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Abstract Swarm intelligencebased algorithmshavebecome
an emerging field of research in recent times. Among them,
two recently developed metaheuristics, cuckoo search algo-
rithm (CSA) and firefly algorithm (FA) are found to be
very efficient in solving different complex problems. CSA
and FA are usually applied to solve the continuous optimi-
sation problems. In this paper, an attempt has been made to
utilise the merits of these algorithms to solve combinatorial
problems, particularly 01 knapsack problem (KP) and mul-
tidimensional knapsack problem (MKP). In the improved
version of CSA, a balanced combination of local random
walk and the global explorative random walk is utilised
along with the repair operator; whereas in the modified
version of FA, the variable distance move with the repair
operator of the local search and opposition-based learning
mechanism is applied. Experiments are carried out with a
large number of benchmark problem instances to validate
our idea and demonstrate the efficiency of the proposed
algorithms. Several statistical tests with recently developed
algorithms from the literature present the superiority of
these proposed algorithms.
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1 Introduction

Metaheuristic algorithms are developed to get near opti-
mal solutions for difficult unsolvable complex problems. A
large number of different types of metaheuristics are avail-
able in the literature. Metaheuristic inspired from nature,
or natural phenomenon is called nature-inspired algorithm,
and among them swarm intelligence (SI) based algorithms
have received particular attention from the researchers [1,
22]. These algorithms are fast in nature, easy to under-
stand and produce better solutions compared to the other
classes of metaheuristics in most of the situations. SI tech-
niques are based on the collective behaviour of swarms of
bees, fish schools, and colonies of insects while searching
for food, communicating with each other and socialising in
their colonies. The SI models are based on self-organization,
decentralisation, communication, and cooperation between
the individuals within the team. The individual interaction
is very simple but emerges as a complex global behaviour.
It is the core of SI techniques [11]. In this paper, only
the recently developed metaheuristics of SI class are con-
sidered, which are producing highly promising results for
several optimisation problems. These are cuckoo search
algorithm (CSA) and firefly algorithm (FA). Although SI
based techniques have primarily been used and found very
efficient in traditional optimisation problems, there is not
much significant growth in the combinatorial optimisa-
tion field. Combinatorial problems are mostly NP-hard in
nature, and we get very little information from their problem
structure. So adapting these metaheuristic strategies in com-
binatorial solution space is a challenging job. This particular
issue has motivated us to concentrate on this particular
research problem. Here we present the solution process of
single and multidimensional knapsack problem using the
esteemed properties of CSA and FA and thereby contributed
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to the existing literature. Knapsack is one of the most inten-
sively studied integer programming problems because of its
simple structure. It allows exploitation of many combinato-
rial properties. Also, more complex optimisation problems
can be solved through a series of knapsack-type sub-
problems. The most common form of zero-one knapsack
problem (KP) is shown below,

Maximize f (x1, x2, ..., xn) =
n∑

j=1
cj xj

Subject to
n∑

j=1
ajxj ≤ b,

xj ∈ {0, 1}, j = 1, 2, .., n
cj > 0, aj ≥ 0, b > 0.

(1)

If there is more than one knapsack, then it is called
multidimensional (multiple-constraint) knapsack problem
(MKP), and its structure is given below.

Maximize f (x1, x2, ..., xn) =
n∑

j=1
cj xj

Subject to
n∑

j=1
aij xj ≤ bi, i = 1, 2, ..., m

xj ∈ {0, 1}, j = 1, 2, .., n
cj > 0, aij ≥ 0, bi > 0.

(2)

A set of n items with profits cj > 0 and m resources
with capacities bi > 0 are given. Each item j consumes an
amount aij ≥ 0 from each resource i. The 0 − 1 decision
variables xj indicate which items are selected. The objective
function f (x1, x2, ..., xn) should be maximized subject to
the constraints. Research has shown the wide applications of
knapsack problems, such as capital budgeting problem, allo-
cating processors and databases in a distributed computer
system, project selection, cargo loading, and cutting stock
problems. KP is an NP-complete problem though MKP is a
strictly NP-hard combinatorial optimisation problem.

In the recent times, several metaheuristic algorithms are
applied to solve 01 KP like genetic algorithm (GA) [67],
schema-guiding evolutionary algorithm (SGEA) [39], quan-
tum swarm evolutionary algorithm [59], ant colony opti-
mization (ACO) [51], binary particle swarm optimization
based on multi-mutation strategy (MMBPSO) [38], har-
mony search algorithm [69], etc. Similarly for solving 01
MKP instances, many heuristics and metaheuristics have
been employed. Few examples are like tabu search (TS)[4],
simulated annealing (SA) [20], GA [15], ACO [32], and
particle swarm optimization (PSO) [54].

CSA combines the breeding behaviour of cuckoos with
the Lévy’s flight. It was first proposed by Yang and
Deb in 2009 [64]. CSA is utilised to solve problems in
diverse areas, and it includes mechanical engineering [66],

automobile engineering [18], image processing [2]. CSA is
also used for solving combinatorial problems like schedul-
ing problem [13], traveling salesman problem (TSP) [44].
Authors have shown that CSA performs better than artificial
bee colony in solving numerical optimisation problems [17].
Furthermore, CSA has been reported to converge faster than
differential evolution [56]. Thus, CSA could be a potential
metaheuristic algorithm for obtaining better performance in
combinatorial optimisation problems.

FA is another recently developed SI method inspired by
the flashing lights of fireflies in nature [61]. Like CSA,
FA is also applied to solve many NP-hard problems, like
TSP [30, 44], job shop scheduling problem (JSP) [35],
quadratic assignment problem (QAP) [19]. In recent times,
FA is utilised to solve different real-time applications like
MRI brain segmentation [3], gray-scale image watermark-
ing [43], optimal sensor placement in structural health
monitoring [68], short-term load forecasting in electrical
systems [31]. A comprehensive survey of FA can be found
in [24].

Similar to CSA and FA, particle swarm optimisation is
also an SI-based metaheuristic and developed by Kennedy
and Eberhart [34]. It is inspired from the cooperation and
communication of a swarm of birds. PSO finds applica-
tions in almost all types of optimisation problems. Also,
several variants of PSO algorithms are applied to solve
knapsack type problems, like binary particle swarm optimi-
sation (BPSO) [33], genotype-phenotype modified binary
particle swarm optimisation (GPMBPSO) [37], modified
binary particle swarm optimisation (MBPSO) [5]. These
variants are found to be very efficient in solving knap-
sack instances in the corresponding literature. So we
choose PSO as the benchmark algorithm and also intro-
duce a hybrid PSO algorithm to compare the experimental
results.

As mentioned earlier, most of the metaheuristic strate-
gies are developed concentrating on traditional optimisation
problems in the continuous domain. Defining the neigh-
bourhood solutions in combinatorial space and maintaining
the key characteristics of metaheuristic, which govern the
performance of the algorithm are the central theme of
this study. For CSA, different transformation techniques
are utilised to represent the solution structure. The com-
bination of local random walk and the global explorative
random walk is applied to define the neighbourhood solu-
tions in combinatorial space. In FA, solutions are rep-
resented by the combinatorial structure, and the variable
distance move along with the opposition-based learning
mechanism is utilised to describe the neighbourhood solu-
tions. The proposed algorithms are then applied to knapsack
problem instances to validate the solution procedure and
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performance analysis. The work presented in this paper con-
tinues and expands our initial studies [9, 10]. More detailed
descriptions of the algorithm structure along with the com-
bination of local search techniques are added in this study.
Solution procedure for MKP instances is also introduced
here. Detailed study related to repair operator and parame-
ter settings are discussed along with the statistical tests for
validation.

The paper is organized as follows. First, a general
framework of above-mentioned algorithms are discussed
in Section 2, and then we focus on the implementation
of these algorithms over knapsack problems in Sections 3
and 4. In Section 5, computational results and perfor-
mance of these algorithms over knapsack problem are
thoroughly investigated and discussed. Section 6 provides
the concluding remarks and future direction of further
study.

2 Background

The theoretical background required to develop the binary
version of CSA and FA for solving knapsack problem is
presented here.

2.1 Basic principle of cuckoo search algorithm

CSA is inspired by the reproduction strategy of cuckoos.
Cuckoos lay their eggs in the nest of other host birds. If the
host bird discovers that the eggs are not of its own, it will
either throw these foreign eggs away or abandon its nest and
build a new nest elsewhere. The general system equation
of this algorithm is based on the generalised random walk
pattern, given by

x
(t+1)
i = x

(t)
i + α ⊗ L(s, λ), (3)

where x
(t+1)
i denotes (t + 1)-th generation for i-th cuckoo;

x
(t)
i denotes the previous generation; α > 0, represents

step size which is related to the considered problem and ⊗
means entry-wise multiplications. The Lévy’s flight essen-
tially provides a random walk while the random step length
is drawn from a Lévy distribution, given by

L(s, λ) = λ�(λ) sin(πλ/2)

π
× 1

s1+λ
, (4)

where � denotes gamma function. It has an infinite vari-
ance with an infinite mean. For the determination of the
direction of the walk, the standard normal distribution is

chosen. There is a probability that a particular egg may be
discovered with a chance pa . For this process,

Xi(new) =
{

Xi + r ⊗ (Xr1 − Xr2), if u ≤ pa

Xi, otherwise.
(5)

Here r1 and r2 are random positions; r and u are random
numbers drawn from the uniform distribution. The basic
procedure of CSA is shown in Algorithm 1.

2.2 Basic principle of firefly algorithm

In a typical FA, the brightness of a firefly means how well
the objective of a solution is, and brighter firefly (solu-
tion) attracts other fireflies. As the distance between fire-
flies increases, the attractiveness decreases exponentially
because of the light absorption by the medium. All fire-
flies are unisex so that one firefly will be attracted to other
fireflies regardless of their sex [62].

i) Distance between two fireflies: The distance between
any two fireflies (i and j ) at xi and xj , respectively,
can simply be evaluated by the Euclidean distance
given by (6).

rij = ||xj − xj || =
√
√
√
√

D∑

k=1

(xik − xjk)2, (6)

where D is the dimension.
ii) Attractiveness: The attractiveness of a firefly at a

distance r is given by the (7).

β(r) = β0e
−γ rm

, m ≥ 1. (7)
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Here γ is the light absorption coefficient; β0 is the
attractiveness at distance r = 0, generally accepted as
one; and m defines the sharpness of the exponential
curve; usually one uses m = 2. For a given length
scale � in an optimisation problem, �−m is used as
the initial value for γ .

iii) Movement of firefly: The movement of a firefly i

attracted to another more attractive (brighter) firefly j

is defined by (8).

xi = xi + β(rij )(xj − xi) + α(ε − 0.5), (8)

where ε is a random number drawn from the uniform
distribution; and α ∈ [0, 1] is the scaling factor of the
randomness.

Pseudocode for FA is given in Algorithm 2.

3 Binary cuckoo search algorithm

CSA was originally designed to handle a continuous prob-
lem. So one cannot directly apply CSA to knapsack
problem. For this reason, we modified the original CSA
procedure, and the modified binary cuckoo search algorithm
(BCSA) is discussed in detail in this section.

3.1 Construction of individual nest

The knapsack problem is an integer programming problem.
There are two possible values of decision variable xj , zero
or one. The individual nest (solution) is represented by an
n-bit binary string, where n is the number of variables in

knapsack problem. A bit string x ∈ {0, 1}n, might represent
an infeasible solution.

For 01 KP, the fitness function of individual nest is
defined as

f (x) = c × x − ρ(a × x − b)2, (9)

where ρ = maxj=1,2,..,n
cj

aj
considering aj > 0 in (1).

Similarly, for 01 MKP, we represent the fitness function
as given in (10).

f (x) =
n∑

j=1

cj xj − s × [max(c)]2, (10)

where s represents the number of violated constraints and c
is the profit vector in (2).

Similar to other metaheuristics, the initial locations of
the nests are scattered over the solution space randomly. We
define the stopping rule based on four basic criteria: reach
the optimal solution, maximum run time, maximum number
of iterations, and predefined number of non-improvement
iterations. If any of these criteria is satisfied, the algorithm
stops.

3.2 Evaluating new nest

New solutions are generated using the Léavy’s flight in orig-
inal CSA. Here a balanced combination of a local random
walk and the global explorative random walk controlled by
switching parameter pa is used as it performs better than
simple Léavy’s flight as suggested in [21, 65]. The local
random walk is defined by

x
(t+1)
i = x

(t)
i + αs ⊗ H(pa − ε) ⊗

(
x

(t)
j − x

(t)
k

)
, (11)

where x
(t)
j and x

(t)
k are two different solutions selected by

random permutation at generation t , H(u) is a Heaviside
function, ε ∼ U(0, 1), s is the scaling factor, and α > 0 is
the step size.

The global random walk is same as given in the (3). Here
generation of random numbers with Lévy’s flight is done
by using Mantegna algorithm [42] for a symmetric Lévy
stable distribution [63]. The random variable is generated
by,

wj = (
uj

vj

)
1
β ∀j, (12)

where β = 1.50 and uj and vj are drawn from N(0, σ 2)

and N(0, 1) respectively; and σ value is defined by,

σ =
⎛

⎝�(1 + β) × sin(πβ/2)

�((
1+β
2 ) × β × 2

β−1
2 )

⎞

⎠

1
β

. (13)
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3.3 Binary variable handling

Here three different approaches are used for handling binary
variables, and these are various transformation function
type. The general equation for both the local and global walk
is given by

x
(t+1)
i = x

(t)
i + δ

(t)
i , (14)

where δ
(t)
i is the step size for the local or global walk given

in (11) and (13), respectively. For symmetric Lévy distribu-
tion δ

(t)
i can be positive or negative. At first we consider that

δ
(t)
i is bounded, i.e. −δ0 ≤ δ

(t)
i ≤ δ0, where δ0 is maximum

allowable change. As x
(t)
i is either zero or one, so we define

x
(t+1)
i (new) as

x
(t+1)
i (new) =

⎧
⎪⎨

⎪⎩

0 if x
(t+1)
i ≤ 0,[

x
(t+1)
i

]
if 0 < x

(t+1)
i < 1,

1 otherwise.

(15)

In the second case, we consider that

x
(t+1)
i (new) =

{
1 if u < sigm

(
x

(t+1)
i

)
,

0 otherwise.
(16)

In the last case, we consider

x
(t+1)
i (new) =

{

1 if u <
x

(t+1)
i +δ0
1+2δ0

,

0 otherwise.
(17)

The term u is a uniform random number (u ∼ U(0, 1)),
sigm(z) is a sigmoid limiting transformation having
“S” shape curve function, and defined as sigm(z) =

1
1+exp(−γ z)

; where γ controls the steepness of the sigmoid
function.

3.4 Local search

After evaluating new nest, Stochastic Hill Climbing tech-
nique was performed to detect the best solution in the
neighbourhood. In the maximisation case, it is done if only
the new solution is better than the current one. This pro-
cess is repeated until no further improvement is possible
or when a predefined number of steps are reached. The
pseudo code of Stochastic Hill Climbing is given in Algo-
rithm 3. For generating a new solution from the current one,
we use a random position in the nest and change its value.
Stochastic Hill Climbing is a simple local search method
to find out local maxima. This procedure generates solu-
tions of high quality without introducing vast computational
effort.

3.5 Constraint handling

When the binary string violates the constraint of the given
problem, then repair algorithm is employed to make infeasi-
ble solutions to feasible one. This procedure depends on the
problem type and the constraint.

For 01 KP, variables are sorted and renumbered accord-
ing to the decreasing order of their profit to weight ratios.
The greedy algorithm is utilised for selection procedure
which always chooses the last item for deletion.

In the case of 01 MKP at the initialization step, variables
are sorted and renumbered according to the decreasing order
of their pseudo-utility, and it is calculated by the surrogate
duality approach introduced by Pirkul [46]. The general idea
of this approach is described briefly.

The surrogate relaxation problem of the 01 MKP can be
defined as:

Maximize
n∑

j=1
cj xj

Subject to
n∑

j=1

(
m∑

i=1
ωiaij

)

xj ≤
m∑

i=1
ωibi, ∀i

xj ∈ {0, 1}, j = 1, ..., n, i = 1, ..., m

(18)

where ω = {ω1, ω2, ..., ωm} is a set of surrogate multi-
pliers (or weights) of some positive real numbers. These
weights are obtained by using a simple method suggested in
[46], in which the LP relaxation of the original 01 MKP is
solved, and the values of the dual variables are viewed as the
weights. The weight ωi can be seen as the shadow price of
the i-th constraint in the LP relaxation of the 01 MKP. The
pseudo-utility ratio for each variable, based on the surrogate
constraint coefficient, is defined as

uj = cj
∑m

i=1ωiaij

. (19)
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The repair operator is inspired by the idea of Chu and
Beasley [15], which consists of two phases. The first phase
(called DROP) examines each bit of the solution string in
the increasing order of uj and changes a bit from one to zero
if feasibility is violated. The second phase (called ADD)
reverses the process by examining each bit in decreasing
order of uj and changes a bit from zero to one as long as
feasibility is not violated. The pseudo-code of the repair
operator is given in Algorithm 4.

4 Binary firefly algorithm

Several studies are available in the literature of FA for
continuous optimisation problems. But only a few stud-
ies are available for integer programming problem. In a
recent work by Palit et al. [45], a binary firefly algorithm
was used for cryptanalysis of knapsack cypher algorithm
so as to deduce the meaning of an encrypted message.
Binary adaptive firefly algorithm was used for fault iden-
tification in parallel and distributed system by Falcon
et al. [23]. Chandrasekaran and Simon [12] used binary
real coded firefly algorithm for solving network and reli-
ability constrained unit commitment problem. In all these
works they use the sigmoid function for transforming con-
tinuous variables to binary variables, and use Euclidean
distance to perform light intensity measurement. Recently,
Baykasoglu and Ozsoydan [6] solved the dynamic multidi-
mensional knapsack problem using FA. They used priority
based encoding technique for mapping continuous solu-
tions to the combinatorial domain and replace the pairwise
comparison with a specialised comparison using tuning
parameter depending upon the iteration number. Here we

use a different approach for solving knapsack problems
similar to the approach used in [47] for solving facility
location problem. It does not involve any encoding tech-
nique and utilizes hamming distance to measure the light
intensity.

4.1 Construction of individual firefly

The individual firefly (solution) is represented by an n-bit
binary string, where n is the number of variables in knap-
sack problem. A bit string x ∈ {0, 1}n, may represent an
infeasible solution; so the fitness function of individual fire-
fly for 01 KP is defined as earlier, given by (9). Similarly
for 01 MKP, we represent the fitness function given by (10).
The initial population is generated randomly from the entire
dimension to achieve sufficient diversification. The stop-
ping rule is defined based on four basic criteria: reach the
optimal solution, maximum run time, maximum number
of iterations, predefined number of non-improvement iter-
ations. If any of these criteria is satisfied, the algorithm
stops.

Table 1 Comparison between different types of transformation func-
tions used for binary variable handling of MKP

f Criteria

best worst avg median std ATT

f1 3800 3800 3800 3800 0 0.007

3800 3800 3800 3800 0 0.003

3800 3800 3800 3800 0 0.005

f2 8706.1 8577.8 8639.6 8650.1 47.49 1.049

8706.1 8706.1 8706.1 8706.1 0 0.024

8706.1 8706.1 8706.1 8706.1 0 0.025

f3 4015 4005 4010.2 4015 5.05 0.681

4015 4015 4015 4015 0 0.016

4015 4015 4015 4015 0 0.028

f4 6120 6090 6115.8 6120 8.83 0.439

6120 6120 6120 6120 0 0.023

6120 6120 6120 6120 0 0.024

f5 12400 12400 12400 12400 0 0.069

12400 12400 12400 12400 0 0.031

12400 12400 12400 12400 0 0.046

f6 10584 10547 10550 10547 9.21 1.762

10618 10584 10600 10603 12.46 2.407

10618 10570 10592 10587 10.91 2.435

f7 16501 16436 16496 16499 12.73 2.153

16537 16499 16503 16499 8.06 2.683

16524 16499 16502 16499 5.68 2.726
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Fig. 1 The effect of pa for
MKP instance f4
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4.2 Distance of two fireflies

The distance between any two fireflies i and j is defined
by the Hamming distance, i.e., the number of different ele-
ments between their permutations. The difference between
the objective function values is directly proportional to the
Hamming distance.

4.3 Attractiveness of fireflies

A firefly i is attracted to another firefly j if the objective
function value of i is smaller than the objective function
value of j . The attractiveness of firefly i on firefly j is given
by

β(rij ) = β0e
−γ r2ij , (20)

where rij is the Hamming’s distance between fireflies i

and j . Theoretical value of the light absorption coefficient
γ is γ ∈ [0, ∞], we have considered γ in the range of
[0.01, 0.20].

4.4 Movement of fireflies

In the continuous problem, the movement is defined by the
(8), which can be represented by (21a–21b), like [19] in the
discrete case

xi = (1 − β(rij ))xi + β(rij )xj , (21a)

xi = xi + α(ε − 0.5). (21b)

Any firefly moves in solution space in two steps: in
the first step β(rij ) determines the motion of firefly i

towards firefly j given by (21a); then in the next step, α

determines the random movement of firefly i provided by
(21b). It is important to note that these two phases are not
interchangeable.

The first step is known as β-step and from the equa-
tion, it is clear that xi will be equal to xj with a probability
given by β(rij ), and xi will be unchanged with a probabil-
ity given by (1 − β(rij )). The β-step procedure is shown in
Algorithm 5.

Fig. 2 The effect of population
size n for MKP instance f4
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Table 2 Kruskal-Wallis ANOVA table

Source SS df MS χ2 p > χ2

Groups 562237 6 93706.2 57.35 1.55E-10

Error 2859316.5 343 8336.2

Total 3421553.5 349

For the next step, we choose α value in the range of [0, 1]
and randomise the movement of the firefly for continuous
optimisation problems. If the α value is high then xi will
take large step and solution will be far away from the current
solution. Similarly, for low α value, the new solution will
be within the small neighborhood of the current solution.
So α value determines the condition for global and local
search and an appropriate value of α determines the bal-
ance between global search and local search procedure. But
obtaining the exact level of α is not an easy task. For binary

variables, this α-step only represents the change in bit val-
ues for a particular firefly. There are two ways by which
we may change in bit values for binary variables: flip and
swap procedure. One can use any of these two procedures
as the α-step for solving knapsack problem. The term α rep-
resents the probability that a particular bit will change or
not. The number of bits (nB) for which there is a change in
bit value depends on Hamming distance (i.e., rij ). Because
here our aim is to minimize the distance between firefly i

and j , as firefly xj is brighter than firefly xi ; so xi attracts
towards xj . Therefore, nB = α × rij and α should be small;
otherwise the Hamming distance will increase between xi

and xj rather than decreasing. It is similar to variable dis-
tance move (k-distance or k-exchange), and here we choose
k = 1.

4.5 Generating new firefly

In the original FA, we generate a solution randomly if
there is no better solution than a particular one. Opposition-
based learning (OBL) introduced by Tizhoosh [55] is used
to generate the new solution. It is proved that an opposite
solution has a higher chance to be closer to the global opti-
mal than a random solution [49]. Opposite point is defined
as

x́j = aj + bj − xj , (22)

where X = (x1, x2, ..., xn) be a point in n-dimensional
space and xj ∈ [aj , bj ], j ∈ 1, 2, .., n [48]. The general-
ized OBL (GOBL) is defined as

x́ = r(a + b) − x, (23)

where r is a real number [57]. Here we consider r as a ran-
dom variable, specifically r ∼ U(0, 1). It will transform the
solution to a new search space and provide more chances to
find better solutions.

Fig. 3 Multiple comparison of
mean ranks of population size
(n) for MKP instance f4
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Fig. 4 The effect of population
size n for MKP instance f4
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4.6 Repairing infeasible solutions

When the binary string violates the constraint of the given
problem, then repair algorithm is employed to make infea-
sible solutions to feasible one.

For 01 KP, the greedy repair procedure is applied as
mentioned earlier. All items in the knapsack are sorted in
the decreasing order of their profit to weight ratios. The
selection process always chooses the last item for deletion.

For 01 MKP, we use the repair operator given in
Algorithm 4 suggested in [15].

5 Experimental results

The proposed BCSA and BFA procedures are coded in
Python and implemented on a computer with Intel Core2
Duo CPU E8400 @3.00 GHz with 2GB of RAM in Unix
environment. Experiments are also conducted with state-
of-art particle swarm optimisation algorithm as a bench-
mark procedure. Knapsack problems are also solved by
many researchers with PSO algorithm. Kong and Tian
[36] applied PSO algorithm to solve knapsack problems
with the sigmoid function for binary transformation. They
used repair operator instead of penalty function and set
the number of particles equal to the number of objects
of the problem (problem size) for solving multidimen-
sional knapsack problem instances. Tan [54] utilizes the
penalty function method and mutate particle position at
a specific probability of occurrence, a hybrid technique
for solving MKP type problem. Lee et al. [37] proposed
GPMBPSO to solve multi-modal benchmark functions.
They adopted the concepts of genotype-phenotype repre-
sentation and the mutation operator of genetic algorithms.
Bansal and Deep [5] improved the basic BPSO by intro-
ducing a new probability function which maintains the

diversity in the swarm and makes it more explorative for
solving knapsack and multidimensional knapsack problem
instances. Chih et al. [14] introduce the BPSO with time-
varying acceleration coefficients and the chaotic BPSO
with time-varying acceleration coefficients to solve MKP
instances.

Here we utilise the advantages of each algorithm pre-
sented by Kong and Tian [36] and Tan [54], and the pre-
sented algorithm is the hybrid PSO with repair operator and
GA-based mutation operator. For large problem class pop-
ulation size become huge in [36] and it is relatively small
(P = 10) in [54], so here population size for PSO is set
to 40 by the design of experiments (DOE). Results of this
hybrid PSO (HPSO) are also shown for comparison along
with BPSO [33], GPMBPSO [37], and MBPSO [5] for
KP instances. On the other hand, MKP instances are com-
pared withMBPSO [5], CBPSO [16], BPSOTVAC [14], and
CBPSOTVAC [14]. For large MKP instance comparison is
provided with other two highly efficient algorithms NGHS
introduced by Zou et al. [69] and ABHS byWang et al. [58].

5.1 Benchmark problem set

Two sets of standard benchmark problem instances for
knapsack problems are considered in our study. The first set
contains ten instances taken from different literature. The

Table 3 Kruskal-Wallis ANOVA table

Source SS df MS χ2 p > χ2

Groups 567223.71 7 81031.96 42.61 3.96E-07

Error 4743749.79 392 12101.40

Total 5310973.5 399
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Fig. 5 Multiple comparison of
mean ranks of population size
(n) for MKP instance f4
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number of items in these instances is ranging from 4 to
23. Detailed information is provided in [8]. The other set
of benchmark problem instances is taken from [5], which
contains total 25 instances. Bansal and Deep [5] proposed
the modified binary PSO algorithm to solve these test prob-
lem instances. Problem instances are ranging between 8
and 24.

Similar to KP instances, the performance of different
algorithms are extensively investigated by a large number
of experimental studies conducted over a set of problem
instances collected from the literature.We select bench-
mark problem instances of 01 MKP from OR-Library [7].
Total seven instances are investigated corresponding to
small class; items are ranging from 6 to 50, and the num-
ber of the knapsack is 5 or 10. Other 49 instances of
medium problem class are also taken from OR-Library.
Among medium class problem instances, Senyu and Toyada
[50] introduced SENTO class, Weingartner and Ness [60]
introduced WEING class, Shi [52] introduced WEISH
class, and Freville and Plateau [25] introduced PB and HP
classes.

5.2 Parameter settings of BCSA

There are only two main parameters of CSA, population
size (n) and endanger probability (pa). For solving knap-
sack type problems, we transform the continuous variables
to binary type; and the effects of different parameter settings
are evaluated and discussed in this section.

5.2.1 Effect of binary variables

Here, three different types of functions are used for handling
binary variables as mentioned in Section 3. Effect of binary
variables is shown in Table 1. Experimental setup is done
with population size n = 25 and pa = 0.25. For every
instance, we consider total 50 independent runs; and best,
worst solutions among these runs are reported along with
average, median and standard deviation from all solutions
for problems of SET 1. Also for each instance, we reported
the average total time required for a successful run, and the
maximum number of iteration is fixed to 100. In Table 1,
for every instance, the first row represents the performance

Fig. 6 The effect of light
absorption coefficient (γ ) for
MKP instance f4
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Fig. 7 Multiple comparison of
mean ranks of light absorption
coefficient (γ ) for MKP
instance f4
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of the first transformation function, and the performance of
the sigmoid transformation is given in the second row, and
so on.

From Table 1, it is clear that all transformation functions
are effective to solve 01 knapsack instances. However, the
sigmoid function gives a much more efficient result, and the
solution for the average case is better than any other method.
Also, the standard deviation is much low than others.

5.2.2 Effect of endanger probability (pa)

As suggested in [64], we also inspected the effect of pa on
solving knapsack problems. We fixed the population size
n = 25 and the maximum number of iterations iMax =
100, and used pa = {0.05, 0.1, 0.15, 0.2, 0.25, 0.4, 0.5}.
The number of iterations required to solve a particular case
for different pa values is shown in Fig. 1 for MKP problem
instance f4. From Kruskal-Wallis test, we get p-value equal
to 0.6667, which suggest that we can reject the null hypoth-
esis, and there is no significant difference between sample
medians. One can conclude that pa value does not have
any significant effect on solving multidimensional knapsack
problem instances.

5.2.3 Effect of population size (n)

Here, we consider different population size for solvingMKP
instance f4, with maximum number of iterations iMax =

Table 4 Kruskal-Wallis ANOVA table

Source SS df MS χ2 p > χ2

Groups 1073988.43 9 119332.05 51.54 5.53E-08

Error 9324642.57 490 19029.88

Total 10398631 499

100 and pa = 0.2. Result corresponding to different popula-
tion sizes n = {10, 15, 20, 25, 30, 40, 50} is shown in Fig. 2.
Table 2 lists the results of Kruskal-Wallis test. As p-value is
very less, so we conclude that at least one sample median is
different from the others. Figure 3 shows the results of mul-
tiple comparison mean ranks. From the figure, it is clear that
Group 1 (G1 = {n|n = 10, 15}) is significantly different
from Group 2 (G2 = {n|n = 25, 30, 40, 50}). As execution
time will increase with very high population size, so we may
choose population size n = 25.

5.3 Parameter settings of BFA

As discussed in Section 4, the main parameters of BFA are
the population size (n) and the light absorption coefficient
(γ ). In this section, the effect of these two parameters for
solving knapsack problems is discussed.

5.3.1 Effect of population size (n)

For the experimental study we choose population size, n =
{30, 40, 50, 60, 70, 80, 90, 100} and light absorption coeffi-
cient γ = 0.1. Here we consider total 50 independent runs
for each case and the relation between the number of itera-
tions to solve a particular instance and the population size
is shown in Fig. 4. Anova table of Kruskal-Wallis test is
given in Table 3 and p-value of the corresponding test is
3.96E −07. Results of multiple comparison mean ranks are
shown in Fig. 5. Two groups G1 = {n|n = 30, 40} and
G2 = {n|n = 70, 80, 90, 100} are significantly different
from each other. So we may choose population size n = 70
for solving multidimensional knapsack problem instances.

5.3.2 Effect of light absorption coefficient (γ )

Here, we consider population size n = 60 and light
absorption co-efficient γ = {0.02, 0.04, 0.06, 0.08, 0.09,
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0.10, 0.12, 0.14, 0.16, 0.18, 0.20}. Total 50 independent
runs for each case and the relation between the number
of iterations required to solve a particular case and the
light absorption co-efficient is shown in Fig. 6 for MKP
instance f4. The results of multiple comparison of mean
ranks are given in Fig. 7. Anova table of Kruskal-Wallis
test is given in Table 4. From the results, one can conclude
that light absorption co-efficient γ ≤ 0.02 for solving MKP
instances.

5.4 Performance metrics

Three normalised performance measures are used for algo-
rithm’s performance analysis. The measures are the solution

Table 5 Performance metrics for 01 KP SET 1 instances

f best average QMetric SRate SSpeed

BCSA

f1 295 295 1 1 0.9981

f2 1024 1024 1 1 0.9954

f3 35 35 1 1 0.9991

f4 23 23 1 1 0.9990

f5 481.07 481.07 1 1 0.9994

f6 52 52 1 1 0.9996

f7 107 107 1 1 0.9995

f8 9767 9767 1 1 0.9988

f9 130 130 1 1 0.9992

f10 1025 1025 1 1 0.9953

BFA

f1 295 295 1 1 0.9985

f2 1024 1023.3 1 0.88 0.8758

f3 35 35 1 1 0.9985

f4 23 23 1 1 0.9985

f5 481.07 481.07 1 1 0.9988

f6 52 52 1 1 0.9992

f7 107 107 1 1 0.9991

f8 9767 9766.3 1 0.94 0.9389

f9 130 130 1 1 0.9988

f10 1025 1024.5 1 0.92 0.9153

HPSO

f1 295 295 1 1 0.9984

f2 1024 1024 1 1 0.9908

f3 35 35 1 1 0.9990

f4 23 23 1 1 0.9990

f5 481.07 481.07 1 1 0.9994

f6 52 52 1 1 0.9996

f7 107 107 1 1 0.9994

f8 9767 9767 1 1 0.9990

f9 130 130 1 1 0.9992

f10 1025 1025 1 1 0.9888

Table 6 Performance metrics for 01 MKP SET 1 instances

f best average QMetric SRate SSpeed

BCSA

f1 3800 3800 1 1 0.9994

f2 8706.1 8706.1 1 1 0.9978

f3 4015 4015 1 1 0.9994

f4 6120 6120 1 1 0.9994

f5 12400 12400 1 1 0.9994

f6 10618 10617.72 1 0.98 0.7782

f7 16537 16537 1 1 0.6965

BFA

f1 3800 3800 1 1 0.9990

f2 8706.1 8687.5 1 0.72 0.7190

f3 4015 4007.4 1 0.24 0.2398

f4 6120 6073 1 0.08 0.0799

f5 12400 12367 1 0.54 0.5397

f6 10588 10553 0.69 0 0

f7 16508 16485 0.79 0 0

HPSO

f1 3800 3800 1 1 0.9994

f2 8706.1 8706.1 1 1 0.9990

f3 4015 4015 1 1 0.9989

f4 6120 6120 1 1 0.9986

f5 12400 12400 1 1 0.9987

f6 10618 10612 1 0.56 0.4296

f7 16537 16537 1 1 0.9586

quality, the rate of success and the speed of reaching a
solution [53]. To compare the rate of success of different
algorithms on different problems, each problem/algorithm
combination is run using a maximum number of function
evaluations (MaxFES) as the termination condition. For all
problems, the value of MaxFES is set to 10000×D, where
D is the dimension of the problem.

The quality of solution obtained by the particular algo-
rithm is quantified by Qmetric and is given by

QMetric = 2q10
2 − 1; (24)

where q is the normalised measure of solution quality [41].
It is defined as,

q = f̂ − f min

op − f min
, (25)

where f̂ is the maximum value of the objective function
found by the algorithm, op is the best known solution and
f min is the minimum objective function value for the con-
cerning problem instance (zero).1 Here we consider that 5 %

1Knapsack problem is a maximization problem and decision variable
xj can take two values either zero or one.
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Table 7 Optimal parameter
settings Parameter BCSA BFA HPSO

Population size (n) 25 60 40

Probability of mutation (pm) na na 0.06

Probability of discover (pa) 0.2 na na

Light absorption co-efficient (γ ) na 0.02 na

Self influence co-efficient (c1) na na 1.496

Swarm influence co-efficient (c2) na na 1.496

Momentum co-efficient (w) na na 0.7298

Maximum number of iteration (iMax) 20 × n 20 × n 20 × n

Maximum time limit 60 60 60

Maximum number of iteration 0.7 × iMax 0.7 × iMax 0.7 × iMax

without improvement

gap or larger from the best known solution is not a signif-
icant solution, and QMetric value will be zero (rounded
up to 2 decimal places). A particular run is regarded as

successful if the run reaches the global optimum before the
MaxFES of the problem is exceeded. The success rate
(SRate) is defined as the ratio of the number of successful

Table 8 Results of problem SET 2 of 01 KP instances

Pb BCSA BFA HPSO BPSO GPMBPSO MBPSO

Ins best avg best avg best avg avg avg avg

8a 3924400 3924400 3924400 3924400 3924400 3919748.8 3921857.19 3922251.98 3924400

8b 3813669 3813669 3813669 3813669 3813669 3813049.16 3807911.86 3807671.43 3813669

8c 3347452 3347452 3347452 3347452 3347452 3347452 3328608.71 3326300.19 3347452

8d 4187707 4187707 4187707 4187707 4187707 4187707 4186088.27 4184469.54 4187707

8e 4955555 4955555 4955555 4955555 4955555 4955555 4932737.28 4921758.82 4954571.72

12a 5688887 5688757.34 5688887 5688887 5688887 5686293.8 5683694.29 5678227.28 5688552.41

12b 6498597 6498597 6498597 6498597 6498597 6484784.88 6478582.96 6476487.08 6493130.57

12c 5170626 5170626 5170626 5170626 5170626 5170455 5166957.08 5162237.91 5170493.3

12d 6992404 6992404 6992404 6992404 6992404 6992404 6989842.73 6988151.02 6992144.26

12e 5337472 5337472 5337472 5337472 5337472 5337472 5316879.59 5301119.31 5337472

16a 7850983 7840365.4 7850983 7850983 7850983 7833489.7 7834900.26 7826923.53 7843073.29

16b 9352998 9352998 9352998 9352998 9352998 9342132.84 9334408.62 9326158.74 9350353.39

16c 9151147 9151147 9151147 9151147 9151147 9150126.38 9118837.47 9114581.85 9144118.38

16d 9348889 9339618.52 9348889 9348889 9348889 9336318.32 9321705.87 9317336.67 9337915.64

16e 7769117 7769117 7769117 7769117 7769117 7759149.56 7758572.21 7757247.79 7764131.81

20a 10727049 10718386.84 10727049 10725342.6 10727049 10705773.82 10707360.91 10702954.99 10720314.03

20b 9818261 9818261 9818261 9818261 9818261 9814973.14 9791306.65 9786719.85 9805480.48

20c 10714023 10713094.36 10714023 10713645.74 10714023 10712587.86 10703423.34 10695550.75 10710947.05

20d 8929156 8921824.58 8929156 8929156 8929156 8911203.8 8910152.57 8905564.36 8923712.21

20e 9357969 9357969 9357969 9357969 9357969 9357222.96 9349546.98 9343911.1 9355930.35

24a 13549094 13549094 13549094 13544867 13549094 13537746.36 13510432.96 13506115.12 13532060.07

24b 12233713 12211698.48 12233713 12208229.7 12233713 12199295.38 12205346.16 12202425.75 12223442.61

24c 12448780 12448780 12448780 12448780 12448780 12447402.54 12427880.56 12419101.82 12443349.03

24d 11815315 11810156.28 11815315 11810429.92 11815315 11807623.78 11792064.76 11791581.41 11803712.38

24e 13940099 13934482.92 13940099 13933325.08 13940099 13927312 13922797.55 13921046.22 13932526.16

Best results found in corresponding experiments are given in bold emphasis
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Table 9 Average Rankings of
the algorithms for knapsack
problem instances

Algorithm BCSA BFA HPSO BPSO GPMBPSO MBPSO

Ranking 5.06 5.34 3.38 2.12 1.12 3.98

runs and the total number of runs. The success speed of a
run r is defined as

SSpeedr =
⎧
⎨

⎩

0, if the run is
not successful

MaxFES−(FESr−1)
MaxFES

, otherwise.
(26)

Where FESr represents the number of function evaluations
for the given run r . The success speed over ns successful
runs is defined as

SSpeed =
{ ∑ns

r=1 SSpeedr

ns
, if ns > 0

0, if ns = 0.
(27)

To illustrate the use of these three performance metrics,
Table 5 shows the results of benchmark problem instances
of KP (SET 1) for BCSA, BFA and HPSO. All the three
algorithms perform well, and QMetric values are one for
all the cases. Though BFA finds little bit difficulties to
solve three problem instances (f2, f8 and f10); SRate and
SSpeed are low for these cases.

Table 6 shows the performance metrics of BCSA, BFA
and HPSO for 01 MKP instance SET 1. BCSA and
HPSO perform well compared to BFA. Among total seven

instances, SSrate and SSpeed are substantially low com-
pared to other algorithms for BFA except problem instance
f1. For problem instance f6 and f7, BFA is not able to find
best-known solution at all, QMetric values are 0.69 and
0.79, respectively. BCSA and HPSO also find it little diffi-
cult for these two instances. SSRate and SSpeed of HPSO
are low for function f6, and SSpeed of BCSA is slightly
low for function f7.

5.5 Comparative study

Here we consider the second set of problem instances
for both KP and MKP. Experiments are conducted
to compare proposed three algorithms with BPSO
[33], GPMBPSO [37], and MBPSO [5]. An optimal
parameter setting for different algorithms is shown in
Table 7.

Total 50 independent trials are conducted for each prob-
lem instance. Best and average results found out between
these runs are reported in Table 8 for knapsack prob-
lem instances. Non-parametric tests are used for comparing
algorithms [26–28, 40]. The average ranking of Friedman

Table 10 Adjusted p-values for SET 2 problem instances of KP

No Hypothesis unadjusted p pNeme pHolm pShaf pBerg

1 BFA vs GPMBPSO 1.52E-15 2.28E-14 2.28E-14 2.28E-14 2.28E-14

2 BCSA vs GPMBPSO 9.63E-14 1.44E-12 1.35E-12 9.63E-13 9.63E-13

3 BFA vs BPSO 1.16E-09 1.74E-08 1.51E-08 1.16E-08 1.16E-08

4 BCSA vs BPSO 2.76E-08 4.14E-07 3.31E-07 2.76E-07 1.66E-07

5 GPMBPSO vs MBPSO 6.48E-08 9.73E-07 7.13E-07 6.48E-07 4.54E-07

6 HPSO vs GPMBPSO 1.95E-05 2.92E-04 1.95E-04 1.95E-04 1.17E-04

7 BFA vs HPSO 2.12E-04 3.18E-03 1.91E-03 1.49E-03 1.49E-03

8 BPSO vs MBPSO 4.40E-4 6.59E-03 3.52E-03 3.08E-03 1.76E-03

9 BCSA vs HPSO 1.50E-03 2.24E-02 1.05E-02 1.05E-02 6.00E-03

10 BFA vs MBPSO 1.02E-02 0.15 0.06 0.06 0.04

11 HPSO vs BPSO 0.02 0.26 0.09 0.07 0.04

12 BCSA vs MBPSO 0.04 0.62 0.17 0.17 0.08

13 BPSO vs GPMBPSO 0.06 0.88 0.18 0.18 0.18

14 HPSO vs MBPSO 0.26 3.85 0.51 0.51 0.51

15 BCSA vs BFA 0.60 8.95 0.60 0.60 0.60

Best results found in corresponding experiments are given in bold emphasis
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Table 11 Results of problem SET 2 of 01 MKP instances

Problem BCSA BFA HPSO Al-I Al-II Al-III Al-IV

Instances best avg best avg best avg MAD MAD MAD MAD

WEING1e 141278 141278 141278 141278 141278 141278 – – – –
SENTO1 7772 7770.9 7772 7760.4 7772 7761.2 44.81 198.29 8.74 136.28
SENTO2 8722 8722 8722 8691.9 8722 8722 24.85 103.32 9.42 53.53
WEING1 141278 141278 141278 141278 141278 141278 110.79 0 0 51.25
WEING2 130883 130883 130883 130883 130883 130883 117.45 0 0 123.19
WEING3 95677 95673 95677 95665 95677 95629 1053.2 0 6.42 173.07
WEING4 119337 119337 119337 119337 119337 119337 570.6 0 0 42.83
WEING5 98796 98796 98796 98796 98796 98796 1629.21 0 0 85.62
WEING6 130623 130623 130623 130623 130623 130623 310.2 0 11.7 91.71
WEING7 1095445 1095384.52 1095382 1095382 1095382 1095371.44 660.86 32690.6 281.23 11272.9
WEING8 624319 624319 624319 624242.14 624319 624319 5824.7 118166 1872.44 27128.4
WEISH01 4554 4554 4554 4554 4554 4554 10.9 0 0 5.45
WEISH02 4536 4533.8 4536 4536 4536 4535.7 8.39 1.05 1.8 4.12
WEISH03 4115 4115 4115 4115 4115 4115 20.54 0 0.63 9.21
WEISH04 4561 4561 4561 4561 4561 4561 1.76 0 0 8.59
WEISH05 4514 4514 4514 4514 4514 4514 0.54 0 0 8.11
WEISH06 5557 5557 5557 5557 5557 5557 15.36 5.47 6.68 23.21
WEISH07 5567 5567 5567 5567 5567 5567 10.2 3.45 0.7 19.17
WEISH08 5605 5604.9 5605 5603.9 5605 5603.6 7.24 0.72 0.42 8.84
WEISH09 5246 5246 5246 5246 5246 5246 10.61 1.36 0 13.01
WEISH10 6339 6339 6339 6338.4 6339 6339 10.84 42.57 1.43 57.16
WEISH11 5643 5643 5643 5643 5643 5643 29.48 79.9 7.42 110.85
WEISH12 6339 6339 6339 6338.4 6339 6339 16.35 57.3 0.29 107.5
WEISH13 6159 6159 6159 6159 6159 6159 8.47 59.33 0 38.62
WEISH14 6954 6954 6954 6952 6954 6954 16.09 210.47 0.62 116.23
WEISH15 7486 7486 7486 7465.5 7486 7481.5 10.55 193.51 0 161.45
WEISH16 7289 7289 7289 7267.6 7289 7287.5 7.66 139.24 1.16 143.29
WEISH17 8633 8633 8633 8605.8 8633 8633 5.76 91.8 0 85.29
WEISH18 9580 9580 9580 9451 9580 9579.3 14.65 259.34 2.79 99.14
WEISH19 7698 7698 7698 7692.3 7698 7698 20.83 429.39 4.9 169.45
WEISH20 9450 9450 9445 9385.7 9450 9449.5 10.81 336.41 3.78 117.89
WEISH21 9074 9074 9074 9042.1 9074 9066.5 17.85 347.65 6.06 125.78
WEISH22 8947 8945.6 8926 8843.1 8947 8943.8 29.73 674.21 15.12 172.8
WEISH23 8344 8342.7 8344 8306.9 8344 8343.4 29.65 670.43 1.11 179
WEISH24 10220 10220 10159 10047 10220 10205 17.48 367.36 3.04 113.72
WEISH25 9939 9930 9906 9830.1 9936 9930.8 15.13 449.77 4.54 112.43
WEISH26 9584 9584 9552 9441.5 9584 9578.9 27.32 895.39 11.44 270.13
WEISH27 9819 9819 9757 9637.3 9819 9819 23.7 967.43 0.39 211.46
WEISH28 9492 9492 9469 9373 9492 9492 15.21 980.45 2.99 368.74
WEISH29 9410 9410 9410 9303.9 9410 9410 26.73 981.44 3.19 384.5
WEISH30 11191 11191 11126 11026 11191 11191 11.6 548.1 0.52 203.79
PB1 3090 3080.2 3090 3079.7 3090 3086.1 32.62 5.93 9 10.26
PB2 3186 3174.8 3186 3164.6 3186 3167.6 44.69 4.28 4.5 14.45
PB4 95168 95168 95168 95168 95168 95168 2639.8 2.03 228.1 304.33
PB5 2139 2138.7 2139 2139 2139 2139 49.42 0.17 2.72 3.4
PB6 776 764.52 776 776 776 767.64 27.36 8.47 8.7 17.74
PB7 1035 1035 1035 1035 1035 1035 19.89 5.64 5.43 13.05
HP1 3418 3407.9 3418 3408 3418 3410.5 37.52 5.5 11.44 14.1
HP2 3186 3168 3186 3164 3186 3160 46.22 4.58 6.51 12.39

Best results found in corresponding experiments are given in bold emphasis
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Table 12 Average Rankings of
the algorithms for SET 2 MKP
instances

Algorithm BCSA BFA HPSO MPSO CBPSO BPSOTVAC CBPSOTVAC

Ranking 5.72 4.30 5.59 2.52 3.04 4.89 1.94

test is conducted to compare the performance of multi-
ple algorithms on knapsack problem instances. Friedman
test statistic value is 97.37 with 5 degrees of freedom,
and the corresponding p-value is 5.62E-11 which indi-
cates that one can not reject the null hypothesis and the
performance of all the algorithms are not same. Table 9
shows the average ranking of BCSA, BFA, HPSO, BPSO,
GPMBPSO and MBPSO on knapsack problem instances of
SET 2.

Nemenyi’s, Holm’s, Shaffer’s and Bergemann-Hommel’s
tests are conducted to investigate the difference between the
performance of two different algorithms. Adjusted p-values
on pairwise comparisons of all algorithms are reported in
Table 10. The null hypothesis is defined as the two algo-
rithms are equivalent for these nonparametric tests. If the
null hypothesis is rejected, then there is a significant dif-
ference between the performances of these two algorithms.
In this work, we have considered the significance level
α is 0.05. From the results of Table 10, it is clear that
Nemenyi’s, Shaffer’s and Bergmann-Hommel’s procedures

reject Hypotheses 1–9. According to Holm’s test, we can
reject Hypotheses 1–11.

From the results, one can conclude that BCSA and
BFA are significantly better than others (MBPSO, HPSO,
GPMBPSO and BPSO) for solving knapsack problem
instances. There is no significant difference between the
performance of BCSA and BFA. MBPSO is significantly
better than GPMBPSO and BPSO. There is no signifi-
cant difference between MBPSO and HPSO. The perfor-
mance of six algorithms can be sorted by average ranking
into the following order: BFA, BCSA, MBPSO, HPSO,
BPSO and GPMBPSO. It means that BFA and GPMBPSO
are the best and worst ones among these six algorithms,
respectively.

Next, we provide the computation study on 01MKP
benchmark instances of SET 2 in Table 11. The best
solution and average solution among 50 independent runs
of BCSA, BFA and HPSO algorithms are reported for
each problem instances. For comparing the performance of
these algorithms, Friedman test is conducted. Mean average

Table 13 Adjusted p-values

No Hypothesis unadjusted p pNeme pHolm pShaf pBerg

1 BCSA vs CBPSOTVAC 9.90E-18 2.08E-16 2.08E-16 2.08E-16 2.08E-16

2 HPSO vs CBPSOTVAC 1.12E-16 2.35E-15 2.23E-15 1.68E-15 1.68E-15

3 BCSA vs MBPSO 4.10E-13 8.61E-12 7.79E-12 6.15E-12 6.15E-12

4 HPSO vs MBPSO 3.20E-12 6.72E-11 5.76E-11 4.80E-11 3.20E-11

5 BPSOTVAC vs CBPSOTVAC 2.31E-11 4.84E-10 3.92E-10 3.46E-10 2.54E-10

6 BCSA vs CBPSO 1.27E-9 2.67E-8 2.03E-8 1.91E-8 1.40E-8

7 HPSO vs CBPSO 7.14E-9 1.50E-7 1.07E-7 1.07E-7 5.00E-8

8 BFA vs CBPSOTVAC 8.21E-8 1.72E-6 1.15E-6 9.04E-7 7.39E-7

9 MBPSO vs BPSOTVAC 8.21E-8 1.72E-6 1.15E-6 9.04E-7 7.39E-7

10 CBPSO vs BPSOTVAC 2.90E-5 6.09E-4 3.48E-4 3.19E-4 1.45E-4

11 BFA vs MBPSO 5.36E-5 1.12E-3 5.89E-4 5.89E-4 3.21E-4

12 BCSA vs BFA 1.31E-3 0.03 0.01 0.01 0.01

13 BFA vs HPSO 3.40E-3 0.07 0.03 0.03 0.02

14 BFA vs CBPSO 4.26E-3 0.09 0.03 0.03 0.02

15 CBPSO vs CBPSOTVAC 0.01 0.26 0.09 0.09 0.08

16 BCSA vs BPSOTVAC 0.06 1.23 0.35 0.35 0.24

17 HPSO vs BPSOTVAC 0.11 2.27 0.54 0.54 0.24

18 MBPSO vs CBPSOTVAC 0.19 3.90 0.74 0.74 0.56

19 BFA vs BPSOTVAC 0.19 3.90 0.74 0.74 0.56

20 MBPSO vs CBPSO 0.24 4.99 0.74 0.74 0.56

21 BCSA vs HPSO 0.78 16.31 0.78 0.78 0.78

Best results found in corresponding experiments are given in bold emphasis
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Fig. 8 Solution of medium and
large scale KP instances
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deviation for other four algorithms Al-I (MBPSO [5]), Al-II
(CBPSO [16]), Al-III and Al-IV (BPSOTVAC and CBP-
SOTVAC [14]) are also reported in the table. The test
statistics value is 141.22 with degrees of freedom 6 and cor-
responding p-value is 8.63E − 11. So one can reject the
null hypothesis and conclude that the performance of at least
one algorithm is significantly different than other. Table 12
shows the average ranking of BCSA, BFA, HPSO, MBPSO,
CBPSO, BPSOTVAC and CBPSOTVAC algorithm onMKP
instances of SET 2.

Adjusted p-values of different nonparametric tests
(Nemenyi, Holm, Shaffer and Bergmann-Hommel test) are
given in Table 13. According to these tests, two algorithms
are equivalent under the null hypothesis. Here we have

considered significance level α = 0.05, and the null hypoth-
esis is rejected if the p-value is less than the α value.
According to all the four tests (Nemenyi’s, Holm, Shaffer
and Bergmann-Hommel test), we can reject Hypotheses
1–12. If we consider only Holm, Shaffer and Bergmann-
Hommel test, we can reject Hypothesis 1–14.

From the results, one can infer that HPSO and BCSA are
significantly better than CBPSOTVAC, MBPSO, CBPSO
and BFA for solving MKP instances; BPSOTVAC is
significantly better than CBPSOTVAC, CBPSO and
MBPSO; BFA is significantly better than CBPSOTVAC,
MBPSO and CBPSO. Again there is no significant dif-
ference between the performance of HPSO, BCSA and
BPSOTVAC. If the performance of these algorithms is
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Fig. 9 Solution of large scale
MKP instances
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sorted by the average ranking, then we get the following
order: BCSA, HPSO, BPSOTVAC, BFA, CBPSO, MBPSO
and CBPSOTVAC; where BCSA and CBPSOTVAC are
the best and worst ones among these seven algorithms,
respectively.

5.6 Solution of large class problem instances

Experiments are also conducted on large class prob-
lem instances. For KP we choose total twelve instances,
generated randomly with average knapsack capacity. Three

Table 14 Adjusted p-values
No hypothesis unadjusted p pNeme pHolm pShaf pBerg

1 BCSA vs BFA 9.63E-07 2.89E-06 2.89E-06 2.89E-06 2.89E-06

2 BCSA vs HPSO 0.01 0.04 0.03 0.01 0.01

3 BFA vs HPSO 0.01 0.04 0.03 0.01 0.01

Best results found in corresponding experiments are given in bold emphasis
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Table 15 Comparison with other algorithms

Problem BCSA BFA HPSO NGHS ABHS

Instance Ave.Dev Var.Dev Ave.Dev Var.Dev Ave.Dev Var.Dev Ave.Dev Var.Dev Ave.Dev Var.Dev

MKGk01 0.230 0.088 2.548 0.267 2.006 0.157 0.349 0.175 0.270 0.046

MKGk02 0.274 0.081 2.469 0.239 2.053 0.252 0.292 0.093 0.211 0.091

MKGk03 0.166 0.071 2.574 0.192 2.139 0.155 0.362 0.145 0.195 0.089

MKGk04 0.152 0.054 2.607 0.168 2.124 0.159 0.525 0.308 0.216 0.144

MKGk05 0.167 0.084 2.957 0.197 2.493 0.143 0.445 0.138 0.236 0.104

MKGk06 0.350 0.121 2.503 0.180 2.152 0.125 0.510 0.171 0.289 0.159

MKGk07 0.695 0.115 3.292 0.147 2.899 0.136 0.508 0.136 0.401 0.106

MKGk08 0.767 0.109 2.665 0.129 2.433 0.097 0.665 0.135 0.532 0.090

MKGk09 0.976 0.079 3.418 0.089 3.052 0.099 0.650 0.105 0.569 0.075

Best results found in corresponding experiments are given in bold emphasis

types of problem instances are produced. For the first cate-
gory the profit and weight vectors are uncorrelated to each
other; in the second case these are weakly correlated, and
weight and profit vectors are strongly correlated for the last
situation. These three types of problem instances are rep-
resented by the number objects followed by the correlation
structure, like uncorrelated (“u”), weakly correlated (“w”)
and strongly correlated (“s”), respectively. MKP instances
are taken from http://www.cs.nott.ac.uk/∼jqd/mkp/index.
html, introduced by Glover and Kochenberger [29]. Solu-
tions of BCSA, BFA and HPSO, are shown in Fig. 8 for
KP instances, and Fig. 9 presents the solutions for MKP
instances.

As viewed from the Fig. 8, for medium problem size (n =
50) there is a small difference between the performance lev-
els of three algorithms. But as problem size increases, there
is a much more difference between the performance of these
three algorithms. BCSA outperforms other two algorithms
for all the cases. For comparing the results, the average rank-
ing of Friedman test is conducted. The test statistic value is

24.00 with 2 degrees of freedom, and the corresponding p-
value is 6.14E-06. So one can not reject the null hypothesis
and suggests that the performance of all the algorithms are
not same. The average ranking of BCSA, BFA, and HPSO
are 3.0, 1.0, and 2.0 respectively. Adjusted p-values for
Nemenyi’s, Holm’s, Shaffer’s and Bergemann-Hommel’s
tests on pairwise comparisons of all three algorithms are
reported in Table 14. Adjusted p-values for all the tests
are less than the significance level. Therefore, we can con-
clude that BCSA is significantly better than BFA and HPSO;
and HPSO is significantly better than BFA for solving KP
large problem instances. Order ranking of these algorithms
is BCSA, HPSO and BFA, where BCSA and BFA are the
best and worst ones among these algorithms, respectively.

For MKP instances of the large case, the performance
of BCSA, BFA and HPSO are compared with other two
algorithms in Table 15; NGHS [69] and ABHS [58]. For
comparing the results, the average ranking of Friedman
test is conducted. The test statistic value is 31.56 with
4 degrees of freedom, and the corresponding p-value is

Table 16 Adjusted p-values

No hypothesis unadjusted p pNeme pHolm pShaf pBerg

1 BFA vs ABHS 1.84E-6 1.84E-5 1.84E-5 1.84E-5 1.84E-5

2 BCSA vs BFA 2.99E-5 2.99E-4 2.69E-4 1.80E-4 1.80E-4

3 HPSO vs ABHS 6.07E-4 6.07E-3 4.85E-3 3.64E-3 3.64E-3

4 BFA vs NGHS 1.75E-3 0.02 0.01 0.01 6.98E-3

5 BCSA vs HPSO 4.62E-3 0.05 0.03 0.03 0.01

6 HPSO vs NGHS 0.07 0.74 0.39 0.29 0.15

7 NGHS vs ABHS 0.10 1.01 0.40 0.40 0.40

8 BFA vs HPSO 0.18 1.80 0.54 0.54 0.40

9 BCSA vs NGHS 0.30 2.97 0.59 0.59 0.40

10 BCSA vs ABHS 0.55 5.51 0.59 0.59 0.55

Best results found in corresponding experiments are given in bold emphasis

http://www.cs.nott.ac.uk/~jqd/mkp/index.html
http://www.cs.nott.ac.uk/~jqd/mkp/index.html
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Table 17 Comparison with other algorithms for small and medium size instances

Problem BCSA BFA HPSO NGHS ABHS

Instances AVG SR AVG SR AVG SR AVG SR AVG SR

Sent01 7770.9 90 7760.4 14 7761.2 2 7772 100 7772 100

Sent02 8722 100 8691.9 20 8722 100 8722 100 8722 100

Weing7 1095384.52 0 1095382 0 1095371.44 0 1095389.5 5 1095382 0

Weing8 624319 100 624242.14 68 624319 100 622540.9 45 624319 100

Knap15 4015 100 4007.4 24 4015 100 4015 100 4015 100

Knap20 6120 100 6073 8 6120 100 6120 100 6120 100

Knap28 12400 100 12367 54 12400 100 12400 100 12400 100

Knap39 10617.72 98 10553 0 10612 56 10603.1 5 10608.2 30

Best results found in corresponding experiments are given in bold emphasis

2.36E-06. Therefore, one can not reject the null hypothesis;
which suggest that the performance of all the algorithms are
not same. The average ranking of BCSA, BFA, HPSO,
NGHS, and ABHS are 4.11, 1.0, 2.0, 3.33, and 4.56, respec-
tively. Adjusted p-values for Nemenyi’s, Holm’s, Shaffer’s
and Bergemann-Hommel’s tests on pairwise comparisons
of all five algorithms are reported in Table 16. For all the
tests null hypothesis is rejected for Hypotheses 1-5. Accord-
ing to the results, ABHS is significantly better than HPSO
and BFA; NGHS is significantly better than BFA; BCSA
is significantly better than HPSO and BFA. But there is no
significant difference between ABHS, NGHS and BCSA.
Order ranking of these algorithms is ABHS, BCSA, NGHS,
HPSO and BFA, where ABHS and BFA are the best and
worst ones among these algorithms, respectively.

Table 17 shows the results for other knapsack instances
of small and medium size problem along with the results
of other two standard algorithms (NGHS and ABHS). The
average of 50 individual runs and corresponding success
rate are shown for each case. BCSA performs well for
each case except the problem instance “Weing7”. Also,
other algorithms find it difficult to solve this particular
instance. BCSA outperforms other algorithms in the case of
“Knap39” instance, and the success rate is very high com-
pared to other algorithms. HPSO performs well except the
problem instance “Sent01” and the success rate is very low
for this particular case. Among these five algorithms, the
performance of BFA is worst compared to others.

6 Conclusion

Here we have considered one of the fundamental combi-
natorial optimisation problems, knapsack problem and the
solution process of this problem is intensively investigated
in this paper. We propose the binary cuckoo search algo-
rithm for solving knapsack problems. The combination of

local randomwalk and the global randomwalk is utilised for
the implementation of modified CSA. It provides the bal-
ance between intensification and diversification techniques
and an excellent exposure to the algorithm for finding out
high-quality solutions. Also, we developed the binary fire-
fly algorithm for the knapsack problem; and in the modified
FA, the variable distance move is utilised to perform the
local search along with repair algorithm. New solutions
are generated from outside of the current search domain
employing opposition-based learning to explore the unex-
ploited solution regions. It will ensure that the modified
FA will not be trapped within the local optimal points.
Total 47 benchmark problem instances of 01 KP and 65
benchmark problem instances of 01 MKP is considered for
the experimental study.

Also, we have carried out various tests for proper parame-
ter tuning, and the performances of the modified algorithms
have been extensively investigated on these standard bench-
mark instances. In this paper, we consider the particle
swarm optimisation algorithm as the reference technique.
Proposed algorithms were compared with recently devel-
oped several variants of PSO algorithm. For small and
medium class problem instances, BCSA outperformed in
most of the cases regarding the solution quality, rate of
success and speed of reaching best-known solutions. BFA
works efficiently for 01 knapsack problem instances but
finds difficulties for multidimensional knapsack problem
instances. For large case, BCSA totally outperforms others.
For KP instances as the dimension of problem increases,
the performance of BFA and HPSO degrade. For MKP
instances, BCSA again outperforms others. So for large
class problem situations, our choice should be BCSA for
solving knapsack problems. Numerous statistical tests also
confirm the validity of the proposed methods. In future,
these algorithms can be extended to solve other combinato-
rial problems. However, proper parameter tuning is required
before carrying out any performance analysis. Further
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modification on FA is scheduled as future work for improv-
ing the solution quality for the large class problem instances
for both single and multidimensional knapsack problem.
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