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Abstract This paper presents an Effective Synchronization
Clustering (ESynC) algorithm using a linear version of Vic-
sek model. The development of ESynC algorithm is inspired
by Synchronization Clustering (SynC) algorithm and Vicsek
model. After some analysis and experimental comparison,
we observe that ESynC algorithm based on the linear ver-
sion of Vicsek model can get better local synchronization
effect than SynC algorithm based on an extensive Kuramoto
model and a similar synchronization clustering algorithm
based on the original version of Vicsek model. By some
simulated experiments of some artificial data sets, eight
UCI data sets, and three picture data sets, we observe that
ESynC algorithm not only gets better local synchronization
effect but also needs less iterative times and time cost than
SynC algorithm. We also introduce an Improved ESynC
algorithm (IESynC algorithm) in time cost by combining
multidimensional grid partitioning method and Red-Black
tree structure. By some simulated experiments, we observe
that IESynC algorithm can get some improvement of time
cost than ESynC algorithm in some data sets. Extensive
comparison experiments with some class clustering algo-
rithms demonstrate that our two algorithms can often get
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acceptable clustering results in many cases. At last, it gives
several solid and insightful future research suggestions.
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1 Introduction

Clustering is an unsupervised learning method that tries to
search some obvious clusters in unlabeled data by maximiz-
ing the similarity of the objects in a common cluster and
minimizing the similarity of the objects in different clus-
ters [20]. Clustering has been used in many areas, such as
pattern classification, image processing, marketing analysis,
information retrieval, bioinformatics, and so on.

Clustering algorithms have been studied for decades. We
think that almost all clustering algorithms have flaws. Some
clustering algorithms are suitable for dealing with data with
certain types, and others are suitable for handling data with
special distribution structures. In real-world applications,
some data have complex distributions, others have diver-
siform types, others have great capacity, and others have
many noises or isolates. So there is a continued demand for
researching different kinds of clustering methods. In order
to obtain better clustering results in real-world applications
where the amount of data is often very large and the types of
data are diversiform, researchers try to develop new efficient
and effective clustering algorithms.

The traditional clustering methods are usually classified
into partitioning methods [3, 27], hierarchical methods [16,
23, 47], density-based methods [2, 11, 30, 31], grid-based
methods [1, 45], model-based methods [41], and graph-
based methods [21, 32]. Recent clustering methods have
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quantum clustering methods [17], spectral clustering meth-
ods [26, 33], and synchronization clustering methods [4, 18,
34–39].

Recently, several original clustering algorithms, such as
Affinity Propagation (AP) algorithm [13], Synchronization
Clustering (SynC) algorithm [4], and clustering by fast
search and find of Density Peaks (DP) algorithm [30],
were published. AP algorithm is a new type of cluster-
ing algorithm published on Science in 2007. After AP
algorithm was published, clustering based on probabil-
ity graph models grew a new research direction. As we
know, SynC algorithm [4] is the first clustering algorithm
based on synchronization model. After SynC algorithm was
presented, synchronization clustering methods attract the
interest of some researchers. Some synchronization clus-
tering methods [18, 34–39] were published from different
views. DP algorithm [30] is a clustering algorithm based
on the assumption that “cluster centers can be characterized
by a higher density than their neighbors and by a relatively
large distance from points with higher densities” [30]. In DP
algorithm, the number of clusters can be obtained automati-
cally, outliers can be identified easily, and even nonspherical
clusters can be explored quickly. So we think DP algo-
rithm can also lead a new research direction in clustering
field.

Synchronization clustering is a kind of novel clustering
approach. The original synchronization clustering algorithm
named as SynC, which is a famous synchronization cluster-
ing algorithm presented in [4], claimed that it can find the
intrinsic structure of the data set without any distribution
assumptions and handle outliers by dynamic synchroniza-
tion [4].

This paper reveals some fundamental differences among
synchronization clustering based on an extensive Kuramoto
model [4], synchronization clustering based on the origi-
nal version of Vicsek model, and synchronization clustering
based on a linear version of Vicsek model. After explored
the synchronization clustering method based on the linear
version of Vicsek model, we present an Effective Syn-
chronization Clustering (ESynC) algorithm using the linear
version of Vicsek model. ESynC algorithm is inspired by
SynC algorithm and Vicsek model.

The remainder of this paper is organized as follows.
Section 2 lists some related work. Section 3 gives some
basic knowledge. Section 4 introduces ESynC algorithm
and its improved version, IESynC algorithm. Section 5 val-
idates our two algorithms by some simulated experiments.
Conclusions and future work are presented in Section 6.

2 Related work

This paper is inspired by several papers [4, 19, 42, 44].

In 1995, Vicsek et al. [42] presented a basic model of
multi-agent systems that contains noise effects. This basic
model can also be regarded as a special version of Reynolds
model [29]. Simulation results demonstrate that some sys-
tems using Vicsek model [42] or one-dimensional model
presented by Czirok et al. [10] can be synchronized when
they have large population density and small noise. Nat-
urally, we expect that this kind of model can be used
to explore clusters and noises of some data sets by local
synchronization. In 2003, Jadbabaie et al. [19] analyzed
a simplified Vicsek model without noise effects and pro-
vided a theoretical explanation for the nearest neighbor
rule that can cause all agents to eventually move in the
same direction. In 2008, Liu et al. [25] provided the syn-
chronization property of Vicsek model after given initial
conditions and the model parameters. In 2009, Wang et al.
[44] researched Vicsek model under noise disturbances and
presented some theoretical results. In 2010, Nagy et al. [28]
found a well-defined hierarchical leader-follower influential
network among pigeon flocks. So they suggested that hier-
archical organization of group flight might be more efficient
than an egalitarian one. After that, some reports about the
communication mechanism of bird flocks were published in
some famous journals, such as Nature and its sub journals,
PNAS, and PRL. In 2014, Zhang et al. [46] found that pigeon
flocks adopted a mode that switches between hierarchy and
egalitarian. They think the switching mechanism of pigeon
flocks is promising for some industrial applications, such
as multi-robot system coordination and unmanned vehi-
cle formation control. In 2015, Chen et al. [8] found that
pigeon flocks adopted a simple two-level interactive net-
work containing one leader and some followers. They think
that “the two-level organization of group flight may be
more efficient than a multilevel topology for small pigeon
flocks” [8].

In 2010, Böhm et al. presented a novel clustering
approach, SynC algorithm [4], inspired by the synchro-
nization principle. SynC algorithm can find the intrinsic
structure of the data set without any distribution assump-
tions and handle outliers by dynamic synchronization [4].
In order to implement automatic clustering, those natural
clusters can be discovered by using the Minimum Descrip-
tion Length (MDL) principle [15]. After SynC algorithm
was presented, Shao et al. published several synchroniza-
tion clustering papers from different views [34–39]. In order
to detect the outliers from a real complex data set more
naturally, a novel outlier detection algorithm, “Out of Syn-
chronization” [34], was presented from a new perspective.
In order to find subspace clusters of some high-dimensional
sparse data sets, a novel effective and efficient subspace
clustering algorithm, ORSC [35], was proposed. In order
to find the intrinsic patterns of a complex graph, a novel
and robust graph clustering algorithm, RSGC [37], was
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proposed by regarding the graph clustering as a dynamic
process towards synchronization. In order to explore mean-
ingful levels of the hierarchical cluster structure, a novel
dynamic hierarchical clustering algorithm, hSync [38], was
presented based on synchronization and the MDL principle.
In 2013, Huang et al. [18] also presented a synchronization-
based hierarchical clustering method basing on the work
of [4]. In 2014, Chen [6] presented a Fast Synchroniza-
tion Clustering (FSynC) algorithm basing on the work of
[4]. FSynC algorithm, which is a parametric algorithm, is
an improved version of SynC algorithm by combining mul-
tidimensional grid partitioning method and Red-Black tree
structure to construct the near neighbor point sets of all
points [6].

Recent years, some physicists also researched the explo-
sive synchronization of some complexity networks to
uncover the underlying mechanisms of the synchronization
state [22, 24, 48]. In these papers, the synchronization rules
of some networks were explored.

3 Some basic knowledge

Suppose there is a data set S = {X1, X2, . . . , Xn} in a d-
dimensional Euclidean space. Naturally, we use Euclidean
metric as our dissimilarity measure, dis (·, ·). In order to
describe our algorithms clearly, some concepts are pre-
sented first.

Definition 1 [5] The δ near neighbor point set δ(P ) of point
P is defined as:

δ(P ) = {X|0<dis(X, P ) ≤ δ, X ∈ S, X �= P }, (1)

where dis (X, P) is the dissimilarity measure between point
X and point P in the data set S. Parameter δ is a predefined
threshold.

Definition 2 [4]. The extensive Kuramoto model for clus-
tering is defined as:

Point X = (x1, x2, . . . , xd) is a vector in d-dimensional
Euclidean space. If point X is regarded as a phase oscillator
according to Kuramoto model, with an interaction in the δ

near neighbor point set δ(X), then the dynamics of the k-
th dimension xk (k = 1, 2, . . . , d) of point X over time is
described by:

xk(t + 1) = xk(t) + 1

|δ(X(t))|
∑

Y∈δ(X(t))

sin(yk(t) − xk(t)),

(2)

where X(t = 0) = (x1(0), x2(0), . . . , xd (0)) represents
the original phase of point X, and xk (t+1) describes the

renewal phase value in the k-th dimension of point X at the
t step evolution.

Definition 3 The t-step δ near neighbor undirected graph
Gδ(t) of the data setS = { X1, X2, . . . , Xn} is defined as:
Gδ(t) = (V (t), E(t)), (3)

where V (t = 0) = S ={X1, X2, . . . , Xn} is the original
vertex set, E(t = 0) = {(Xi , Xj) |Xj ∈ δ(Xi), Xi(i = 1, 2,
. . . , n) ∈ S} is the original edge set. V (t) ={ X1(t), X2(t),
. . . , Xn(t)}is the t-step vertex set of the data setS, E(t) =
{ (Xi(t), Xj(t)) |Xj(t) ∈ δ(Xi(t)), Xi(t) (i = 1, 2, . . . ,
n) ∈ V (t)} is the t-step edge set, and the weight computing
equation of edge (Xi , Xj) is weight(Xi , Xj) = dis(Xi , Xj).

Definition 4 The t-step average length of edges, AveLen(t),
in a t-step δ near neighbor undirected graphGδ(t) is defined
as:

AveLen(t) = 1

|E(t)|
∑

e∈E(t)

|e| (4)

where E(t) is the t-step edge set of Gδ(t), and |e|is the
length (or weight) of edge e. The average length of edges
in Gδ(t) decreases to its limit 0, that is AveLen(t) → 0, as
more δ near neighbor points synchronize together with time
evolution. In our two algorithms, AveLen(t) can be used to
characterize the degree of local synchronization.

Definition 5 [4]. The cluster order parameter
rccharacterizing the degree of local synchronization is
defined as:

rc = 1

n

n∑

i=1

∑

Y∈δ(X)

e−dis(X,Y ). (5)

Definition 6 The Vicsek model [42] for clustering is
defined as:

Point X = (x1, x2, . . . , xd) is a vector in d-dimensional
Euclidean space. If point X is regarded as an agent accord-
ing to the Vicsek model, with an interaction in the δ near
neighbor point set δ(X), then the dynamics of point X over
time is described by:

X(t + 1) = X(t) +
X(t) + ∑

Y∈δ(X(t))

Y

∥∥∥∥∥X(t) + ∑
Y∈δ(X(t))

Y

∥∥∥∥∥

· v(t) · �t, (6)

where X(t = 0) = (x1(0), x2(0), . . . , xd (0)) represents the
original location of point X, X(t+1) describes the renewal
location of point X at the t step evolution, v(t) is the move
velocity at the t step evolution, and v(t) · �t is the move
length at the t step evolution.
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A special case of this original version of Vicsek model
is that if the δ near neighbor point of one point is null, then
this point will move along its vector direction.

In somemulti-agent systems based on Vicsek model, v(t)

is a constant. If v(t) is always a constant, maybe (6) cannot
be used for clustering. In a simulation using the data set of
Fig. 1, we find that the original version of Vicsek model
based on (6) cannot work well for clustering when v(t) is a
constant. So we present another effective version of Vicsek
model for clustering.

Definition 7 A linear version of Vicsek model for cluster-
ing is defined as:

Point X = (x1, x2, . . . , xd) is a vector in d-dimensional
Euclidean space. If point X is regarded as an agent
according to a linear version of Vicsek model, with an
interaction in the δ near neighbor point set δ(X), then the
dynamics of point X over time according to Jadbabaie et al.
[19] and Wang et al. [44] is described by:

X(t + 1) = 1

(1 + |δ(X(t))|)

⎛

⎝X(t) +
∑

Y∈δ(X(t))

Y

⎞

⎠ , (7)

where X(t = 0) = (x1(0), x2(0), . . . , xd (0)) represents
the original location of point X, and X(t+1) describes the
renewal location of point X at the t step evolution.

From (7), which is similar to the searching equation of
next location in Mean Shift clustering algorithm [9, 17], we
can see that the renewal location of point X is the mean
location of point X and other points in its δ near neighbor
point set δ(X).

Equation (7) can also be rewritten by:

X (t + 1) = X(t) +
∑

Y∈δ(X(t))

(Y − X(t + 1))

= X(t) + 1

(1 + |δ(X(t))|)

⎛

⎝
∑

Y∈δ(X(t))

(Y − X(t))

⎞

⎠ . (8)

(8) has some similarity with (2) in form, but they have essen-
tial difference. The renewal model of (2) is nonlinear and
the renewal model of (7) and (8) is linear.

A special case using this linear Vicsek model is that two
points meet the condition that the δ near neighbor point of
one point only contains another. After one time synchro-
nization using (7), the two points will move to their middle
location. So we think this linear Vicsek model for clustering
is consistent with the intuition. Another special case using
this linear Vicsek model is that one point meets the condi-
tion that its δ near neighbor point set is null. After one time
synchronization using (7), this point is still an isolate.

Definition 8 According to [5], the Grid Cell is defined as
follows:

Grid cells of the d-dimensional Euclidean space of the
data set S can be constructed after partitioned the multi-
dimensional Euclidean space using a kind of multidimen-
sional grid partitioning method.

The data structure of grid cell g can be defined as:

DS(g) = (Grid Label, Grid Coordinates, Grid Location,

Grid Range, Points Number, Points Set). (9)

In (9),
Grid Label is the key label of the grid cell.
Grid Coordinates is the coordinates of the grid cell. It is

a d− dimensional integer vector expressed by I = (i1, i2,
. . . , id) that can help to construct δ near neighbor grid cell
set more quickly.

Grid Location is the center location of the grid cell. It is a
d−dimensional vector expressed by P = (p1, p2, . . . , pd).

Grid Range records the region of the grid cell. It is a
d−dimensional interval vector expressed by:

R = ([p1 − r1/2, p1 + r1/2), . . . , [pd − rd/2, pd + rd/2)),

(10)

where ri(i =1, 2, . . . , d) is the interval length in the i-th
dimension of the grid cell.

Points Number records the number of points in the grid
cell.

Points Set records the labels of all points in the grid cell.
In FSynC algorithm [6] and IESynC algorithm, we use a

Red-Black tree that has efficient inserting and deleting oper-
ations to record the labels of all points in the grid cell. In this
paper, Grid cells and Red-Black trees are used to decrease
the time cost of ESynC algorithm.

Definition 9 [5]. Suppose there is a set of N grid cells
Grid(S) = {g1, g2, . . . , gN } in the d-dimensional Euclidean
space of the data set S, then the δ near neighbor grid cell set
δ(gi) of grid cell gi(i = 1, 2, . . . , N) is defined as:

δ(gi) = {gj j (∃P)(∃Q)(0<dis(P, Q) ≤ δ),

P ∈ gi, Q ∈ gj , gj ∈ Grid(S), gj �= gi} (11)

The construction details of δ near neighbor grid cell set are
described in [5].

Definition 10 The data set S = {X1, X2, . . . , Xn} using
the linear version of Vicsek model described by (7) for clus-
tering is said to achieve local synchronization, if the final
locations of all points satisfy:

Xi(t =T ) = SLk(T ), i =1, 2, . . . , n, k = 1, 2, . . . , K. (12)

In (12), T is the times of the synchronization, K is the num-
ber of steady locations in the final synchronization step,
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SLk(T ) is the k-th steady location in the final synchroniza-
tion step.

Usually, the final location of point Xi (i = 1, 2, . . . , n)

depends on the value of parameter δ, the original location
of point Xi , and the original locations of other points in the
data set S.

Theorem 1 The data set S = {X1, X2, . . . , Xn} using the
linear version of Vicsek model described by (7) for clus-
tering will achieve local synchronization, if parameter δ

satisfies:

δmin ≤ δ ≤ δmax. (13)

Suppose emin (MST(S)), which is equal to min {dis(Xi ,Xj)|
(Xi , Xj ∈ S) ∧ (Xi �= Xj)}, is the weight of the minimum
edge in the Minimum Span Tree (MST) of the complete
graph of the data set S, and emax(MST(S)) is the weight of
the maximum edge in the MST of the complete graph of the
data set S. Apparently, there is δmin = emin(MST(S)). If the
data set S has no isolate, then usually there is emax(MST(S))

≤ δmax <max{dis(Xi , Xj) |(Xi , Xj ∈ S)∧ (Xi �= Xj)}. If
the data set S has isolates, we should filtrate all isolates at
first.

Proof if δ <δmin, then for any point Xi (i = 1, 2, . . . , n),
there is δ(Xi) = Ø. In this case, any point in the data set
S cannot synchronize with other points, so synchronization
will not happen.

In another case, that is δ >δmax, then for any point Xi

(i = 1, 2, . . . , n), there is δ(Xi(t)) = S - {Xi(t)}. Accord-
ing to (7), there is Xi(t+1) = mean (S). Here, mean (S)

is the mean of all points in the data set S. Any point in
the data set S will synchronize with all other points, so
global synchronization happens. After one time synchro-
nization, all points in the data set S will synchronize to their
mean location.

Apparently, if δmin ≤ δ ≤ δmax, local synchroniza-
tion will happen. And the final result of synchronization
is affected by the value of parameter δ and the original
locations of all points in the data set S.

Property 1 The data set S = {X1, X2, . . . , Xn} using
the linear version of Vicsek model described by (7) for
clustering will obtain an effective result of local synchro-
nization with some obvious clusters or isolates, if parameter
δ satisfies:

max{longthestEdgeInMst (clusterk)jk=1, 2, . . . , K}
≤ δ<min{dis(clusteri , clusterj )j i, j =1, 2, . . . , K}, (14)

where longthestEdgeInMst(clusterk) is the weight of the
longest edge in the minimum spanning tree of the k-th cluster,

dis(clusteri , clusterj ) is the weight of the minimum edge
connecting the i-th cluster and the j -th cluster, and K

is the number of clusters in the final synchronization
step.

Proof Suppose the data set S = { X1, X2, . . . , Xn} has
K obvious clusters. If parameter δ is larger than or equal
to max{longthestEdgeInMst(clusterk)| k = 1, 2, . . . , K},
then data points in the same cluster will synchronize. If
parameter δ is less than min{dis(clusteri , clusterj )| i, j =
1, 2, . . . , K}, then data points in different clusters cannot
synchronize.

4 An effective synchronization clustering algorithm
based on a linear version of Vicsek model

ESynC algorithm has almost the same process as SynC
algorithm except using a different dynamics clustering
model, a linear version of Vicsek model represented
by (7).

Although we use the Euclidean metric as our dis-
similarity measure in this paper, the algorithm is by no
means restricted to this metric and this kind of data
space. If we can construct a proper dissimilarity mea-
sure in a hybrid-attribute space, the algorithm can also
be used.

4.1 Compare the extensive Kuramoto model with the
linear version of Vicsek model and the original version
of Vicsek model

Comparing (2) with (7), we can see that the renewal model
of the extensive Kuramoto model at each step evolution is
nonlinear and the renewal model of the linear version of
Vicsek model at each step evolution is linear.

Figure 1 compares the tracks of 800 data points in the
dynamics synchronization clustering processes among the
Extensive Kuramoto model (EK model), the Linear version
of Vicsek model (LV model), and the Original version of
Vicsek model (OV model). Figure 2a compares the clus-
ter order parameter with t-step evolution (t : 0 - 49) among
the three models. Figure 2b compares the t-step average
length of edges (t : 0 - 49) among the three models. And
Fig. 2c compares the relation between the final number
of clusters and the value of parameter δ among the three
models.

From Fig. 1, we observe that OV model cannot obtain
local synchronization effect, and LV model gets better
local synchronization effect than EK model. From Fig. 2a
and b, we observe that the t-step average length of edges
is better than the cluster order parameter with t-step
evolution in measuring the synchronization results. From
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Fig. 1 Compare the dynamical
synchronization clustering
processes with time evolution
among the Extensive Kuramoto
model (EK model) the Linear
version of Vicsek model (LV
model) and the Original version
of Vicsek model (OV model).
From (b) to (e) of Fig. 1,
parameter δ is set as 18 in the
three models

(b-1) EKmodel, t=1 (b-2) LVmodel, t = 1 

(b-3) OVmodel, t = 1 

(a) t = 0 (The original locations of 800 data points) 
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Fig. 1 (continued)

(c-3)  OVmodel, t = 2 

(d-1) EKmodel, t=5 (d-2) LVmodel, t = 5 

(c-1) EKmodel, t=2 (c-2) LVmodel, t = 2 
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Fig. 1 (continued)

(e-1) EKmodel, t=45 (e-2) LVmodel, t = 45 

(e-3) OVmodel, t = 45 

(d-3) OVmodel, t = 5 
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(b) The t-step average length of edges (t: 0 - 49) 

(a) The cluster order parameter with t-step evolution (t: 0 - 49) 

(c) The relation between the final number of clusters and parameterδ (δ: 0 - 99)

Fig. 2 Compare EK model, LV model, and OV model. In Fig. 2, the
data set has 800 points. In Fig. 2 (a) and (b), parameter δ is set as 18
in the three models

Fig. 2c, we observe that the smaller parameter δ is set in
LV model and EK model, the larger the final number of
clusters is. For many data sets with obvious clusters, LV
model can often get the correct final number of clusters
when parameter δ chooses any value in its valid interval,

and the final number of clusters using EK model is much
larger than the actual number of clusters when parame-
ter δ chooses any value in a long interval. In OV model,
the final number of clusters is the same as the number of
data points when parameter δ chooses any value in a long
interval.

4.2 The description of SynC algorithm

The original synchronization clustering algorithm named as
SynC is developed by Böhm et al. [4]. In order to show the
difference between SynC algorithm and ESynC algorithm,
we introduce it below using our language according to the
description of [4].

4.3 The description of ESynC algorithm

ESynC algorithm can be described as follows.
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4.4 Complexity analysis of ESynC algorithm

Step1 of ESynC algorithm needs Time = O(n) and Space
= O(n).

In Step2, constructing the δ near neighbor point
sets for all points if using a simple method needs
Time = O(dn2) and Space = O(nd). In construct-
ing the δ near neighbor point sets, time cost can be
decreased by using the strategy of “space exchanging
time”.

Step3 needs Time = O(n) and Space = O(n).

According to [4] and our analysis, ESynC algorithm
needs Time = O(Tdn2), which is also the time complex-
ity of SynC Algorithm. Here T is the times of the while
repetition in Step2.

4.5 Setting parameter in ESynC algorithm

Parameter δ in ESynC algorithm can affect the result of clus-
ters or isolates. In [4], parameter δ is optimized by the MDL
principle [15]. In [7], two other methods were presented to
estimate parameter δ. Here, we can also select a proper value
for parameter δ according to Theorem 1 and Property 1.

4.6 The convergence of ESynC algorithm

In all simulations, if using ESynC algorithm to synchronize
the original data set S, then S(T ) = {X1(T ), X2(T ), . . . ,
Xn(T )} will stay on some locations steadily after several
iterations (many simulations only need 4 - 5 times). In the
final convergent set S(T ), a steady location that represents
some points can be regarded as their cluster center, and a
steady location that represents only one or several points
is regarded as the final synchronization location of one or
several isolates.

The renewal computing equation of ESynC algorithm
can be represented by a matrix formula,

S(t + 1) = A(t) · S(t). (15)

In (15), S(t) = (X1(t), X2(t), . . . , Xn(t))
T is the t-step

location vector of n points, {X1, X2, . . . , Xn}, and A(t) is an
n×n matrix.

Suppose S(t = 0) is arranged by the final cluster order,
which means that those points in the same cluster are coter-
minous in S(t = 0). In this case,A(T )will be a block matrix.
For example, suppose the data set S has K final clusters or
isolates, then A(T ) of (1) is just a block matrix.

A(T )=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1/ |c1| ... 1/ |c1|
... ... ...

1/ |c1| ... 1/ |c1|
0 ... 0

0

1/ |c2| ... 1/ |c2|
... ... ...

1/ |c2| ... 1/ |c2|
0 0

0 0 ... 0

0 0 ...

1/ |cK | ... 1/ |cK |
... ... ...

1/ |cK | ... 1/ |cK |

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(16)

In (1), |ck |labels the number of all points in the k-th cluster
or isolates.
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Perhaps analyzing the synchronization process based on
the linear version of Vicsek model from theory is more com-
plex than analyzing Mean Shift clustering algorithm [7, 14]
or multi-agent systems based on Vicsek model.

4.7 The improvement of ESynC algorithm

An improved version of ESynC algorithm, named as
IESynC algorithm (Its description is presented in Appendix
1 of Supplementary material), is designed by combining
multidimensional grid partitioning method and Red-Black
tree structure to construct the near neighbor point sets of
all points. The improving method that can decrease the
time cost of constructing near neighbor point set is intro-
duced in [6]. Here, we describe this method as possible as
simply. Generally, we first partition the data space of the
data set S = {X1, X2, . . . , Xn} using a kind of multidi-
mensional grid partitioning method. Then we can obtain a
set of all grid cells. Last design an effective index of all
grid cells and constructing the δ near neighbor grid cell
set for each grid cell. If every grid cell uses a Red-Black
tree to index its data points in each synchronization step,
then constructing the δ near neighbor point set for every
point will become quicker when the number of grid cells is
proper.

Another improved version of ESynC algorithm in both
time cost and space cost is described in another paper.

5 Simulated experiments

5.1 Experimental design

Our experiments are finished in a personal computer
(Capability Parameters: Pentium(R) Dual-Core CPU E5400
2.7GHz, 2G Memory). Experimental programs are devel-
oped using C and C++ language under Visual C++6.0 of
Windows XP.

To verify the improvement in clustering effect and time
cost of ESynC algorithm and IESynC algorithm, there will
be some simulations of some artificial data sets, eight UCI
data sets (Frank et al., 2010), and three bmp pictures in
Sections 5.2, 5.3, and 5.4.

Four kinds of artificial data sets (DS1 - DS4) are pro-
duced in a 2-D region [0, 600] × [0, 600] by a program
presented in Appendix 2 of Supplementary material. Eight
kinds of artificial data sets (DS5 - DS12) are produced in a
range [0, 600] in each dimension by a similar program. Iris
et al. [12] are eight UCI data sets that used in our exper-
iments. Three bmp pictures (named as Picture1, Picture2,
and Picture3) are obtained from Internet. The description
of the experimental data sets is presented in Table 1 of
Appendix 3 of Supplementary material.

In Section 5.2, ESynC algorithm and IESynC algorithm
will be compared with SynC algorithm and some other clas-
sic clustering algorithms (K-Means [27], FCM [3], AP [13],
DBSCAN [11], Mean Shift [9, 14]) in clustering quality and
time cost using some artificial data sets.

In Section 5.3, ESynC algorithm will be compared with
SynC algorithm and some other classic clustering algo-
rithms in clustering quality and time cost using eight UCI
data sets.

In Section 5.4, ESynC algorithm and IESynC algorithm
will be compared with SynC algorithm and some other clas-
sic clustering algorithms in compressed effect of clustering
results, clustering quality, and time cost using three bmp
pictures.

In the experiments, parameterri (i = 1, 2, . . . , d) used in
IESynC algorithm is the interval length in the i-th dimen-
sion of grid cell [5], and parameter δ used in SynC, ESynC,
IESynC, DBSCAN, and Mean Shift is the threshold of Def-
inition 1. In DBSCAN algorithm, parameter MinPts = 4,
and parameter Eps is the same as parameter δ.

The detailed discussion on how to construct grid cells
and δ near neighbor point sets is described in [5]. How to
select a proper value for parameter δ of SynC algorithm is
discussed in [4]. ESynC algorithm can use the same method
as SynC algorithm to select a proper value for parameter δ.
In IESynC algorithm, setting different values for parameter
ri (i = 1, 2, . . . , d) will result in different number of grid
cells and different time cost.

In our simulated experiments, the maximum times of
synchronization moving in the while repetition of SynC
algorithm, ESynC algorithm, and IESynC algorithm is set
as 50.

Comparison results of these algorithms are presented by
some figures (Figs. 3, 4, 5, Figs. 4–6 of Appendix 3 of Sup-
plementary material) and some tables (Tables 1, 2, 3, 4,
5, 6). And performance of algorithms is measured by time
cost (second). Clustering quality of algorithms is measured
by display figures and two robust information-theoretic
measures, Adjusted Mutual Information (AMI) [43] and
Normalized Mutual Information (NMI) [40]. According to
the opinions of [43], the higher the value of two measures
gets, the better the clustering quality of algorithm is. In sim-
ulations, we use the Matlab code from [43] to compute the
two clustering quality measures.

5.2 Experimental results of some artificial data sets
(DS1 - DS12)

5.2.1 Comparison results among SynC algorithm, ESynC
algorithm, and IESynC algorithm

Table 1 presents the comparison results of three synchro-
nization clustering algorithms (SynC, ESynC, and IESynC)
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Table 1 Compare three synchronization clustering algorithms (SynC, ESynC, and IESynC) using four kinds of artificial data sets (DS1 - DS4).
In Table 1, parameter δ = 18, the number of data points n = 10000. In IESynC of Table 1, r1 = r2 = 10

Measure indexes of algorithms Name of algorithms Data sets

DS1 DS2 DS3 DS4

Spend time (second) SynC 448 553 538 525

ESynC 56 70 107 81

IESynC 56 66 75 55

Iterative times SynC 41 50 50 50

ESynC, IESynC 4 5 8 6

The number of steady locations SynC 254 379 260 431

ESynC, IESynC 14 5 25 8

The cluster order parameter rc SynC 42.7595 29.1156 44.8862 25.0379

ESynC, IESynC 1995.40 1999.00 1352.31 1356.98

AveLen(T ) SynC 11.0132 11.1481 10.6701 11.0542

ESynC, IESynC 0 0 0 0

Note1: AveLen(T ) is the final average length of edges in the final δ near neighbor undirected graph. Here, T is equal to the iterative times of
synchronization clustering algorithm.

Note2: The bold in Table 1 marks the improved results.

using four kinds of artificial data sets (DS1 - DS4). In
Table 1, by intercomparing SynC, ESynC, and IESynC,
we observe that IESynC is the fastest clustering algo-
rithm. At the same time, ESynC and IESynC can get better
local synchronization results than SynC in the four data
sets.

5.2.2 Comparison results among SynC algorithm, ESynC
algorithm, IESynC algorithm, and some classical
clustering algorithms

Table 2 presents the clustering quality of several cluster-
ing algorithms (SynC, ESynC, IESynC, and some classical
clustering algorithms) using six kinds of artificial data sets
(DS2, DS4, DS5, DS6, DS7, and DS8). When computing
two information-theoretic measures, NMI and AMI, the pre-
defined cluster labels of the eight artificial data sets are
used in true mem that is an input file of the MATLAB code
[43]. In Table 2, by intercomparing SynC, ESynC, IESynC,
and some classical clustering algorithms, we observe that
ESynC and IESynC can get acceptable clustering results in
the eight artificial data sets. Because the three artificial data
sets (DS4 (n = 400), DS4 (n = 800), and DS5 (n = 10000))
have two connected clusters, ESynC and IESynC do not get
the largest values of NMI and AMI.

Figures 3 and 4–6 of Appendix 3 of Supplementary
material present the comparison clustering results of sev-
eral clustering algorithms by some display figures that can
reflect the clustering quality clearly. In Figs. 3 and 4–6 of

Appendix 3 of Supplementary material, parameter δ = 18
in SynC, ESynC, IESynC, DBSCAN, and Mean Shift; the
number of data points n = 400.

From Figs. 3 and 4–6 of Appendix 3 of Supplementary
material, we observe that ESynC and IESynC can get better
clustering quality (obvious clusters or isolates displayed by
figures) than SynC, AP, K-Means, and FCM in some artifi-
cial data sets (from DS1 - DS4). Mean Shift, DBSCAN can
obtain similar clustering quality (obvious clusters displayed
by figures) with ESynC and IESynC in some artificial
data sets (from DS1 - DS4). Especially, SynC, ESynC, and
IESynC can all easily find some isolates if setting a proper
value for parameter δ.

Figure 4 presents the comparison results of several clus-
tering algorithms in time cost. In Fig. 4, parameter δ = 18
in SynC, ESynC, IESynC, DBSCAN, and Mean Shift; the
number of data points n = 20000. In IESynC, r1 = r2 = 6.

In Fig. 4, Intercomparing ESynC, IESynC, Mean Shift,
DBSCAN, FCM, and K-Means, we observe that IESynC is
faster than ESynC with the same clusters, and K-Means is
the fastest clustering algorithm.

5.2.3 Comparing the valid interval of parameter δ among
SynC, ESynC, IESynC, DBSCAN, and Mean Shift using
some artificial data sets (DS5 - DS8)

Here we compare the valid interval of parameter δ among
SynC algorithm, ESynC algorithm, IESynC algorithm,
DBSCAN algorithm, and Mean Shift algorithm.
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Table 2 Compare the clustering quality of several clustering algo-
rithms (SynC, ESynC, IESynC, and some classical clustering algo-
rithms) using six kinds of artificial data sets (DS2, DS4, DS5, DS6,

DS7, and DS8). In Table 2, parameter δ = 18 in DS2, DS4, DS5, and
DS6; parameter δ = 30 in DS7 and DS8

Measure indexes of algorithms Name of algorithms Data sets

DS2 (n = 400) DS4 (n = 400) DS2 (n = 800) DS4 (n = 800)

NMI ESynC, IESynC 1.0000 0.9694 1.0000 0.9643

SynC 0.5505 0.6324 0.5362 0.6099

K-Means 0.8670 0.9185 0.8659 0.9682

FCM 1.0000 0.9633 1.0000 0.9615

AP 0.7966 0.9697 0.7355 0.8375

DBSCAN 1.0000 0.9643 1.0000 0.9643

Mean Shift 0.7978 0.9028 0.7799 0.9103

AMI ESynC, IESynC 1.0000 0.9682 1.0000 0.9286

SynC 0.1237 0.1275 0.1653 0.1785

K-Means 0.8255 0.8980 0.8266 0.9676

FCM 1.0000 0.9616 1.0000 0.9603

AP 0.6252 0.9684 0.5333 0.7157

DBSCAN 1.0000 0.9274 1.0000 0.9286

Mean Shift 0.6251 0.8268 0.6022 0.8758

The number of clusters ESynC, IESynC 5 9 5 8

SynC 227 255 314 357

K-Means 5 (predefined) 9 (predefined) 5 (predefined) 9 (predefined)

FCM 5 (predefined) 9 (predefined) 5 (predefined) 9 (predefined)

AP 13 9 20 19

DBSCAN 5 8 5 8

Mean Shift 15 15 17 14

DS5 (n = 10000) DS6 (n = 10000) DS7 (n = 10000) DS8 (n = 10000)

NMI ESynC, IESynC 0.9765 1.0000 1.0000 1.0000

SynC 0.6231 0.5411 0.5205 0.5194

K-Means 0.8872 NaN (In Matlab) 0.9194 0.8437

FCM 0.9788 0.5228 0.5226 0.5282

DBSCAN 0.9765 1.0000 1.0000 1.0000

Mean Shift 0.9708 1.0000 1.0000 1.0000

AMI ESynC, IESynC 0.9534 1.0000 1.0000 1.0000

SynC 0.3539 0.0973 0.0051 1.5118e-04

K-Means 0.8426 NaN (Matlab) 0.8892 0.7783

FCM 0.9781 0.5228 0.5226 0.2788

DBSCAN 0.9534 1.0000 1.0000 1.0000

Mean Shift 0.9534 1.0000 1.0000 1.0000

The number of clusters ESynC, IESynC 11 12 12 12

SynC 578 5577 9729 9992

K-Means 12 (predefined) 1 (+11 null clusters) 12 (predefined) 12 (predefined)

FCM 12 (predefined) 2 (+10 null clusters) 3 (+9 null clusters) 2 (+10 null clusters)

DBSCAN 11 12 12 12

Mean Shift 12 12 12 12

Note: NMI and AMI are two clustering quality measures presented in [40, 43]. In Table 2, the largest values of NMI and AMI and acceptable
number of clusters in every data set are shown in bold.
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Table 3 is the comparison results among these cluster-
ing algorithms. Here, [ek , ek+1] can be obtained from (8)
of [7]. In Table 3, intercomparing SynC, ESynC, IESynC,
DBSCAN, and Mean Shift, we observe that the valid
interval of parameter δ in ESynC and IESynC is longer
than that in DBSCAN, the valid interval of parameter δ in
DBSCAN is consistent with [ek , ek+1], and parameter δ in
Mean Shift has the largest valid interval.

5.3 Experimental results of eight UCI data sets

Because we do not know the true dissimilarity measure of
these UCI data sets, all points of these UCI data sets are
standardized into a range [0, 600] in each dimension in this
experiment. When computing two information-theoretic

measures (NMI and AMI), because we do not know the true
cluster labels of these UCI data sets, the class labels of these
UCI data sets are used in the true mem that is an input file
of the MATLAB code [43].

5.3.1 Comparison results between SynC algorithm
and ESynC algorithm

Table 4 gives the comparison results of two synchro-
nization clustering algorithms (SynC and ESynC) using
eight UCI data sets. In Table 4, by comparing SynC
with ESynC, we observe that ESynC can get better local
synchronization results, less synchronization times, and
less clustering time than SynC in the eight UCI data
sets.

Fig. 3 Compare the clustering
results of several algorithms
(DS1, n = 400)

(a) Clusters identified by ESynC and IESynC (15 clusters or isolates) (b) Clusters identified by SynC 

(204 clusters or isolates) 

(c) Clusters identified by K-Means (predefined 5 clusters)  (d) Clusters identified by FCM 

(predefined 5 clusters) 
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Fig. 3 (continued)

(e) Clusters identified by AP (14 clusters)   (f) Clusters identified by DBSCAN (5 clusters) 

(g) Clusters identified by Mean Shift (18 clusters) 

Fig. 4 Compare several
algorithms in time cost using
four artificial data sets (DS1 -
DS4, n = 20000)
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Fig. 5 Compare the original
picture and several compressed
pictures of Picture3. In Fig. 5,
several compressed pictures
based on different clustering
algorithms are drawn by using
the means of clusters that are
obtained by clustering the 200 *
200 pixel points of Picture3 in
RGB space

 K-Means, FCM (final k = 1)  DBSCAN (final k = 112)  Mean Shift (final k = 10) 

(a) δ = 18 in SynC, ESynC, IESynC, DBSCAN, and Mean Shift; predefined k (number of clusters) =  

14 in K-Means and FCM. 

 Origina Picture    ESynC, IESynC (final k = 6)  SynC (final k = 2896)  

 K-Means, FCM (final k = 1)  DBSCAN (final k = 35)  Mean Shift (final k = 4) 

(b) δ = 30 in SynC, ESynC, IESynC, DBSCAN, and Mean Shift; predefined k (number of clusters) =  

6 in K-Means and FCM.  

 Origina Picture    ESynC, IESynC (final k = 14)  SynC (final k = 2868) 
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Table 3 Compare the valid interval of parameter δ among SynC, ESynC, IESynC, DBSCAN, and Mean Shift using four artificial data sets with
different dimensions. In Table 3, n = 10000

Data sets

DS5 DS6 DS7 DS8

The valid interval of parameter δ SynC δ ∈ Ø δ ∈Ø δ ∈ Ø δ ∈Ø
ESynC, IESynC δ ∈ [9, 58] δ ∈ [11, 164] δ ∈ [16, 214] δ ∈[22, 298]
DBSCAN δ ∈[2, 45] δ ∈ [7, 147] δ ∈ [12, 199] δ ∈[17, 281]
Mean Shift δ ∈[15, 60] δ ∈[17, 176] δ ∈[20, 285] δ ∈[22, 396][

ek, ek+1
]
in an MST of the complete [2.16, 45.42] [9.82, 147.48] [15.29, 199.78] [21.04, 281.19]

graph of the data set

Table 4 Compare two synchronization clustering algorithms (SynC and ESynC) using eight UCI data sets

(a) The setting of parameter δ in two synchronization clustering algorithms
UCI data sets Parameter δ in SynC and ESynC

Iris 120

Wine 305

Wdbc 345

Glass 148

Ionosphere 615

Letter-recognition 210

Segmentation 205

Cloud 380

(b) Comparison results of the first four UCI data sets

Measure indexes of algorithms Name of algorithms Data sets

Iris Wine Wdbc Glass

Spend time (second) SynC 0 0 15 0

ESynC 0 0 2 0

Iterative times SynC 50 50 50 50

ESynC 9 6 7 6
The number of steady locations SynC 147 178 569 213

ESynC 5 19 35 35
The cluster order parameter rc SynC 0.05333 0 0 0.009346

ESynC 54.1067 47.8876 305.3497 55.1402
AveLen(T ) SynC 83.9640 258.3664 276.6775 97.9706

ESynC 0 0 0 0
(c) Comparison results of the next four UCI data sets

Measure indexes of algorithms Name of algorithms Data sets

Ionosphere Letter-recognition Segmentation Cloud

Spend time (second) SynC 5 6614 1 79

ESynC 1 5359 0 10
Iterative times SynC 50 50 50 50

ESynC 9 23 7 6
The number of steady locations SynC 350 18668 210 2043

ESynC 85 34 38 2
The cluster order parameter rc SynC 0.005698 0.2596 0.000036 0.004965

ESynC 126.49 9107.0009 19.5905 1023
AveLen(T ) SynC 401.6912 171.9401 142.6595 215.9900

ESynC 0 0 0 0

Note: The bold in Table 4 marks the better results of ESynC algorithm.



152 X. Chen

Ta
bl
e
5

C
om

pa
re

th
e
cl
us
te
ri
ng

qu
al
ity

of
se
ve
ra
lc
lu
st
er
in
g
al
go
ri
th
m
s
(S
yn
C
,E

Sy
nC

,a
nd

so
m
e
cl
as
si
ca
lc
lu
st
er
in
g
al
go
ri
th
m
s)
us
in
g
ei
gh
tU

C
I
da
ta
se
ts

(a
)
T
he

se
tti
ng

of
pa
ra
m
et
er

δ
in

se
ve
ra
lc
lu
st
er
in
g
al
go
ri
th
m
s

U
C
I
da
ta
se
ts

Pa
ra
m
et
er

δ
in

Pa
ra
m
et
er

δ
in

Pa
ra
m
et
er

δ
in

Sy
nC

,E
Sy

nC
,a
nd

SS
yn
C

D
B
SC

A
N

M
ea
n
Sh

if
t

Ir
is

12
0

75
15
0

W
in
e

30
5

24
2.
72
5

30
5

W
db
c

34
5

21
5

34
5

G
la
ss

14
8

80
12
0

Io
no
sp
he
re

61
5

35
0

71
0

L
et
te
r-
re
co
gn
iti
on

21
0

16
0

22
0

Se
gm

en
ta
tio

n
20
5

17
6

27
0

C
lo
ud

38
0

35
0

35
0

(b
)
C
om

pa
ri
so
n
re
su
lts

of
th
e
fi
rs
tf
ou
r
U
C
I
da
ta
se
ts

M
ea
su
re

in
de
xe
s
of

al
go
ri
th
m
s
N
am

e
of

al
go
ri
th
m
s

D
at
a
se
ts

Ir
is

W
in
e

W
db
c

G
la
ss

N
M
I

E
Sy

nC
0.
72
65

0.
76
15

0.
46
55

0.
45
40

Sy
nC

0.
46
97

0.
45
78

0.
32
26

0.
53
06

K
-M

ea
ns

0.
71
45

0.
87
82

0.
62
32

0.
35
88

FC
M

0.
79
19

0.
48
23

0.
59
47

0.
41
08

A
P

0.
60
61

0.
53
82

0.
35
94

0.
42
57

D
B
SC

A
N

0.
64
65

0.
35
34

0.
29
04

0.
25
74

M
ea
n
Sh

if
t

0.
72
65

0.
76
12

0.
27
97

0.
46
62

A
M
I

E
Sy

nC
0.
71
43

0.
60
57

0.
35
13

0.
28
72

Sy
nC

0.
00
50
.

3.
25
28
e-
16

6.
83
69
e-
16

0.
00
12

K
-M

ea
ns

0.
71
07

0.
87
35

0.
61
10

0.
32
65

FC
M

0.
78
88

0.
38
20

0.
58
87

0.
25
25

A
P

0.
39
82

0.
29
77

0.
14
53

0.
24
23

D
B
SC

A
N

0.
57
12

0.
34
23

0.
24
96

0.
20
65

M
ea
n
Sh

if
t

0.
71
43

0.
58
19

0.
20
86

0.
24
14

T
he

nu
m
be
r
of

cl
us
te
rs

E
Sy

nC
3
(+

2
is
ol
at
es
)

3
(+

16
is
ol
at
es
)

2
(+

33
is
ol
at
es
)

6
(+

29
is
ol
at
es
)

Sy
nC

2
(+

14
5
is
ol
at
es
)
0
(+

17
8
is
ol
at
es
)

0
(+

56
9
is
ol
at
es
)

1
(+

21
2
is
ol
at
es
)

K
-M

ea
ns

3
(p
re
de
fi
ne
d)

3
(p
re
de
fi
ne
d)

2
(p
re
de
fi
ne
d)

6
(p
re
de
fi
ne
d)

FC
M

3
(p
re
de
fi
ne
d)

3
(p
re
de
fi
ne
d)

Fi
na
l:
2
(+

1
nu
ll
cl
us
te
r)

2
(p
re
de
fi
ne
d)

6
(p
re
de
fi
ne
d)

Fi
na
l:
2
(+

4
nu
ll
cl
us
te
rs
)

A
P

11
21

36
(+

9
is
ol
at
es
)

12
(+

14
is
ol
at
es
)

D
B
SC

A
N

3
(+

35
is
ol
at
es
)

3
(+

75
is
ol
at
es
)

2
(+

19
4
is
ol
at
es
)

6
(+

83
is
ol
at
es
)

M
ea
n
Sh

if
t

3
(+

2
is
ol
at
es
)

3
(+

18
is
ol
at
es
)

2
(+

33
is
ol
at
es

+1
nu
ll
cl
us
te
rs
)
6
(+

43
is
ol
at
es
)



An effective synchronization clustering algorithm 153

Ta
bl
e
5

(c
on
tin

ue
d)

(c
)
C
om

pa
ri
so
n
re
su
lts

of
th
e
ne
xt

fo
ur

U
C
I
da
ta
se
ts

M
ea
su
re

in
de
xe
s
of

al
go
ri
th
m
s

N
am

e
of

al
go
ri
th
m
s

D
at
a
se
ts

Io
no
sp
he
re

L
et
te
r-
re
co
gn
iti
on

Se
gm

en
ta
tio

n
C
lo
ud

N
M
I

E
Sy

nC
0.
31
06

0.
39
86

0.
60
86

1

Sy
nC

0.
33
39

0.
57
68

0.
60
33

0.
30
16

K
-M

ea
ns

0.
12
99

0.
35
72

0.
61
03

0.
99
44

FC
M

0.
12
64

0.
00
95

0.
44
54

0.
99
44

A
P

0.
28
09

-
0.
67
81

0.
41
07

D
B
SC

A
N

0.
40
61

0.
15
17

0.
45
92

1

M
ea
n
Sh

if
t

0.
28
31

0.
36
49

0.
64
47

1

A
M
I

E
Sy

nC
0.
10
73

0.
39
86

0.
42
12

1

Sy
nC

3.
50
16
e-
04

0.
01
66

-1
.6
97
4e
-1
5

2.
44
32
e-
04

K
-M

ea
ns

0.
12
46

0.
34
84

0.
52
86

0.
99
44

FC
M

0.
12
11

0.
00
42

0.
25
74

0.
99
44

A
P

0.
10
02

-
0.
48
97

0.
16
53

D
B
SC

A
N

0.
34
17

0.
15
17

0.
40
16

1

M
ea
n
Sh

if
t

0.
09
91

0.
36
49

0.
50
48

1

T
he

nu
m
be
r
of

cl
us
te
rs

E
Sy

nC
2
(+

83
is
ol
at
es
)

26
(+

8
is
ol
at
es
)

7
(+

31
is
ol
at
es
)

2

Sy
nC

0
(+

35
0
is
ol
at
es
)

84
5
(+

17
82
3
is
ol
at
es
)

0
(+

21
0
is
ol
at
es
)

5
(+

20
38

is
ol
at
es
)

K
-M

ea
ns

2
(p
re
de
fi
ne
d)

26
(p
re
de
fi
ne
d)

7
(p
re
de
fi
ne
d)

2
(p
re
de
fi
ne
d)

FC
M

2
(p
re
de
fi
ne
d)

26
(p
re
de
fi
ne
d)

Fi
na
l:
2
(+

24
nu
ll
cl
us
te
rs
)

7
(p
re
de
fi
ne
d)

Fi
na
l:
2
(+

5
nu
ll
cl
us
te
rs
)

2
(p
re
de
fi
ne
d)

A
P

14
(+

44
is
ol
at
es
)

-
17

(+
7
is
ol
at
es
)

66
(+

1
is
ol
at
e)

D
B
SC

A
N

2
(+

14
5
is
ol
at
es
)

28
(+

32
3
is
ol
at
es
)

7
(+

51
is
ol
at
es
)

2

M
ea
n
Sh

if
t

2
(+

76
is
ol
at
es
)

26
(+

3
is
ol
at
es

+
1
nu
ll
cl
us
te
r)

7
(+

22
is
ol
at
es
)

2

N
ot
e1
:
In

L
et
te
r-
re
co
gn
iti
on

da
ta

se
t,
D
B
SC

A
N

al
go
ri
th
m

ob
ta
in
s
21

cl
us
te
rs

an
d
24
3
is
ol
at
es

w
he
n
pa
ra
m
et
er

δ
=

16
0.
00
01
,
so

w
e
se
t
pa
ra
m
et
er

δ
=

16
0
in

D
B
SC

A
N
.
T
he

si
gn

‘-
‘
in

A
P

al
go
ri
th
m

co
lu
m
n
m
ea
ns

th
at
th
e
tim

e
co
st
is
to
o
la
rg
er
.

N
ot
e2
:
In

Ta
bl
e
5,
th
e
la
rg
es
tv

al
ue
s
of

N
M
I
an
d
A
M
I
in

ev
er
y
da
ta
se
ta
re

sh
ow

n
in

bo
ld
.



154 X. Chen

5.3.2 Comparison results among SynC algorithm, ESynC
algorithm, and some classical clustering algorithms

Table 5 gives the comparison clustering quality of several
clustering algorithms (SynC, ESynC, and some classical
clustering algorithms) using eight UCI data sets. In Table 5,
by intercomparing these clustering algorithms, we observe
that ESynC algorithm does not get the largest values of NMI
and AMI except Cloud data set. We think there are three
reasons. First, we use the Euclidean metric to compute the
dissimilarity measure of the eight UCI data sets without any
actual knowledge on these data sets. Second, we observe
that the largest values of NMI and AMI in some data sets do
not mean the best clustering quality. Third, the class labels
of these UCI data sets, which are not often consistent with
the actual distributions of clusters, are used as the bench-
mark of clusters in our simulations (Because we don’t have
better choice). From the view of the final number of clusters
of Table 5, we observe that ESynC algorithm can get better
clustering results than some other clustering algorithms in
some UCI data sets.

5.4 Experimental results of three bmp pictures

The value in RGB (Red, Green, and Blue) color space of
pixel points is in a range [0, 255] in each dimension. In
IESynC algorithm of Table 6 and Fig. 5, parameter ri(i =
1, 2, 3) is set as 6.

5.4.1 Comparison results among SynC algorithm, ESynC
algorithm, and IESynC algorithm

Table 6 presents the experimental results in time cost
and local synchronization results among SynC algorithm,
ESynC algorithm, and IESynC algorithm. The data sets in
Table 6 are pixel points of three bmp pictures. In Table 6,
by intercomparing SynC algorithm, ESynC algorithm, and
IESynC algorithm, we observe that ESynC and IESynC are
faster than SynC in these data sets. At the same time, ESynC
algorithm and IESynC algorithm can get better local syn-
chronization results than SynC algorithm in these data sets.

5.4.2 Comparison results among SynC algorithm, ESynC
algorithm, IESynC algorithm, and some classical
clustering algorithms

Figure 5 lists the original picture and several compressed
pictures of Picture3. The several compressed pictures are
drawn by using the means of clusters that are obtained by
clustering the 200 * 200 pixel points of Picture3 in RGB
color space using different algorithms. Because AP algo-
rithm needs too much time and space for Picture3, this
experiment did not use it. From Fig. 5, we observe that

ESynC algorithm and IESynC algorithm can get multi-
level clustering compressed effect for different values of
parameter δ.

5.5 Analysis and conclusions of experimental results

From the comparison experimental results of these figures
and tables (Figs. 1, 2, 3, 4, 5, Figs. 4–6 of Appendix 3 of
Supplementary material, and Tables 1, 2, 3, 4, 5, 6), we
observe that ESynC algorithm based on the linear version
of Vicsek model not only gets better local synchronization
effect but also needs less iterative times and time cost than
SynC algorithm based on an extensive Kuramoto model
almost in all experimental data sets. We think that ESynC
algorithm is superior to SynC algorithm for clustering
because of its more proper synchronization model.

From the simulations, we observe that IESynC algorithm
is faster than ESynC algorithm in some cases. Usually,
IESynC algorithm spends less time in some kinds of data
sets by selecting proper values for parameterri (i = 1, 2,
. . . , d). The time cost of IESynC algorithm is sensitive to
parameter ri (i = 1, 2, . . . , d). If the number of grid cells is
too small or too large, we find that IESynC algorithm can-
not obtain obvious improvement of time cost in many cases.
So we say IESynC algorithm is a parametric algorithm.

From simulations of four data sets (from DS5 - DS8), we
observe that the effective interval of parameter δ in ESynC
algorithm and IESynC algorithm is longer than that in SynC
algorithm and DBSCAN algorithm.

In some displayed figures, by intercomparing SynC,
ESynC, and IESynC, we observe that IESynC algorithm can
explore the same clusters and isolates (displayed by some
figures) as ESynC algorithm. In many kinds of data sets,
ESynC and IESynC can explore obvious clusters or iso-
lates if selecting a proper value for parameter δ, and SynC
algorithm cannot explore obvious clusters in many data sets.

From simulations of some data sets, we observe that the
iterative times of SynC, AP, K-Means, and FCM is larger
than that of ESynC and IESynC. In many data sets, ESynC,
IESynC, and DBSCAN have better ability than SynC, K-
Means, FCM, AP, and Mean Shift in exploring clusters and
isolates. Specially, AP algorithm needs the largest time cost.

Because the values in RGB space of the pixel points of
Picture3 are almost continuous and have no obvious clus-
ters. In this case, ESynC algorithm and IESynC algorithm
can get more obvious multi-level compressed effect than
some other algorithms, such as K-Means and FCM. In sim-
ulations, we also observe that DBSCAN algorithm needs
more space than ESynC algorithm because of its recursive
procedure.

Because of the limited page space, we only select some
typical data sets (twelve kinds of artificial data sets, eight
UCI data sets, and three bmp picture data sets) used in our
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Table 6 Compare three synchronization algorithms (SynC, ESynC, and IESynC) using three picture data sets. In Table 6, parameter δ = 18 or
30 in SynC, ESynC, and IESynC; parameter ri (i = 1, 2, 3) = 6 in IESynC

(a). Parameter δ = 18

Measure indexes of algorithms Name of algorithms Data sets

Picture1 Picture2 Picture3

Spend time (second) SynC 662 676 9795

ESynC 132 122 3254

IESynC 202 209 2034

Iterative times SynC 50 50 50

ESynC, IESynC 10 9 16

The number of steady locations SynC 941 467 2868

ESynC, IESynC 13 5 14

The cluster order parameter rc SynC 58.6149 118.4821 88.4415

ESynC, IESynC 2712.8392 3321.3298 6127.5541

AveLen(T ) SynC 11.0537 10.5757 11.5605

ESynC, IESynC 0 0 0

(b). Parameter δ = 30

Measure indexes of algorithms Name of algorithms Data sets

Picture1 Picture2 Picture3

Spend time (second) SynC 749 797 10930

ESynC 122 179 2139

IESynC 247 473 3302

Iterative times SynC 50 50 50

ESynC, IESynC 9 13 10

The number of steady locations SynC 928 472 2896

ESynC, IESynC 4 2 6

The cluster order parameter rc SynC 55.2653 106.8353 87.9900

ESynC, IESynC 3630.5206 5015.0178 11105.6154

AveLen(T ) SynC 16.9417 17.5013 19.0378

ESynC, IESynC 0 0 0

Note: The bold in Table 6 marks the better results of ESynC algorithm or IESynC algorithm.

experiments. For all experimental data sets, we observe that
ESynC algorithm improves SynC algorithm in local syn-
chronization effect, iterative times, and time cost. For other
data sets, we think ESynC algorithm is still superior to SynC
algorithm for clustering. We believe that the selection of
experimental data sets is not biased. We also know that
IESynC algorithm is faster than ESynC algorithm depend-
ing on the selected data. But IESynC algorithm can explore
the same clusters and isolates as ESynC algorithm in any
cases.

6 Conclusions

This paper presents another synchronization clustering algo-
rithm, ESynC, which can get better clustering results than
the original synchronization clustering algorithm, SynC.

From the experimental results, we observe that ESynC algo-
rithm has less iterative times, faster clustering speed, and
better clustering quality than SynC algorithm in many kinds
of data sets. ESynC algorithm gets better local synchroniza-
tion effect than SynC algorithm because of its more proper
synchronization model. ESynC algorithm can also get better
or similar clustering quality or faster clustering speed than
some classical clustering algorithms in some data sets.

To our knowledge, the linear version of Vicsek model
used for clustering is introduced in this paper firstly. The
major contributions of this paper can be summarized as
follows:

(1) It presents an Effective Synchronization Clustering
algorithm (ESynC), which is an improved version
of SynC algorithm, using a linear version of Vicsek
model.
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(2) It compares the linear version of Vicsek model, the
extensive Kuramoto model, and the original version
of Vicsek model for exploring clusters in dynamic
clustering process.

(3) It introduces an improved version of ESynC algorithm
in time cost, IESynC algorithm, and validates that
IESynC algorithm can get some improvement of time
cost in some data sets.

(4) It presents and validates a convergent condition of
dynamical clustering in synchronization clustering
algorithms, the t-step average length of edges.

ESynC algorithm and SynC algorithm use a global
searching strategy to construct the δ near neighbor point set
for every point in each evolution, so their time complexity
is O(Tdn2). IESynC algorithm uses a local searching strat-
egy to construct the δ near neighbor point set for every point
in each evolution. In some cases, the time complexity of
IESynC algorithm is O(Tdnlogn). In some cases, the time
complexity of IESynC algorithm is near O(Tdn2). Where n

is the number of all points, d is the number of dimensions,
and T is the times of synchronization. So we say IESynC
algorithm is a parametric algorithm.

Like DBSCAN and SynC, ESynC algorithm is also
robust to outliers or isolates. In DBSCAN algorithm, Mean
Shift algorithm, and ESynC algorithm, the number of clus-
ters does not have to be fixed before clustering. Usually,
parameter δ has some valid interval that can be determined
by using two exploring methods presented in [7], the heuris-
tic method described by Theorem 1 and Property 1, or the
MDL-based method presented in [4]. More often, the valid
interval of parameter δ in ESynC algorithm is longer than
it in DBSCAN algorithm. Comparing with SynC, K-Means,
FCM, and AP, ESynC algorithm can obtain better or similar
clustering quality.

Although our algorithms have shown promising results,
there are still some limitations. First, the time complexity
of ESynC algorithm is O(Tdn2), which limits its applicabil-
ity to big data. Second, IESynC algorithm is a parametric
algorithm. The time complexity of IESynC algorithm is sen-
sitive to parameter ri (i = 1, 2, . . . , d). Third, like DBSCAN
algorithm and CNNI algorithm [7], ESynC algorithm is also
sensitive to parameter δ in some scatter data sets. Fourth,
when many noises and few obvious clusters exist, DBSCAN
algorithm and ESynC algorithm cannot generate multi-level
clusters because parameter δ is fixed before clustering.

This work opens some possibilities for further improve-
ment and investigation. First, do more comparison experi-
ments. For example, in the process of constructing δ near
neighbor point sets, comparing our improved method based
on δ near neighbor grid cell set [5] and Red-Black tree
with R-tree, SR-tree index structure, and other space index
structures should be valuable for practical work. Second,

further improve ESynC algorithm in time cost. For exam-
ple, designing similarity-preserving hashing function that
needs O(1) time complexity is valuable in the process of
constructing δ near neighbor point set. Third, extend the
applicability and explore the clustering effect of our algo-
rithms in high-dimensional data. Fourth, further explore
more proper and simple methods to estimate parameter
δ. Fifth, ESynC algorithm has some similarity with Mean
Shift algorithm, but they have essential difference. ESynC
algorithm is a dynamic synchronization clustering algo-
rithm, and Mean Shift algorithm is a clustering algorithm
based on a non-parametric model. So, it is important to
explore the relation between ESynC algorithm and Mean
Shift algorithm further.
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15. Gräunwald P (2005) A tutorial introduction to the minimum
description length principle. MIT Press, Cambridge

16. Guha S, Rastogi R, Shim K (2001) Cure: an efficient clustering
algorithm for large databases. Inform Syst 26(1):35–58

17. Horn D, Gottlieb A (2002) Algorithm for data clustering in pattern
recognition problems based on quantummechanics. Phys Rev Lett
88(1):018702

18. Huang JB, Kang JM, Qi JJ, Sun HL (2013) A hierarchical cluster-
ing method based on a dynamic synchronization model. Sci China
Ser F: Inform Sci 43:599–610

19. Jadbabaie A, Lin J, Morse AS (2003) Coordination of groups of
mobile autonomous agents using nearest neighbor rules. IEEE T
Automat Contr 48(6):998–1001

20. Jain AK, Murty MN, Flynn PJ (1999) Data clustering: a review.
ACM Comput Surv 31(3):264–323

21. Jaromczyk JW, Godfried T (1992) Relative neighborhood graphs
and their relatives. In: Proceedings of the IEEE, vol 80, pp 1502-
1517

22. Ji P, Peron TK, Menck PJ, Rodrigues FA, Kurths J (2013) Clus-
ter explosive synchronization in complex networks. Phys Rev Lett
110(21):218701

23. Karypis G, Han EH, Kumar V (1999) CHAMELEON: A hier-
archical clustering algorithm using dynamic modeling. IEEE
Comput 32(8):68–75

24. Leyva I, Navas A, Sendiña-Nadal I et al. (2013) Explosive tran-
sitions to synchronization in networks of phase oscillators. Sci
Rep-UK 3:1281

25. Liu Z, Guo L (2008) Connectivity and synchronization of Vicsek
model. Sci China Ser F: Inform Sci 51(7):848–858

26. Luxburg UV (2007) A tutorial on spectral clustering. Stat Comput
17(4):395–416

27. MacQueen JB (1967) Some methods for classification and analy-
sis of multivariate observations. In: Proceedings of the 5-th MSP.
University of California Press, Berkeley, pp 281–297
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