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Abstract In this paper, a novel unconstrained convex mini-
mization problem formulation for the Lagrangian dual of the
recently introduced twin support vector machine (TWSVM)
in simpler form is proposed for constructing binary classi-
fiers. Since the objective functions of the modified mini-
mization problems contain non-smooth ‘plus’ function, we
solve them by Newton iterative method either by con-
sidering their generalized Hessian matrices or replacing
the ‘plus’ function by a smooth approximation function.
Numerical experiments were performed on a number of
interesting real-world benchmark data sets. Computational
results clearly illustrates the effectiveness and the appli-
cability of the proposed approach as comparable or better
generalization performance with faster learning speed is
obtained in comparison with SVM, least squares TWSVM
(LS-TWSVM) and TWSVM.
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1 Introduction

Support vector machines (SVMs), proposed by Vapnik
[25], are computationally powerful machine learning tools
applied to classification. They have been successfully
applied to problems of practical importance from wider
areas like face detection [18], gene prediction [7], and text
characterization [10].

The objective of SVM is in determining a separating
hyperplane by maximizing the margin between the samples
of positive and negative classes and assigning class labels
to test samples in accordance with the half-space in which
they lie. It is well-known that SVM determines the opti-
mal hyperplane as the solution of a quadratic programming
problem (QPP) having linear inequality constraints [3, 25].

As SVM derives a robust, sparse, global solution own-
ing better generalization ability than other machine learning
approaches like artificial neural networks, it becomes the
state of the art method for classification. However, one of
the major challenges of SVM is its high computational cost
associated with training which restricts its application to
problems with large data sets. To overcome this problem,
over the past decade, efficient learning algorithms and mod-
els have been proposed in the literature [2, 9, 11, 16, 19,
24]. Recently, Mangasarian and Wild [16] proposed a new
SVM model called generalized eigenvalue proximal SVM
(GEPSVM) wherein the binary classification is obtained by
constructing two non-parallel hyperplanes having the prop-
erty that samples of each class will be clustered around its
corresponding hyperplane. This results in solving two gen-
eralized eigenvalue problems. Similar in sprit to GEPSVM,
a novel formulation called twin SVM (TWSVM) has been
proposed in [9] wherein two non-parallel hyperplanes are
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constructed by solving two QPPs of smaller size than solv-
ing a single QPP as in the case of the standard SVM.
This strategy makes TWSVM work four times faster than
the standard SVM and further showing good generalization
ability [9, 12]. Due to these advantages, TWSVM becomes
one of the most popular methods for classification. For the
interesting work on least squares TWSVM (LS-TWSVM)
and smooth TWSVM, see [11, 12]. For other extensions to
TWSVM, the interested reader is referred to [20, 21, 23].

With the aim of obtaining an efficient TWSVM model,
following the novel approach in solving the dual SVM
[1, 26], a naı̈ve unconstrained Lagrangian twin SVM
(ULTSVM) formulation has been proposed in this paper.
Since the objective functions contain a term having non-
smooth ‘plus’ function, the proposed minimization prob-
lems are solved either by considering its generalized Hes-
sian [5, 8] or by introducing the smooth approximation
function of [13] in place of the non-smooth ‘plus’ function
and then applying Newton-Armijo algorithm [13]. Its con-
vergence and finite termination will follow directly from
the results of [13, 14]. Finally, the effectiveness of the pro-
posed ULTSVM problem is demonstrated by performing
experiments on a number of interesting real-world datasets
and comparing their results with SVM, LS-TWSVM and
TWSVM.

Throughout this work, all vectors are assumed as col-
umn vectors. The inner product of two vectors x, y in the
n−dimensional real space �n is denoted by: xty, where xt is
the transpose of x. For any vector x = (x1, ..., xn)

t ∈ �n,
the plus function x+ is defined as: (x+)i = max{0, xi}
and i = 1, ..., n. The 2-norm of a vector x will be
denoted by: ||x||. We denote the vector of ones of dimen-
sion m by e and the identity matrix of appropriate size
by I. If f is a real valued function of the variable x =
(x1, ..., xn)

t ∈ �n then its gradient vector and Hessian
matrix are denoted by: ∇f = (

∂f
/
∂x1 , ..., ∂f

/
∂xn

)t and
∇2f = (

∂2f
/
∂xi∂xj

)
i,j=1,...,n

respectively.
The paper is organized as follows. In Section 2, the stan-

dard SVM, LS-TWSVM and TWSVM are reviewed. The
proposed unconstrained TWSVM problem in its dual form
and Newton iterative method of solving it are described in
Section 3. Numerical experiments have been performed on
a number of real-world datasets and their results have been
compared with that of SVM, LS-TWSVM and TWSVM in
Section 4 and finally the conclusions and future work are
drawn in Section 5.

2 Related work

In this section, we briefly describe the standard SVM for
binary classification problems and one of its important
variants, the twin support vector machine.

Consider the binary classification problem assuming that
the training set {(xi , yi)}mi=1 be given where for the input
sample xi ∈ �n let its corresponding class label be yi ∈
{−1, +1}.

2.1 Support vector machine (SVM)

Assume that the input samples are mapped into a higher
dimensional feature space via a nonlinear function ϕ(.).
Then, an SVM classifier seeks for an optimal hyperplane of
the form wt ϕ(x) + b = 0 in the feature space, where the
bias term b ∈ � and the vector normal to the hyperplane
w are the unknowns which are determined by solving the
following QPP [3, 25]

min
w,b,ξ

1
2w

tw + Cetξ

subject to:
yi (wt ϕ(xi ) + b ) ≥ 1 − ξi

and

ξi ≥ 0 for i = 1, 2, . . . , m. (1)

Here, ξ = (ξ1, ..., ξm)t is the vector of slack variables
and C > 0 is a parameter.

Usually, problem (1) is solved by minimizing its Wolfe
dual obtained to be

min
u

1
2

m∑

i,j=1
yiyjϕ(xi )

tϕ(xj )uiuj−
m∑

i=1
ui

subject to

m∑

i=1

uiyi = 0 and 0 ≤ ui ≤ C for i = 1, 2, . . . , m, (2)

where u = (u1, ..., um)t ∈ �m is the Lagrangian multiplier
vector. In this case, the decision function f (.) is taken as

f (x) = sign

⎛

⎝
NSV∑

s=1

usysϕ(x)tϕ(xs) + b

⎞

⎠ , (3)

where NSV is the number of support vectors xs ∈ �n in
which 0 < us < C.

By applying the kernel trick, i.e. taking k(x, z) =
ϕ(x)tϕ(z) for x, z ∈ �n in (2) and (3), where k(., .) is
a given kernel function, the explicit construction of the
nonlinear mapping ϕ(.) will be avoided. In this work, the
Gaussian kernel function of the form

k(x, z) = exp(−μ ‖x − z‖2 )

is considered, where μ > 0 is a parameter.
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2.2 Twin support vector machine (TWSVM)

Assume that the training set consists of m1 and m2 number
of samples belonging to class (+1) and class (−1) respec-
tively so that m = m1 + m2. Further, let the samples
from class (+1) and class (−1) be represented by matrices
A ∈ �m1×n and B ∈ �m2×n respectively.

Similar to SVM, the nonlinear TWSVM problem can be
formulated by mapping the training samples into a higher
dimensional feature space via a kernel function k(., .) and
performing the linear TWSVM classification in the fea-
ture space. More precisely, TWSVM determines two kernel
generated surfaces of the form [9]

K(xt , Ct )w1 + b1 = 0 and K(xt , Ct )w2 + b2 = 0 (4)

such that each one of them will be as close as possible
to samples of one class and also will be at a distance of
at least one unit from samples of the other class where
C = [A ; B ] is an augmented matrix of size m × n and
K(xt , Ct ) = ( k(x, x1), ... , k(x, xm) ) is a row vector in
�m. In fact, unlike solving two eigenvalue problems as in
the case of GEPSVM [16], the nonparallel kernel surfaces
(4) are obtained by solving the following pair of QPPs
defined by [9]

min
(w1, b1, ξ2) ∈ �m+1+m2

1
2

∥∥K(A, Ct )w1 + e1b1
∥∥2 + C2et

2ξ2

subject to
−(K(B, Ct )w1 + e2b1) + ξ2 ≥ e2, ξ2 ≥ 0

(5a)

and

min
(w2, b2, ξ1) ∈ �m+1+m1

1
2

∥
∥K(B, Ct )w2 + e2b2

∥
∥2 + C1 et

1ξ1

subject to
(K(A, Ct )w2 + e1b2) + ξ1 ≥ e1, ξ1 ≥ 0

(5b)

where ξ1 ∈ �m1 , ξ2 ∈ �m2 are vectors of slack vari-
ables; C1, C2 > 0 are the regularization parameters and the
unknowns are w1,w2 ∈ �mand b1, b2 ∈ �.

In practice, the solution of the above pair of primal prob-
lems (5a) and (5b) is obtained by constructing their Wolfe
duals and solving them. Finally, for any test sample x ∈ �n,
its class label is assigned according to its proximity to the
non-parallel surfaces, i.e.

class i = arg min
k=1,2

|K(xt , Ct )wk + bk|, (6)

where |K(xt , Ct )wk + bk| is the perpendicular distance
from x ∈ �n to the hyperplane K(xt , Ct )wk +bk . For more
details on TWSVM, see [9].

2.3 Least squares twin support vector machine
(LS-TWSVM)

Similar to the study of least squares SVM (LS-SVM) [24],
the extension of TWSVM to least squares TWSVM (LS-
TWSVM) was proposed in [11] leading to solving a pair of
QPPs with equality constraints. More precisely, the nonlin-
ear LS-TWSVM is defined as

min
(w1, b1, ξ2) ∈ �m+1+m2

1
2 ||K(A, Ct )w1 + e1b1||2 + C2

2 ξ t
2ξ2

subject to
−(K(B, Ct )w1 + e2b1) + ξ2 = e2

(7a)

and
min

(w2, b2, ξ1) ∈ �m+1+m1

1
2 ||K(B, Ct )w2 + e2b2||2 + C1

2 ξ t
1ξ1

subject to
(K(A, Ct )w2 + e1b2) + ξ1 = e1.

(7b)

In fact, on substituting the equality constraints into the
object functions, the problems (7a) and (7b) become

min
(w1, b1)∈ �m+1

1

2
||K(A,Ct )w1+e1b1||2+C2

2
||K(B,Ct )w1+e2b1+e2||2

(8a)

and

min
(w2, b2) ∈ �m+1

1

2
||K(B, Ct )w2+e2b2||2+ C1

2
|| K(A, Ct )w2+e1b2 − e1 ||2.

(8b)

In this case, their solutions become
[
w1

b1

]
= −(H tH + 1

C2
GtG)−1Ht e2 and

[
w2

b2

]
= (GtG + 1

C1
HtH)−1Gt e1,

where

G = [K(A, Ct ) e1] and H = [K(B, Ct ) e2] (9)

are augmented matrices of size m1 × (m + 1) and m2 ×
(m + 1) respectively. Since LS-TWSVM results in solv-
ing two systems of linear equations it is faster in learning
than TWSVM. Further, its classification accuracy results are
comparable to TWSVM [11].

3 Proposed unconstrained Lagrangian twin SVM
(ULTWSVM)

Following the work of [1, 26], a new variant of TWSVM in
its dual is proposed in this section as a pair of unconstrained
minimization problems whose solutions will be obtained
by the Newton iterative method. We discuss our proposed
model for both the linear and nonlinear cases.
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Instead of assuming the 1-norm of the vector of slack
variables ξ k with weight Ck > 0 in (5a) and (5b) where
k = 1, 2; the square of the 2-norm of ξ k with weight Ck

2
is minimized in our modified TWSVM formulation. In fact,
the linear TWSVM in 2-norm solves the pair of QPPs [9]

min
(w1,b1,ξ2) ∈ �n+1+m2

1
2 ||Aw1 + e1b1||2 + C2

2 ξ t
2ξ2

subject to
−(Bw1 + e2b1) + ξ2 ≥ e2

(10a)

and
min

(w2,b2,ξ1) ∈ �n+1+m1

1
2 ||Bw2 + e2b2||2 + C1

2 ξ t
1ξ1

subject to
(Aw2 + e1b2) + ξ1 ≥ e1,

(10b)

where w1,w2 ∈ �nand b1, b2 ∈ � are the unknowns.
Note that since the non-negativity constraints of the slack

variables will be automatically satisfied at optimality [15],
they have been dropped in (10a) and (10b).

By considering Lagrangian functions and using Karush-
Kuhn-Tucker (KKT) conditions, the Wolfe duals of (10a)
and (10b) can be formulated as QPPs of the following form

min
0 ≤ u1 ∈ �m1

L1(u1) = 1

2
ut

1Q1u1 − et
1u1 (11a)

and

min
0 ≤ u2 ∈ �m2

L2(u2) = 1

2
ut

2Q2u2 − et
2u2 (11b)

where

Q1 =
(

I

C1
+ G(HtH)−1Gt

)
and Q2 =

(
I

C2
+ H(GtG)−1Ht

)
;

(12)

and,G = [A e1] and H = [B e2] are augmented matrices
of sizes m1 × (n + 1) and m2 × (n + 1) respectively. Here
u1 ∈ �m1 and u2 ∈ �m2 are Lagrange multipliers satisfying
the following
[
w1

b1

]

= −(GtG)−1Ht u2 and

[
w2

b2

]

= (H tH)−1Gt u1. (13)

Finally, using the solutions of (11a) and (11b), and (13) one
can determine the end classifier (6).

The nonlinear TWSVM in 2-norm determines two non-
parallel hyperplanes in the feature space of the form (4) by
solving the following pair of QPPs:

min
(w1,b1,ξ2) ∈ �m+1+m2

1
2 ||K(A, Ct )w1 + e1b1||2 + C2

2 ξ t
2ξ2

subject to:
−(K(B, Ct )w1 + e2b1) + ξ2 ≥ e2

and
min

(w2,b2,ξ1) ∈ �m+1+m1

1
2 ||K(B, Ct )w2 + e2b2||2 + C1

2 ξ t
1ξ1

subject to:
(K(A, Ct )w2 + e1b2) + ξ1 ≥ e1

where ξ1 ∈ �m1 , ξ2 ∈ �m2 are slack variable vectors and
C1, C2 > 0 are input parameters.

With the introduction of Lagrange multipliers u1 ∈ �m1

and u2 ∈ �m2 , the duals of the above problems can be
derived again of the same form as (11a) and (11b) where the
matrices Q1, Q2 are defined by (12). However, in this case,
the augmented matrices G and H are given by (9). Using
their solutions and (13), the kernel generated functions (4)
can be easily obtained.

For the purpose of reformulating the pair of duals (11a)
and (11b) into a pair of equivalent, unconstrained mini-
mization problems as our proposed problem formulation
and obtaining their solutions by iterative methods, one can
rewrite them either for the linear or nonlinear case as

min
0 ≤u1 ∈ �m1

L1(u1) = 1

2
ut

1

(
I

C1
+ G Gt

)
u1 − et

1u1 (14)

and

min
0 ≤ u2 ∈ �m2

L2(u2) = 1

2
ut

2

(
I

C2
+ HHt

)
u2 − et

2u2, (15)

where G = G(HtH)−1Ht and H = H(GtG)−1Gtare
matrices of sizes m1 × m2 and m2 × m1 respectively.

Now, let us consider the minimization problem (14). It
can be equivalently written as

min
0 ≤ u1 ∈ �m1

v2 ∈ �m2

(
1

2C1
ut

1u1 − et
1u1

)
+ 1

2v
t
2v2

subject to
v2 = Gt u1 ∈ �m2 .

By introducing the Lagrangian multiplier z2 ∈ �m2 , the dual
of the above problem can be expressed as

max
z2 ∈ �m2

{ min
0 ≤ u1 ∈ �m1

v2 ∈ �m2

[
(

1

2C1
ut

1u1 − et
1u1

)

+ 1

2
vt

2v2 + zt
2(Gtu1 − v2) ] }

= max
z2 ∈ �m2

{ min
0 ≤ u1 ∈ �m1

[
(

1

2C1
ut

1u1 − et
1u1 + zt

2Gtu1

)
]

+ min
v2 ∈ �m2

(
1

2
vt

2v2 − zt
2v2) }. (16)

However, it can be easily verified analytically that [22]

min
0≤u1 ∈ �m1

[
(

1

2C1
ut

1u1 − et
1u1 + zt

2Gtu1

)
] = −C1

2
|| (e1−G z2)+||2

(17)
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and is attained at

u1 = C1 (e1 − G z2)+ .

Similarly,

min
v2 ∈ �m2

(
1

2
vt

2v2 − zt
2v2) = − 1

2
zt

2z2 (18)

when v2 = z2.
Applying the results of (17) and (18) in (16), the dual

problem (14) can be written as an unconstrained, strongly
convex minimization problem in its simpler form

min
z2 ∈ �m2

L̃1(z2) = 1

2
zt

2z2 + C1

2
|| (e1 − G z2)+||2. (19)

By following the above procedure, the dual problem (15)
can be equivalently written as a strongly convex, minimiza-
tion problem of the form

min
z1 ∈ �m1

L̃2(z1) = 1

2
zt

1z1 + C2

2
|| (e2 − H z1)+||2. (20)

Since, the objective functions L̃1(.), L̃2(.) of our proposed
LTWSVM are strongly convex and therefore each prob-
lems (19), (20) will have a unique solution. From the above
discussion, one can easily conclude that if z̃1 and z̃2 are
the unique solutions of (20) and (19) respectively and let
ũ1 = C1 (e1 − G z̃2)+ and ũ2 = C2 (e2 − H z̃1)+ then ũ1

and ũ2 become solutions of the dual problems (14) and (15)
respectively.

The above approach provides an alternative pair of
unconstrained optimization problems instead of the pair of
constrained optimization problems (14), (15).

Remark 1 For the derivation of the proposed problem for-
mulations (19) and (20), it is required that the inverse of
the matrices (H tH) and (GtG) of order (m + 1) should
exist. However, since the matrix (H tH), similarly (GtG), is
positive semi-definite and therefore its inverse may or may
not exist. Following [9], a regularization term σH I may
be introduced where σH > 0 is a very small number
so that the matrix (σH I + HtH) becomes positive defi-
nite whose inverse can be computed using SMW identity
[6], i.e.

(σH I + HtH)−1 = 1

σH

(I − Ht(σH I + HHt)−1H),

having the advantage that it is sufficient to compute (σH I +
H Ht)−1 of order m2 only. Similarly, introducing a regu-
larization term σG I where σG > 0 is very small, one
can compute (σG I + GtG)−1 = 1

σG
(I − Gt(σG I +

GGt)−1G) in which the matrix (σG I + GGt)−1 is of order
m1 only.

Finally, for solving (19) and (20), it is proposed to obtain
their critical points, i.e. finding the roots of the following
system of nonlinear equations by using the Newton iterative
method

∇L̃1(z2) = z2 − C1 Gt (e1 − G z2)+ = 0 and

∇L̃2(z1) = z1 − C2Ht (e2 − H z1)+ = 0. (21)

As each of the above equations of (21) contains the non-
differentiable ‘plus’ function, it is proposed to solve them
by using the Newton iterative method with Armijo step
size using the generalized Hessian approach of [5] and
smoothing technique detailed in [13].

Assume that k = 1, 2. Using generalized derivative, a
generalized Hessian matrix of L̃k(.) can be obtained [8] as

∇2L̃1(z2) = I + C1Gt diag( (e1 − G z2)∗)G and

∇2L̃2(z1) = I + C2Ht diag((e2 − H z1)∗)H.

Clearly ∇2L̃k(.) is symmetric and positive-definite, and
therefore the solution of each system of nonlinear (21) can
be computed using fast Newton iterative algorithm with
Armijo stepsize whose proof of convergence and finite
termination will follow from [14].

The smooth approximation approach is a very popu-
lar method [13] used for solving optimization problems,
especially QPPs of SVM and SVR, whose objective func-
tions are not twice differentiable. In this work, as another
approach, we employ a smoothing technique to make the
objective functions L̃k(.) sufficiently smooth. More pre-
cisely, since the plus function (x)+ appearing in (19) and
(20) is not differentiable, it will be replaced by the smooth
approximation function p(x, α) with smooth parameter α >

0, defined as [13]

p(x, α) = x + 1

α
log(1 + exp(−αx)).

With the above approximation, the smooth reformulation of
(19), for example, will become

min
z2 ∈ �m2

1

2
zt

2z2 + C1

2
|| p(e1 − G z2, α) ||2, (22)

where p(e1 − G z2, α) is a vector in �m1whose i-th com-
ponent can be written as ( p( e1 − G z2, α) )i = p(1 −
Gi z2, α) and Gi is the i-th row of the matrix G .

With the advantage of twice differentiability of the
objective function (22), one can apply the Newton-Armijo
algorithm for solving it.

Remark 2 The Hessian corresponding to the smooth
approximation problem (22) can be computed to be a matrix
of order m2 as

I + C1 Gt ( diag

(
1

1 + exp(α (G z2 − e1))

)
)G .
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Following the work of [13] it can be easily shown that the
Newton method with Armijo stepsize for (22) converges to
its unique solution with quadratic convergence.

The smoothing technique can be extended in a similar
manner to the modified dual problem (20) leading to its
smooth reformulation

min
z1 ∈ �m1

1

2
zt

1z1 + C2

2
|| p(e2 − H z1, α) ||2

whose solution can be obtained by applying the Newton-
Armijo algorithm.

Remark 3 For simplicity reasons, we apply the Newton
algorithm without Armijo stepsize to solve the pair of
problems (19) and (20) numerically by either generalized
derivative or smooth approximation approach.

Remark 4 Throughout in this work, solving (21) by Newton
method using generalized Hessian and smooth approxi-
mation will be denoted by NLWTSVM and SLTWSVM
respectively.

4 Experimental results

To analyze the generalization performance and the compu-
tational efficiency of our proposed ULTWSVM formulation
solved by NLTWSVM and SLTWSVM training algorithms,
experiments were performed on 17 bench mark data sets
from UCI repository [17] and their results were compared
with SVM, LS-TWSVM and TWSVM. All the classifiers
were implemented on a PC running on Windows XP OS
with 64 bit, 3.20 GHz Intel®core™2 Duo processor hav-
ing 8 GB of RAM under MATLAB R2008a environment.
The standard SVM was solved by MOSEK optimization
toolbox for MATLAB available at http://www.mosek.com
and, however, no external optimizer was used for solving
LS-TWSVM, TWSVM, NLTWSVM and SLTWSVM.

In the implementation of NLTWSVM and SLTWSVM,
the values of the termination criteria tol and itmax were set
to 0.001 and 10 respectively. The regularization parame-
ters σH , σG > 0 were chosen to be 10−5. Since smooth
function approximation with parameter α = 5 has shown
successful results [13], we assumed α = 5 in the implemen-
tation of SLTWSVM.

All the datasets were normalized so that each fea-
ture value lies in [0, 1]. The optimal parameter values of
C1 , C2 and μ were obtained by performing 10-fold cross
validation on the training set by varying their values from
the sets {10−5, ... , 105} and {2−5, ... , 25} respectively. With
these optimal values, the classification prediction on the test
set was computed by dividing the whole dataset randomly

into 10 equal parts of which one of them was taken for test-
ing and the remaining parts for training. Finally, the average
test accuracy was taken as the measure of prediction.

In Tables 1, 2, 3 and 4 we have shown the accuracy
results, along with the optimal parameter values and train-
ing time in seconds, by all the classifiers and their averaged
ranks on accuracy values for the linear and Gaussian ker-
nels. We notice immediately from Tables 1 and 3 that
nonlinear classifiers perform better than their correspond-
ing linear classifiers in terms of accuracy but not in terms of
learning time. From Table 1, one can observe that the best
performance in terms of accuracy was shown more number
of times by SVM than the rest of the classifiers. However,
for the case of Gaussian kernel, we observe from Table 3
that NLTWSVM shows the best performance in comparison
with the rest of the learning algorithms considered.

To further analyze statistically the performance of the
proposed LTWSVM and SLTWSVM classifiers with SVM,
LS-TWSVM and TWSVM, as it was suggested in Demsar
[4], we perform a non-parametric Friedman test with the
corresponding post hoc tests. For this purpose, the average
ranks of all the classifiers in terms of prediction accuracy for
the linear and Gaussian kernels were computed and listed in
Tables 2 and 4 respectively. From the tables we notice that
the average ranks of SVM and TWSVM are the least for the
linear and Gaussian kernels respectively.

Under the null hypothesis that all the five algorithms
on the seventeen data sets considered are equivalent, we
compute the Friedman statistics [4] for the linear kernel as
shown below

χ2
F = 12 × 17

5 × 6

[
(2.41182 + 2.88242 + 3.52942 + 2.97062 + 3.20592)

− 5 × 62

4

]
≈ 4.6512,

FF = 16 × 4.6512

17 × 4 − 4.6512
≈ 1.1748,

where FF is distributed according to F -distribution with
(4, 4 × 16) = (4, 64)degrees of freedom. The critical value
of F(4, 64) for the level of significance α = 0.05 is 2.5153.
Since the FF value on RMSE, i.e. 1.1748, is smaller than
the critical value 2.5153 for α = 0.05, there is no significant
difference between the five algorithms. Also, from Table 1
we can observe that LS-TWSVM takes the least training
time and it is followed, in general, by ULTWSVM solved
using the algorithms NLTWSVM and SLTWSVM.

For the Gaussian kernel, we notice from Table 3 that the
number of times the best accuracy obtained by SVM, LS-
TWSVM, TWSVM, NLTWSVM and SLTWSVM become
3, 4, 3, 5 and 3 respectively. This gives an indication
of the effectiveness of the proposed problem formulation
solved by NLTWSVM. To analyze statistically the com-
parative performance of all the algorithms, the Friedman

http://www.mosek.com
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Table 1 Performance comparison of our proposed methods NLTWSVM and SLTWSVM with LS-TWSVM, TWSVM and SVM on real world
datasets. Linear kernel was employed. Time is for training in seconds

Datasets SVM LS -TWSVM TWSVM NLTWSVM SLTWSVM

(Total size) (C) (C1=C2) (C1=C2) (C1=C2) (C1=C2)

(time) (time) (time) (time) (time)

Australian Credit 85.65 ± 5.22 86.08 ± 5.51 84.78 ± 4.00 86.52 ± 3.68 80.29 ± 3.36

(690 × 14) (102) (100) (100) (101) (10−1)

(10.8669) (0.0792) (0.9606) (0.1887) (0.1202)

Breast-cancer 96.79 ± 2.80 96.23 ± 4.54 95.93 ± 5.19 95.93 ± 5.19 95.93 ± 5.19

(683 × 9) (100) (101) (100) (100) (100)

(10.4799) (0.0761) (0.7339) (0.1353) (0.2786)

Cleveland 83.85 ± 6.98 83.66 ± 7.10 84.52 ± 6.52 84.51 ± 8.06 84.51 ± 8.06

(297 × 13) (102) (100) (100) (10−1) (10−1)

(1.9312) (0.0102) (0.2190) (0.0123) (0.0144)

Haberman 73.47 ± 10.05 75.80 ± 9.15 74.12 ± 8.94 74.45 ± 8.69 74.45 ± 8.69

(306 × 3) (10−5) (10−1) (10−5) (10−2) (10−2)

(2.0308) (0.0108) (0.2569) (0.0133) (0.0132)

Ionosphere 87.48 ± 9.23 87.22 ± 9.27 83.78 ± 13.17 74.94 ± 17.47 80.07 ± 14.35

(351 × 33) (101) (10−1) (10−2) (10−2) (10−2)

(2.7552) (0.0164) (0.098) (0.0214) (0.0181)

Tic-Tac-Toe 65.35 ± 6.71 65.41 ± 6.70 65.35 ± 6.71 68.38 ± 5.96 68.38 ± 5.96

(958 × 9) (10−5) (101) (100) (100) (100)

(20.5388) (0.1685) (0.4072) (0.2060) (0.3903)

Transfusion 76.24 ± 15.54 77.06 ± 15.48 76.24 ± 15.54 77.17 ± 14.5 77.17 ± 14.5

(748 × 4) (10−5) (100) (100) (100) (100)

(12.3275) (0.0878) (1.6812) (0.1291) (0.1703)

Votes 95.86 ± 3 95.90 ± 4.52 95.87 ± 3.52 95.87 ± 3.52 95.87 ± 3.52

(435 × 16) (100) (10−1) (10−5) (10−5) (10−5)

(4.1913) (0.0244) (0.3925) (0.0187) (0.0158)

WDBC 97.71 ± 1.67 96.49 ± 3.09 94.20 ± 5.49 94.56 ± 4.17 94.56 ± 4.17

(569 × 30) (100) (10−1) (100) (100) (100)

(7.2651) (0.0492) (0.4436) (0.1007) (0.2399)

WPBC 79.92 ± 8.37 81.00 ± 8.75 76.37 ± 10.46 74.82 ± 12.86 66.92 ± 13.76

(194 × 33) (104) (100) (101) (101) (101)

(0.8419) (0.0035) (0.2337) (0.0124) (0.0265)

CMC 74.96 ± 4.93 75.06 ± 4.76 74.96 ± 4.93 74.96 ± 4.93 74.96 ± 4.93

(1473 × 9) (10−5) (100) (100) (100) (103)

(49.8832) (0.4853) (0.9598) (0.7930) (0.9491)

German 76.40 ± 5.87 75.60 ± 6.39 72.20 ± 3.61 76.20 ± 6.01 76.20 ± 6.01

(1000 × 24) (100) (100) (10−1) (100) (100)

(23.035) (0.1853) (0.9073) (0.2655) (0.4550)

Heart-statlog 84.07 ± 4.29 83.33 ± 3.59 83.70 ± 3.58 83.70 ± 4.35 83.70 ± 6.1

(270 × 13) (10−1) (100) (100) (100) (103)

(1.5945) (0.0070) (0.2043) (0.0172) (0.0587)

Sonar 77.43 ± 7.06 73.33 ± 12.33 74.02 ± 10.37 75.93 ± 10.38 75.93 ± 10.38

(208 × 60) (10−1) (100) (100) (100) (100)

(0.9600) (0.0041) (0.1310) (0.0143) (0.0291)

Bupa Liver 66.28 ± 11.95 64.57 ± 14.51 62.28 ± 22.44 57.42 ± 6.38 57.42 ± 6.38

(345 × 6) (103) (100) (102) (10−1) (10−1)

(1.5513) (0.0140) (0.2175) (0.0277) (0.4412)



A new approach for training Lagrangian twin support vector machine 131

Table 1 (continued)

Datasets SVM LS -TWSVM TWSVM NLTWSVM SLTWSVM

(Total size) (C) (C1=C2) (C1=C2) (C1=C2) (C1=C2)

(time) (time) (time) (time) (time)

Pima Indians 77.53 ± 5.26 77.14 ± 5.51 77.53 ± 6.06 77.27 ± 5.51 77.27 ± 5.51

(768 × 8) (104) (100) (100) (100) (100)

(7.9935) (0.0940) (1.2209) (0.2194) (1.0437)

Splice 84.93 ± 2.76 84.37 ± 2.63 84.40 ± 2.24 84.46 ± 2.52 84.46 ± 2.52

(3175 × 60) (10−1) (100) (100) (100) (100)

(169.3800) (3.6182) (39.8413) (19.8909) (40.2089)

Table 2 Average ranks of
SVM, LS-TWSVM, TWSVM,
NLTWSVM and SLTWSVM
with linear kernel on accuracy
values

Datasets SVM LS-TWSVM TWSVM NLTWSVM SLTWSVM

Australian Credit 3 2 4 1 5

Breast-cancer 1 2 4 4 4

Cleveland 4 5 1 2.5 2.5

Haberman 5 1 4 2.5 2.5

Ionosphere 1 2 3 5 4

Tic-Tac-Toe 4.5 3 4.5 1.5 1.5

Transfusion 4.5 3 4.5 1.5 1.5

Votes 5 1 3 3 3

WDBC 1 2 5 3.5 3.5

WPBC 2 1 3 4 5

CMC 3.5 1 3.5 3.5 3.5

German 1 4 5 2.5 2.5

Heart-statlog 1 5 3 3 3

Sonar 1 5 4 2.5 2.5

Bupa Liver 1 2 3 4.5 4.5

Pima Indians 1.5 5 1.5 3.5 3.5

Splice 1 5 4 2.5 2.5

Average Rank 2.4118 2.8824 3.5294 2.9706 3.2059

Table 3 Performance comparison of our proposed methods NLTWSVM and SLTWSVM with LS-TWSVM, TWSVM and SVM on real world
datasets. Gaussian kernel was employed. Time is for training in seconds

Datasets SVM LS-TWSVM TWSVM NLTWSVM SLTWSVM

(Total size) (C,μ) (C,μ) (C1=C2,μ) (C1=C2,μ) (C1=C2,μ)

(time) (time) (time) (time) (time)

Australian Credit 86.23±6.00 86.08± 5.55 87.25 ± 4.26 87.25± 4.26 87.25 ± 4.26

(690 × 14) (10−1, 22) (100, 23) (10−5, 23) (10−5, 23) (10−5, 23)

(12.1111) (0.6154) (1.9165) (0.9894) (1.0456)

Breast-cancer 97.08 ± 2.55 97.24 ± 2.10 97.37 ± 1.65 97.38 ± 3.33 97.38 ± 3.33

(683 × 9) (10−1, 2−1) (10−1, 25) (100, 23) (10−3, 21) (10−3, 21)

(11.9403) (0.5914) (1.5393) (1.0080) (1.0339)

Cleveland 84.49 ± 8.08 83.66 ± 7.10 84.51 ± 7.10 85.51 ± 7.74 85.51 ± 7.74

(297 × 13) (101, 23) (10−1, 25) (100, 24) (100, 25) (100, 25)

(2.1994) (0.0982) (0.3680) (0.1768) (0.1828)

Haberman 74.49 ± 10.17 76.12 ± 8.76 75.13 ± 7.97 75.78 ± 9.51 75.78 ± 9.51

(306 × 3) (103, 20) (100, 21) (10−5, 25) (100, 22) (100, 22)

(2.3345) (0.1003) (0.4317) (0.1812) (0.1893)
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Table 3 (continued)

Datasets SVM LS-TWSVM TWSVM NLTWSVM SLTWSVM

(Total size) (C,μ) (C,μ) (C1=C2,μ) (C1=C2,μ) (C1=C2,μ)

(time) (time) (time) (time) (time)

Ionosphere 92.03 ± 5.97 93.05 ± 4.39 94.87 ± 2.95 94.02 ± 4.14 93.48 ± 5.63

(351 × 33) (100, 20) (10−5, 2−2) (10−1, 22) (100, 22) (10−4, 2−1)

(3.1302) (0.1437) (0.4844) (0.2767) (0.2653)

Tic-Tac-Toe 99.16 ± 0.96 98.33 ± 5.27 99.48 ± 1.01 99.58 ± 1.01 99.27 ± 1.40

(958 × 9) (102, 20) (10−1, 23) (10−1, 20) (104, 20) (100, 20)

(23.5799) (1.2450) (2.9997) (2.8091) (3.2542)

Transfusion 78.50 ± 13.05 79.46 ± 11.67 79.44 ± 11.99 79.83 ± 11.46 76.64 ± 14.64

(748 × 4) (100, 2−3) (100, 20) (10−1, 20) (100, 2−1) (101, 2−1)

(14.133) (0.6950) (1.9290) (1.2318) (1.7508)

Votes 96.09 ± 2.85 96.13 ± 3.03 96.56 ± 3.90 96.79 ± 3.07 96.34 ± 3.74

(435 × 16) (102, 24) (100, 22) (100, 24) (101, 25) (101, 25)

(4.7922) (0.2212) (0.6054) (0.4049) (0.5094)

WDBC 98.07 ± 1.29 97.01 ± 2.62 98.24 ± 1.17 98.25 ± 1.43 98.42 ± 1.00

(569 × 30) (101, 2−1) (100, 20) (100, 21) (101, 21) (100, 21)

(8.2767) (0.4203) (1.2894) (0.8300) (1.1044)

WPBC 82.47 ± 8.95 79.50 ± 10.12 74.79 ± 8.32 78.84 ± 9.31 79.92 ± 8.48

(194 × 33) (102, 21) (100, 22) (10−2, 20) (101, 24) (101, 23)

(0.9514) (0.0407) (0.1816) (0.0753) (0.0943)

CMC 75.02 ± 4.73 75.27 ± 4.62 75.02 ± 4.89 74.96 ± 4.93 75.09 ± 4.81

(1473 × 9) (104, 22) (105, 2−5) (102, 21) (100, 24) (103, 22)

(58.4523) (4.9207) (10.5294) (5.6026) (9.3109)

German 76.90 ± 5.82 75.90 ± 4.28 75.70 ± 4.62 76.50 ± 4.77 76.50 ± 4.77

(1000 × 24) (102, 24) (100, 23) (10−1, 24) (10−1, 24) (10−1, 24)

(26.1972) (1.3786) (3.1892) (2.3681) (2.4934)

Heart-statlog 84.07 ± 4.95 84.07 ± 6.06 84.81 ± 5.37 84.44 ± 4.55 84.44 ± 4.55

(270 × 13) (101, 23) (10−1, 25) (100, 24) (10−1, 22) (10−1, 22)

(1.8238) (0.0806) (0.3211) (0.1451) (0.1457)

Sonar 90.40 ± 5.48 90.95 ± 6.12 90.40 ± 5.00 88.02 ± 6.78 90.40 ± 5.00

(208 × 60) (101, 20) (102, 20) (10−4, 20) (10−4, 20) (102, 20)

(1.1063) (0.0530) (0.1706) (0.1032) (0.1296)

Bupa Liver 70.57 ± 8.62 68.00 ± 9.21 68.28 ± 8.45 67.42 ± 5.25 67.42 ± 5.25

(345 × 6) (105, 23) (100, 21) (10−1, 20) (100, 21) (100, 21)

(1.7476) (0.1339) (0.5223) (0.1729) (0.5177)

Pima Indians 77.79 ± 4.87 77.92 ± 6.15 77.66 ± 5.00 77.14 ± 5.44 77.14 ± 5.44

(768 × 8) (103, 23) (100, 21) (100, 23) (100, 21) (100, 21)

(8.8799) (0.7512) (2.7521) (1.1933) (1.8972)

Splice 91.50 ± 1.15 91.57 ± 1.43 92.07 ± 1.44 91.47 ± 1.57 91.47 ± 1.57

(3175 × 60) (101, 21) (102, 21) (10−5, 21) (10−1, 21) (10−1, 21)

(178.36) (25.3465) (73.3826) (52.1420) (57.5960)

statistic under the null hypothesis that all the algorithms are
equivalent can be computed as

χ2
F = 12 × 17

5 × 6

[
(3.47062 + 3.20592 + 2.73532 + 2.76472 + 2.82352)

− 5 × 62

4

]
≈ 2.8601,

FF = 16 × 2.8601

17 × 4 − 2.8601
≈ 0.7025.

Since the FF value on RMSE, i.e. 0.7025, is again smaller
than the critical value 2.5153 for α = 0.05, there is no
significant difference between the five algorithms, i.e. we
conclude that none of the methods are statistically better
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Table 4 Average ranks of
SVM, LS-TWSVM, TWSVM,
NLTWSVM and SLTWSVM
with Gaussian kernel on
accuracy values

Datasets SVM LS-TWSVM TWSVM NLTWSVM SLTWSVM

Australian Credit 4 5 2 2 2

Breast-cancer 5 4 3 1.5 1.5

Cleveland 4 5 3 1.5 1.5

Haberman 5 1 4 2.5 2.5

Ionosphere 5 4 1 2 3

Tic-Tac-Toe 4 5 2 1 3

Transfusion 4 2 3 1 5

Votes 5 4 2 1 3

WDBC 4 5 3 2 1

WPBC 1 3 5 4 2

CMC 3.5 1 3.5 5 2

German 1 4 5 2.5 2.5

Heart-statlog 4.5 4.5 1 2.5 2.5

Sonar 3 1 3 5 3

Bupa Liver 1 3 2 4.5 4.5

Pima Indians 2 1 3 4.5 4.5

Splice 3 2 1 4.5 4.5

Average Rank 3.4706 3.2059 2.7353 2.7647 2.8235

than the rest. Finally, regarding the computational learning
speed, NLTWSVM and SLTWSVM show faster learning
speed than SVM and TWSVM except for one data set.
The overall superiority of the proposed novel formulation
solved by the two iterative algorithms clearly illustrates its
effectiveness and applicability.

5 Conclusion and future work

By reformulating the pair of Lagrangian dual problems of
the twin support vector machine, a novel equivalent prob-
lem formulation was proposed in this work as a problem
of solving a pair of unconstrained minimization problems.
Since the objective functions contain the non-smooth ‘plus’
function, their solutions were obtained by Newton itera-
tive method using the well-known generalized Hessian and
smooth approaches. The efficiency of the proposed model
in terms of classification accuracy and learning time was
demonstrated by performing numerical experiments and
comparing their results with SVM, least squares twin SVM
and twin SVM. In summary, a simple problem formula-
tion, very simple MATLAB coding and the computational
efficiency clearly illustrate the effectiveness and the appli-
cability of our proposed model. The future work will be on
the application of semi-smooth approach of [26] for solving
this novel problem formulation.
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