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Abstract Several information fusion methods are devel-
oped for increasing the recognition accuracy in mul-
timodal systems. Canonical correlation analysis (CCA),
cross-modal factor analysis (CFA) and their kernel versions
are known as successful fusion techniques but they can-
not digest the data variability. Probabilistic CCA (PCCA) is
suggested as a linear fusion method to capture input vari-
ability. A new kernel PCCA (KPCCA) is proposed here to
capture both the nonlinear correlations of sources and input
variability. The functionality of KPCCA decreases when
the number of samples, which determines the size of ker-
nel matrix increases. In the conventional fusion methods
the latent variables of different modalities are concatenated;
consequently, a large-scale covariance matrix with just lim-
ited number of samples must be estimated To overcome
this drawback, a sparse KPCCA (SKPCCA) is introduced
which scarifies the covariance matrix elements at the cost
of decreasing its rank. In the final stage of the grad-
ual evolution of KPCCA, a new feature fusion manner is
proposed for SKPCCA (FF-SKPCCA) as a second stage
fusion. This proposed method unifies the latent variables
of two modalities into a feature vector with an accept-
able size. Audio-visual databases like M2VTS (for speech
recognition) eNTERFACE and RML (for emotion recog-
nition) are applied to assess FF-SKPCCA compared to
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state-of-the-art fusion methods. The comparative results
indicate the superiority of the proposed method in most
cases.

Keywords Feature fusion · Canonical correlation analysis
(CCA) · Probabilistic CCA · Kernel CCA

1 Introduction

Single modal recognition systems are not always promis-
ing due to partial observability and data variability [3]. To
compensate for this drawback, high performance recogni-
tion systems in a simultaneous manner collect data from
different sources (e.g. audio and video) since none of them
can solely characterize all input states [2, 5]. The main
issue in multimodal systems is to develop an efficient fusion
method to fuse the features from different modalities in
order to enrich a discriminative feature set [1, 2, 4]. Fusion
techniques are applied to several bimodal recognition sys-
tems like automatic audio-visual speech recognition [5],
human computer interaction [6, 49], biometric systems [7,
51], video indexing [8], object tracking [9] and emotion
recognition [10–12, 48].

Information fusion can take place at the decision [18]
or feature levels [28]. At the decision level, elicited fea-
tures of each modality are applied to a specific classifier
and the final result is obtained through classifiers’ decision
fusion. The well-known methods at this level are single win-
ner, majority voting, Bayesian and Dempster-Shafer [29].
Nevertheless, decision fusion cannot take the correlation of
modalities into account which reduces the performance of
this approach compared to the feature fusion approach in a
significant manner.
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Though feature fusion methods are a bit compli-
cated, they have the advantage of unveiling the implicit
linear/nonlinear correlation among the sources. The fea-
ture fusion procedure is similar to that of the human brain,
since data from different sensors (e.g. ears, eyes) are fused
in the brain to draw an accurate decision. Since the neu-
rons’ function is nonlinear, the brain fusion takes the benefit
of nonlinear mapping. Observing the ability of the brain
fusion encourages the research teams to develop mathe-
matical methods for data fusion of different sources. In
early feature fusion methods, features of different modali-
ties were arranged in a high dimensional feature vector. In
fact, no conceptual fusion was made except putting features
beside each other and constructing a long vector. After fea-
ture fusion, these high dimensional vectors were fed to a
classifier in order to assign a label to each vector.

The number of estimated parameters in some classifi-
cation schemes like neural networks or Bayesian based
classifiers depends on the feature size, that is, there exist,
a direct relation between an increase in the number of fea-
tures, and their computational complexity. In parametric
classifiers the number of which depend on the input size
have a serious problem in handling the datasets which con-
tain low number of high dimensional samples. This problem
is named small sample size (SSS) problem, and to solve
it, a great volume of training data is necessary for a valid
learning. One of the controversial issues in the multimodal
recognition systems is the existence of statistical correla-
tion among the features of different modalities. In one sense
independency between modalities can diminish the redun-
dancy and improve the recognition performance, and in the
other, this correlation should not be observed as a negative
factor, because it sometimes leads to a better data analysis,
denoising and enhancement [12, 21, 24]. Besides the dis-
cussion of pros and cons of this correlation, it is better to
estimate the statistical correlation among the features which
are elicited from different sources. If this correlation is in
a measured accurate manner the redundant features can be
estimated; otherwise, even strong learners cannot consider
all interactions among great number of features, hence a
possible decrease in classifiers’ performance. For instance,
during a certain activity in audio-visual recognition systems
facial expression and speech signal affect each other, which
lead to the availability of a degree of correlation [2, 5, 12,
13, 50].

Canonical correlation analysis (CCA) [14] is a well-
known fusion method that elicits common features (latent
variables) between two sets of feature vectors. In CCA,
these sets are projected into a new domain, named correla-
tion space. By maximizing the sets cross-correlation in this
space, latent variables of two modalities are extracted to be
applied to a classifier.

Cross-modal factor analysis (CFA) [15] is another lin-
ear statistical method for extracting latent features from
two sources. CFA adopts a criterion which minimizes the
Frobenius norm between two data streams in the trans-
formed domain.

CCA and CFA are adopted in practical recognition sys-
tems such as face detection during talking [16], biometric
[17, 18], audio-visual speaker detection [19] medical imag-
ing [7, 47] and audio-visual synchronization [20].

To enable conventional fusion methods capture linear/
nonlinear dependencies, the nonlinear kernels are applied
to project the features into the kernel space and then fuse
them together. For this purpose, the kernel CCA (KCCA)
[21] and kernel CFA (KCFA) [12] are introduced as the
nonlinear versions of CCA and CFA respectively. They
have been and are being applied in various data fusion
applications like specific radar emitter identification [22],
audiovisual biometric aliveness checking [23] and audiovi-
sual emotion recognition [12]. Real applications involved
in a high degree of variability cannot obtain promising
results through the deterministic fusion methods, since dur-
ing audio/video data recording some artificial and natural
variations are inevitable. For instance, the authors in [12]
applied KCCA to elicit the latent variables of audio and
video modalities but their findings were not convincing.

To overcome the data variability, the authors in [24] pro-
posed the probabilistic CCA (PCCA) method in order to
digest this variability. Since PCCA is a linear method, it
finds a linear projection, to map the data in the correlation
space on which the variance is maximized [25–27].

Attempt is made here to propose the kernel version of
PCCA (KPCCA) to capture both the dependencies and
data variability in nonlinear correlation space. Although
applying a nonlinear kernel increases the ability of fusion
methods, the dimension of kernel matrix directly depends
on the number of samples, that is provided that the number
samples are low, the estimating of covariance matrix will be
encountered by SSS problem; on the contrary provided that
the number of samples are high, the dimension of kernel
matrix increase.

The gradual evolution of KPCCA is assessed here by
developing a sparse version of KPCCA (SKPCCA) which
scarifies the elements of covariance matrix in order to avoid
SSS problem. Here, SKPCCA solves the KPCCA problem
at the cost of diminishing the rank of covariance matrix by
a well-known sparse technique. The computational burden
of SKPCCA is remarkably decreased compared to that of
KPCCA.

In the final stage, a feature fusion method upon the frame-
work of SKPCCA is proposed which seeks to fuse the latent
variables of different modalities instead of just concatenate
them together in a long feature vector in a conceptual sense.
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In this proposed method, the latent variables of the two
modalities are unified into one vector with a size equal to the
size of latent variable of the corresponding modality with
numerous samples.

The remainder of this paper is organized as follows: the
methods of identifying latent variables in the correlation
space are explained in Section 2; the main proposed method
with its major continuance component are introduced in
Section 3; the applied datasets and the feature extraction
techniques are discussed in Section 4; the empirical results
and their comparisons with the state-of-the-art methods
are presented in Section 5 and the article is concluded in
Section 6.

2 Background methods

In a multimodal recognition system, instead of analyzing the
data of each modality alone, the main concern is estimat-
ing a joint correlation subspace where the features (latent
variables) can be extracted. There exist several fusion tech-
niques for constructing this subspace; in this study only a
few will be of concern.

2.1 CCA and KCCA methods

CCA [14] is known as the most famous statistical fusion
method which finds a linear map for projecting features of
two modalities in the correlation space in a manner that
their cross-correlation is maximized. Given two feature sets
of x and y, CCA estimates two linear projections Wx and
Wy , respectively. These two projecting are named canonical
correlation matrices which are determined by maximizing
their cross-correlation in a manner thatWx andWy become
diagonal (compact) in the projected space.

To capture nonlinear correlations between two sources,
CCA is equipped with kernel (KCCA) [21]. The optimiza-
tion criterion of which is described as follows:

max
α,β

αT KxKyβ√[
αT KxKxα

] [
βT KyKyβ

] (1)

where Kx and Ky are the kernel matrices of x and y,
respectively.

The KCCA criterion is optimized through the generalized
eigen-value decomposition method. When kernel functions
are non-invertible, conventional regularization techniques
are applied to convert (1) into (2) [30]:

max
α,β

αT KxKyβ√[
αT (K2

x+τKx)α
] [

βT (K2
y+τKy)β

] (2)

where 0 ≤ τ ≤ 1. The computation details of CCA and
KCCA are expressed in Appendix A.

2.2 CFA and KCFA methods

The cross-modal factor analysis (CFA) technique is pro-
posed by [15]. In this technique, features are extracted from
two modalities followed by determining two separate lin-
ear maps for projecting their features into the cross-modal
space. The main difference between CFA and CCA is in
their objective functions. CFA minimizes the Frobenius
norm between the projected features while CCA maximizes
their correlation.

CFA is capable of detecting linear relations between two
feature sets while it suffers from the lack of capturing non-
linear correlations between them. Similar to KCCA, the
kernelized version of CFA is introduced as KCFA by [12]
in order to enhance its detection ability. In a similar manner,
before applying CFA, the feature sets of two modalities are
implicitly projected to the high dimensional kernel space,
where the standard CFA is applied. To explain the KCFA
routine the projected feature vectors in the cross-modal
associated domain are computed as:

1√
αT

j Kxαj

αT
j

⎡
⎢⎢⎣

K
(
x′, x1

)
K
(
x ′, x2

)
. . .

K(x′, xn)

⎤
⎥⎥⎦

1√
βT

i Kyβi

βT
i

⎡
⎢⎢⎣

K
(
y′, y1

)
K
(
y′, y2

)
. . .

K(y′, yn)

⎤
⎥⎥⎦ (3)

where αj and βi are the eigenvectors of KyKx and KxKy ,
respectively. Further details are expressed in Appendix A

The main drawback of CCA, KCCA, CFA and KCFA is
the absence of considering the uncertainty of input observa-
tions of x and y since no deterministic correlation space can
be found for two sets of uncertain features.

2.3 Probabilistic CCA

To deal with the uncertainty problem of CCA, a probabilis-
tic version of CCA (PCCA) is proposed by [24] where the
projected latent variables provide maximum variance in the
joint correlation space (Fig. 1). To insert this uncertainty
parameter, they assigned a specific Gaussian function for
each single source of data, which is expressed as:

z ∼ N (0,I d) 1 ≤d≤min (p,q)

x|z = N
(
zWT

x + μx, ϕx

)

y|z = N (zWT
y + μy, ϕy) (4)
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Fig. 1 Graphical model for showing the relations of two modalities
and its latent variable z[24]

where, z is the latent variable of the two modalities of x and
y andμ and ϕ are the mean and covariance of each modality,
respectively. They revealed that the posterior expectation of
z given x and y is determined as follows [24]:

ϕx = Cxx − WxWT
x

ϕy = Cyy − WyWT
y

E (z|x) = xWxM
−1
x , Mx = I + WT

x ϕ−1
x Wx

E (z|y) = yWyM
−1
y , My = I + WT

y ϕ−1
y Wy (5)

where Wx and Wy are the early d canonical directions of x
and y andCxx andCyy are the covariance matrices of x and y
respectively.

Another solution for (4) can be reached by applying the
expectation maximization (EM) scheme [24]. This method
provides a general solution for PCCA scheme which yields
the following updated described in (6):

Wt+1 =Cϕ−1
t WtM

−1
t

(
M−1

t +M−1
t WT

t ϕ−1
t Cϕ−1

t WtM
−1
t

)−1

ϕt+1 =
⎛
⎝
(
C−Cϕ−1

t WtM
−1
t WT

t+1

)
11

0

0
(
C − Cϕ−1

t WtM
−1
t WT

t+1

)
22

⎞
⎠

(6)

where Mt=I+WT
t ϕ−1

t Wt .

Fig. 2 Graphical representation of the proposed method

3 Proposed method

The proposed method and its constituent components are
presented in detail following a gradual evolution inflicted
on PCCA.

3.1 The kernel PCCA (KPCCA)

Although PCCA performs well in finding linear correla-
tions between two sets of x and y contaminated by the
variability factors, its performance decreases when their cor-
relation is nonlinear. To solve this problem, first the features
are passed through nonlinear kernels of (φ (x) and ψ(y)),
next, PCCA is applied to them in order to elicit the latent
variables [31] (Fig. 2).

z∼ N (0,I d)

φ (x) |z = N
(
zWT

x + μx, ϕx

)

ψ(y)|z = N (zWT
y + μyϕy) (7)

In KPCCA, similar to KCCA, Wx and Wy are determined
through Wx = φ(x)T α and Wy = ψ(y)T β followed by
implementing the procedure in Bach and Jordan method
[4] to obtain the parameters. By inserting Wx and Wy into
(5), the posterior expectation of parameters is estimated
as:

ϕx = φ (x)T
(
I −ααT

)
φ (x)=φ (x)T �xφ (x)

ϕy = ψ (y)T
(
I −ββT

)
ψ (y)=ψ(y)T �yψ(y)

E (z|x) = φ (x) .[φ (x)T α]M−1
x =KxαM−1

x ,

Mx = I + αT
(
I − ααT

)−1
α=I + αT (�x)

−1 α

E (z|y) = ψ (y) .[ψ (y)T β]M−1
y =KyβM−1

y ,

My = I +βT
(
I −ββT

)−1
β = I + βT

(
�y
)−1

β (8)

where �x=I − ααT and �y=I − ββT .
The general solution to estimate these transformation

matrices is achieved by applying EM algorithm in (6).
By inserting Wx = φ(x)T α and Wy = ψ(y)T β into

(6), and by defining 	 (O) =
[

φ (x) 0
0 ψ (y)

]
γ =

[αβ]T and ϕ=	 (O)T �	 (O) (where � =
[

�x 0
0 �y

]
)

and by assuming that Kx and Ky are invertible, (6) is yield:

	 (O)T γt+1 = 	 (O)T [�−1
t γtM

−1
t

(
M−1

t +M−1
t γ T

t �−1
t �−1

t γtM
−1
t

)−1 ]
ϕt+1 = 	 (O)T �t+1	 (O)

= 	 (O)T

⎛
⎝
(
I −�−1

t γtM
−1
t γ T

t+1
)
11

0

0
(
I −�−1

t γtM
−1
t γ T

t+1

)
22

⎞
⎠

×	 (O) (9)
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consequently, (9) can be modified into (10) as follow:

γ t+1 = �−1
t γ tM

−1
t

(
M−1

t +M−1
t γ T

t �−1
t �−1

t γ tM
−1
t

)−1

�t+1 =
⎛
⎝
(
I − �−1

t γ tM
−1
t γ T

t+1

)
11

0

0
(
I − �−1

t γ tM
−1
t γ T

t+1

)
22

⎞
⎠

(10)

The above equations illustrate the learning procedure of
transformation matrices (α and β) applied for obtaining
latent variables of both the modalities. It is obvious that
if Kx and Ky are not invertible and the above equations

(a)

(b)

(c)

Fig. 3 Fusion level approaches (a) Feature fusion (b) Decision fusion
(c) Proposed fusion method

Fig. 4 Geometric lip model

would not be solved. An alternative solution is the regular-
ization approach similar to KCCA [30]. In methods where
a prior knowledge on W ∼ N

(
0, r−1I s

)
is considered, the

regularization parameter r is determined by applying EM
algorithm [27, 32]. Applying the described regularization
method yield the following iterative solution for γ :

γ t+1 = �−1
t γ tM

−1
t

(
M−1

t +M−1
t γ T

t �−1
t �−1

t γ tM
−1
t

+rλϕλK
)−1 (11)

where λϕ = trac(ϕ) and λK = trac (Kx) + trac(Ky).

3.2 The sparse KPCCA (SKPCCA)

In kernel based methods, the dimension of projected fea-
tures in the kernel space (Kx and Ky) is related to the
number of data samples. When the dimension size is low,
the full-covariance matrices of �x and �y can be estimated
properly; otherwise, the covariance matrices cannot be esti-
mated accurately due to limited number of samples. The
innovative manner to solve this problem, where additional
latent variables zx and zy are avoided in constructing high
dimensional inputs are introduced by [25, 26]:

zxzyz ∼ N (0, I d)

φ (x) |zzx = N
(
zWT

x + zxVT
x + μx, σ

2
x I
)

ψ(y)|zzy = N (zWT
y + zyVT

y
+ μyσ

2
Y I ) (12)

where, σ 2
I is the variance parameter and Vx and Vy are

the two extra projection matrices for individual sources

Fig. 5 Lip feature extraction



Kernel probabilistic canonical correlation analysis 443

of x and y respectively. Here, by marginalizing zx and
zy, a model similar to (11) is developed which generates
the following full-rank covariance matrix: �i = νiν

T
i +

σ 2
I I (V = φ(i)T ν). This model is able to solve the SSS

problem [26] and for calculating the covariance matrices of
�x and �y, it leads to a better estimation of the transform
matrix γ . The pseudo code of SKPCCA is illustrated in
Algorithm 1.

3.3 The new feature fusion method

Conventional feature fusion methods concatenate latent
variables of two sources (Fig. 3a) and construct high dimen-
sional feature vectors in the correlation space. These large-
scale vectors are applied to a classifier. This procedure
has two drawbacks: availability of redundancy between the
modalities and not coping with large-scale feature vectors.

To solve this dimensionality problem, a new feature
fusion method is proposed which mathematically fuses
latent variables of both the modalities into a unified lowdi-
mensional feature vector (Fig. 3c).

To explain this method in a mathematically manner, con-
ditional expectation of unified latent variables x and y is
optimized according to [24]. By consideringWx = φ(x)T α,
andWy = ψ(y)T β, (13) is obtained:

E (z|x, y)=[Kxα Kyβ
]
[

(I − P 2
d )

−1
(I − P 2

d )
−1

Pd

(I − P 2
d )

−1
Pd (I − P 2

d )
−1

]

×
[

M−1
x

M−1
y

]
(13)

where, α and β are the two matrices applied in highdi-
mensional concatenated features of x and y, in order to

unify them at z, where, Pd = M−1
x ∗

(
M−1

y

)T

. A low-

dimensional feature vector is obtained as the input classifier.
The schematic of the above mentioned gradual evolution is
illustrated in (Fig. 3c).

Fig. 6 Audio-Video feature extraction process for speech recognition
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Fig. 7 Audio-Video feature extraction process for emotion recognition

4 Real applications

Research findings in this field indicate that the fusion of
information from acoustic and facial expression modalities

improve the performance of both speech and emotion recog-
nition systems [4, 5, 12]. Acoustic signals or video frames
cannot provide a promising result on their own since each
contains partial information on the subject during speak-

Fig. 8 Experimental results of Feature Fusion method. Top Left:
M2vts database with MFCC features on KCCA and KCFA meth-
ods. Top Right: M2vts database with MFCC features on KPCCA and

SKPCCAmethods. Bottom Left: M2vts database with PLP features on
KCCA and KCFA methods. Bottom Right: M2vts database with PLP
features on KPCCA and SKPCCA methods
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ing. The variability factors affect the recording quality (e.g.
noise, head pose etc.) reduce the recognition accuracy.

4.1 Speech recognition

The best descriptive audio signal feature is Cepstral coef-
ficients [33], categorized as nonlinear features, elicited in
short windows and represent the vocal tract state. Variants
of the Cepstrum features include the popular Mel-Warped
Cepstrum or Mel-frequency Cepstral Coefficients (MFCCs)
[28] and the perceptual linear predictor (PLP) [34]. To
extract the audio features, the additive background noise is
eliminated [35] and the clean signals are divided into suc-
cessive windows with the lengths are named as time frames.
A windowing function, like Hamming, is usually applied to
ongoing speech signals and the first 12 MFCC coefficients
are extracted from each windowed signal.

In extracting informative features from lip motion of a
subject, a proper detection method should be adopted in

order to estimate lip contour in successive video frames.
To detect lip contour, [33] proposed a method which par-
titions a given face image (colored image) into lip and
non-lip regions based on the intensity and color features. By
applying spatial fuzzy C-mean clustering to these features
and simulating a simple geometric lip model, the lip con-
tour reveals. The geometric lip model described by (14) is
presented in Fig. 4.

y1 = h1

((
x−sy1

w

)2
)1+δ2

−h1,

y2 = −h2(
w−xoff

)2
(|x−sy2| −xoff

)2 +h2 (14)

where x ∈ [−w, w] at (0,0).
After fitting the lip model on each image, a lip contour

is characterized with six parameters (features), which are
applied in successive frames, Fig 5.

Fig. 9 Experimental results of Decision Fusion method. Top Left:
M2vts database with MFCC features on KCCA and KCFA meth-
ods. Top Right: M2vts database with MFCC features on KPCCA and

SKPCCAmethods. Bottom Left: M2vts database with PLP features on
KCCA and KCFA methods. Bottom Right: M2vts database with PLP
features on KPCCA and SKPCCA methods
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Our audio-visual feature extraction process is drawn in
Fig. 6.

4.2 Emotion recognition

To extract audio features, first the Hamming window is
applied to the short time frame (512 samples) in order to
preserve the stationary property of the signal. Successive
windows have 50 % overlap. Next, the background noise is
reduced by applying a threshold to the energy of wavelet
coefficients in different scales and the ones with energy
less than the threshold are removed and the signal is recon-
structed again [35]. To obtain appropriate features, the pith

period and the energy of the signal in each window [36] and
spectral features (first 13 Mel-Frequency Cepstral Coeffi-
cients (MFCC)) [12, 37] are extracted. Finally, all extracted
acoustic features on each time frame are arranged as a
feature vector.

In each video frame, the features of facial expression are
extracted from the face region. Since successive windowed
signals have 50 % overlap something that the video frames,

are without; the visual features are elicited from the nearest
audio time. One challenge of feature extraction from each
frame is to determine the accuracy rate of face region detec-
tion algorithm. In this article, the Haar cascade technique
[38] is applied for the face detection.

Images of successive frames are all normalized into a
frame size of 64× 64 pixels.Gabor wavelet is very effective
for describing spatial frequencies in images [39]. Accord-
ingly, a Gabor filter bank with 5 scales and 8 orientations is
used to extract the facial expression features [12, 40] which
construct a very high dimensional feature vector. Thus, each
sub-band of the sample is reduced to a size of 32×32 pixels
followed by applying Principle Component Analysis (PCA)
in them in order to reduce the number of features and elicit
a rich feature set, as shown in Fig. 7.

5 Experimental results

To evaluate the performance of the proposed algorithms,
the following databases are applied: M2vts database [41]

Fig. 10 Experimental results of Feature Fusion method. Top Left: eNTERFACE on KCCA and KCFA methods. Top Right: eNTERFACE on
KPCCA and SKPCCA methods. Bottom Left: RML on KCCA and KCFA methods. Bottom Right: RML on KPCCA and SKPCCA methods
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for audio visual speech recognition and eNTERFACE [42]
and Ryerson (RML) databases [11] for audio visual emotion
recognition.

The parameters of HMM classifiers are estimated in the
cross-validation phase. The number of states is changed
from 1 to 6 and the number of Gaussian components is
changed from 1 to 5 within each state. The best HMM result
for the speech datasets is achieved through 3 hidden states
and 1 Gaussian mixture per state. Similarly, the best HMM
results for the emotion recognition dataset are achieved
through 6 hidden states and 3 Gaussian mixtures within each
state. To find the variance parameter of Gaussian kernel,
different values (σ = 2, 6, 10, 14, and 20) are evaluated
where σ =14 for both applications has led to the best
solution. The experiments are conducted by considering dif-
ferent values of the regularization parameter r ranged from
0.2 to 1.

5.1 Results on speech data

The audio-visual database (M2VTS) [41], contains 185
recordings of 37 subjects (12 females and 25 males) and
provides 5 shots per person. During each shot, the subjects
are asked to count from ‘0’ to ‘9’ and their audio and video
data is recorded by the sampling rate of 48 KHz and frame
rate of 25Hz, respectively. In this database, the speaker
dependent recognition rate is applied to deal with high
complexity and memory requirements of kernel methods.

The experimental results for audio-visual speech recog-
nition accuracy using MFCC and PLP acoustic features for
feature fusion and decision fusion, are shown in Figs. 8
and 9, respectively. In this proposed algorithm, the dimen-
sion sizes 1, 2 and 3 are of concern for ν space. The results
obtained from the tests indicate that for ν =3, the best
result is achieved. It is observed that in lower dimensions,

Fig. 11 Experimental results of Decision Fusion method. Top Left: eNTERFACE on KCCA and KCFA methods. Top Right: eNTERFACE
on KPCCA and SKPCCA methods. Bottom Left: RML on KCCA and KCFA methods. Bottom Right: RML on KPCCA and SKPCCA
methods
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KPCCA provides better results than KCCA, KCFA and
SKPCCA because it can estimate a fullcovariance matrix
representing all information about the residual dimensions.
Evidently, KPCCA provides similar results to SKPCCA in
highdimensions.

5.2 Results on emotion data

Emotion databases (eNTERFACE and RML) consist of
six basic human prototypical emotions (anger, disgust,
fear, happy, sad and surprise) [43, 44]. The eNTERFACE
database contains 44 subjects who showing 5 believable
reactions to each emotion with the acoustic sampling rate
of 48 KHz and visual frame rate of 25. Ryerson database
contains 8 subjects, speaking 6 languages that generate 3
believable reactions to all the situations with acoustic sam-
pling rate of 22050 Hz, and visual frame rate of 30. In
eNTERFACE and RML datasets, each sample is truncated
to 2 and 1.2-second-long, respectively, and divided into

10 segments. The dimensionality of the audio and visual
features is empirically set to 200. To overcome the high
complexity and memory requirements of kernel methods, 10
subjects are randomly selected for each experiment. These
subjects are divided in two sets: 70 % for training 30 % for
testing. This process is repeated 10 times, and the average
results are presented in Figs. 10 and 11.

The emotion recognition accuracy of the conventional
methods together with this proposed method for eNTER-
FACE and Ryerson (RML) databases are presented in
Figs. 10 and 11. In SKPCCA the different dimension sizes
are considered at 0, 25, 50 and 100 for the ν space and the
results indicate that for ν =50, the best result is achieved.

Although KPCCA provides proper results when handling
low dimensional data, it cannot perform well when encoun-
tering high dimensional inputs. This deficiency arises from
the estimation of great number of parameters (fullcovari-
ance �) with small number of train samples. It is observed
that SKPCCA outperforms KCCA, KCFA and KPCCA

Fig. 12 Experimental results of New Fusion method. Top Left: M2vts database with MFCC features. Top Right: M2vts database with PLP
features. Bottom Left: eNTERFACE database. Bottom Right: RML database
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due to estimating a low rank (sparse) covariance matrix in
highdimensional space with adequate number of samples.

5.3 The results of the proposed FF-SKPCCA method

As explained before, the conventional feature fusion meth-
ods synchronously concatenate latent variables of audio and
visual modalities (Fig. 3a) which might lead to the curse
of dimensionality problem. For example, in RML database
which contains low reactions of each situation, the number
of samples is not enough for the training phase; therefore,
a decrease is expected in the results when conventional
feature fusion methods are applied (Fig. 10).

To solve the above mentioned problems, the proposed
feature fusion for KPCCA is applied to RML and other
datasets. According to Figs. 12 and 13, it is observed
that this proposed method overcomes both the problems of
redundant features and curse of dimensionality, in compar-
ison with the conventional feature fusion methods (Figs. 8
and 10). This proposed FF-SKPCCA reveals that fusion of
latent variables into a unified set, instead of concatenating

them, can generate informative and lowdimensional feature
vectors for describing the subjects’ state.

The recognition accuracy of all conventional and pro-
posed methods for emotion databases (eNTERFACE and
RML) and speech database (M2vts with MFCC and PLP
acoustic features) are demonstrated in Fig. 13. To make
a fair comparison, maximum accuracy in each dimension
for regularization parameters is shown. It is observed that
at lowdimensions, FF-SKPCCA method does not provide
proper results, in contrast when input dimension increases,
this algorithm improves the performance considerably. In
fact fusing different feature vectors is totally different from
concatenating them; because by increasing both the number
of modalities and the number of features, the recognition
accuracy declines. Thus, FF-SKPCCA is designed to con-
ceptually fuse the latent variables from different modalities
instead of concatenating them, which leads to a reduction in
both the redundancy and curse of dimensionality.

To have a better comparison among these methods, their
results for each emotion class (eNTERFACE and RML con-
tain 6 classes) and speech class (M2vts contain 10 classes)

Fig. 13 Comparison overall recognition accuracy between KCCA, KCFA, KPCCA, SKPCCA and FF-SKPCCA. Top Left: M2vts database with
MFCC features. Top Right: M2vts database with PLP features Bottom Left: eNTERFACE database. Bottom Right: RML database
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Fig. 14 Comparison between KCCA, KCFA, KPCCA, SKPCCA and FF-SKPCCA. Top Left: M2vts database with MFCC features. Top Right:
M2vts database with PLP features. Bottom Left: eNTERFACE database. Bottom Right: RML database

are illustrated in bar-charts in Fig. 14. Note that, for both the
emotion datasets, the FF-SKPCCA in average provides bet-
ter performance than the conventional methods. However,
regarding M2vts database, the FF-SKPCCA outperforms
the compared methods for all cases significantly by improv-
ing the speech recognition accuracy in a significant manner.

6 Conclusion

Information fusion systems are in their infancy with respect
to artificial intelligence. Naturally, they encounter different
problems like coping with input variability, lack of detecting
nonlinear dependencies and sensitivity to high dimensional
inputs. To overcome these drawbacks, an almost coverall
fusion algorithm for bimodal emotion and speech recog-
nition systems is developed mathematically. This newly
introduced KPCCA method provides good results on low-
dimensional inputs but its performance is not sufficient
for high dimensional ones. SKPCCA is capable of bet-
ter handling high-dimensional inputs when the covariance
matrix is sparse and its results on the emotion datasets con-
firm this claim. FF-SKPCCA, by fusing the latent variables

of two modalities and generate a low-dimensional set of
latent variables solves the problems of redundancy and
curse of dimensionality. Experimental results on several
datasets demonstrated that FF-SKPCCA outperforms its
counterparts in most cases.

Acknowledgments The authors of this paper acknowledge Dr.
Homayounpour, professor of AmirKabir University, to let us using
their M2VTS dataset in order to develop the experimental results.

Appendix A

A-1. CCA Method

A proposed statistical method named Canonical Correla-
tion Analysis (CCA) is proposed by [14], in order to find
a shared structure between two sources of data. CCA is
closely related to the mutual information method [45] but it
has some differences in terms of objective function. A pair
of feature vectors with zero is considered in the method as
follows:

(x, y) = {(x1, y1) , (x2, y2) , . . . , (xn, yn)} (15)
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where xi and yi are the observation data (original features)
of the two modalities with dimensions of p and q, respec-
tively. CCA seeks to develop two transformation matrices
of Wx andWy with dimensions of p × d and q × d respec-
tively, where d ≤ min(pq). The original features of these
modalities are projected to the correlation subspace by Wx

and Wy in a manner that the correlation between x̂ = xWx

and ŷ = yWy is maximized. Maximizing the correlation
between the projected feature vectors of x̂ and ŷ is the same
as maximizing ρ (correlation coefficient) between them as
follows:

ρ = max
Wx ,Wy

E
[
x̂Tŷ

]
√

E
[
x̂2
]
E
[
ŷ2
]

= max
Wx ,Wy

E
[
WT

x x
TyWy

]
√

E
[
WT

x xTxWx
]
E
[
WT

y yTyWy

]

= max
Wx ,Wy

WT
x CxyWy√

WT
x CxxWxWT

y CyyWy

(16)

where Cxy is the cross-covariance matrix of (x, y) and Cxx ,
Cyy are the covariance matrices of x and y respectively.

The above equation can be solved as an Eigen-value
problem like:

C−1
xx CxyC

−1
yy CyxWx=ρ2Wx (17)

C−1
yy CyxC

−1
xx CxyWy = ρ2Wy (18)

A-2. CFA Method

The cross-modal factor analysis (CFA) method is proposed
by [15], where, the features from different modalities are
treated as two subsets where the same patterns between
these two subsets are discovered. In this method, it is
assumed that a pair of normalized feature vectors x and y
with zero means are linearly projected into a joint space
applying Wx and Wy transforms, in a manner that the
following criterion can be minimizing:

min
Wx,Wy

∥∥xWx − yWy

∥∥2
F

(19)

where, WT
x Wx and WT

y Wy are unit matrices and F is the

Frobenius norm and is calculated by ‖W‖F =
√∑

ij w2
ij .

By solving the above equation for optimal transformation
matrices Wx and Wy and decomposing cross-covariance
matrix Cxy through Singular Value Decomposition (SVD)
method, the following equation is obtained:

Cxy = Sxy�xyDxy (20)

Consequently,

Wx = Sxy&Wy = Dxy (21)

A-3. Probabilistic CCA

To deal with the uncertainty problem in the CCA perfor-
mance, the probabilistic CCA (PCCA) is introduced by
[24] through the projected latent variables provide maxi-
mum variance in the joint correlation space. To do this, they
defined a Gaussian model for every single source of data as
follow:

z ∼ N (0,I d) 1 ≤d≤min (p,q)

x|z = N
(
zWT

x + μx, ϕx

)

y|z = N (zWT
y + μyϕy) (22)

where, z is the latent variable, shared between the two
modalities x and y and μ and ϕ are the mean and
covariance of each data, respectively. Here, by maximiz-
ing the probability functions, the ϕx and ϕy should be

minimized. By considering O =
[
x
y

]
, W = [WxWy],

μ=
[

μx

μy

]
andϕ=

[
ϕx 0
0 ϕy

]
both probabilistic functions are

merged into the following joint probabilistic function as:

p (O, z) = p(O|z)p(z) = N
(
zWT + μ, ϕ

)
N (0,I d) (23)

They indicate that the posterior expectation of z given x and
y are:

ϕx = Cxx − WxWT
x

ϕy = Cyy − WyWT
y

E (z|x) = xWxM
−1
x , Mx = I + WT

x ϕ−1
x Wx

E (z|y) = yWyM
−1
y , My = I + WT

y ϕ−1
y Wy (24)

where, Wx and Wy are the first d canonical directions of x
and y. The parameters Cxx and Cyy are the covariances of x
and y, respectively.

However, this new method named the unified latent
variable can identify a latent variable, given x and y as :

E (z|x, y)=[ xWx yWy

]
[

(I −P 2
d )

−1
(I −P 2

d )
−1

Pd

(I −P 2
d )

−1
Pd (I −P 2

d )
−1

]

×
[

M−1
x

M−1
y

]
(25)

where, Pd = M−1
x ∗ (M−1

y )
T
.

Another solution for (22) is based on the expectation
maximization (EM) algorithm. Similarly, the Probabilistic
Principle Component Analysis (PPCA) is proposed by [46]
which iterates through the following expectation maximiza-
tion (EM).
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• Expectation-step: finds the sufficient statistics of the
latent variables given the current estimated parameter:

Mt = I + WT
t ϕ−1

t Wt

E(zt ) = M−1
t Wt ϕ

−1
t O

E(ztz
T
t ) = M−1

t + E(zt )E(zt )
T (26)

where subscript t indicate the iteration number.
• Maximization-step: updates the estimated parameter to

maximize the likelihood function:

Wt+1 =
[
OE(zt )

T
] [

E(ztz
T
t )
]−1

ϕt+1 = OOT − 2OE(zt )
T WT

t+1

+ trace(E(zt z
T
t )WT

t+1Wt+1) (27)

By inserting (26) into (27), this method provides a gen-
eral solution for PCCA scheme which yields the following
updated equation:

Wt+1 =Cϕ−1
t WtM

−1
t

(
M−1

t +M−1
t WT

t ϕ−1
t Cϕ−1

t WtM
−1
t

)−1

ϕt+1 =
⎛
⎝
(
C−Cϕ−1

t WtM
−1
t WT

t+1

)
11

0

0
(
C−Cϕ−1

t WtM
−1
t WT

t+1

)
22

⎞
⎠

(28)

where Mt=I+WT
t ϕ−1

t Wt .

A-4. KCCA Method

Kernel Canonical Correlation Analysis (KCCA) [21] is the
kernelized version of CCA method that projects data into
higher dimensional feature spaces and applies CCA to the
data in the kernel space in order to find a nonlinear correla-
tion between the two modalities. Let us consider φ and ψ as
two mapping functions that map the input data into a space
of higher dimension:

(φ(x), ψ(y)) = {(φ(x1), ψ(y1)) , (φ(x2), ψ(y2)) ,

. . . , (φ(xn), ψ(yn))} (29)

The KCCA seeks to develop the two matrices α and β

that are applied in the following equations:

Wx = φ(x)T α (30)

Wy = ψ(y)T β (31)

This means that Wx and Wy are the projections of φ(x)
and ψ(y) onto α and β, respectively. By inserting φ and ψ ,
into (16), the correlation function is applied as:

ρ = max
α,β

E
[
αT φ (x) .φ (x)T ψ (y) .ψ (y)T β

]
√

E
[
αT φ (x) .φ (x)T φ (x) .φ (x)T α

]
E
[
βT ψ (y) .ψ (y)T ψ (y) .ψ (y)T β

]

= max
α,β

αT KxKyβ√[
αT KxKxα

] [
βT KyKyβ

] (32)

where, Kx = E[φ (x) .φ (x)T ] and Ky = E[ψ (y) .ψ (y)T ].
This optimization problem can be solved through the

generalized Eigen-value decomposition method. When ker-
nel functions are non-invertible, conventional regularization
technique can be applied, therefore, the following Equation
is yield [30]:

max
α,β

αT KxKyβ√[
αT (K2

x+τKx)α
] [

βT (K2
y+τKy)β

] (33)

where, 0 ≤ τ ≤ 1.

A-5. KCFA Method

Kernel CFA [12] approach can provide correct infor-
mation association provided that the two modalities
are not linearly related. To illustrate this fact X = (φ(x1),

φ(x2), . . . , φ(xn))
T , and Y= (ψ(y1), ψ(y2) ,. . . , ψ(yn))

T

represent the two matrices with each row representing
a sample in the nonlinearly mapped feature space; next,
the XT Y = Sxy�xyDxy should be solved through kernel
method. The kernel matrices of the two subsets of features
can be computed as Kx = XXT and Ky = YYT . By
performing eigenvalue decomposition on the product of the
kernel matrices KxKy , it becomes obvious that

(KxKy)βi = λiβi(
XXT YYT

)
β i = λiβi(

YT XXT Y
)

YT β i = λiY
T β i (34)

Since the right singular vectors of the SVD of
XT Y, Dxy correspond with the eigenvectors of YT XXT Y =
(XT Y )

T
(XT Y )Y T βi corresponds to the columns of Dxy ,

which can be further normalized into a unit norm as:

vi = YT β i∥∥YT β i

∥∥ = YT βi√
βT

i YY T βi

= YT βi√
βT

i Kyβi

(35)

For a feature vector y′ with nonlinear mapping ψ(y′), the
projection can be computed as

vT
i ψ

(
y′) =

⎛
⎜⎝ YT β i√

βT
i Kyβ i

⎞
⎟⎠

T

ψ
(
y′)

= 1√
βT

i Kyβ i

βT
i

⎡
⎢⎢⎣

K
(
y′, y1

)
K
(
y ′, y2

)
. . .

K(y′, yn)

⎤
⎥⎥⎦ (36)
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Similarly, it can be illustrated that

(KyKx)αj =
(
XT YYT X

)
XT αj = λjX

T αj (37)

The left singular vectors Sxy are the eigenvectors of

XT YYT X = (XT Y )(XT Y )
T
, hence XT αj corresponds to

the Sxy columns, which can be normalized into a unit norm
as:

μj = XT αj∥∥XT αj

∥∥ = XT αj√
αT

i XXT αj

= XT αj√
αT

i Kxαj

(38)

By allowing x′ to be a feature vector in the original
domain where the nonlinear mapping is φ(x′), the fea-
ture vector in the cross-modal associated domain can be
computed as:

μT
j φ(x′) =

⎛
⎜⎝ XT αj√

αT
j Kxαj

⎞
⎟⎠

T

φ(x′)

= 1√
αT

j Kxαj

αT
j

⎡
⎢⎢⎣

K
(
x′, x1

)
K
(
x′, x2

)
. . .

K(x′, xn)

⎤
⎥⎥⎦ (39)
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