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Abstract Individual privacy may be compromised during
the process of mining for valuable information, and the
potential for data mining is hindered by the need to pre-
serve privacy. It is well known that k-means clustering
algorithms based on differential privacy require preserv-
ing privacy while maintaining the availability of clustering.
However, it is difficult to balance both aspects in traditional
algorithms. In this paper, an outlier-eliminated differential
privacy (OEDP) k-means algorithm is proposed that both
preserves privacy and improves clustering efficiency. The
proposed approach selects the initial centre points in accor-
dance with the distribution density of data points, and adds
Laplacian noise to the original data for privacy preservation.
Both a theoretical analysis and comparative experiments
were conducted. The theoretical analysis shows that the
proposed algorithm satisfies ε-differential privacy. Further-
more, the experimental results show that, compared to other
methods, the proposed algorithm effectively preserves data
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privacy and improves the clustering results in terms of
accuracy, stability, and availability.

Keywords Differential privacy (DP) preservation ·
k-means clustering · Outlier · OEDP

1 Introduction

Individual data privacy may be compromised during the
process of data mining for valuable information. With an
increasing emphasis on security, privacy has become an
important issue [2]. Owing to the fact that most privacy-
preserving methods use data transformation to preserve data
privacy, doing so while maintaining data availability has
become an important research field in data mining and
information security [19].

Currently, privacy-preserving models based on equiv-
alence classes have been widely researched. For example,
Sweeney [32] proposed the k-anonymity method to reduce
data according to the granularity. Their method ensures that
any given record cannot be distinguished from at least the
other k-1 records. However, their method cannot ensure the
diversity of values in k records. Machanavajjhala et al. [27]
proposed an l-diversity method to avoid the shortcomings
of homogeneity. Their proposal strengthens the diversity
of sensitive values within equivalent groups, such that the
probability of privacy loss does not exceed 1/l. However,
such privacy-preserving models do not provide a strict
approach to measuring the level of privacy, and they require
continual improvements in response to new attacks, such as
background-knowledge attacks [27] and synthetic attacks [16].

As a result, differential privacy has been proposed
as an intriguing and new privacy-preserving model.
Dwork [11, 14] proposed concepts and algorithms related
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to differential privacy. The general idea is that, for any two
similar datasets, a given differential-privacy algorithm is
approximately the same. This model avoids attacks based
on background knowledge, and realizes privacy preserva-
tion by adding random noise to the query or analysis results.
Unlike traditional privacy-preserving methods, differential
privacy-preserving methods define a rigorous attack model,
and they provide a quantitative representation and proof for
the privacy-disclosure risk and the preserved data privacy
while ensuring the availability of data. The amount of noise
added to the results of the query or analysis is independent
of the data size, and relatively little noise can achieve a high
level of privacy.

Most research on differential privacy thus far has focused
on the theoretical properties of the model, in terms of inves-
tigating its feasibility and infeasibility [13, 22]. Recently,
several works have studied the use of differential privacy
in practical applications. Research in related fields has
resulted in a number of achievements related to differ-
ential privacy, including frequent-pattern-mining methods
under a differential privacy model [5, 24, 36], differential
privacy-preserving ID3 decision-tree classification [6, 15],
and differential privacy-preserving logistic regression [7]. It
is well known that clustering analysis is an especially impor-
tant method for data mining. Moreover, it is the basis for
many other mining methods. However, differential privacy
models with specific applications for clustering are still in
their infancy. As one of the most frequently used cluster-
ing methods, k-means algorithms are simple while offering
high-speed clustering. Some literature has addressed related
research. Blum et al. [6] proposed a differential privacy
k-means approach. However, the availability of their clus-
tering results is not robust to noise. Li et al. [26] proposed
another differential privacy k-means method, along with one
based on the initial centre, facilitating differential privacy
with k-means clustering. However, their model selects the
initial centres without considering the negative impact from
outliers during the clustering process.

This paper presents an outlier-eliminated k-means clus-
tering algorithm based on differential privacy preservation
(namely, Outlier-eliminated Differential Privacy, or OEDP).
Our proposed algorithm improves the scheme for selecting
the initial clustering centres, and fully considers the level of
privacy and clustering availability.

The contributions of this work can be summarized as
follows:

1) An outlier detection method is proposed, which is used
to select the initial cluster centres in order to avoid
the negative impact of outliers on k-means clustering.
Accordingly, the accuracy and efficiency of clustering
is improved.

2) An outlier-eliminated dataset-partitioning algorithm
(OEPT) is proposed, which is used to pre-process the
dataset to improve the accuracy and availability of
clustering.

3) An outlier-eliminated differential-privacy (OEDP) k-
means clustering algorithm is proposed. It can maintain
the availability of clustering while preserving privacy.

4) Several comparative experiments are performed to ver-
ify the effectiveness and efficiency of the proposed
approach. The results show that our approach outper-
forms existing differential-privacy k-means algorithms.

The rest of this paper is organized as follows. In
Section 2, we introduce related concepts and problems.
In Section 3, we provide descriptions for the outlier-
eliminated k-means clustering method. Section 4 intro-
duces the OEDP k-means algorithm and discusses pri-
vacy preservation. Experimental results are presented in
Section 5. Section 6 concludes the paper and provides
future research directions.

2 Related concepts and problems

2.1 Differential privacy-preserving model

Compared to many other privacy-protecting methods [2, 27,
32], differential privacy-preserving technology is acknowl-
edged as a rigorous and robust protection model. It provides
formal privacy guarantees that do not depend on an adver-
sary’s background knowledge or computational power [15].
Formally, differential privacy is defined as follows:

Definition 1 (Differential privacy) [11, 12]: Assume K is a
random function. Range(K) represents the set of all possi-
ble outputs of K, and Pr[Es] represents the disclosure risk
of an event Es. The function K provides ε-differential pri-
vacy preservation for all datasets D and D

′
differing on at

most one tuple, and all S ⊆ Range(K), if K satisfies the
following formula:

Pr[K(D) ∈ S] ≤ exp(ε) × Pr[K(D
′
) ∈ S] (1)

Here, K(D) and K(D
′
) represent the output of the function

K , input with D and D
′
, respectively, and ε is a parameter

stipulating the level of privacy protection. The parameter ε

is public, and its selection is matter of convention. In gen-
eral, ε tends to be set within the range (0.01, 0.1), or in some
cases ln2 or ln3 [12]. Lower values of ε provide stronger pri-
vacy, insofar as they limit any further influence of a record
on the output of a calculation.

It can be seen from Definition 1 that differential pri-
vacy will guarantee that the outcome is not sensitive to any
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particular record in the dataset. This definition is based on
a theoretical point, and a noise mechanism is required to
achieve differential privacy protection.

The noise mechanism is the main feature for achiev-
ing differential privacy protection. Laplacian and expo-
nential mechanisms are two popular approaches to dis-
tributing noise. The magnitude of noise required to obtain
ε-differential privacy depends on the sensitivity of the fol-
lowing function [10].

Definition 2 (L1 Sensitivity) [11, 12]: Assume a function
f : D → Rd , for which the input is a dataset D and the
output is a d-dimensional real vector. For all datasets D and
D

′
differing on at most one tuple, the L1 sensitivity of the

function f is defined as follows:

�f = max
D,D

′ ‖f (D) − f (D
′
)‖1 (2)

where ‖f (D) − f (D
′
)‖1 represents the 1-norm distance

between f (D) and f (D
′
). Note that the L1 sensitivity is a

property of the function itself, and that it is independent of
the dataset.

Definition 3 (Probability density function) [35]: Let
Lap(b) represent a Laplacian noise function, for which
the position parameter is 0 and the scale parameter is b,
such that Lap(b) = exp(−|x|/b). The probability density
function is defined as follows:

P(x|b) = 1

2b
exp(−|x|

b
) (3)

where b = �f/ε. The value of ε generally ranges between
0 and 1. Taking b = 1/ε, the density at z is proportional to
e−ε|z|. Such a distribution reaches its maximum density at
0, for any z and z

′
. If |z − z

′ | ≤ 1, the density at z is at most
eε times the density at z

′
. By decreasing ε, the distribution

is flatter. That is, the smaller the value of ε, the higher the
level of privacy.

Theorem 1 [12]: For any function f : D → Rd , the
algorithm K that adds independently generated noise with
Lap(�f/ε) to each output term in D satisfies ε-differential
privacy, as shown in the following formula:

K(D) = f (D) + (Lap1(�f/ε), Lap2(�f/ε), . . . , Lapd(�f/ε))

(4)

where any Laplacian variable Lapi(�f/ε)(1 ≤ i ≤ d)

is independent from the others, such that the noise depends
exclusively on the sensitivity �f and the parameter ε. These
two values are independent of the number of rows in the
dataset. Thus, even if the dataset is very large, the errors
from typical queries that satisfy differential privacy are
relatively few.

2.2 k-means clustering method based on differential
privacy

Clustering analysis refers to the process of partitioning n
data points in d dimensions into k clusters. Data points
within each cluster are highly similar, and there is low sim-
ilarity between different clusters. One clustering method is
the k-means algorithm, which forms k clusters by associ-
ating each point in d dimensions with the closest cluster
centre. The centre is the mean of each cluster, and this
is updated according to some iterative rule, until a con-
vergence criterion is reached or until a fixed number of
iterations have been applied. More specifically [6]:

Given a dataset of points {p1, . . . , pn} ⊂ Rd and the
initial cluster centres μ1, . . . , μk:

1) Partition the sample points {pi} into k sets C1, . . . , Ck ,
where each pi is associated with the nearest μj ;

2) For 1 ≤ j ≤ k, set μ
′
j = ∑

i∈Cj
pi/|Cj |. That is, the

mean of sample points associated with μj is used as the
new cluster centre.

During the process of k-means clustering, private data
may be exposed. Privacy-preserving techniques in cluster-
ing analysis commonly include data disturbance and data
transformation [2, 19, 25, 30, 31]. These methods preserve
privacy by building privacy-preserving data-disturbance
models for clustering. However, they fail to balance data
availability with privacy-preserving strength.

Differential-privacy clustering algorithms are aimed at
ensuring that nothing private is disclosed as a result of
changes to the centre or to the quantity of records when
any record from the dataset is deleted. Nissim et al. [29]
proposed a k-means clustering publishing method that sat-
isfies differential privacy. Their method provides sensitivity
and error metrics. In addition, Dwork [9] presented two
allocation schemes for a fixed privacy budget ε. Both meth-
ods satisfy ε-differential privacy, but they are unsuitable for
practical applications, because of the difficulty in select-
ing k. Another ε-differential privacy k-means algorithm [26]
preserved privacy by adding Laplacian noise to both the sum
and the number of each subset. However, a random selection
of the initial centres results in low clustering accuracy.

2.3 Outliers and their impact on k-means clustering

Outliers are data objects that differ significantly from other
objects. Generally, outliers are classified into three cate-
gories: global outliers, contextual outliers, and collective
outliers. Among these, global outliers refer to data objects
that deviate significantly from the rest of the objects in the
dataset. Contextual outliers refer to data objects that deviate
significantly from the other objects given a specific context
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(time, location, and other possible factors). Collective out-
liers refer to a subset that deviates significantly from the
entire dataset. Considering that this paper mainly focuses on
relevant numerical data privacy, rather than the analysis of
specific situations and group behaviour, an “outlier” in this
paper henceforth refers to global outliers that are detected
by calculating the r-nearest-neighbour area density.

Outliers affect k-means clustering algorithms that depend
in large part on the initial centre points. This can desta-
bilise the clustering results, restricting the applications of
such algorithms. Therefore, outliers must be detected and
eliminated for clustering [20]. Hautamäki et al. [17] pre-
sented an outlier-removal clustering algorithm consisting
of two stages. The first stage is a pure k-means process,
while the second stage iteratively removes the outliers.
Acs et al. [1] proposed a differentially private histogram-
publishing method based on k-means clustering that con-
siderably improves the accuracy of range queries. However,
their method cannot be applied for processing outliers.

Let DT be a dataset, the correlational outliers for which
are defined as follows:

Definition 4 (r-nearest-neighbour area): In DT, the region
made up of object o and its r nearest neighbour is called the
r-nearest-neighbour area for object o, denoted by rNNA, as
shown in Fig. 1.

0 1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

9

10

o

rNNA of o (r=6)

rNNA of p (r=6)

p

Fig. 1 rNNA of objects o and p (r = 6)

Definition 5 (r-nearest-neighbour distance): Assuming
that o is an object in DT, dist (o, i)(1 ≤ i ≤ r) represents
the Euclidean distance of o and r points in its rNNA. The
r-nearest neighbour distance of o is defined as follows:

dist rNNA(o,DT ) =
∑r

i=1 dist (o, i)

r
(5)

Definition 6 (rNNA density): Assuming that o is an object
in DT, the rNNA density of o is defined as follows:

dens rNNA(o,DT ) = 1

dist rNNA(o,DT )
(6)

Definition 7 (the k-th maximum distance): Let distij be the
distance between the i-th object and the j-th object in the
dataset, and let dist M be an n × n matrix consisting of
distij (i, j = 1, 2, . . . , n). The k-th maximum distance is

the k-th maximum value of dist M , denoted by dist
(k)
ij .

As shown in Fig. 1, the greater the rNNA density of an
object, the smaller the nearest-neighbour distance of this
object. Therefore, outliers can be detected in DT by setting
the appropriate values for r and the density threshold α.

3 Outlier-eliminated k-means clustering method

The accuracy of the k-means algorithm depends largely
on the choice of the initial centres. To improve the accu-
racy and availability of clustering results, and to reduce the
disadvantages that result from a k-means algorithm with
randomly selected initial centres, this paper presents the
outlier-eliminated dataset partitioning (OEPT) algorithm to
obtain the initial k subsets, with which a traditional k-
means algorithm can be improved. The OEPT algorithm
first detects and eliminates outliers. Second, it partitions the
entire dataset into k subsets in accordance with the rNNA
density. Angiulli et al. [4] understand rare classes as those
with less than 5 % of the data points in the dataset. There-
fore, in our algorithm, let top n be the number of outliers.
The outlier density threshold α is assigned the mean of the
top n distances, where top n = |DT | × 0.05.

The following Algorithm 1 can be used to pre-process the
dataset for clustering:

Based on the k subsets {Cj |j = 1, . . . , k} obtained from
the OEPT algorithm, the improved k-means method with
eliminated outliers (the OE k-means method) first calculates
the sum and number of the set Cj (1 ≤ j ≤ k) using the
formula sumj = ∑

i∈Cj
pi and numj = |Cj |, setting μj =

sumj/numj as the initial centre of Cj . Then, the traditional
k-means method (see Section 2.2) is applied for clustering.
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To be clear, in order to include all of the points in the
clustering results, outliers can ultimately be addressed using
different methods, depending on the specific practical appli-
cation. For example, they might be treated separately as
a category, or they can be assigned to the nearest cluster
according to the Euclidean distance of the outliers to each
cluster centre. In our analysis, outliers do not affect cluster
measurements.

4 OEDP k-means clustering algorithm

The differential-privacy k-means algorithm described in
Section 2 is not sufficiently accurate, owing to the fact that
the initial centres are selected randomly. To improve this
k-means method, Li et al. [26] proposed an IDP k-means
clustering method, which selects the initial centres after par-
titioning the dataset into k subsets, thus reducing deviations
from the centres and offering higher clustering availability
than the DP k-means method. However, in terms of selecting
the initial centres, their method does not consider the neg-
ative impact from having several outliers when partitioning

the dataset. In addition, partitioning the initial set into equal
partitions is conceptually fuzzy. That is, the specific details
regarding the partitioning process are not described with
sufficient clarity. Therefore, this paper proposes the OEDP
k-means clustering algorithm to reduce the negative impact
from outliers, and to optimize the choice of the initial cen-
tres. A schematic diagram for the algorithm is provided in
Fig. 2.

To improve the availability of clustering while preserv-
ing privacy, the initial centre-selection mechanism based
on Algorithm 1 is used to avoid the interference of out-
liers, and Laplacian noise is added to preserve the pri-
vacy of the data. The proposed algorithm is described
as follows:

The addition of Laplacian noise in the above algorithm
is Lap(b) = exp(−|x|/b), where b = �f/ε. For each iter-
ation, according to [9], the value of the privacy budget ε is
halved.

Similar to the OE k-means method, outliers can be
assigned to the nearest cluster according to the Euclidean
distance of the outliers to each cluster centre, in order to
maintain the integrity of the clustering data.

Fig. 2 Schematic diagram for
the proposed OEDP k-means
algorithm

dataset (DT)Initialize and

standardize dataset
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delete outliers

from DT
sort and partition

add Laplacian

noise and calculate

initial centre

partition all

data points
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convergence
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output k clusters end

yes

no
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Lemma 1 Each iteration in Algorithm 2 satisfies ε-
differential privacy, the proof for which is as follows:

Proof Assume D and D
′

are two datasets differing on
at most one tuple. The process of calculating k centres
can be regarded as a query of the histogram in [0, 1]d .
According to Definition 2, the �f of denominator num

is 1, because the data points have been normalized, pi ∈
[0, 1]d(1 ≤ i ≤ n). The maximum change to each dimen-
sion is thus 1, when adding or deleting one point in the
d-dimensional dataset DT. Therefore, the maximum �f of
the numerator num is d. Assume Clus(D) and Clus(D

′
)

represent the respective clustering results after adding noise
to D and D

′
. Let Part denote an arbitrary clustering par-

tition. The algorithm adds Laplacian noise to each output
item with the parameter value �f/ε. As the noise func-
tion Lap(�f/ε) = exp(−|x| · ε/�f ), from Theorem 1,
Pr[Clus(D) = Part] ≤ exp(ε)×Pr[Clus(D

′
) = Part].

Therefore, according to Definition 1, the OEDP k-means
algorithm satisfies ε-differential privacy.

5 Experiments

To measure whether the proposed algorithm is effective,
both the degree of privacy preservation and the high avail-
ability of the algorithm based on clustering results must be
considered [36]. Therefore, it is necessary to coordinate the
balance of these two aspects.

In this paper, we conducted a set of experiments with
Matlab 8.3 on an Intel (R) Core (TM) 2 Duo CPU 3.3 GHz
with 4 GB of RAM. The operating system was Windows
7. In order to demonstrate the effectiveness of the OEDP
k-means algorithm, four datasets were run with the OEDP
k-means, IDP k-means [26] and DP k-means algorithms
based on differential privacy preservation. The results were
compared and evaluated.

5.1 Dataset

Because the purpose of our experiments was to estimate the
availability and time consumption of our privacy-preserving
algorithm, while emphasizing on the premise of privacy
preservation, we used UCI and synthetic data in our imple-
mentation. The experimental datasets comprised Ecoli, Iris,
Wine, and Climate, which are typically used for cluster-
ing, outlier detection, and classification [21, 23, 33]. These
datasets were generated at the University of California,
Irvine, (UCI), and they are available at http://archive.ics.uci.
edu/ml/datasets.html. The characteristics of these datasets
are described in Table 1.

The Climate dataset was pre-processed based on the
method outlined in [18]. As a result, the dataset contained
360 records, with 30 tuples (8 %) in one category and 320
tuples (92 %) in the other. Here, 30 tuples were regarded
as outliers. We conducted the appropriate pre-treatment for
each dataset before the experiment. We first removed dupli-
cate tuples from each dataset and normalized the datasets.

Table 1 Dataset characteristics
Dataset Number of records Number of attributes Number of clusters Attribute type

Ecoli 336 8 8 Real

Iris 150 4 3 Real

Wine 178 13 3 Integer, Real

Climate 540 18 2 Real

http://archive.ics.uci.edu/ml/datasets.html
http://archive.ics.uci.edu/ml/datasets.html
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The values of all attributes (except those for classifica-
tion) were normalized to the interval [0,1]. The following
normalization method was adopted [34]:

x
′ = x − minA

maxA − minA

(7)

where minA and maxA are the minimum and the maximum
values for attribute A, respectively. This method is referred
to as min-max normalization, mapping a value x to x

′
in the

range [0,1].

5.2 Evaluation methods

Taking into account the impact of noise on data availability
is considerably important for preserving privacy. Generally,
data availability can be evaluated in two ways: in theory and
through application. For the former, (β, γ )-usefulness [28]
is often used to measure the availability of a differential pri-
vacy algorithm. For the latter, popular availability metrics
include the relative error, absolute error, the Euler function,
and the F-measure [21]. Selecting a suitable metric depends
on the specific data used.

In this paper, because the reference category is already
provided by the selected datasets, we used the F-measure to
evaluate the clustering performance. The F-measure (also
known as the F-fraction) is a criterion for clustering avail-
ability associated with precision and recall for information
retrieval. Compared to the other metrics, the result of F-
measure is more pertinent. Assume n represents the size of a
given dataset, i represents the right class label of the dataset,

ni and nj represent the number of data points in class i and
cluster Cj , respectively, and nij represents the number of
data points at the intersection of class i and cluster Cj . The
precision and recall are defined as follows:

prec(i, j) = maxi,j {nij

nj

}, rec(i, j) = maxi,j {nij

ni

} (8)

For a given class i and cluster Cj , the F-measure is
defined as follows:

Fmeas(i, j) = (β2 + 1) · prec(i, j) · rec(i, j)

β2 · prec(i, j) + rec(i, j)
(9)

We set β = 1 to obtain the same weight for prec(i, j)

and rec(i, j). The entire F-measure for a dataset of size n is
computed as follows:

F =
∑

i

ni

n
maxj {Fmeas(i, j)} (10)

The range of the F-measure values is [0,1]. A higher
value means that the algorithm has more clustering avail-
ability.

5.3 Experimental results

5.3.1 Parameter allocation

Three parameters were used in the experiments: r (the num-
ber of points in the rNNA), k (the number of clusters), and ε

(the differential privacy parameter).

1) ε: Reasonable budget-allocation strategies are required
to facilitate the life-cycle of ε such that it survives as

Fig. 3 Accuracy with various
r-values
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Fig. 4 Comparison of clustering results from two k-means methods

long as possible. Popular distribution strategies include
linear distributions, even distributions, exponential dis-
tributions, manual assignments, and mixed distributions
[8]. As described in Section 2.1, ε generally tends to
be understood as falling within the range of (0.01,
0.1). Therefore, a linear distribution in the interval
[0,1] is generally selected for the allocation of ε in the
experiments.

2) k: Because the aim of this paper is to apply differential-
privacy technology to the k-means method, rather than
applying simple clustering, we optimized the selection
of the initial centres. Therefore, we selected k in accor-
dance with the number of reference categories provided
by the UCI dataset.

3) r: Insofar as it represents the number of points in the
rNNA, r is an important parameter. The algorithm is
sensitive to this parameter. Following the method pro-
posed by Angiulli et al. [3], we modified r depending

on the experimental results of the OE k-means method,
which are shown in Fig. 3. With a different r, the OE
k-means method was repeated multiple times in order
to obtain the optimal r based on the accuracy of the
clustering.

As shown in Fig. 3, the optimal value of r is 3 for the
Ecoli dataset, 6 for the datasets Iris and Climate, and 1 for
the Wine dataset. Therefore, in the OEDP algorithm, these
respective values were used for the four datasets.

5.3.2 OE k-means method

We first conducted a simulation to compare the results of the
OE k-means method with the traditional k-means clustering
method on a synthetic dataset DS containing 82 data points
in two dimensions (including outliers). The parameters were
as follows: r = 6 (the number of points in the rNNA) and k =

Table 2 Comparing the
accuracy and efficiency of two
k-means methods

Dataset Number of records Dimensions Clustering method F Execution time

(excluding the label) [sec]

DS 82 2 OE k-means 0.8781 0.00115

k-means 0.8415 0.09545

Ecoli 336 7 OE k-means 0.7598 0.08626

k-means 0.6366 0.14326

Iris 150 3 OE k-means 0.9134 0.00914

k-means 0.8719 0.03573

Wine 178 12 OE k-means 0.6044 0.01790

k-means 0.6030 0.05638

Climate 540 17 OE k-means 0.6496 0.00022

k-means 0.6433 0.14112
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Fig. 5 Running results comparison on dataset Ecoli

3 (the number of clusters). A visual comparison is provided
in Fig. 4.

Figure 4 shows that, owing to the difference in how the
initial centre is selected, the clustering results for data points
a, b, and c are significantly different. It can be concluded
from the results in Fig. 4 that the OE k-means method is
more accurate than the traditional k-means method.

Second, we conducted a series of experiments compar-
ing the accuracy and execution time of the two algorithms.
For each dataset, with randomly generated initial centres,
the k-means method was run 20 times. We noted the aver-
age F value from these results. As shown in Table 2, for
all datasets, the OE k-means method is more accurate and
requires less execution time. The main reason for this is the
elimination of outliers before clustering. By eliminating out-
liers beforehand, we avoid the negative impact they have on
the selection of initial centres.

5.3.3 OEDP k-means method

In this section, we first describe an experiment in which
we ran the OEDP, IDP and DP k-means algorithms based
on four datasets with classification labels already available.
Apart from the classification, the datasets were normalized.
We changed the value ε, varying it between 0 and 1, and
the program was run ten times each time this value was
changed. The results shown are the average F-measure and
the execution time from these ten trials for each value of ε.
The execution time refers to the time required for clustering
after the initial centres have been selected. Figures 5(a)–8(a)
and Figs. 5(b)– 8(b) respectively show a comparison of the
F-measure values and the execution time from the three
algorithms running on Ecoli, Iris, Wine, and Climate.

The greater the F-measure is, the more similar the clus-
tering results are before and after adding noise and the
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Fig. 7 Running results comparison on dataset Wine

better the availability of the algorithm. Likewise, a shorter
execution time increases the efficiency of the algorithm.

1) Analysis of clustering availability
As can be seen from Figs. 5(a) – 8(a), the value of

ε influences the F-measure. With the same ε, the pro-
posed OEDP k-means algorithm resulted in a higher
F-measure value compared to the other algorithms.
Therefore, the clustering results from our algorithm are
more similar to the original data, and they better main-
tain the clustering availability. As the differential pri-
vacy parameter ε increased, so too did the F-measure.
This indicates that the clustering results improve as the
level of privacy decreases.

2) Analysis of the algorithm’s efficiency
As can be seen from Figs. 5(b) – 8(b), with the

same ε, the execution time for the OEDP k-means
algorithm is significantly less than it is for the other
two algorithms. Moreover, the curves of the execution

time for the IDP and DP k-means algorithms show
obvious fluctuations when changing the ε value. By
contrast, our algorithm is relatively stable. These results
demonstrate that our algorithm outperforms the other
two algorithms, and this is mainly because of the opti-
mized selection of the initial centres by the OEPT
algorithm. Thus, due to the elimination of outliers, the
OEDP k-means algorithm performs better, and the total
execution time decreases.

In summary, the experimental results show that, at the
same level of privacy, the proposed OEDP k-means cluster-
ing algorithm is superior to both the IDP k-means and DP
k-means algorithms in terms of clustering effectiveness and
efficiency.

Second, we present the experimental results on analysis
of the algorithm’s security. Dwork [9] proposed that differ-
ential privacy ensures privacy preservation, independent of
whether any tuple in to, or out of, the dataset. The absence
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Fig. 8 Running results comparison on dataset Climate
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Fig. 9 Running results comparison of the probability with different datasets

of any tuple in the dataset will not significantly affect its
chance of receiving coverage [9]. In order to test the effect
of privacy preservation, we ran the OEDP, IDP, and DP
k-means algorithms based on the above four datasets to con-
duct comparison on the Probability—that is, the possibility
of centre points with no change before and after the deletion
of any tuple in the dataset. The results provide an assistant
confirmation of privacy preservation.

We changed the value ε, varying it between 0 and 1.
The results shown are the average probabilities from all tri-
als after respectively removing each tuple for each value of
ε. Figure 9(a)–(d) respectively shows a comparison of the
probability from the three algorithms running on Ecoli, Iris,
Wine, and Climate.

As can be seen from Fig. 9, with the same ε, the probabil-
ity of the OEDP k-means algorithm is significantly higher
than it is for the other two algorithms. These results demon-
strate that our algorithm outperforms the other two algo-
rithms. Thus, privacy preservation was confirmed, consid-
ering Pr[Clus(D) = Part] ≤ exp(ε) × Pr[Clus(D

′
) =

Part]. The same result has also been proved by means of
theoretical analysis in Lemma 1.

6 Conclusion

In this paper, we described applications for differential
privacy with k-means clustering, and proposed an outlier-
eliminated differential-privacy algorithm for k-means clus-
tering. The proposed algorithm uses the densities of the
data points in the r-nearest-neighbour area to eliminate
outliers and increase the effectiveness and efficiency of
clustering while better preserving privacy. Both theoretical
analysis and experimental results show that the proposed
OEDP k-means method provides differential privacy while
expanding the scope of application for k-means algorithms.
Compared with the DP k-means and IDP k-means methods,
the proposed OEDP k-means method reduces the negative
impact of outliers when selecting the initial centres. Further-
more, it promotes stable clustering results and significantly
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improves the clustering availability. In future research, we
plan to improve the security of our proposal using differ-
ent tactics for allocating the privacy budget, and we shall
explore further applications for the OEDP k-means method.
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