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Abstract Machine learning-based predictive modeling is
to develop machine learning-based or data-driven mod-
els to predict failures before they occur and estimate the
remaining useful life or time to failure (TTF) accurately.
Accurate TTF estimation plays a vital role in predictive
maintenance or PHM (Prognostic and Health Management).
Despite the availability of large amounts of data and a vari-
ety of powerful data analysis methods, predictive models
developed for PHM still fail to provide accurate and pre-
cise TTF estimations. This paper addresses this problem by
integrating machine learning algorithms such as classifica-
tion, regression and clustering. A classification system is
used to determine the likelihood of component failures such
that rough indications of TTF are provided. Clustering and
SVM-based local regression are then introduced to refine
the time to failure estimations provided by the classifica-
tion system. The paper illustrates the applicability of the
proposed approach through a real world aerospace applica-
tion with details on data pre-processing requirements. The
results demonstrate that the proposed method can reduce
uncertainty in estimating time to failure, which in turn helps
augment the usefulness of predictive maintenance.
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1 Introduction

The needs for higher equipment availability, reliability, pro-
ductivity, and lower maintenance costs are driving the
development and integration of prognostic and health man-
agement (PHM) systems. Taking advantage of advances in
sensor technologies, PHM systems favor a predictive main-
tenance strategy [1–4] through continuous monitoring of
data gathered from equipment and maintenance staff reports
in the event that there is a risk of a component failure. A
PHM system may also supplement the component failure
predictions with an estimation of the time to failure (TTF),
which is defined as the expected remaining time before
the given component stops fulfilling its function. In order
to avoid disruption and minimize maintenance costs, these
TTF estimates need to be as reliable and precise as possible.

Traditional methods to estimate TTF include reliability
analysis [6] and knowledge-based approaches from physics
and material sciences [7–10]. These approaches help in
understanding the underlying physical mechanisms but they
require enormous amounts of background information. Fur-
thermore, applying these approaches may also be difficult
as they tend to rely on vehicles and techniques to obtain
data on component damage or material properties. With
the development and integration of data acquisition devices
into complex equipment, data mining approaches are now
starting to complement the traditional methods for build-
ing prognostic models [5, 11, 14]. Recent results show the
potential of classification systems in identifying the likeli-
hood of component failures in a timely manner. However,

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-016-0829-4&domain=pdf
mailto:Chunsheng.yang@nrc.gc.ca


228 C. Yang et al.

none of the existing techniques can provide sufficiently
precise time to failure estimates to optimize predictive main-
tenance which identify the optimal time for performing the
next maintenance action [22–24].

For instance, the data mining methodology proposed in
[11] can build classification models for predictive mainte-
nance. These models continuously assess the probabilities
of a component failure within a pre-specified alert tar-
get window (e.g., between 1 and 20 days in advance of a
functional failure), but often fail to provide precise TTF
estimates. When a classifier detects patterns in the data
that are characteristic of an incipient failure, it generates an
alert indicating that the suspected component is likely to
fail within the alert target window and without being able
to specify the exact number of days or hours of operation
left. With this approach, the larger the alert target window,
the higher the imprecision on the TTF estimates. In some
specific applications, it is reasonable to try to increase pre-
cision by reducing the width of the target window. However,
this is generally not suitable as it could prevent the end
users from getting alerts as early as possible. In turn, this
would reduce the opportunity for optimization and the ben-
efits of prognostics. A too narrow target window may also
have detrimental effects on the performance of the predic-
tive models. For instance, when a component has various
failure modes, each following their own time frame, there is
a risk that a model specific to a narrow target window would
only be able to detect a fraction of these failure modes.

Estimating TTF can be seen as a regression problem
and as such, regression analysis and time-series forecasting
methods could be used to build models that try to directly
estimate TTF from sensory data. To be successful, such
models need to accurately map all then subtle changes in
the data to specific life reduction estimates. These models
also need to account for the fact that with complex compo-
nents, we often observe significant variations in actual time
to failure. Obviously, building such models is a challenging
task that requires ample amounts of high quality and rele-
vant data. On top of this, data from real world equipment is
typically characterized by issues such as irregular sampling
intervals, small signal/noise ratio, and sensor measurement
errors. It is therefore, generally hopeless to try to develop
a global regression model for TTF from sensor data. On
the other hand, it is plausible that regression could be suc-
cessfully applied locally on well chosen portions of the real
world sensor data. This paper investigates this hypothesis
by trying to demonstrate that regression analysis can help
improve the preciseness of TTF estimates.

This paper proposes an on-demand approach to esti-
mating TTF by combining classification, clustering, and
regression-based approaches. It relies on a comprehensive
machine learning methodology to develop a classification
system which is capable of identifying incipient component

failures and providing rough TTF estimates. Clustering is
used to partition the sensor data into multiple regions and a
regression model is developed to estimate TTF within each
region. When the classifier uncovers a potential component
failure, a mapping function decides which regression model
should be used to provide a TTF estimate. A final step pro-
duces the final TTF estimation based on the output from the
classification and regression models. We name the proposed
method “on-demand regression” as regression is only used
once the classification system has identified the potential for
a component failure.

To our best knowledge, this is first attempt to improve
TTF estimation by combining classification and regression.
The main idea behind this method is to improve the perfor-
mance of regression models by filtering negative predictions
generated from a classifier given system observations. In
other words, only when a state observation is classified
as a potential component failure (positive prediction) the
regression models are used to estimate its TTF. For neg-
ative prediction, it is not necessary to estimate its TTF.
The work related on-demand regression is model fusion
such as stacking techniques [21, 27]. The stacking method
fuses multiple baseline models to improve the model per-
formance. For instance, the work in [21] is to stack the
baseline classifiers for improving the performance of clas-
sification systems, and the work in [27] is to combine
multiple baseline regression models to enhance the preci-
sion of regression. Our method is to select a best regression
model from a set of baseline models to estimate TTF given
a positive observation.

This paper extends a preliminary description of this work
[12] by introducing a data mining methodology for develop-
ing predictive models from historical operation data, by pro-
viding updated results including the new results from other
applications, and by discussing how the choice regarding
the number of clusters affects performance in Discussion
Section.

Prior to detailing the approach, the paper explains the
challenges with support from real world data from an
aerospace application. The same application is also used to
illustrate the applicability and the usefulness of the proposed
approach. The discussion section elaborates on parame-
ter tuning, potential improvements, and on the use of the
technique with other sources of data.

2 Challenges

Accurate and detailed health information on key systems
and components is of utmost importance to help optimize
the maintenance and management of complex systems. Ide-
ally, powerful prognostic models, well integrated into the
organization’s information systems, would automatically
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combine sensor data, historical maintenance information,
system configurations, and other sources of information to
continuously provide accurate and precise TTF informa-
tion. Regression methods, which are specifically designed
to predict numerical values such as TTF, appear well suited
to develop these models. Unfortunately, many typical issues
of real world data from complex equipment severely con-
strain the applicability and power of regression modeling.
To illustrate, let us consider an aerospace application in
which the objective is to build a prognostic model for the
starter motor of the Auxiliary Power Unit engine (APU).

The data for this application have been produced by a
fleet of 73 commercial aircraft over a period of 10 years.
Only ACARS (Aircraft Communications Addressing and
Reporting System) APU starting reports have been made
available. The dataset that has been created from these
reports consists of 18 attributes (5 symbolic, 11 numeric,
and 2 for date and time of the event). For 11 numeric
attribute, there are six main variables related to APU perfor-
mance: ambient air temperature, ambient air pressure peak
value of exhaust gas temperature in starting process, rota-
tional speed at the moment of occurrence, time duration of
starting process, exhaust gas temperature when air condi-
tioning is enable after starting with 100 % speed. The TTF
is a responding variable and these six variables are used
as independent variables in developing regression models,
classifier, and model selector. More than 161000 observa-
tions are available for this task. Only a subset of these obser-
vations is relevant for learning the predictive models which
have been collected around each occurrence of component
failures. In this particular task, we use engine operating
hours as the time unit. Our analysis has been based on data
generated between 250 operating hours prior to the failure
and 30 h after. A comprehensive search in the maintenance
database revealed information on 83 occurrences of APU
starter motor replacements. Access to information from fur-
ther testing of the components following a replacement is
not available and as such it is assumed that a replacement
is equivalent to an actual failure. When an engine suffered
consecutive failures in a short period of time, the afore-
mentioned above interval is constrained to ensure that each
observation is included only once. The data from 61 fail-
ures are used for learning and data from the remaining 22
failures are reserved for testing.

To evaluate the feasibility of regression as a direct way
to predict TTF, the initial representation is augmented with
a TTF attribute. This attribute is simply defined as the dif-
ference between the engine operating hours in the current
observation and the operating hours of this engine at the next
starter failure. Instances observed following a failure have
been removed. An SVM (Support Vector Machine)-based
regression model is built using the training dataset and then
applied on the testing set. Figure 1 shows results from one

Fig. 1 TTF versus actual from a global SVM-based regression model

of the best SVM models developed using 61 failure time
series data, testing with 22 failure time-series data. The axis
TTF is the actual measurements, and the axis TTFEst is the
estimate from the regression model. The straight line shows
the best fit regression line while the dash lines represent
the corresponding 95 % confidence interval. First, signifi-
cant errors can be observed as the regression line is far from
the desired 45 degree diagonal. Moreover, the scatter clearly
illustrates the lack of fit of the model. The expected error
from this model is 58.7 with a standard deviation of 43.8.
Other regression methods such as NN (Neural Network) (for
example, multilayer perception feedforward NN) and linear
regression lead to similar performance. The following para-
graphs discuss some of the reasons that explain the lack of
success of global regression models.

2.1 Irregular sampling rate

Most traditional forecasting techniques require a fixed inter-
val between measurements (e.g., every hour, every day, or
every month). In this particular application, the data are sys-
tematically collected at every start of the APU. On the other
hand, the data are not sent to the central system unless the
on-board system decides to do so. Due to different configu-
rations across the fleet and over time, APU data are recorded
at every start for some of the aircraft and at every other
start for other aircraft and so on up to every 8 starts. As
a result, some forecasting methods can simply not be app-
lied. Unequal sampling rate also means that the time-series
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corresponding to the different failures have different
lengths. This may lead to an unbalanced representation of
the failure cases. A possible solution is to re-sample the data
through interpolation or smoothing but given the high vari-
ability in the original sampling rate and the low signal/noise
ratio, such processing is likely to worsen the modeling for
TTF estimation.

2.2 Lack of relevant information

In order to accurately predict remaining life, the model
needs to be able to estimate the current life consumption.
The information required to evaluate life consumption could
come from highly informative core measurements that ade-
quately account for the internal state of the component.
Such high value information is typical from laboratory test-
ing equipment but rarely available from sensors deployed
on today’s complex equipment. Information about life con-
sumption can also be captured directly by means of a
counter. For instance, in the APU starter motor application,
we use the engine operating hours to approximate life con-
sumption but it is far from perfect as the starter motor and
the engine may consume their life differently. Moreover,
engine overhauls which occur at regular intervals result in
a reset of the engine operating hours counter. We do not
have access to detailed information on work performed dur-
ing the overhaul and as such, it is impossible to determine
if the reset of the engine operating hours counter also corre-
sponds to the repair of the starter motor. Consequently, these
resets can possibly introduce cuts in the evaluation of life
consumption and cause great difficulty for the regression
models.

2.3 Large variance due to contextual effects

Equipment such as aircraft operates in a very dynamic envi-
ronment. Changes in this environment affect the behavior
of the system. In some cases, these changes also affect the
measurements taken. For instance, all measurements related
to temperature, flow, and pressure are likely to be affected
by the altitude of the aircraft. The mode of operation and
the status of internal sub-systems and components are also
likely to affect the behavior of the performance parameters.
All of these contextual effects need to be accounted for in
order to understand the behavior of the key parameters and
properly use them to infer reliable TTF estimates.

Notwithstanding all of the difficulties mentioned above,
this paper argues that regression can still play a meaningful
role in improving TTF estimates in prognostic applications.
As explained in the following section, the main idea is to
partition the data space into relatively homogeneous data
subsets and then use different regression models for these
subsets.

3 On-demand regression

As mentioned in the introduction, the objective of this
paper is to augment the preciseness of TTF predictions by
combining regression and an existing classification-based
data mining approach for prognostics. Figure 2 illustrates
the approach, which is named On-demand regression. This
name stresses the fact that regression is only used after
a need has been identified. First, the classification-based
prognostic model analyzes the sensor data from the system
to determine if there is a risk for component failure. When
such a risk has been confirmed, then regression is applied.
In other words, a potential failure is defined as a posi-
tive prediction from a classification-based prognostic model
(classifier). To help mitigate the potential negative effects of
the issues mentioned in the previous section, several regres-
sion models are built and only the most relevant one, which
is selected based on evaluation performance of each indi-
vidual model based on MSE metrics, is applied at any given
point in time. As explained below, data clustering plays a
key role while constructing the regression models and a sim-
ple classifier is used to select the most adequate regression
model at run-time. The final step of the proposed approach

Subsection 3.1

Subsection 3.2

Xij

Subsection 3.3

Fig. 2 Overview of the on-demand regression method
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combines predictions from the classification and regres-
sion models. To perform the on-demand regression task for
estimating the TTF, two types of the data-driven models,
either classifiers or baseline regression models, have to be
developed using data mining-based methodology described
below from historic operational and maintenance data.

The following three sub-sections detail the approach.
The first two sub-sections explain the construction of the
classification-based prognostic model and the construction
of all the models required for the regression step, respec-
tively. The last sub-section discusses the strategy proposed
to combine the various predictions.

3.1 Classification-based prognostic

The first step uses a binary classifier that can identify incip-
ient component failures and provide a rough estimate of
the remaining useful time. We build this classifier using the
data mining methodology documented in [11–13]. As illus-
trated in Fig. 3, this methodology consists of four steps: data
gathering, data representation, modeling and evaluation, and
model fusion. These are now succinctly described.

3.1.1 Data gathering

Most data mining algorithms require, as input, a dataset
containing examples consisting of vectors of attribute val-
ues. Modern machinery often generates many such datasets.
For example, an Airbus A320 generates up to 19 differ-
ent datasets reporting the status of the aircraft in different
phases of operation. Our first problem is to select the
dataset(s) to use to build models for a particular compo-
nent. Expert advice and reliable documentation can greatly
simplify this choice and help avoid a lengthy trial and error
process in selecting appropriate data which are used as train-
ing and testing samples. In the case of the APU starter

Data 

Gathering

Data 

Transformation

Modeling &

Evaluation

Fusion

Predictive

Model
Predictive

Model
Predictive

Model
Predictive

Models

Operational

Sensor

data

Mainte-

nance

data

Predictive

Model
Predictive

Model
Predictive

Model

Iterative process 

building  predictive models

-

heterogeneous model stacking 

data mining learning of meta models

Data 

Gathering

Data 

Representation

Modeling

PHM/CBM system

Predictive

Models

Sensor

data

Mainte-

nance

data

retrieving past failures information

data selection

data labeling

feature extraction

Model Evaluation  

Model 

Fusion

Fig. 3 The machine learning-based methodology for predictive
modeling

application, sensor measurements collected during start of
the APU engine have been selected. This is followed by
a selection of subsets of instances to use for the analysis.
The datasets are typically so large; it is inefficient to build
models using all instances. Simple solutions, such as ran-
dom sampling, are also inappropriate. To build the desired
predictive models, we must be much more focused. Our
analysis is based on data generated around each occurrence
of starter replacements. Firstly, replacement occurrences
are identified and then instances around the time of these
occurrences are retrieved.

Unfortunately, retrieving occurrences of failures is quite
difficult. The difficulties are derived from errors in mainte-
nance reports and the need to process free form texts. Many
types of problems are observed with maintenance reports.
Some reports mention a component although it did not fail.
Some reports mention a component that failed but not in a
way that we are trying to predict. Sometimes the part num-
ber entered is incorrect. Sometimes alternative part numbers
are used. Sometimes the right information is entered but in
the wrong field. Sometimes the right part number is used but
the wrong component is identified, there are often multiple
components of the same type within the machinery. Manual
validation is therefore often required but it could be min-
imized using information retrieval techniques as explained
in [16].

Once the date and the part identifier for each replacement
of the APU starter are obtained, the relevant instances from
the selected sensor datasets are retrieved. For each dataset
and replacement, the data obtained between m operating
hours prior to the replacement and n operating hours after
are gathered. The numbers m and n depend on the dataset
and the component; we usually select m so that we have
at least 200 instances available for learning. As mentioned
above, for the APU starter application, we use m =250 and
n = 30.

3.1.2 Data representation

This step describes the data labeling and feature extraction
processes. In order to use supervised learning algorithms, a
class attribute (or label) is added to the selected sensor data.
An automatic labeling approach is proposed which labels as
positive (“1”) all instances that fall in a pre-determined tar-
get window before the occurrence of a starter motor failure
and as negative (“0”) all other instances. This target win-
dow is determined with the requirements of failure mode
or applications. For example, it is defined as 50 h for APU
Starter prognostics. This labeling scheme allows a classi-
fier to be built that generates an alert whenever the patterns
in the data are similar to the ones observed near a failure.
In practice, the width of the target window is decided by
taking into account the optimal period for the end users to
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receive the alerts and the balance between positive and nega-
tive instances. As a rule of thumb, we try to keep a minimum
of 15 % as positive instances to simplify the learning. After
labeling, the raw data is transformed to improve data repre-
sentation. This is done by augmenting the initial represen-
tation with new features created using methods from signal
processing, time-series analysis, and constructive induction.
For instance, a moving average in a given time frame helps
to relieve the noise impact. Different techniques generate
various new features for building high performance models.
Feature selection is also applied on the augmented data rep-
resentation to automatically remove redundant or irrelevant
features. There are two kinds of feature selection methods:
domain-oriented method and algorithm-based method [15,
16]. In this work, domain-oriented method, which selects
the features based on domain knowledge, is used to select
features for modeling.

3.1.3 Modeling and evaluating models

After updating the initial dataset with the class attribute
and incorporating data representation enhancements, the
required predictive models or classifiers can be built. Data
is used from a subset of all failures for learning the models
and keep the remaining data for testing. In early experi-
ments, simple algorithms such as decision trees and naive-
Bayes are preferred over more complex ones because of
their efficiency and because they produce models that can
be easily explained to end users. The same algorithm is
applied several times with varying attribute subsets and cost
information.

To compare the classifiers obtained, a score-based
approach is applied that has been developed to evaluate
classifiers for prognostic systems. This approach overcomes
issues with other criteria (e.g., error-rate, recall, and pre-
cision) by taking into account two important aspects of
prognostic applications.

The first aspect is that the usefulness of a prediction
is a function of the time between the prediction and the
actual replacement. Warning too early about a potential
failure leads to non-optimal component use; warning too
late makes proper repair planning difficult. An evaluation
method is therefore required that takes alert timeliness into
account. The second aspect relates to coverage of potential
failures. Because the learned model classifies each report
into one of two categories (likely to fail within target widow;
not likely to fail within target window), a model might
generate several alerts before the component is actually
replaced. More alerts suggest a higher confidence in the
prediction. However, a model that generates at least one
alert for most component failures is clearly preferred over
one that generates many alerts for just a few failures. That
is, the model’s coverage is very important to minimizing

1 
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Reward thresholds for positive predictions over time from replacement 
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Reward 

-t1-t2
-t3

TTF

Fig. 4 A reward function for positive predictions

unexpected failures. Given this, an overall scoring metric
is needed that considers alert distribution over the various
failure cases.

We account for the first aspect (timeliness of the alerts)
with a reward function that specifies the reward for each
positive prediction (or alert) based on the number of oper-
ating hours between the prediction and the actual replace-
ment. Figure 4 shows an example of a reward function. In
this case, the optimal score is obtained when the system
predicts the failure between t1 and t2 hours in advance. Out-
side that period, a smaller reward is provided to indicate a
non-optimal prediction. If a prediction is too far from the
target period, then the model gets a negative reward. The
target periods and the reward values (maximal positive and
negative values) are established with the end users based
on operational requirements and resource constraints. Var-
ious components would typically require different reward
functions.

To account for the second aspect (ability of the model
to detect several failures), alert distribution are investigated
over the different failure cases. Based on the accuracy,
recall, and precision definition, we introduced an overall
method to integrate these matrices into one formula. The
overall performance metric we propose to evaluate a model
is presented as (1).

Score =
[
NrDetected

NrOfCase

]sign p∑
i=1

scorei (1)

where:

• p is the number of positive predictions in the testing
dataset;

• NrDetected is the number of failures, which contain at
least one alert in the target interval;

• NrofCase is the total number of failures in a given
testing dataset;

• Sign is the sign of
p∑

i=1
scorei . When Sign <0 and

NbrDetected=0, score is set to zero; and
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• scorei is calculated with the reward function above for
each alert.

From (1), the total score for all positive predictions is
found to be customized from accuracy and the first part
(Nrdetected/NrOfcase) is relevant to the recall metric. In
terms of process, the threshold of the reward function is
determined based on the requirements of the prognostic
application at hand (rewards, target period for predictions).
Then, all models are run using test dataset(s) and their
respective scores are calculated using (1). The model with
the highest score is considered as the best model for the
application.

3.1.4 Model fusion

Model fusion can be used for two reasons. First, when more
than one data set is relevant for a given component, a model
for each dataset can be built and then with model fusion,
predictions are combined from the various models. Second,
model fusion can be applied for performance optimiza-
tion regardless of the number of datasets selected. In this
case, various models are trained using various techniques or
parameter settings and then combined to obtain increased
performance over using any single model.

Bagging and boosting [17] are two popular techniques to
combine models but they are only applicable when there is
a single data set and one model type (i.e., a single learn-
ing algorithm). For heterogeneous models or multiple data
sets, methods are applied based on a voting or stacking
strategy [18, 19]. These techniques are globally referred to
as multiple classifier systems. In the experiment reported
in Section 4, we relied on a simple multiple classification
system combining decision tree and rules.

As illustrated in Fig. 2, a classifier needs to provide a
rough TTF estimate (TTFC) whenever it predicts a potential
component failure. This TTF estimate is defined based on
the expected number of operating hours remaining between
a positive prediction and the actual failure. We use only the
training data to compute this expected value. Precisely,

TTFc = 1

N

∑N

i=1
RemainingOPHi (2)

where RemainingOPHi is the remaining life of the APU
starter at the time of the ithpositive prediction from the train-
ing set, and N is the number of positive predictions made by
the classifier on the training dataset. This value is constant
for all positive predictions made by the classifier.

3.2 Regression-based TTF estimation

The objective of the second step is to try to improve the
preciseness of TTF estimates provided by the classifier
described above. This is done through localized regression

models. Each model accounts for a specific area of the data
space. Whenever the classifier makes a positive prediction,
one of the local regression models is selected to compute a
new TTF estimate. The construction of the required models
is as follows.

First, clustering is used to partition the time-series asso-
ciated to the various failures. Each individual time-series
represents a failure, staring from installation to replacement.
In terms of failure effect and mode analysis, the failures or
times-series can be grouped based on failure mode or effect.
In this work, we can’t directly apply failure mode to group
the failure time-series because we don’t have this informa-
tion. But we can try to use clustering techniques to group
the times-series in which it reflects the similar failure effect.
The intent is to obtain clusters of time-series as homoge-
neous as possible with respect to the performance of the
core measurements. This is done by clustering based on the
attributes that represent meaningful contexts for the compo-
nent of interest. In other words, we use clustering to obtain
subsets into which the potentially negative effect of contex-
tual conditions is minimized. In the case of the APU starter
motor application, the predominant contextual attribute is
the age of the starter motor at the time of the failure. As
explained above, we approximate this age using the engine
operating hours at the time of the failure.

As it is often the case in clustering task, there is a need to
pre-determine the number of clusters required for the given
application. This number must be sufficiently large enough
to obtain acceptable homogeneity within each cluster but
not too large as to avoid over partitioning the data. Addi-
tionally, we also need to ensure that each cluster contains at
least one test time-series for the evaluation purpose. With 22
occurrences of APU starter failures in the test data, at most
22 clusters are possible. As we will explain in the discussion
section, it turns out that there was no benefit in using more
than 16 clusters for this specific application.

Second, a model selector, which is N-class classifier, is
developed in order to assign each positive prediction to a
given data subset (Fig. 2). The clustering model built for
partitioning the data cannot be deployed for this task as it
relies on the operating hours at the failure time, which is
unknown for yet to fail components. We resolve this issue
with an N-class classifier, where N is the number of clus-
ters. Once the clustering scheme has been established, each
instance is tagged with a cluster ID. A classifier is then
trained to differentiate each instance by cluster ID as accu-
rately as possible using the measurements available. Based
on our experiments, simple decision trees and naive-Bayes
classifiers perform well for this task with a typical accuracy
of 90 % on test data.

Finally, a regression model is built for each cluster.
SVM/SMOReg, NN, and liner regression techniques can
be used to build these models. After experiments, we use
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SMO (Sequential Minimal Optimization) as the regression
model in this work, because SMO outperformed NN and
liner regression models. It is noticeable that only a subset
of the training data available in each cluster is used to learn
the models. This allows us to further limit the scope of the
regression models to the areas with the greatest potential for
enhancing the precision of TTF estimates. The evaluation
procedure starts by running the classifier on the test data to
identify positive predictions. For each of these positive pre-
dictions, the model selector chooses an adequate regression
model to compute TTF estimate noted TTFR .

3.3 Selecting which TTF estimate to use

Two TTF estimates are produced for each positive predic-
tion: one from the classifier (TTFC) and one from a local
regression model (TTFR). We now need to decide how to
combine them into a single TTF estimate. Our approach is
straight forward; it returns TTFR if TTFR < TTFC . This is
to avoid potentially significant errors that could come from
an extrapolation of a regression model. TTFC corresponds
to the value used to limit the range of the output attribute
while learning the regression models.

4 Experiments and results

This section reports experimental results on the application
of the proposed methods to estimate TTF for prognostics of
APU starter failures on commercial aircraft. Detailed infor-
mation about the data has been discussed in the challenges
Section. All models have been built using the WEKA pack-
age [20] following the data mining methodology described
in Section 3.

To evaluate the performance, a 4-fold cross validation
is conducted for each experiment. Table 1 summarizes the
training and testing datasets for each fold. The experimental
results are shown in Table 2. The last line in the table is the
average performance over the cross-validation runs. In this
work, the results are evaluated by analyzing the mean error
(Err), standard deviation (std), mean squared error (MSE)

Table 1 Summary for each of the fold in the cross-validation
experiments

Fold # Test dataset Train dataset

Failure cases Instances Failure cases Instances

1 22 2307 61 8814

2 20 2704 63 8560

3 20 2735 63 8243

4 21 3375 62 2746

Table 2 Error for TTF estimation on test data for using regression-
only, classifier-only, and the on-demand regression approaches

Fold # Regression Classifier On-demand

Err±std MSE Err±std MSE Err±std MSE

1 20.7±30.8 1373 14±14.1 393 5.9±16.7 311

2 20.5±36.7 1762 12.9±8.5 238 4.2±7.4 72

3 22.9±30.1 1433 14.9±17.2 517 7.9±12.4 216

4 26.9±35.3 1964 16.2±17.9 581 9.5±25.1 714

Avg 22.7.9±33.2 1639 14.5±14.4 432 4.9±5.4 228

based on the estimations from the models given the test
dataset. These analysis results are summarized in Table 2.

The classifier for identifying potential failures is a mul-
tiple classifier system [21] which combines two binary
classifiers that are built using the J48.PART and J48 algo-
rithms using the default options. This classification system
can detect 95 % failures with 5 % false alert rate. The auto-
matic labeling step is configured such that all observations
are tagged with remaining engine operating hours less than
50 hours as positive and all others as negative. This provides
sufficient time for the maintenance staff to plan the repair
of the starter prior to the actual failure. In this experiment,
only the raw measurements without any data representation
enhancement are used in addition to default cost informa-
tion. The expected TTF estimate from this classifier is an
average 22.5 hours. As reported in the last line of Table 2,
the average error of the TTF estimates from this model alone
on the test data is 14.5 with a standard deviation of 14.4.
Figure 5 shows the graph of the TTF estimates versus actual

Fig. 5 Predicted TTF versus actual TTF using only the binary
classification
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TTF when using only the binary classification system. We
notice that all the points are around 22.7 which is the esti-
mate that this model returns for all positive instances from
the test dataset.

As mentioned earlier, the operating hours at the failure
time is used to partition the 83 time-series (one for each
failure case) into 16 clusters. Results reported are based on
K-means clustering. Experiments with EM-based clustering
produced similar results. The model selector is built using
J48. Its accuracy on test data is slightly above 85%.We used
SMOReg with a linear polynomial kernel to construct the
16 local regression models. If we assume that these models
would be used to generate all TTF estimates, then the results
would be as illustrated in Fig. 6. The scatter in the graph
shows the lack of fit between many of the estimates and
the actual TTF values. This is also confirmed by the second
column on the last line in Table 2, which reports an average
error of 22.7 ± 33.2 h.

The results from the on-demand regression approach are
presented in the last two columns in Table 2 and shown
in Fig. 7. With this approach, we observed a much better
fit between the estimates and the actual TTF values. With
an average error of 4.9±5.4 hours and a minimal squared
error (MSE) of 228, the proposed approach clearly outper-
forms the initial classification-based approach. The large
reductions in the average error and in the standard deviation
suggest an improvement in the preciseness of TTF estimates
by a factor of 5. Of important note is that the TTF esti-
mation from on-demand regression shows the predictions
are targeted in the given window. In other words, the only
positive predictions from binary classifier are used as input
for regression baseline mode based on the selection result

Fig. 6 Predicted TTF versus actual TTF using estimates from the
regression based models only

Fig. 7 Predicted TTF versus actual TTF from the proposed on-
demand regression

of model selector. Particularly, the TTF estimation preci-
sion is greatly improved compared to the one global model
described in Section 2. The average error is improved by a
factor of 8. The errors for on-demand and one global mode
are 4.9 to 43.8 for the same test dataset. From Figs. 5 to 7,
it is obvious that the fusion rule used in on-demand regres-
sion helped greatly filtered some TTF estimations which are
located outside of the target windows. In other words, the
TTFR which is greater than 50 is recapped with TTFC .

5 Discussion

The APU prognostic application has demonstrated the
applicability of the proposed on-demand regression
approach to improve the precision of TTF estimations.
On the other hand, a number of aspects deserve further
attention.

One of the key parameters of the proposed approach is
the number of clusters. In this application, we could have
selected as many as 22 clusters as we had 22 occurrence
of failures in the test set and that we needed a minimum
of one test set in each cluster to evaluate the correspond-
ing regression model. To decide on the optimal number of
clusters for the given application and to better understand
the impact of this choice, we experimented with 1, 4, 7, 10,
13, 16, 19, and 22 clusters. In each experiment, we built a
regression model for each cluster, a model selector, and then
ran the test data to evaluate the expected performance. As
descripted in on-demand regression Section, model selec-
tor (N-class classifier) is used to select one of regression
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model to estimate TTF based given observation (Xij ). From
these experiments, we observed that increasing the number
of clusters consistently improves the accuracy of the local
regression models but also decreases the performance of the
model selector. This later observation is explained by the
fact that the probability of selecting the right local regres-
sion model decreases as the number of cluster increases. The
challenge is to find a trade off that would minimize the over-
all average error on TTF predictions. As shown in Fig. 8, 16
clusters appear to be the optimal choice in the case of the
APU starter failure application. More than 16 clusters would
not produce any significant benefit while less could reduce
the expected precision of the estimates.

The construction of the classification-based prognostic
model also involves a number of parameters including: the
length of the time window around each failure used in data
gathering (parameters m and n), the labeling period, and
the various parameters used in the evaluation function. For
the time window around each failure, we need to ensure
that m, the number of observations kept before each fail-
ure, is sufficiently large to include the expected period of
observable symptoms plus an equally long healthy period.
Background knowledge about the various failure modes
could be used to determine the expected period of observ-
able symptoms within the sensor data. Alternatively, data
visualization of key sensor measurements could be used. As
for n, which determines the number of observations used
after the replacement, our experiments show that it is good
practice to keep it at around 10 % of m. To avoid false alerts,
the labeling period (Section 3.1) should correspond to the
expected period of observable symptoms. Finally, it is best
to let the end users decide on the values for the parameters
used in the reward function. This would help ensure that the
selected models would deliver the expected benefits.

Fig. 8 Average error on TTF estimation for different cluster numbers

There are many ways to combine the results from a
binary classification system and from one or more regres-
sion models. In this paper, we presented a single combina-
tion rule. We only keep the TTFR that is less than TTFC .
Although this simple rule appears useful in improving the
TTF estimations, it could negatively affect the fault detec-
tion rate. In a real-world setting, the combination rule could
be adapted by taking into account, the intended usage of the
alerts from the on-demand regression model, the operational
constraints, and the various costs involved. For instance, if
one would prefer to avoid false negative, a decision rule
that replaces TTFR by TTFC when TTFR is greater than
TTFC could be more appropriate. Such a rule would actu-
ally ensure that the overall approach has the same failure
detection ability as a binary classification system.

It is also worth noting that the performance of the on-
demand regression method could be improved by enhancing
the fault detection algorithm. In this paper, we use an N-
class classifier to perform this task but alternative methods
could also be investigated. Actually, this should lead further
research as a simple reduction in the rate of false alerts at the
detection stage could have great impact on the preciseness
of final TTF estimation.

In order to further validate the applicability and poten-
tial benefits of the proposed approach, we tried to apply
the proposed method to estimate TTF for F404 engine
No.4 Bearing prognostics. We performed preliminary exper-
iments with the data provided from our other project, F404
engine No.4 Bearing prognostics [25, 26]. The No.4 Bear-
ing is a critical component on the engine since its failure
can result in delays, cancellation of missions, and even
possible loss of an engine or aircraft. Each of these out-
comes has a negative effect on the operation of the CF-18
within the Canadian Air Force. In No.4 Bearing prognos-
tic project, our goal is to develop predictive models to
predict the replacement of component from 10-year oper-
ational database collected in flight data record system and
maintenance records. For this purpose we have obtained 54
replacement events and retrieved the relevant operational
data for these replacements. As described in Section 3, we
first built a binary classifier to identify incipient failures.
We configured the automatic labeling approach so that all
instances with remaining life time smaller than 50 hours
are labeled as positive (“1”) and all other instances as neg-
ative (“0”). As we did in PHM 2008 Challenge problem,
using the positive instances, we constructed a single SMO
regression model for estimating TTFs. Finally, we combined
the results from the classifier and the regression model as
specified. During evaluation, we simply ran the binary clas-
sifier and SMO-regression models on the testing dataset to
predict the TTF for each No.4 Bearing replacement based
on the given test dataset. The Table 3 shows the experi-
mental results from two different SMO regression models.
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Table 3 TTF estimation for No.4 Bearing on test data for using
regression-only, classifier-only, and the on-demand regression method

Model # Regression Classifier On-demand

mean±std MSE mean±std MSE mean±std MSE

Model1 79.1±58.4 9670 49.2±44.4 6781 43.7±52.7 4672

Model2 74.2±43.4 6758 48.9±45.3 6749 43.6±52.6 4648

Similarly to what we did in Section 3, the results were
compared in three different modes: binary classifier only,
regression model only and on-demand regression. From the
results, it is obvious that the TTF estimations of No.4 Bear-
ing replacements are improved by applying the on-demand
method even though we only developed one single SMO
regression model. We are working on to build the multi-
ple SMO models by performing clustering to determine the
numbers of regression models. The results will be reported
in the later reporter.

6 Conclusion

This paper presents a machine learning-based method devel-
oped to estimate time to failure for PHM. The paper
describes the difficulties limiting the usefulness of regres-
sion for TTF estimation. In spite of these difficulties, the
paper argues that regression can help improve TTF esti-
mates using on-demand regression’ which carefully inte-
grates classification, clustering, and local regression. The
paper fully describes the process to build the various pre-
dictive models involved. And it reported the experimental
results from the APU prognostic application. These results
demonstrate the potential of the approach for improving the
preciseness of TTF estimates. Future work includes addi-
tional experiments with data from additional applications.
And we will continue applying the on-demand methods to
No.4 Bearing prognostics to estimate TTF for replacements
by determining the numbers of local regression models
through clustering experiments.
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Acronym

ACARS Aircraft Communications Addressing & Report-
ing System

APU Auxiliary Power Unit
EM Expectation Maximization Algorithm for clus-

tering

J48 Decision Tree Classification Algorithm
MSE Mean Squared Error
NN Neural Network
PHM Prognostic and Health Management
SMO Sequential Minimal Optimization
SVM Support Vector Machine
TTF Time to Failure
WEKA Waikato Environment for Knowledge Analysis

Notation

p number of positive predictions
N total number of positives made by classi-

fiers in training dataset
scorei score from the reward function for the ith

instance classified as positive
NbrDetected number of detected failures
NbrofCase total number of failures
M number of observations kept before each

failure
N number of observations kept after each

failure
Sign sign of

∑p

i=1 scorei

TTFC TTF estimate from the classifier
TTFR TTF estimate from the regression model
RemainingOPH remaining operational life of a compo-

nent (in hours)
Xij The system state observation: the j th

instance in ith time-series.
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