected solutions in Best paths, Algorithm 1 creates
the sub-graphs consisting of the best trust paths that start
from node u10 in each trust graph (line 26). For example,
TG Best c2

u10(t0) contains the best trust paths constructed by
the ants 1, 3, 4, 7, 9 and 10. The resulting graphs from this
step are shown in Fig. 2.

Finally, based on the selected paths, the best neighbors
of active user u10 for different target items at time t = t0
are determined; these neighbors are given in Table 8. For
example, consider target item i1 ∈ c1. Among the nodes of
graph TG Bestc1

u10(t0), nodes u2, u4 and u8 have a rating for
item i1 (refer to Table 1), and thus, they are selected as the
neighbors of user u10 for item i1 at time t = t0.

In this example, the outputs of Algorithm 1 are as
follows:

1) NSu10(t0) = {Neighu10,i (t0)|i ∈ Ĩu10(t0)}
2) BGSu10(t0) = {TG Bestcu10

(t0)|c ∈ C̃u10(t0)}

Generating recommendations After neighborhood for-
mation, STARS computes the ratings of all items that have
not been rated by an active user u until time t . The pre-
dicted rating of active user u on target item i ∈ Ĩu(t) is
calculated using the weighted average of deviations from the
neighbor’s mean rating. Assume that target item i belongs
to cluster c. Based on the available ratings in Rc(t), the
predicted rating of active user u for target item i, r̂u,i , is
computed as follows:

r̂u,i = ru +

∑

v∈Neighu,i (t)

(rv,i − rv) × IWc
uv(t)

∑

v∈Neighu,i (t)

IWc
uv(t)

(14)

where ru and rv are the mean ratings of active user u and
neighbor v for items belonging to cluster c, respectively;
IWc

uv(t) denotes the importance weight of the user v’s rat-
ings relative to the user u’s ratings in context c at time t . The
importance weight consists of two parts: trust value τ c

uv(t)

that node u holds about node v in the context of cluster c

at time t , and similarity simc
uv(t) between users u and v in

context c at time t. IWc
uv(t) is computed using the har-

monic mean to combine both trust and similarity values as
follows:

IWc
uv(t) = 2 × (1 + τ c

uv(t)) × (1 + simc
uv(t))

τ c
uv(t) + simc

uv(t) + 2
(15)

Fig. 2 Sub-graphs consisting of
the best trust paths that start
from node u10 in each
context-related trust graph

(a) 1
10 0TG_Best ( )c
u t (b) 2

10 0TG_Best ( )c
u t (c) 3

10 0TG_Best ( )c
u t
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Table 8 The best neighbors of user u10 for each target item i ∈ Ĩu10 at
time t = t0

Target items Neigh u10,i (t0)

i1 {u2, u4, u8}
i2 {u2, u3, u4, u6, u8}
i3 {u1, u2, u4, u7, u9}
i6 {u4, u6, u9}
i8 {u3, u4, u9}

When an active user has no rating, the similarity between
her and all other users is equal to zero. Therefore, we use
1 + sim instead of sim in (15), and thus, τ is also incre-
mented accordingly. The harmonic mean is robust to large
differences between inputs so that high values can only be
obtained when both similarity and trust values are high.

Finally, STARS ranks the predicted ratings and rec-
ommends those N items that have the highest predicted
rating.

3.1.3 Trust network updater module

The aim of this module is to update each trust graph
ITGc(t) ∈ Tu(t) such that the pheromone value associated
with the best neighbors of user u in context c is increased,
while this value for the other users is decreased through
pheromone evaporation.

For this purpose, STARS uses a novel ant-inspired
trust updating algorithm. In this algorithm, the amount of
pheromone deposited on the edge connecting active user u

and a trustworthy neighbor v depends on: (1) the inferred
trust value from user u to user v through the trust paths
selected in Algorithm 1, and (2) the amount of confidence in
user u’s opinion about user v. Confidence is directly related
to the number of co-rated items between two users. The
detailed steps of this algorithm are shown in Algorithm 2.

In Algorithm 2, the set of users U , the set of target
items Ĩu(t), the corresponding target clusters C̃u(t), the
contextual trust data Tu(t) and the rating data Ru(t) for
active user u, the maximum trust propagation distance (ϕ),
the pheromone decay value (ρ), as well as the outputs of
Algorithm 1 are taken as inputs. Parameter ρ regulates the
pheromone evaporation between times t and t+ 1 to avoid
unlimited accumulation of the pheromone. The goal of this
algorithm is to update each trust graph ITGc(t) ∈ Tu(t)

and store the corresponding updated graph, ITGc(t + 1), in
the database. By considering ITGc(t), during lines 2–8, this
algorithm decreases trust intensity by a small constant ρ on
all the edges connecting active user u and other users (refer
to (16) and (21)). In addition, trust intensity is increased

(refer to (16)) by a small quantity �τc(t) on the edges
connecting active user u and users who have been selected
as her best neighbors for at least one item i ∈ c.

Considering a target cluster c, for each user v in the user
set U , if user v is the best neighbor of active user u for at
least one item i ∈ c (line 3), then the pheromone laid on
edge uv of ITGc(t) is updated as follows (line 4):

τ c
uv(t +1) = Wc

uv(t +1) = (1−ρ)× τ c
uv(t)+�τc

uv(t) (16)

where τ c
uv(t + 1) represents the pheromone level on edge uv

at time t+1 which is equal to weight Wc
uv(t +1) of this edge



A semantic-enhanced trust based recommender system using ant colony optimization 347

at time t + 1; similarly, τ c
uv(t) represents the pheromone

level at time t. �τc
uv(t) is the amount of pheromone

deposited on edge uv of ITGc(t) at time t . It is computed
using sub-graph TG Bestcu(t) ∈ BGSu(t) which contains
the best trust paths in ITGc(t) that start from node u. In
order to compute �τc

uv(t), Algorithm 2 should calculate the
following parameters using TG Bestcu(t):

1) Inf T rustcuv(t): the inferred trust value between users
u and v through the existing trust paths in

TG Bestcu(t). Let P = {p1, p2, ..., pψ }, ψ ≥ 1, be
a set of paths between two nodes u and v in graph
TG Bestcu(t), and pj = [a0, a1, ..., aq−1, aq ], pj ∈
P , is a path of length 1 ≤ q ≤ ϕ from a0 =
u to aq = v. We note that for each path pj ∈
P , there exists an ant k ∈ K such that pj is a
sub-path of solution Solutionk,∗ traversed by the kth
ant. Then, Inf T rustcuv(t) is recursively computed as
follows:

Inf T rustca0aq
(t) =

⎧

⎪⎪⎨

⎪⎪⎩

τ c
a0aq

(t) if there exists a path pj ∈ P such that a0 is adjacent to aq
∑

pj ∈P

Inf T rustca0aq−1
(t)×

(

τ c
aq−1aq

(t)×δ
)

∑

pj ∈P

τc
a0a1

(t)
, δ = ϕ−da0aq +1

ϕ
otherwise

(17)

where δ is a weighting parameter, and da0aq ∈
[2, ϕ] represents the trust propagation distance from
source node a0 to destination node aq . The value of
Inf T rustcuv(t) varies within the range (0, 1]. It does
not take zero value since the probability of selecting
edges with no pheromone is equal to zero (see (12)).
As shown in (17), when there is a direct trust link
between users u and v in TG Bestcu(t), the value of
Inf T rustcuv(t) is equal to the weight (or pheromone)
of that link. Otherwise, trust propagation is needed to
compute the indirect trust value between users u and
v. Given path pj = [a0, a1, ..., aq−1, aq ], the indirect
trust value between two nodes a0 and aq depends on:
(1) the direct trust value between two adjacent nodes
aq−1 and aq ; and (2) the propagated trust value between
nodes a0 and aq−1, which is calculated recursively
through intermediate nodes a1 to aq−2. It is possi-
ble that there are multiple paths between two users.
In such cases, a trust aggregation method is needed
to combine the different trust beliefs that user u has
received about v. To compute the propagated implicit
trust between users u and v based on the available trust
paths in P , Algorithm 2 uses a weighted mean aggre-
gation method due to its robust performance [14]. We
adopt the method presented by Shambour and Lu [14]
which estimates a trust value for a particular user on
distance d > 1 based on the estimated trust values

for users on distance d − 1. The weighting parameter
δ is used in order to ensure that trust decreases along
the propagation. δ will ensure that trust scores from the
closer trusted neighbors will have more influence on the
trust propagation process.

2) Conf c
uv(t): the amount of confidence in the user u’s

opinion about user v in the context of cluster c at time t .
This parameter expresses the reliability of the associa-
tion between users u and v in TG Bestcu(t). To compute
Conf c

uv(t), we adopt the model proposed by Papagelis
et al. [26]. In this model, confidence is directly related
to the number of co-rated items between two users. In
other words, the more items two users have co-rated,
the higher the degree of confidence their association
would have. In order to compute the confidence of all
direct associations of a user, this model first identi-
fies the most confident direct association for this user.
Then, confidence values of the remaining direct associ-
ations are calculated with respect to the identified most
confident association.

At time t , STARS computes the confidence between
two users in the context of cluster c according to the
available ratings in Rc(t). Based on the existing trust
paths in P (recall that P is the set of paths between
two nodes u and v in graph TG Bestcu(t)), Conf c

uv(t) ∈
[0, 1] is computed as follows:

Conf c
a0aq

(t) =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

∣
∣
∣I c

a0
(t)∩I c

aq
(t)

∣
∣
∣

∣
∣
∣I c

a0
(t)∩I c

Max Conf Node
(t)

∣
∣
∣

if there exists a path pj ∈ P such that a0 is adjacent to aq

∑

pj ∈P

Conf c
a0a1

(t)×Conf c
a1aq

(t)

|P | otherwise

(18)

where Max Conf Node denotes the most confident
association in the trust network of source user a0.

Actually, among the direct associations of source node
a0 in graph TG Bestcu(t), Max Conf Node is a node that
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Table 9 The best trust paths
between user u10 and her
neighbors according to graph
TG Bestc2

u10 (t0)

Neighbor The best trust paths from node u10 to a neighbor node v

u1 P = {p1 = [u10, u1], p2 = [u10, u2, u1]}
u2 P = {p1 = [u10, u2], p2 = [u10, u7, u2]}
u4 P = {p1 = [u10, u2, u4], p2 = [u10, u1, u4]}
u6 P = {p1 = [u10, u7, u6]}
u7 P = {p1 = [u10, u7]}
u9 P = {p1 = [u10, u2, u9]}

has the largest number of co-rated items with a0. As
shown in (18), when there is a direct trust link between
two users in TG Bestcu(t), the confidence value is
directly calculated based on the number of co-rated
items between two users. Otherwise, it is calculated
through a set of intermediate nodes [26].

After computing Inf T rustcuv(t) and Conf c
uv(t),

�τc
uv(t) is calculated using the harmonic mean to inte-

grate these two parameters. This is because high values
of �τc

uv(t) can only be obtained when both confidence
and trust values are high. The following formula is used
to compute �τc

uv(t) ∈ (0, 1]:

�τc
uv(t) = 1

2
H

([1+Inf trustcuv(t)],[1+Conf c
uv(t)]

)

× λc
uv(t) (19)

where H denotes the harmonic mean of the parame-
ters. In addition to the confidence and trust parameters,
�τc

uv(t) has a direct relationship with parameter λc
uv(t)

representing the number of times user v has been
selected as a neighbor of user u in context c at time t . It
allows to deposit more pheromone on the edges leading
to those neighbors who are selected more frequently.
According to the available ratings in Rc(t), λc

uv(t) is
calculated as follows:

λc
uv(t) =

∣
∣I c

v (t) ∩ I ′c
u (t)

∣
∣

∣
∣I ′c

u (t)
∣
∣

(20)

where I ′c
u (t) refers to the set of items in cluster c that

have not been rated by user u until time t .
As shown in (19), Conf c

uv(t) and Inf T rustcuv(t)

are incremented by one. The reason is that �τc
uv(t)

must be greater than zero for the best neighbors,
whereas the value of Conf c

uv(t) may be equal to zero.
Since STARS is initialized with global trust values, it
is possible that user u trusts user v even if they have
no co-rated items. In this case, if we use Conf c

uv(t)

in (19), then �τc
uv(t) will be equal to zero, and there-

fore, only pheromone decay will occur on edge uv. To
prevent this, Conf c

uv(t) is incremented by one. For the
sake of being in the same range, Inf T rustcuv(t) is also
incremented accordingly. This allows more pheromone
to be deposited for trusted neighbors who can be recog-
nized as more confident than others. By incrementing
the arguments of H , the maximum value of �τc

uv(t)

will be equal to 2. This may cause the algorithm to
cover the initial selected solutions and ignore others. To
prevent this, we divide the harmonic mean by 2. There-
fore, �τc

uv(t) is a small quantity whose maximum value
is equal to 1.

As mentioned before, if user v has appeared at least
once as a neighbor of active user u, then the corre-
sponding pheromone value will be updated using (16);
otherwise, it will be updated using (21). According to
(21), only pheromone decay occurs for such users:

τ c
uv(t + 1) = Wc

uv(t + 1) = (1 − ρ) × τ c
uv(t) (21)

In the following, a simple example illustrates how
Algorithm 2 can be used to update trust graphs.

Example 2 From our previous example, the output sets
NSu10(t0) and BGSu10(t0) were obtained. Now, we apply
Algorithm 2 in order to update the weight of each outgo-
ing link from node u10 in ITGc(t0), where c ∈ C̃u10(t0). Let

Table 10 The inferred trust value between user u10 and her best neighbors in the context of cluster c2 at time t = t0

Neighbor Inf T rust
c2
u10v(t0)

u1 τ
c2
u10u1 (t0) = 0.4510

u2 τ
c2
u10u2 (t0) = 0.4860

u4
((

τ
c2
u10u2 (t0) × τ

c2
u2u4 (t0) × δ

) + (

τ
c2
u10u1 (t0) × τ

c2
u1u4 (t0) × δ

))

/
(

τ
c2
u10u2 (t0) + τ

c2
u10u1 (t0)

) = 0.2381

u6
(

τ
c2
u10u7 (t0) × τ

c2
u7u6 (t0) × δ

)

/ τ
c2
u10u7 (t0) = 0.1909

u7 τ
c2
u10u7 (t0) = 0.5032

u9
(

τ
c2
u10u2 (t0) × τ

c2
u2u9 (t0) × δ

)

/ τ
c2
u10u2 (t0) = 0.2201
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Table 11 The confidence value between user u10 and her best neighbors in the context of cluster c2 at time t = t0

Neighbor Conf
c2
u10v(t0)

u1
∣
∣I

c2
u10 (t0) ∩ I

c2
u1 (t0)

∣
∣ /

∣
∣I

c2
u10 (t0) ∩ I

c2
u1 (t0)

∣
∣ = 3 / 3 = 1

u2
∣
∣I

c2
u10 (t0) ∩ I

c2
u2 (t0)

∣
∣ /

∣
∣I

c2
u10 (t0) ∩ I

c2
u1 (t0)

∣
∣ = 2 / 3 = 0.6667

u4

( ∣
∣
∣I

c2
u10

(t0)∩I
c2
u1

(t0)

∣
∣
∣

∣
∣
∣I

c2
u10

(t0)∩I
c2
u1

(t0)

∣
∣
∣

×
∣
∣
∣I

c2
u1

(t0)∩I
c2
u4

(t0)

∣
∣
∣

∣
∣
∣I

c2
u1

(t0)∩I
c2
u4

(t0)

∣
∣
∣

)

+
( ∣

∣
∣I

c2
u10

(t0)∩I
c2
u2

(t0)

∣
∣
∣

∣
∣
∣I

c2
u10

(t0)∩I
c2
u1

(t0)

∣
∣
∣

×
∣
∣
∣I

c2
u2

(t0)∩I
c2
u4

(t0)

∣
∣
∣

∣
∣
∣I

c2
u2

(t0)∩I
c2
u1

(t0)

∣
∣
∣

)

2 = 0.7222

u6
(∣
∣I

c2
u10 (t0) ∩ I

c2
u7 (t0)

∣
∣ /

∣
∣I

c2
u10 (t0) ∩ I

c2
u1 (t0)

∣
∣
) × (∣

∣I
c2
u7 (t0) ∩ I

c2
u6 (t0)

∣
∣ /

∣
∣I

c2
u7 (t0) ∩ I

c2
u2 (t0)

∣
∣
) = 0.2222

u7
∣
∣I

c2
u10 (t0) ∩ I

c2
u7 (t0)

∣
∣ /

∣
∣I

c2
u10 (t0) ∩ I

c2
u1 (t0)

∣
∣ = 2 / 3 = 0.6667

u9
(∣
∣I

c2
u10 (t0) ∩ I

c2
u2 (t0)

∣
∣ /

∣
∣I

c2
u10 (t0) ∩ I

c2
u1 (t0)

∣
∣
) × (∣

∣I
c2
u2 (t0) ∩ I

c2
u9 (t0)

∣
∣ /

∣
∣I

c2
u2 (t0) ∩ I

c2
u1 (t0)

∣
∣
) = 0.4444

us consider the updating process for the trust graph corre-
sponding to target cluster c2. According to NSu10(t0), users
u1, u2, u4, u6, u7 and u9 have been selected as the best
neighbors of user u10 with respect to those items belong-
ing to cluster c2 (refer to Table 8). Table 9 shows the best
trust paths between user u10 and her neighbors according
to graph TG Bestc2

u10(t0). According to these paths, Algo-
rithm 2 applies (16) to update the weight of each outgoing
link from node u10 to a neighbor node v in ITGc2(t0) (line
4). For this purpose, it computes the inferred trust (refer
to (17)) and confidence value (refer to (18)) between user
u10 and the mentioned neighbors, as shown in Tables 10
and 11, respectively. Suppose that the evaporation rate ρ is
equal to 0.1. On the basis of Tables 10 and 11, Algorithm
2 applies (19) to calculate �τ

c2
u10v(t0); the results are given

in Table 12. Now, using (16), the pheromone value asso-
ciated with the selected neighbors is increased. For those
users who have not been selected as a neighbor, Algorithm 2
updates their corresponding pheromone value using (21). At
last, the obtained ITGc2(t0 + 1) (refer to Table 13) is stored
in the database for later use.

3.2 Computational complexity analysis

In this section, we analyze the computational complexity
of the online phase of STARS. The preprocessor and the
trust network updater modules work in the offline mode,
while the recommender module is the online component of
STARS. The computational complexity of the recommender

module, which is responsible for generating a list of top-
N recommendations for users, is the combination of the
computational complexities of its components. Considering
an active user, first, O(m) is required to retrieve the context-
specific data for m items. Then, as will be detailed in the
next paragraph, O(mn+ 2zϕγ n+mγϕ) is the upper bound
on the complexity required to select the best neighborhood
using Algorithm 1. Finally, the time required to produce a
list of recommendations for the active user is of O(mN)

because we need to predict and rank all unrated items and
recommends those N items that have the highest predicted
rating. We note that for a typical top-N recommender sys-
tem, N is a small value and usually takes values between
10 and 50. Therefore, the overall computational complex-
ity of this module becomes O(m) + O(mn + 2zϕγ n +
mγϕ) + O(mN) ≈ O(mn + 2zϕγ n + mγϕ). So, in the
online phase, the computational effort is mainly spent by
Algorithm 1 for selecting the best neighborhood. In the
following, the computational complexity analysis of this
algorithm is detailed.

Considering an active user, the upper bound complexity
of Algorithm 1 is divided into four steps: first, O(mn) is
required for the initialization step. In this step, the amount of
time required to compute the similarity between the active
user and other users in a specific context c is O(|c| n). Thus,
O(mn) is required for computing the similarities between
the profile of the active user and profiles of other users in
different contexts. In the second step, the main computation
is the process of constructing solutions in different contexts

Table 12 Computation of
�τ

c2
u10v(t0) User H λ

c2
u10v(t0) �τ

c2
u10v(t0)

u1 1.6818 0.5 0.4205

u2 1.5712 0.5 0.3928

u4 1.4406 1 0.7203

u6 1.2063 0.5 0.3016

u7 1.5807 0.5 0.3952

u9 1.3228 1 0.6614
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Table 13 Pheromone on the
edges linking user u10 with
other users on ITGc2 (t0 + 1)

User τ
c2
u10v(t0) Evaporation Deposition τ

c2
u10v(t0 + 1)

u1 0.4510 0.0451 0.4205 0.8264

u2 0.4860 0.0486 0.3928 0.8302

u3 0.3791 0.0379 0 0.3412

u4 0.4762 0.0476 0.7203 1.1489

u5 0.3330 0.0333 0 0.2997

u6 0.3818 0.0382 0.3016 0.6452

u7 0.5032 0.0503 0.3952 0.8481

u8 0.2950 0.0295 0 0.2655

u9 0.4402 0.0440 0. 6614 1.0576

(i.e., lines 9−18). The upper bound on the complexity of this
step is O(2zϕγ n). In the third step (lines 20−23), O(zγ ϕ) is
required to evaluate solutions constructed in different con-
texts. Finally, in the last step, the most time-consuming part
is selecting the best neighbors of the active user for each tar-
get item (i.e., lines 28−35). Specifically, the internal loop
(lines 29−33) is repeated up to γ ϕ times since the maxi-
mum number of nodes in graph TG Bestcu(t) is equal to γ ϕ

(each ant constructs a path of length ϕ). In a specific con-
text c, the upper bound time complexity of the last step is
O(|c| γ ϕ). Thus, O(mγϕ) is required for selecting the best
neighbors of the active user in different contexts.

To sum up, the overall complexity of Algorithm 1 is
O(mn + 2zϕγ n + mγϕ). However, the actual complexity
is smaller because this algorithm iterates over target clus-
ters instead of all clusters. In addition, it should be noted
that z is a small constant factor. The reason is that the
large number of clusters results in fewer items within each
cluster, and when the size of clusters is too small, there
is not enough information to infer users’ preferences in
each context. Thus, the system becomes unable to accu-
rately predict the implicit trust values due to data sparsity
(refer to Section 4.1). ϕ is also a small constant factor
since longer propagation levels result in less accurate trust
predictions (refer to Section 4.1). Therefore, if γ << n,
then the complexity of Algorithm 1 is of O(mn + n +
m) ≈ O(mn). In the worst case, when γ = n, the
upper bound complexity of Algorithm 1 is O(mn + n2 +
mn) ≈ O(mn + n2). Hence, the number of ants poses
a tradeoff: by increasing γ , the accuracy of predictions is
expected to increase, but efficiency (in terms of the exe-
cution time) of the algorithm is decreased. The proper
value of γ is selected by performing sensitivity analysis
(see Section 4.1).

In summary, with m = O(n), similar to the classi-
cal user-based CF, STARS requires a time complexity of
O(n2) in order to generate a list of recommendations for
an active user at each time step in the online phase. Bear-
ing in mind that STARS considers both dynamic trust and

similarity information to adapt itself to dynamically chang-
ing user interests, and noting that there is always a trade-off
between higher accuracy and better runtime, this time com-
plexity seems reasonable. Our experimental results support
this claim. As will be shown in the following sections,
STARS significantly improves the quality of recommenda-
tions and mitigates the data sparsity, cold-start and MIMC
issues, while its runtime is only a little higher than the other
counterparts.

4 Experimental results and discussions

In this section, we compare the performance of STARS
against some baseline CF algorithms, including UCF [43]
and ICF [61]. In recent years, many researchers have
exploited these algorithms as benchmarks to evaluate their
proposed recommendation approaches. To further evaluate
the performance of STARS, we also compare its results with
those of TARS [36] and TSF [14], which are the closest
approaches to ours. In each baseline algorithm, after pre-
dicting the ratings for the test user, we produce a top-N
recommendation list composed of those N items having the
highest predicted ratings. All approaches are implemented
in Matlab and their parameters are tuned to achieve the best
results. In particular, to calculate semantic similarities in
STARS, we use OWL API, a high level Application Pro-
gramming Interface (API) for working with OWL ontolo-
gies. OWL API has been implemented in Java. It is available
as open source under an LGPL license [62]. We perform
our experiments on a 2.53 GHz Intel core i5 processor, with
4.00 GB RAM, running Windows 7.

We perform experiments with two real-life data sets: 1)
the MovieLens 100K data set which consists of 100,000 rat-
ings from 943 users on 1,682 movies, denoted as ML-100K
and 2) the MovieLens 1M data set with about 1 million rat-
ings for 3,952 movies by 6,040 users, denoted as ML-1M. In
both data sets, ratings vary from 1 to 5. In our experiments,
the empty cells (i.e., unrated items) in the rating matrix are
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filled with zero value. The sparsity level of the ML-100K
and ML-1M data sets is about 0.937 and 0.958, respectively.
To incorporate temporal information in our experiments, we
use timestamp of ratings. Timestamps are represented in
seconds in both data sets. For ML-100K and ML-1M, rat-
ings have been issued over periods of 215 days and 1039
days, respectively. We round timestamp for each rating to
the corresponding day number indexed from 1 to 215 for
ML-100K, and 1 to 1039 for ML-1M. In the first data set,
starting at time t0 = 60 (i.e., 60 days after the first rating),
the system is updated at every μ = 23 days. For ML-1M,
the starting time is set to t0 = 110 and the system is updated
at every μ = 49 days. Therefore, these data sets allow for 7
and 19 temporal updates, respectively.

At each time t , based on all ratings made prior to t (i.e.,
training data), we aim to predict the ratings of a test user
for target items rated by her before the next update. A top-
N ranked list of items is recommended to the test user at
time t . Time t is then incremented by μ and the process
is repeated. Therefore, at each time step, ratings issued in
the previous time step are incorporated into the training
set. This set up is consistent with the actual operation of a
recommender system in which the training set is incremen-
tally augmented with ratings in the order that users issue
them.

To measure the prediction accuracy of the proposed
approach in comparison with others, we employ the most
well-known related metric, i.e., the standard Mean Absolute
Error (MAE) [63]. For each test user u, MAE measures the
average absolute deviation between her actual rating ru,i and
the predicted rating r̂u,i :

MAE =
∑

u,i

∣
∣ru,i − r̂u,i

∣
∣

|B| (22)

where B denotes the set of ratings to be predicted before the
next update. Lower MAE values indicate better prediction
accuracy.

In order to evaluate the recommendation quality, we
adopt the testing methodology presented in [64]. Let Y be
the set of relevant items for test users at time t (i.e., all items
that have been rated 5-stars by test users between time t and
t +μ). As mentioned before, the training set TR contains all
ratings made prior to t . According to the adopted method-
ology [64], we first train the system over the ratings in TR.
Then, for each target item i rated 5-stars by user u in Y ,
we randomly select 1000 additional items unrated by user u

before time t+μ. Then, the ratings for the test item i and for
the additional items are predicted and a top-N ranked list of
items is recommended. If the target item i is among the N

recommended items, then we have a hit. The recommenda-
tion quality is measured in terms of the recall measure. For
any single test case, recall can take either value 0 (in case of

miss) or 1 (in case of hit). The overall recall is computed by
averaging over all test cases [64]:

recall = #hits

|Y | (23)

where #hits is the number of test cases in which the algo-
rithm successfully recommends the test item. A drawback
of recall, that has been also called Hit-Rate (HR) [44], is
that all hits are considered equally regardless of where they
occur in the top-N list. This limitation is addressed by the
Average Reciprocal Hit-Rank (ARHR) measure [44], which
is defined as:

ARHR = 1

|Y |
#hits
∑

h=1

1

posh
(24)

where posh ∈ [1, N ] is the position of the test item in the
ranked recommendation list for the h-th hit. Therefore, in
our experiments, we measure the quality of recommenda-
tions by looking for the number of hits and their positions
within the top-N lists generated by the under comparison
algorithms. Higher HR and ARHR values indicate better
qualitative performance.

The following parameters have been used at the different
stages in our proposed approach: the number of clusters (z,
default value 10), the number of ants (γ , default value 100),
the relative weight of pheromone trail (α, default value 2),
the relative weight of heuristic value (β, default value 1),
the maximum trust propagation distance (ϕ, default value
2), the maximal number of the best trust paths (bpn, default
value 50), the pheromone decay value (ρ, default value 0.1),
and the time decay weight (θ , default value 0.2). Since
STARS relies on a random number generator for the proba-
bilistic selection of nodes during solution construction, each
experiment is repeated 10 times and results are averaged
over all independent runs to reduce the random variation of
the proposed approach. In our experiments, the size of the
recommendation list is set to N = 10.

4.1 Sensitivity analysis for STARS

In this section, we test the effects of different parameters
on the performance of STARS. These parameters include
the number of item clusters (z), the number of ants (γ ), the
relative weight of pheromone trail (α), the relative weight of
heuristic value (β), the maximum trust propagation distance
(ϕ), the maximal number of the best trust paths (bpn), the
pheromone decay value (ρ), and the time decay weight (θ).

For each particular data set, proper values of the param-
eters are selected by performing sensitivity analysis on that
data set: in order to assign a proper value to each parameter,
the parameters are examined individually, i.e., by chang-
ing the value for a given parameter while keeping default
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Fig. 3 The effect of parameter
z on the prediction performance
for a ML-100K and b ML-1M
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values for the rest of parameters. Considering the predic-
tion accuracy measurement, the appropriate value for the
given parameter is selected according to the average of the
results obtained over all time steps. The examined parameter
is given this value and the procedure is repeated for the next
parameter until all parameters are assigned with the optimal
values.

Effect of parameter z We investigate the impact of dif-
ferent number of clusters on the prediction performance of
STARS. Figure 3a and b illustrate MAE under different
values of z for the ML-100K and ML-1M data sets, respec-
tively. For the ML-100K data set (Fig. 3a), the average
MAE is improved as the value of z increases up to a cer-
tain point. Afterwards, the prediction accuracy is degraded
as the value of z increases. A similar scenario can also
be seen in the ML-1M data set (Fig. 3b). This is because
the small number of clusters makes the cluster information
too general; therefore, differences among dissimilar items
cannot be represented properly. As the number of clusters
increases, the number of co-rated items between two users
in a cluster decreases. So, for large values of z, there are
not enough items in each cluster to derive the implicit trust
values between users, and thus, the accuracy of predictions
decreases. This observation demonstrates the importance of
selecting an appropriate number of item clusters. As shown,
for the ML-100K and ML-1M data sets, the best perfor-
mance is attained for z = 8 and z = 18, respectively. In
the remaining experiments, we keep these numbers as the
default values.

Effect of parameter γ To select a proper value for the
number of ants in the ML-100K data set, we set the value
of γ from 50 to 943 stepped by 50. The maximum num-
ber of ants is equal to the number of nodes (i.e., users) in
the trust network. For the ML-1M data set, the value of
γ varies within a range of 100 to 6040 stepped by 200.
Figure 4 illustrates the effect of the number of ants on the
prediction performance of STARS. As shown in Fig. 4a,
the prediction quality improves as we increase γ . In fact,
for small values of γ , there are not enough ants to explore
areas in the search space. However, for γ > 250, the rate
of improvement decreases. The reason is that when γ is
high, the degree of overlap between solutions constructed
by different ants increases. Thus, for high values of γ , the
resulting neighborhoods will be similar, and consequently,
the predictions are nearly identical. On the other hand, by
increasing the number of ants, we harm the efficiency (in
terms of execution time) of STARS in its online phase. Thus,
to have both effectiveness and efficiency, a prerequisite is
the fine-tuning of the number of ants. Regarding efficiency,
we measure the run-time of STARS in the online phase by
varying the number of ants. Figure 5 shows the average time
required to generate the top-10 recommendations for a test
user under different values of γ . As the number of ants
increases, STARS needs more execution time because more
search is done. For the ML-100K data set, the best com-
bination of effectiveness and efficiency can be attained by
selecting γ between 250 and 350, where the resulting MAE
is about 0.69 (very close to the results when having 943 ants)
and run-time is under 0.15 second. Actually, for γ > 350,

Fig. 4 The effect of parameter
γ on the prediction performance
for a ML-100K and b ML-1M
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Fig. 5 The effect of parameter
γ on the efficiency of STARS
for a ML-100K and b ML-1M
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the prediction error decreases slightly while the execution
time increases significantly. In the latter experiments, we
fix γ = 250 on ML-100K. Similar results are observed on
ML-1M data set, where the best value for γ is about 1300.

Effect of parameters α and β An important step of the
STARS approach is to compute the probability of selecting
a node based on the trust value and rating similarity (see
(12)). Two exponential parameters in (12), namely α and β,
have a significant impact on the effectiveness of the STARS
approach. When α ≥ 1 and β = 0, the probability of select-
ing a node completely depends on the trust value. When
α = 0 and β ≥ 1, the trust value is not considered and
the transition probability is totally dependent on the rating
similarity. To find reasonable values for α and β, we ana-
lyze how the combination of these parameters affects the
accuracy of predictions in STARS.

We conduct an experiment in which the values of α and
β vary within the range of 0 to 10 with step 1. The set-
ting resulting in the best performance will be adopted for
the latter experiments of this research. Figure 6 illustrates
the effect of parameters α and β on the prediction perfor-
mance of STARS in both data sets. The results show that
considering both trust information and rating similarities
can significantly improve the performance compared to the
cases that either α or β is equal to zero. When β = 0,
STARS selects neighbors only based on their reputation
obtained from previous time steps, and therefore, it cannot
adapt itself to dynamically changing user interests. When
α = 0, STARS only utilizes the observed user-item ratings,
leading to poorer performance, especially when dealing

with cold users. So, we conclude that both trust information
and rating similarities should be combined to improve the
recommendation performance.

Figure 6 shows that the best prediction accuracy for the
ML-100K data set is achieved by setting α = 1 and β = 2,
where the optimal MAE is equal to 0.6852. For the ML-
1M data set, these parameters should be set as α = 1 and
β = 3, resulting in MAE = 0.7686. According to Fig. 6,
in most cases, the lower MAE values are obtained when
α ≥ β. More specifically, for ML-100K (ML-1M), MAE is
less than 0.687 (0.770) when α ≥ β in approximately 80 %
(67 %) of cases. Based on these results, we may conclude
that similarity is more important than the trust informa-
tion in determining users’ neighborhoods in the proposed
system. This is due to the reason that the similarity infor-
mation reflects the current preferences of users, while the
trust information reflects the previously learned knowledge
based on the global reputation and involvement of users in
generating recommendations in the past. By giving more
weight to the rating similarity, STARS will be able to bet-
ter adjust dynamic trust values according to the changes in
users’ preferences.

Effect of parameter ϕ In this experiment, we intend to
investigate the effects of different maximum trust propaga-
tion distances on the prediction performance of STARS. We
set the value of ϕ from 1 (i.e., no propagation) up to 10 since
the further away a user is from the source user, the less reli-
able is the inferred trust value. The effect of different values
of ϕ on the prediction performance is illustrated in Fig. 7.
By increasing ϕ, the accuracy of predictions increases as

Fig. 6 The effect of parameters
α and β on the prediction
performance for a ML-100K
and b ML-1M
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Fig. 7 The effect of different
values of ϕ on the prediction
performance for a ML-100K
and b ML-1M
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expected. The reason is due to the fact that increasing the
propagation distance allows STARS to overcome data spar-
sity and provide more trusted neighbors for every single
user. Nevertheless, for large values of ϕ, accuracy decreases
because when longer propagation levels are used, we are
heading further away from the active user, and consequently,
the inferred trust value is less reliable. So, involvement
of less trustworthy users in predicting the missed ratings
has a negative impact on the accuracy of predictions. As
shown in Fig. 7, the best performance is obtained when
ϕ = 3 for ML-100K, and when ϕ = 5 for Ml-1M. In the
remaining experiments, we keep these values as the default
values.

Effect of parameter bpn STARS requires to select a set of
best trust paths to identify the active user’s neighborhood.
In this experiment, we intend to determine the best value for
parameter bpn (i.e., the maximal number of the best trust
paths). We set the value of bpn from 10 to 590 stepped by
20 for ML-100K, and from 10 to 3170 stepped by 40 for
ML-1M. The experimental results for both data sets are dis-
played in Fig. 8. As shown, small values of bpn result in
low prediction accuracy since the identified neighbors of
the active user are not enough to make accurate predictions.
Also, the large values of bpn have a negative impact on the
accuracy, as solutions with a low path trust value may be
considered for neighborhood formation. The best prediction
accuracy for the ML-100K data set is achieved by setting
bpn = 230, where the resulting MAE is equal to 0.6685. For
ML-1M, bpn should be set to 970, which results in the best

prediction performance (i.e., MAE = 0.7469) for this data
set. These settings will be adopted for the latter experiments
of this paper.

Effect of parameter ρ Here, we investigate the influence
that the pheromone decay value has on the performance of
STARS. We run experiments with different settings for the
evaporation rate. In these experiments, the values of ρ vary
from 0 to 0.8 with step 0.01 for both data sets. The effect
of parameter ρ on the prediction performance of STARS
is illustrated in Fig. 9. The results on both data sets show
that when the value of ρ is too small (e.g., ρ < 0.05) or
too large (e.g., ρ > 0.5), the prediction accuracy is low.
A very low evaporation rate prevents STARS from being
exploratory enough, and thus, results in a fast convergence
towards selected neighborhoods in the initial iterations. This
makes STARS adapt itself to dynamically changing user
interests more slowly since the probability of selecting new
neighbors is low and STARS cannot quickly direct its search
toward new directions. On the other hand, a very high rate of
evaporation decreases the capability of the ants in exploiting
the knowledge learned in the previous iterations. As shown
in Fig. 9, for ML-100K, the performance of STARS will be
more stable when 0.09 ≤ ρ ≤ 0.16. For the other data set,
the best results are obtained when 0.11 ≤ ρ ≤ 0.19. In the
following experiments, parameter ρ is set to 0.11 and 0.15
for the ML-100K and ML-1M data sets, respectively.

Effect of parameter θ : Finally, we study the impact of the
time decay weight on the prediction quality of STARS. This

Fig. 8 The effect of different
values of bpn on the prediction
performance for a ML-100K
and b ML-1M
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Fig. 9 The effect of different
values of ρ on the prediction
performance for a ML-100K
and b ML-1M
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parameter controls the decay rate for the temporal relevance
function when computing similarity (9). In this experiment,
we investigate the performance of our approach versus dif-
ferent values of θ . For this purpose, we set the value of
θ from 0 to 0.4 with step 0.02. As shown in Fig. 10a,
increasing θ to emphasize more on recent ratings improves
the prediction quality for the ML-100K data set. However,
when θ ≥ 0.2, the prediction error increases as θ increases.
Actually, for large values of θ , the system almost forgets
the historical information compared to more recent data. In
other words, placing too much emphasis on the recent rat-
ings and de-emphasizing the history of past behaviors will
lead to a lower prediction accuracy. Based on the results
presented in Fig. 10a, the optimal value of parameter θ for
ML-100K is between 0.1 and 0.18. For the ML-1M data
set, similar findings are achieved with optimal values of
parameter θ in the interval 0.08 to 0.14. We set θ = 0.12
for ML-100K and θ = 0.08 for the other data set in the
remaining experiments.

4.2 The effectiveness of STARS

In this section, we conduct a number of experiments to
examine the effectiveness of the proposed approach over the
benchmark algorithms, in terms of the prediction, classifi-
cation and rank accuracy. The experiments also investigate
the ability of STARS to resolve the main limitations of CF.

4.2.1 Comparing the accuracy of STARS with baseline
algorithms

In this experiment, we compare the accuracy of STARS
against all benchmark algorithms at different time slots on
both data sets. For this purpose, we select those users who
have rated more than 5 items at time t = t0 as the test
users and measure the accuracy of different algorithms over
a period of time. For ML-100K and ML-1M data sets, the
number of users who expressed more than 5 items at time
t = t0 is 363 and 2330, respectively (almost 40 % of the
users). It should be noted that the system performance for
cold users with less than 5 ratings is demonstrated in the
next section when we evaluate the effectiveness of STARS
in mitigating the cold-start problem. As mentioned before,
we use MAE to evaluate the prediction accuracy; also, recall
and ARHR are used to evaluate the quality of the top-
N recommendations The average MAE, recall and ARHR
for each algorithm over different time slots are presented
in Fig. 11a–f.

It is not surprising to see that the TSF and TARS
algorithms which exploit additional sources of knowledge
perform better than the traditional user-based and item-
based CF algorithms. However, STARS outperforms all
other baseline algorithms for all the cases, indicating that
it is effective for improving both the prediction accuracy
and quality of recommendations. To have a better view of

Fig. 10 The effect of different
values of θ on the prediction
performance for a ML-100K
and b ML-1M
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(a) (b) (c)

(d) (e) (f)

Fig. 11 The accuracy of STARS against baseline algorithms for ML-100K and ML-1M

the overall performance of STARS, we further compute the
average percentage of improvement obtained by STARS
compared to other algorithms across different time steps.
Considering an accuracy measure M (such as MAE, recall,
etc.), we compute the percentage of improvement in each of
the time slots as follows3:

Improvement = STARS · M − Baseline algorithm · M

Baseline algorithm · M
× 100 %

(25)

where STARS ·M refers to the accuracy of STARS in terms
of the M measure, and “Baseline algorithm” refers to any of
the algorithms against which we intend to compare the pro-
posed approach. Table 14 shows the results in terms of the
MAE, recall and ARHR measures. These results indicate
the positive effect of considering all the main properties of
trust on the performance of a trust-based recommender sys-
tem. STARS performs better than its trust-based competitors
since it works by traversing context-specific trust networks
in a depth-first manner, using both the previously learned
trust knowledge and the information about users’ current
preferences, to select the best neighbors of the active user at
each time slot.

3The formula can be referred to as the percentage change defined in
http://www.math.umb.edu/∼joan/MATHQ114/change.htm

4.2.2 Handling the cold start problem

In this section, we investigate the effectiveness of STARS in
dealing with cold users. For this purpose, we conduct two
classes of experiments. In the first set of experiments, we
choose users who rated no items at time t = t0 as the test
users and measure the accuracy of generated recommenda-
tions for each test user over different time slots. As time
goes by, cold users will provide more information to the sys-
tem, and therefore, users’ preferences can be extracted more
precisely. For ML-100K and ML-1M data sets, the number
of users who expressed no ratings at time t = t0 is 574 and
3698, respectively (almost 61 % of the users).

In the second set of experiments, the users who have
rated less than 5 items (excluding users who rated no items)
at time t = t0 are chosen as the test users. Since in both
data sets, there is not an adequate number of users with less
than 5 ratings, we need to simulate such cold-start situation.
For this purpose, we partition the users into test users (cold
users) and train users using 5-fold cross-validation. Then,
we randomly select less than 5 ratings from each test user
at time t = t0 as the known ratings for this user at the first
time slot. Finally, similar to the first set of experiments, we
measure the performance of each algorithm in generating
valuable recommendations for each test user over different
time slots.

Figure 12 shows the results of our experiments conducted
to demonstrate the effectiveness of STARS in dealing with
the extreme cold users (i.e., users who rated no items)
on both data sets. In the first time slot, since there is no

http://www.math.umb.edu/~joan/MATHQ114/change.htm
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Table 14 The average
improvement of STARS over
other algorithms in terms of the
prediction, classification and
rank accuracy

Measure Data set Baseline algorithms

ICF (%) UCF (%) TSF (%) TARS (%)

MAE ML-100K 15.48 13.11 4.62 4.08

ML-1M 18.43 16.02 6.61 5.67

Recall (HR) ML-100K 92.27 58.57 18.15 9.33

ML-1M 146.07 108.69 31.95 14.24

ARHR ML-100K 90.37 84.76 16.40 14.63

ML-1M 133.23 131.34 36.70 12.10

information about the test users’ preferences, UCF, ICF and
TSF approaches are unable to predict missing ratings and
make any recommendation. As expected, the overall perfor-
mance of these algorithms tends to improve as the number
of items rated by test users increases. As it is clear from
Fig. 12, TARS performs poorly for extreme cold users and
its performance does not change significantly over time.
The reason is that when a user has not provided any rat-
ings, TARS assigns zero weight for all outgoing links of
that user in the trust network. Consequently, the probabil-
ity of selecting any node will be equal to zero, according
to the probability equation used in TARS [36]. Therefore,
direct neighbors of an extreme cold user are selected ran-
domly since TARS chooses neighbors in the descending
order of their associated probabilities. This leads to the poor
performance of TARS when we have extreme cold-start
settings. Furthermore, in such extreme cases, the weights
of edges connecting a cold user and her neighbors remain
zero across all time slots, according to the update rule used
in TARS [36]. Therefore, this approach cannot utilize the
ratings which are gradually provided by the extreme cold

users, and the neighbors of such users are always selected
randomly in all time slots.

As shown in Fig. 12, STARS consistently achieves sig-
nificant better performance than its competitors in terms of
both prediction accuracy and recommendation quality. In
the first time slot where there is no rating information about
test users’ preferences, STARS can leverage the global trust
information for generating valuable recommendations. As
the time passes, it tends to generate better recommendations
by continuous updating of local trust values between users.
We now compare STARS with TSF, which is the second
best algorithm for both data sets: considering the ML-100K
data set, the average improvements in terms of HR, ARHR
and MAE are about 93 %, 82 % and 9 %, respectively; for
the ML-1M data set, the average improvements in terms of
HR, ARHR and MAE are about 56 %, 78 % and 13 %,
respectively.

Figure 13 shows the performance of the previously men-
tioned algorithms in dealing with cold users who rated at
least one but less than 5 items at time t = t0. From Fig. 13,
we observe that STARS outperforms all other baseline

(a) (b) (c)

(d) (e) (f)

Fig. 12 The performance of different algorithms in handling extreme cold users at time t = t0 on ML-100K and ML-1M
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(a) (b) (c)

(d) (e) (f)

Fig. 13 The performance of different algorithms in handling cold users who rated at least one but less than 5 items at time t = t0 on ML-100K
and ML-1M

algorithms over all time slots, indicating the effective-
ness of STARS in cold conditions. For both data sets, the
improvements achieved by STARS over other algorithms
tend to be higher in the initial time slots.The reason is
that as time goes by, data sparsity decreases, and thus,
the difference between the performance of STARS and
other benchmarks decreases as well. Table 15 reports the
average improvement of STARS over its trust-based com-
petitors, TSF and TARS, according to the results presented
in Fig. 13.

4.2.3 Handling the data sparsity problem

This section examines the effectiveness of STARS in allevi-
ating the data sparsity problem. For this purpose, we design
a set of experiments in which the performance of each base-
line algorithm is investigated in the last time slot. More
specifically, ratings in the last time step are used as the test
data in these experiments due to the following reason. When

we evaluate the performance of an algorithm over differ-
ent time slots, the training and test set change over time
and the sparsity of training data decreases. To better illus-
trate the impact of the data sparsity problem, we fix the test
set and represent the performance of each algorithm only in
the last time slot. With a fixed test set, we evaluate the per-
formance of each algorithm on different sparsity levels by
randomly choosing different subsets of the rating data from
the training set.

For the ML-100K and ML-1M data sets, the test set con-
sists of 4582 and 2272 ratings, respectively. The density
of the training data TR (i.e., ratings issued in the remain-
ing time steps) is 6.02 % and 4.18 %, respectively. The
sparsity level is defined as (1 − density), where density =
#Ratings / (# Users × # Items). Thus, the sparsity level of
the training data for the ML-100K and ML-1M is 93.98 %
and 95.82 %, respectively. In order to evaluate the per-
formance of each algorithm at higher sparsity levels, we
randomly choose different subsets of the rating data from

Table 15 The average
improvement of STARS over
its trust-based competitors in
cold conditions where only few
ratings are available

Measure Data set Baseline algorithms

TSF (%) TARS (%)

MAE ML-100K 8.10 8.12

ML-1M 7.06 10.69

Recall (HR) ML-100K 20.48 19.30

ML-1M 29.71 47.08

ARHR ML-100K 18.53 18.66

ML-1M 43.28 55.43
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(a) (b) (c)

(d) (e) (f)

Fig. 14 Comparison of STARS with other benchmarks against different sparsity levels on ML-100K and ML-1M

TR for training. Assume that π is the maximum number of
observed ratings for each user in the training set. In order to
decrease the density of the training data, for each user who
has rated more than π items, we randomly pick π observed
ratings from TR for training. For example, in ML-100K,
if we set π = 182, then the density of the training data
decreases from 6.02 % to 5.02 %. To achieve lower levels
of density, we set π =113, 69 and 39, leading to different
density levels of 4.02 %, 3.01 %, 2.03 % correspondingly.
Therefore, with a fixed test set, we vary the sparsity of the
training set from 93.98 % to 97.97 % with a step increment
of about 1 %. Similarly, For ML-1M, we set π = 435, 275,
187 and 127, leading to different density levels of 3.68 %,
3.18 %, 2.68 %, 2.18 %, respectively. Therefore, the spar-
sity of the training set is varied from 95.82 % to 97.82 %
with a step increment of 0.5 %.

Figure 14 shows the performance of each algorithm on
different sparsity levels for both data sets. As expected,
by incorporating an additional source of information, trust-
based algorithms outperform traditional user-based and

item-based CF algorithms. The transitive property of trust
helps in alleviating the data sparsity problem. Among the
trust-based algorithms, STARS performs significantly bet-
ter than TSF and TARS for all sparsity levels. The reason
is that the application of the global trust model at the
initial stage produces a robust system capable of finding
more trusted neighbors for each user even when there is a
very sparse data set. As time passes, more accurate neigh-
bors are selected by the local update of dynamic trust
pheromone values according to the users’ current prefer-
ences. To better illustrate the improvement achieved by
STARS over the other baseline algorithms as the sparsity
increases, Fig. 15 shows the percentage of improvement that
STARS results comparing with the second best performing
algorithm for both data sets across the five sparsity lev-
els. By Fig. 15, the relative improvement increases as the
training set becomes sparser. On the sparsest level, STARS
outperforms the second best algorithm by at least 26.22 %,
31.79 % and 6.38 % in terms of HR, ARHR and MAE,
respectively.

(a) (b) (c)

Fig. 15 The improvement of STARS over the second best algorithm across the five sparsity levels
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Fig. 16 The performance of different algorithms in handling the MIMC problem for ML-100K and ML-1M

4.2.4 Handling the MIMC problem

We now turn to investigate the impact of the proposed
approach on the MIMC problem. For simplicity, the content
of a movie is only described via its associated genres in the
experiments of this section. Therefore, we only consider the
belongsToGenre object property (refer to Section 3.1.1) to
compute semantic similarities and cluster items. Both ML-
100K and ML-1M data sets provide a same genre set GS
which consists of 18 different types of genres, including
Action, Children’s, Horror, Musical, etc. Now, we need to
simulate an environment where items have different content.
To this end, we gradually increase the number of available
genres in the data sets.

Suppose that � is the number of available genres in
the data sets. We vary the value of � in the range from
1 to 18 with step 1. At each step, we select �number
of genres from GS and only keep the movies associated
with the selected genres in the data set. For each value
of � , we repeat the experiment for all the subsets of
size � from GS, and then, the results are averaged over
all subsets. It is worth noting that the number of clus-
ters (i.e., parameter z) is fine-tuned for each experiment
separately.

Figure 16 shows the average performance (over all time
slots) of each algorithm against different values of � for
both data sets. As shown, the overall prediction accuracy
and recommendation quality of STARS tend to improve as
we increase the value of � . For both data sets, STARS
shows similar or a little worse performance in comparison
with the TARS and TSF algorithms when we have small
values of � , while by increasing the number of available
genres, it outperforms these competitors. The reason is that
when the value of � is small (e.g. � < 5), there may
not be enough data in each cluster to compute the implicit
trust values between users. However, by increasing � , the
advantage of STARS in utilizing context-dependent trust
relations will be more obvious and its performance will tend
to increase. By utilizing context-dependent trust relations,
trusted neighbors of an active user for a horror movie, for
example, may be different from her trustworthy neighbors
for a comedy movie. As mentioned in Section 3.1.1, STARS
calculates implicit trust values between users based on the
semantic features of items. This allows STARS to infer mul-
tiple trust relationships between users, each of which may
be in a different context. Therefore, the proposed approach
is capable of generating proper recommendations in the
environments where users have different interests and items

Table 16 The average
improvement of STARS over
the second best algorithm in
dealing with the MIMC
problem when � > 10

Measure Data set Improvement (%)

MAE ML-100K 4.24

ML-1M 3.98

Recall (HR) ML-100K 15.01

ML-1M 13.18

ARHR ML-100K 18.98

ML-1M 14.89
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Fig. 17 Comparison of the
run-time performance of STARS
with other benchmarks for a
ML-100K and b ML-1M

(a) (b)

have different content. Based on the results presented in
Fig. 16, Table 16 reports the average improvement of
STARS over the second best performing algorithm for both
data sets when � > 10.

4.3 Run-time performance of STARS

In this section, we compare the amount of execution
time required for the online phase of different algorithms.
Figure 17 shows the average online execution time needed
to generate the top-10 recommendations for a test user con-
sidering both data sets. All the times in Fig. 17 are in mil-
liseconds. The results show that STARS is the slowest algo-
rithm in comparison with other baseline algorithms. ICF is
faster than any other algorithm since it completes the whole
task of generating the item-neighborhood matrix in the
offline mode. TARS presents the second best performance
here. The reason is that it performs a modified breadth-first
search in the trust network to generate recommendations.
So, it does not need to search the whole database to iden-
tify the best neighbors of an active user. TSF needs more
time than UCF to provide recommendations because it
combines both the user-based trust-enhanced CF and the
item-based semantic-enhanced CF into a single framework,
which makes it computationally more expensive. From
Fig. 17, we can observe that the execution time of STARS
is a little larger than the TSF algorithm. This is due to the
fact that STARS traverses context-specific trust networks
in a depth-first manner, using both the previously learned
trust knowledge and time-based user-to-user similarities,
to select the best neighbors of the active user. Intuitively,
it seems reasonable that such an algorithm will require
more time to generate recommendations because there is
always a trade-off between higher accuracy and better exe-
cution time. Although STARS takes more running time than
other baseline algorithms, it achieves significantly effective
results in terms of accuracy, especially when dealing with
the cold-start, data sparsity and MIMC problems.

5 Conclusions and future work

In this paper, we have made progress towards a more
effective trust-based recommender system which takes all

distinct properties of trust into account. We have proposed
a new dynamic recommender system, STARS, which con-
siders contextual and temporal information for selecting
the most trustworthy neighbors of the active user accord-
ing to her current interests in a specific type of items.
Hence, it is able to adapt itself to dynamically changing
user interests. STARS has been designed in such a way
that it can satisfy asymmetry, transitivity, dynamicity and
context-dependency properties of trust. This is achieved
by applying the ant colony optimization algorithm on the
semantically-enhanced trust relations. In the proposed sys-
tem, the weights of trust relationships are initialized with the
global trust values in a specific context, and then, as time
goes by, they are updated locally to reflect the dynamic trust
values assigned by one user to another in that context.

Incorporation of both global and local trusts into CF
along with the trust computation based on the seman-
tic features of items allows STARS to alleviate the data
sparsity, cold-start and MIMC problems. Time-based exper-
iments on two real-world data sets showed that the proposed
approach:

(1) has a better overall performance compared to other
benchmarks in terms of the prediction, classification
and rank accuracy;

(2) achieves significant improvements against other algo-
rithms when dealing with cold users, especially in the
case where the active users have not provided any
ratings;

(3) can effectively handle the MIMC problem when there
are enough items with different content in the data set;
and

(4) has a little higher execution time than the other com-
petitors.

In the present work, we have adopted a relatively sim-
ple method to compute semantic similarities between items
(see (1)). For future research, we intend to consider a
more sophisticated semantic inference approach in order
to improve the accuracy of semantic similarities used by
STARS. Furthermore, one potential limitation of the present
work is that we use k-medoids which is a hard clustering
method assigning each item to exactly one cluster. How-
ever, since an item may have different characteristics, it
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can belong to more than one cluster. Therefore, further
work direction is towards applying a soft (fuzzy) clustering
method which allows items to be members of two or more
discovered clusters. In this case, our proposed system must
be redesigned such that the process of neighborhood forma-
tion is performed by considering multiple clusters instead of
exactly one cluster. Another direction of future work is to
further improve the accuracy of the proposed approach by
incorporating different types of contextual information that
may affect trust inference such as the user’s current mood,
location or activity. Finally, in order to improve the neigh-
borhood formation in STARS, future studies will focus on
incorporating more advanced modeling techniques for the
analysis of the temporal dynamics of user feedbacks.
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