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Abstract Probabilistic Roadmaps are increasingly being
used for robot motion planning. The method makes use
of an offline construction of a roadmap. Even though the
method is offline, it needs to be initially constructed as
quickly as possible for an efficient and near-real time ini-
tial motion of the robot. The challenge lies in sampling of
multiple narrow corridors wherein the probability of sam-
ples is very low. It is important to discover all homotopic
groups very early to make good initial decisions from the
roadmap. Missing out of even a single homotopic group can
lead to no solution or poor solutions. The proposed method
uses a multi-strategized approach for sampling of the initial
points and then intelligently constructs edges between the
points in a multi-strategized manner. The aim is to increase
sampling at the narrow corridors and then to facilitate edge
connectivity of nodes inside the corridor with the rest of
the roadmap, so as to lead to the discovery of all possible
homotopic groups between any pair of sources and goals.
The approach results in a better performance as compared
to uniform sampling and obstacle based sampling.
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1 Introduction

Probabilistic Roadmaps (PRM) [1, 2] are extensively used
for motion planning of a single or multiple mobile robots.
The methods first construct a roadmap (ζ<V,E> ) of the
obstacle-free configuration space (Cf ree) by sampling of
points which prospectively become the vertices of the
roadmap (V ) and then connecting the neighboring vertices
by using a local search algorithm using trajectories which
become the edges of the roadmap (E). A popular method
is to use a straight line collision checking algorithm as
the local planner. An all-connected approach checks for
collisions between all pairs of vertices. The approach how-
ever has a very high computational complexity making it
worthless when the initial roadmap needs to be computed
in a small computational time. It is common to limit the
collision-checking to only k-nearest neighbors [3, 4] or ver-
tices within a radius of k [3, 5] to limit connectivity and
reduce the computation time. The roadmap (ζ ) is then used
for the online planning. Since the number of vertices and
edges are limited, a near-real time response to the motion
planning queries is realizable.

The algorithm comes under the class of sampling based
approaches which try to generate a representation of the
collision-free configuration space by generation of random
samples. The sampling based approaches face the problem
of narrow corridor. A narrow corridor has a very small vol-
ume of free-space, sandwiched between obstacles at a little
distance in at least one dimension. The distance denotes the
narrowness of the corridor. Hence the probability of gen-
eration of random samples inside the narrow corridors is
very low which cannot be located easily. Several common
techniques have been used for solving the narrow corridor
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problem. In obstacle-based sampling [6] a sample generated
inside an obstacle is promoted to the nearest obstacle-
free region. The samples generated inside the corridors
hence include the samples generated in the nearby obstacles
which make the narrow corridor, the probability of gen-
eration of which is significantly high. Gaussian sampling
[7] is another popular method wherein the probability of
acceptance of a sample diminishes in a Gaussian manner
from the obstacle boundary. By encouraging the generation
of samples near the obstacle boundary, the possibility of
discovering the narrow corridor increases significantly.

Bridge-test [8] specifically aims in sampling inside the
narrow corridor. In this method every sample is checked
whether it lies inside a narrow corridor. For every sample
the test generates two more samples in opposing directions.
If both happen to be placed inside obstacles, while the ini-
tial sample is obstacle-free, the sample is said to be placed
inside a narrow corridor. A variety of sampling techniques
may be generated by their hybrids or adaptive combina-
tions [8, 9]. The hybrids certainly benefit from the combined
advantages of the base approaches, however getting a mix
of narrow corridor biased sampling and a general obstacle-
prone sampling is always hard. Besides, discovery of a
narrow corridor doesn’t necessarily redundantly and ade-
quately connect it to the rest of the roadmap, a challenge
largely left in the literature.

A large and complicated configuration space may have
multiple narrow corridors amidst numerous wide open
spaces. The narrow corridors are initially hard to cite and
connect in a roadmap architecture. While the roadmaps are
intended to be initially constructed in an offline manner,
requirements of rapidly changing environments, fast initial
motion of the robot or robotic team, etc. may demand a fast
and near-real time construction of the roadmap. Discovering
all the narrow corridors and redundantly connecting them
with the roadmap plays an important role towards the opti-
mality and completeness of the solution. The roadmap must
consist of the least number of vertices and edges (for mini-
mizing roadmap construction and query time), while leading
to discovery of all possible homotopic groups of paths
between all possible sources and goals. Two paths are said to
be in the same homotopic group [10] if one can be produced
from the other by multiple infinitely small deformations,
such that all intermediate paths are collision-free. The con-
cept is shown in Fig. 1. Discovery of all homotopic groups
guarantees a path for every pair of valid sources and goals,
or in simple words the approach is complete. A deforma-
tion retract [11] is the roadmap formed by shrinking all open
spaces and reducing them to simple curves. Even though
a deformation retract of the configuration space serves as
an ideal roadmap, some redundant nodes and edges may be
acceptable and even preferable to cater to optimality.

Fig. 1 Homotopies. TrajectoryB andC belong to the same homotopic
group, while A does not belong to the homotopic group of B and C

Elimination of redundant edges and cycles is one of the
most primitive ways of reducing the roadmap construction
as well as the query time. Visibility PRM and related tech-
niques [12, 13] sample out the configuration space with
the same fundamental, however redundancy is needed to
mine out all possible homotopic groups ultimately affect-
ing the roadmap optimality. Redundant edges may later be
admitted [14, 15]. An alternative to PRM is the Rapidly-
exploring Random Tree (RRT) [16, 17] algorithm which is
a single-query algorithm and attempts to quickly compute
a path between the source and the goal without necessar-
ily trying to explore the complete search space. RRT* [3,
18] algorithm can use excess computation time to iteratively
improve the solution, thus addressing the issue of optimal-
ity in the use of RRT algorithm. The tree is re-wired every
time a better path is discovered in order to maintain the tree-
structure. The approach does not address the issue of narrow
corridors, and the normal processing of the algorithm can
take prolonged time to find a redundant and shorter way
through a narrow corridor. Attempts are further made to
extend the computational ability of RRTs for the produc-
tion of roadmap, like the Sampling based Roadmap of Trees
(SRT) [19] and Rapidly-exploring Random Graphs [20]. In
an earlier work by the author, RRT style exploration was
used to construct a redundant roadmap in a time-efficient
iterative manner [21]. These techniques however are not
well suited for narrow corridor biased sampling.

Phillips et al. [22] expanded the trees towards better
areas, wherein the affinity towards a region was measured
by the order and degree of the node in the graph, the number
of neighbors and its cost as computed by the A* algorithm.
The different metrics made the nodes inside narrow cor-
ridors more likely to expand, however did not necessarily
encourage entering and thereafter travelling the corridor in
order to fully travel through the corridor with the goal at the
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other side. Kim et al. [23] proposed a Linear Predictor based
Uniform State Sampler, wherein the aim is to generate uni-
form samples and to further compute a control signal that
can make the transition. Local linearity was assumed in the
derivation of this control signal. The approach was imple-
mented in parallel using a GPU. This approach as well was
not centric to narrow corridors.

Approaches like graph spanners [24, 25] restrict the num-
ber of edges by removing redundant edges if they do not
result in getting paths worse by a factor or more than k.
However they do not solve the problem of timely roadmap
construction at the first instance. Given an initial roadmap,
approaches like Adaptive Roadmap [26, 27] and Elastic
Roadmap [28, 29] can be used for maintenance and exten-
sion of the roadmap for a dynamic environment. If initially
a good roadmap can be obtained, it becomes possible to
model the environment dynamics to adapt the roadmap as
the environment changes. The adaptations may even be
applied to only the trajectory being followed by the robot
(e.g. [30]), obtained from some roadmap based approach.

The key contributions of the work are: (a) A narrow cor-
ridor sampling strategy is proposed which combines the
obstacle based sampling strategy along with a bridge-test
sampling strategy. The resulting sampling strategy is a sin-
gle hybrid strategy and not adaptive independent calls to
different strategies in an ensemble architecture popular in
the literature. (b) The narrow corridor sampling strategy
is called in conjuncture with the other strategies to suit
diverse environment types including the ones with numer-
ous narrow corridors, no narrow corridors and wide open
spaces. (c) It is proposed to add relevant and strategized
vertices in the edge connectivity mechanism to aid in redun-
dant roadmap connectivity. (d) A multi-strategized edge
connectivity mechanism is proposed to aid in redundant
connectivity between all vertices of the roadmap, thereby
also leading to complete homotopic group discovery. (e)
The proposed approach is seen to be significantly better than
obstacle based and uniform sampling.

The paper is organized as follows. Section 2 presents
the algorithm framework. This includes the roadmap gen-
eration phase (Sections 2.1–2.3) as well as the query phase
(Section 2.4). The roadmap generation phase includes the
addition of vertices (Section 2.1) and edges (Section 2.2),
followed by the pseudo-codes (Section 2.3). The results are
given in Section 3. Section 4 gives the conclusions.

2 Algorithm

The first task associated with the algorithm is to construct a
roadmap (ζ<V,E> ) consisting of the vertices V and edges
E, which can then be used for robot path planning. Let the

configuration space be given by C and let the free config-
uration space be given by Cf ree. Let Cobs be the obstacle
prone configuration space, which gives Cf ree = C\Cobs .
Non-strictly, first the vertices are computed. Once a set of
vertices are available, they are connected by adding some
edges.

2.1 Computing Vertices

The first task is computation of the vertices that make up the
roadmap. Three strategies are proposed to generate samples
which become the vertices of the roadmap:

• Narrow Corridor Sampling Strategy, which attempts to
sample out all narrow corridors;

• Obstacle based Sampling Strategy, which produces
samples around obstacles which are critical for a
roadmap; and

• Uniform Sampling, to add samples for optimality in
case of wide open spaces.

The first strategy is known as Narrow Corridor Sam-
pling strategy, using which the emphasis is only to find
the samples which lie inside some narrow corridor. Narrow
corridors are important to sample out almost completely in
order to expect discovery of all possible homotopic groups
in the generated roadmap between all possible sources and
goals.

In this strategy, we first sample out a point in the obsta-
cle prone configuration space (qo = U(Cobs)). A random
direction is chosen. The sample is made to travel in the ran-
dom direction, until it reaches the free configuration space.
This advancement of the sample from obstacle-prone con-
figuration space to the free configuration space is shown by
(2). The algorithm uses a bi-resolution strategy to search
forqf ree

o by first searching at a higher resolution by making
steps of large sizes. The first point in the free configura-
tion space is taken. A travel is then made inward towards
the obstacle using a finer resolution by travelling with small
step sizes to precisely get the obstacle boundary.

q
f ree
o = qo + d

(
θ̂
)

: qo + d
(
θ̂
)

∈ Cf ree,

qo + d1

(
θ̂
)

∈ Cobs∀d1 < d (1)

Here θ̂ is a randomly sampled direction. If θ̂ does not result
in a point in the free but bounded configuration space, a new
direction is chosen.

To test whether the point qf ree
o represents a point inside a

narrow corridor, bridge-test is used. A point qD is generated

at a distance of D from q
f ree
o (that is qD = q

f ree
o +D

(
θ̂
)
).

If qD is collision-prone, the point q
f ree
o is said to be inside

a narrow corridor of maximum width D. This is because
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an obstacle exists at direction −θ̂ from q
f ree
o known from

the sampling philosophy of q
f ree
o . Subsequently it is known

that an obstacle exists at the direction −θ̂ from q
f ree
o known

from the generation of qD . Since an obstacle exists at both
the opposing directions, the bridge-test criterion holds. Here
D is the maximum width of the narrow corridor that the
algorithm attempts to sample, and is an algorithm parameter.

The attempt is to sample out the point in the middle of
the narrow corridor so as to facilitate easier connection of
the sample to the rest of the roadmap, for which a point in
the other corridor boundary is required given by (2). The
sampled point inside the narrow corridor is given by (3). The
notations are explained in Fig. 2.

q
f ree
D = qD − d

(
θ̂
)

: qD − d
(
θ̂
)

∈ Cf ree,

qD − d1

(
θ̂
)

∈ Cobs∀d1 < d. (2)

qC =
(
q

f ree
o + q

f ree
D

)
/2. (3)

The least distance between any two vertices of a roadmap
is taken to be � (≤ D). This disallows placing vertices
too close to each other, thus resulting in too many vertices.
In order for the vertex qC to be admissible in the roadmap
with vertices V , this distance condition must hold (that is
‖qC − v‖ ≥ �∀v ∈ V ).

The maximum attempts of finding a narrow corridor are
restricted to nC . A good narrow corridor sampling strat-
egy must find all the narrow corridors, if they exist, while
exit gracefully after a small computation if the environment
is free of narrow corridors. The proposed approach uses a
combination of obstacle-based sampling strategy along with
a bridge-test to quickly discover the narrow corridor. The
use of bridge-test alone results in poor probability of find-
ing a narrow corridor (which is still larger than a uniform

Fig. 2 Sampling inside a narrow corridor

sampling), while obstacle based sampling alone can result
in generation of most of the samples around obstacles and
not necessarily the narrow corridors, if the narrow corridor
is a small part of the otherwise cluttered environment.

Samples inside the narrow corridors are of significant
value in quick generation of roadmaps. However the strat-
egy is supplemented by two other strategies, which also
suit cases of low or no occurrence of narrow corridors; and
spaces with sparsely occupied obstacles. The second strat-
egy of use is an obstacle based sampling strategy where
random samples in the obstacle prone configuration space
are generated (qo = U(Cobs)) and then moved to the near-
est point in the free configuration space (qf ree

o ) as indicated
in (2). The strategy is same as the initial generation of sam-
ple at the obstacle boundary in the narrow corridor sampling
and hence the discussions are not being repeated. For a sam-
ple to be admissible as per this strategy, it is required to
have at least a clearance of �, which gives enough scope for
the edge connection algorithm to connect the sample redun-
dantly to the rest of the roadmap. For this reason the q

f ree
o

sample obtained (2) is further moved in the same direction
by a magnitude of � to obtain a sample qB given by (4).

qB = q
f ree
o + �

(
θ̂
)

. (4)

The sample is admitted in the roadmap if it is collision-free
and at a distance of more than � from any other vertex in
the roadmap (that is qB ∈ Cf ree ∧ ‖qB − v‖ ≥ �∀v ∈ V ).
Failure of admissibility due to the lack of maintenance of
the minimal clearance is an indication of a narrow corri-
dor which is admissible as per the narrow corridor sampling
strategy. The strategy is applied for a maximum of nB

attempts.
The third and the last strategy is to uniformly sample the

free configuration space (q = U(Cf ree)). The strategy is
applied for a very small number of attempts (nU) as it is only
of value in sparsely occupied scenarios while in some cases
it may also result in connecting some challenging samples
to the rest of the roadmap.

The heuristics behind the individual sampling strategies
are taken straight from the literature, which are adapted for
the specific use. The parameters D and � are rather stan-
dard from the literature and may hence be conveniently set
based on the literature studies. The parameters nC , nB and
nU are important parameters for the algorithm functioning.
However these are easy to set, knowing that the success
rate of the narrow corridor sampler is much lower than the
obstacle based sampler, which is still lower than the uni-
form based sampler, while the importance of the individual
samplers is in the other order. So the maximum percent-
age of time is allocated to the narrow corridor sampler, a
smaller one to the obstacle based sampler, while for the uni-
form sampler a very few samples need to be inserted. Using
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success rates, connectivity measures, obstacle density mea-
sures, etc. can help in parameter settings, however these
methods themselves add more parameters to the algorithm.

2.2 Computing Edges

Fundamentally the aim of this step is to connect the ver-
tices generated by the strategies mentioned in Section 2.1
into a roadmap structure using edges (E). However the pro-
cess of connecting the different vertices may involve adding
new vertices. At any time the roadmap may have vertices
in disjoint set of connected components. Two vertices a and
b lie in the same connected component if there is a path
from a to b and vice versa as per the current roadmap.
The edge connectivity function is forcibly made symmet-
ric and hence all edges are non-directed and a reverse path
always exists. Initially all vertices are into different discon-
nected components. Some of the connections are very easy
and less time consuming to make. Hence, stating from an
all-disjoint graph, the algorithm initially adds up all simple
connections, resulting in only a few disjoint components.
The addition of edges then aims at making sure all the com-
ponents are connected, to aid in completeness and discovery
of all homotopic groups; as well as to add redundant con-
nections for the sake of optimality. The former is done by
focusing on means to add vertices and edges in pursuit of
connections between otherwise disconnected components.
The latter is done by exploration through different strate-
gies, namely leaf exploration, hash based exploration and
random exploration. The connected components along with
the associated terminology are better explained by Fig. 3.

2.2.1 Terminology

Let κ(a) denote the collection of connected vertices to
which a belongs. Initially all vertices are disconnected as
no edges exist and hence κ (a) = {a} ∀a ∈ V . Since con-
nectivity of the roadmap is of importance and disconnected

Fig. 3 Disjoint set of vertices

components are discouraged, we maintain the following
data structures throughout the edge connectivity procedure:

• |κ(a), κ(b)|: The distance between the connected com-
ponents κ(a) and κ(b), defined as the minimum dis-
tance between any vertex x in κ(a) with any vertex y in
κ(b), or (5).

|κ (a) , κ (b)| = min
x∈κ(a),y∈κ(b)

‖x − y‖ . (5)

• x[κ(a), κ(b)]: The vertex x in κ(a) which records the
minimum distance of |κ(a), κ(b)|with any vertex y in
κ(b), or (6).

x [κ (a) , κ (b)] = arg min
x∈κ(a),∀y∈κ(b)

‖x − y‖ . (6)

• y[κ(a), κ(b)]: The vertex y in κ(b) which records the
minimum distance of |κ(a), κ(b)|with any vertex x in
κ(a), or (7).

y [κ (a) , κ (b)] = arg min
y∈κ(b),∀x∈(a)

‖x − y‖ . (7)

• κ : The set of distinct non-components in the roadmap.
Initially all components are non-connected and hence
κ = V . In general, κ = ⋃

a

κ (a).

• Failed(κ(a), κ(b)): The number of failed attempts in
connecting two disjoint sets vertices κ(a) and κ(b).

• �(z): The configuration space is mapped to a lower
dimensional space �(.) using a hash function and every
cell z of the reduced space stores a count of the total
number of vertices which lie within that cell. The max-
imum occupancy of the cell z, denoted by | �(z)|, is
given as the volume of the free configuration space
(Cf ree) covered by that cell. The ratio �(z)/| �(z)|is
known as the desirability ratio of the cell and corre-
sponds to the degree of under-occupancy of the cell.

2.2.2 Initial edge connection

A limited connectivity roadmap is aimed, wherein connec-
tions are attempted between any vertex to the neighboring
k vertices. Initially there are no edges and hence an initial
attempt to get some connected roadmap is made by trying
an initial edge connection strategy. The roadmap (not nec-
essarily completely connected) is then extended by adding
edges (and vertices) using a variety of other strategies.

Initially an attempt is made to connect every vertex to the
neighboring k vertices. Initially only straight line connec-
tions between the vertices are attempted. In order to test for
an edge between a vertex v1 and a neighboring vertex v2,
one travels in a straight line from v1 to v2. If no obstacle
is encountered on the way, the edge is added. However it is
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possible that the traversal from v1 to v2 results in encoun-
tering an obstacle at a position o1. The point o1 is a good
candidate for inclusion in the roadmap, however as per the
sampling strategy a clearance of � is preferable unless the
sample is inside a narrow corridor. So the point o1 is moved
at a distance of � away from the obstacles by travelling the
same distance towards v1. The same concepts are given by
(9)–(10).

o1 = v1 + d
(
θ̂
)

: v1 + d1

(
θ̂
)

∈ Cf ree∀d1 < d,

v1 + d
(
θ̂
)

∈ Cobs. (8)

o�
1 = o1 − �

(
θ̂
)

. (9)

The vertex o�
1 can only be added if the distance between

points o�
1 and v1 is at least 2� apart from the usual admis-

sibility conditions for vertices. Distances smaller than this
magnitude reflect that the points o�

1 and v1 are nearly the
same and hence an additional vertex is not preferable. The
notations are shown in Fig. 4.

v1 and v2 may be far apart and in many cases belonging
to different connected components of the roadmap. Absence
of a straight line connection necessitates the use of local
search methods to aim a connection. In this implementation
redundant connections or useful cycles are also of value and
hence attempting such connections is of value. Local search
algorithms usually take a significant time, especially if the
participating vertices are far away. A better way of attempt-
ing connections is by trying to add vertices which result in
a connection between the two vertices. Searching for such
bridging vertices in the entire region may be too costly with
not necessarily a good probability of connection and a single
vertex may not be capable of connecting the two vertices.

Fig. 4 Adding new vertices in initial edge connectivity

Hence a different strategy is used in the proposed algo-
rithm. With a single connection attempt from v1 to v2 an
obstacle prone region around o�

1 has already been identified.
Similarly in the connection attempt from v2 to v1, obstacle
region around o�

2 would be identified and a vertex added.
In a couple of connection attempts which is not cost inten-
sive, two points o�

1 and o�
2 are easily obtained. The difficult

problem of connecting v1 and v2, which may be far apart
or separated with complex and unknown obstacle grids, has
now been reduced to the problem of connecting points o�

1
and o�

2 , which may be close and separated by just an obsta-
cle corner, building a small (non-straight) trajectory around
o�
1 and o�

2 may be much easier. This connection is done
using the regular set of edge connection strategy.

2.2.3 Connect disconnected vertices strategy

After some initial edges have been quickly added using the
strategy detailed above, the regular connection strategies
continue. The first strategy is the connect disconnected ver-
tices strategy. This strategy aims at taking two disconnected
vertex sets (κ(a) and κ(b)). Since no connection exists
between any vertex in κ(a) with any other vertex in κ(b),
there is a loss of completeness and needs to be addressed
as far as possible. There are two aspects of the strategy.
The first aspect is to select the disjoint pairs κ(a) and κ(b)

between which a connection must be attempted. The sec-
ond aspect deals with what one can do so as to contribute
towards eventually connecting the two.

Considering the first aspect to select a disjoint pair. The
first set (κ(a)) is chosen randomly out of the available sets
κ . It is evident that vertex sets closer to κ(a) are more likely
to be easily connected by addition of a few suitable ver-
tices in between. However even if two sets are very close to
each other, connecting them may not always be possible due
to the presence on an impassable obstacle wall in the mid-
dle, and hence other alternatives also need to be explored.
This motivates the use of probabilistic selection of the sec-
ond set, such that the nearer be the disjoint set, more is the
probability of its selection. The second set κ(b) is chosen
randomly from a Roulette Wheel Selection where any set i

has a probability of selection as given by (10).

P (κ (i)) = 1
/|κ (i) , κ (a)|∑

i

1
/|κ (i) , κ (a)| . (10)

The second aspect is to attempt connecting the two
disjoint vertices. This is done by growing one of the dis-
connected set of vertices towards the other set. By repeated
multiple such attempts over the course of time, it is likely
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that the two disjoint sets eventually get connected if such
a connection is possible. The basic philosophy is motivated
from the RRT style expansion, wherein a tree is continu-
ously expanded in the configuration space. Using the same
philosophy, in order to expand the roadmap, a vertex must
be selected. The closest pair of vertices that contribute
towards the shortest distance between the two disconnected
set of vertices, that is x[κ(a), κ(b)] and y[κ(b), κ(b)] are
taken. In order to expand the roadmap κ(a), the closest ver-
tex to κ(b) or x[κ(a), κ(b)] is a good choice. A straight line
expansion towards the corresponding vertex y[κ(b), κ(b)]
could have been suggestive, but considering that straight
line connections between the vertex pair has potentially
already failed, only exploration is necessary. Expansion is
done by adding a new vertex c at a distance of δ in a random
direction from x[κ(a)] given by (11). c is called as a bridg-
ing vertex, since it attempts to bridge the two disconnected
set of vertices.

c = x [κ (a) , κ (b)] + δ
(
θ̂
)

. (11)

The vertex c is added only if the path from x[κ(a)] to
c is collision free, in which case the corresponding edge is
also added. The path from c to y[κ(b)] may not be collision-
free and is not a criterion for admissibility of c. If the path
comes out to be collision-free, the corresponding edge is
also added and the two disjoint vertex sets are said to be
merged and the updated metrics are computed. However if a
feasible c cannot be computed, the failed attempts between
the pair (Failed(κ(a), κ(b))) is added by 1. The selection of
pair κ(a) and κ(b) can only happen if the failed attempts of
the particular pair are less than a threshold of η. If multiple
vertices are needed to connect the two disjoint sets, each
such vertex can be added in separate iterations. Addition of
a new vertex c also means that the connectivity of c with
the nearest k vertices will also be checked, however here no
new vertex may be added.

2.2.4 Leaf expansion strategy

The next strategy is the leaf vertex expansion strategy. The
aim of this strategy is to grow the roadmap outward, try-
ing to reach the unexplored areas of the configuration space.
Such expansions also aid in travelling inside the narrow
corridors, while sampling the narrow corridor may itself
not be enough. The strategy is motivated from the Expan-
sive Search Trees. In this strategy a random leaf vertex is
selected from the entire roadmap in pursuit of its expansion.
The leaf node in a roadmap is the one which has a single
parent linking it to the rest of the roadmap. Such leafs are

normally found at the edges of the expansive cover of the
roadmap and are good candidates for extension of the cover
of the roadmap. A random leaf node (qL) is selected. The
node is expanded in a random direction by a distance of δ to
create a new vertex c similar to (11). The vertex c is added
if a straight line collision-free path from q to c is possible
along with the other necessary conditions. On addition of
the vertex, connections with the neighboring k vertices are
also checked.

2.2.5 Hash expansion strategy

Even though a complete coverage of the entire configura-
tion space is not the aim of the work, as it contradicts the
aim of a quick initial roadmap generation, a small attempt
is made in the direction for the cases where prolonged com-
putation is possible using the hash expansion strategy. The
strategy attempts to ensure enough samples in all areas of
the configuration space, and suggests sampling around the
areas which are otherwise not adequately represented in the
roadmap. Even though it is more beneficial to have samples
inside the narrow corridors and near the obstacle bound-
aries, complete absence of samples in large volumes of
the configuration space can result in poor roadmaps affect-
ing the optimality and completeness. Sometimes ensuring
a good coverage of the configuration space also results in
samples in areas which probabilistically somehow get left
off, and the strategy many times provides good samples for
providing good connectivity of the roadmap.

The entire configuration space is mapped to a lower
dimensional hash, with every cell of the hash correspond-
ing to some volume of the high dimensional configuration
space. �(z) denotes the total number of samples in the
cell z, or the total number of samples in the volume covered
by the cell z. |�(z)| is the total volume of the configu-
ration space covered by the cell z. The desirability ratio
(�(z)/|�(z)|) points to the scarcity of the samples in the
cell, in realization to its free volume, and thus the desir-
ability to produce more vertices in the region. A poor
desirability ratio �(z)/|�(z)| means a need to expand in
that region. Hence a region z is randomly selected using a
Roulette Wheel Selection with the probability of selection
of the region z given by (12).

P (z) = 1 − ψ (z)
/|ψ (z)|∑

z

(
1 − ψ (z)

/|ψ (z)|) . (12)

A random sample c is generated which maps to the cell
z of the map. The closest node in the roadmap (v1) is
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computed. If a collision-free path from v1 to c exists along
with the necessary admissibility criterions of c, the node c

and the corresponding edge are added. Connectivity to the
nearest k neighboring edges is checked.

2.2.6 Random expansion strategy

The last strategy is the random expansion strategy. The
strategy is inspired by the RRT and similarly the Rapidly-
exploring Random Graphs. Here the entire roadmap, acting
as a graph, is expanded in a random direction. The strat-
egy aims at adding random samples, while still maintaining
a connected structure and not adding to the overhead of
checking for edges. Many times such expansions can help
in growing the roadmap to induce redundant cycles and
otherwise samples which induce optimality.

In this strategy, a random sample (q = U(C)) is gen-
erated. If the sample is collision-prone (q ∈ Cobs), it is
promoted to the nearest free configuration space using (2)
to generate a new sample q

f ree
o . The sample (qf ree

o ) is used
to attract the roadmap towards itself. The nearest vertex in
the roadmap (v1) is extended towards the sample to create a
vertex (c), which is added as per the necessary admissibility
criterions. This is another way of expanding the roadmap to
other areas. The expansion methodology is the same as that
of the RRT and hence a detailed discussion is avoided.

The strategies are implemented with probabilities pκ , pL,
p� and pR such that pκ + pL + p� + pR =1. Initially,
if the roadmap has disconnected components, the first strat-
egy is dominant. However once the entire roadmap has been
connected or some disconnected components have reached
the failed attempts threshold, this strategy simply vanishes.
The other strategies are for utilizing the excess computation,
making redundant connections and useful cycles, and trying
new ways to connect disconnected components. Accord-
ingly the probabilities may be set. A good strategy will be
to adapt these strategies based on the performance param-
eters. Currently however the probabilities are kept as fixed
and the adaptive variants will be studied in the future.

The only other parameters are k and δ, which are rather
standard and well-researched in the literature. The param-
eter δ is similar to the step size parameter of the Rapidly-
exploring Random Trees. A common approach is to change
k as per the vertices in the roadmap, and similarly to change
δ based on the distance from the obstacles. Both are good
techniques well researched in the literature, however the
parameters are kept constant here due to simplicity.

2.3 Pseudo codes

The algorithm is presented as pseudo codes 1 to 10. The
different components correspond to the concepts discussed
in Sections 2.1 and 2.2.
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2.4 Robot motion planning

The aim of the current work is to generate a roadmap for
a given configuration space, such that nearly all the homo-
topic groups are discovered. Much research on using the
roadmap for the task of motion planning of a single and

multiple robots has already been performed by the author
(e.g. [30]). A brief summary to motion planning of a single
robot is taken in this section for the sake of completeness.

The roadmap produced is used for the motion planning
of a robot. It is assumed that the source (S) and goal (G) are
already known. These are attempted to be connected to the
nearest k edges of the roadmap to carry out the search. The
extra vertex corresponding to the source and goal, and the
corresponding edges are temporarily added in the roadmap.
The robot is planned using an A* algorithm [31]. The algo-
rithm finds a path from a given source node to a given goal
node by maintaining a fringe of nodes to be explored and
a set of processed nodes. The node with the least expected
cost to goal is picked from the fringe and added to the set of
processed nodes, while all non-explored nodes connected to
the node being processed are added to the fringe. Initially
the fringe is initialized by addition of the source alone. The
algorithm relies upon cost functions. The historic cost indi-
cates the cost of getting to the node from the source, which
for this problem is the addition of step costs of all elemen-
tary steps. An edge corresponding to every set of nodes is
given a step cost equal to the Euclidian distance between
the nodes. The heuristic cost estimates the shortest distance
possible from the node to the goal, which for this problem
is taken as the Euclidian distance to goal. The total cost is
the sum of historic and heuristic costs.

Post-processing [32] is commonly applied to the out-
puts of the A* algorithm. Post-processing mechanisms use
a local search to reduce the path length, increase clearance
and increase smoothness of the path. Since a local search is
utilized, post-processing is not very time consuming and a
few iterations can drastically remove the pitfalls of the A*
algorithm path. Since the aim of the current work is pri-
marily to produce a good roadmap, post-processing is not
applied to the final path to show the raw results using the
roadmap alone. A small post-processing can many times
result in good paths even for poor roadmaps in scenarios
where the final path is rather simplistic.

The chief aim behind the work is to use the homo-
topic conscious roadmap so generated for the motion plan-
ning of multiple mobile robots. The naive methods have
already been tried by the author (e.g. [30]). The central-
ized approach is not realizable for a large number of robots,
while a decentralized approach may result in too much con-
gestion around a few areas with the robots not considering
the plans of other robots for initial coarser/roadmap level
planning. The overall aim is to coordinate the robots in a
coarser level planning as was done in [33], the method was
specifically designed for a road-like scenario and is not gen-
eralizable for open mobile robotic environments. The first
step in the direction has been made by capturing all homo-
topic groups with some redundant connections which do not
largely affect the computation time. The next task of using
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Fig. 5 Results for a synthetic scenario (a) Initial Vertices. Blue ver-
tices are from narrow corridor sampling, Green from obstacle sampling
and Red from Uniform Sampling. b Final Roadmap. Connections to
neighbouing k vertices are shown by a dotted line while edges by other
strategies are shown by bold solid lines. Black nodes and edges denote
additional nodes placed in initial edge connectivity strategy. c Path
Traced by a robot

this roadmap for coordination at the coarser/roadmap level
planning is a challenge in itself and will be taken in the
future research of the author.

3 Results

The algorithm is tested using simulations. The algorithm
was tested against a variety of scenarios, only two of those
are discussed in detail here to save space. The first scenario
is shown in Fig. 5 and comprises of multiple narrow cor-
ridors which are hard to discover and connect, along with
some wide open spaces.

The algorithm was executed assuming a corridor width
D of 50 units. The strategies of narrow corridor sampling,
obstacle based sampling and uniform sampling were exe-
cuting for a maximum of 100, 40 and 15 failed attempts or
iterations. The distance threshold � was fixed as 15 units
while the step size δ was fixed to be 15 units. Maximum
failed attempts for connecting disjoint vertices (η) was kept
as 50. The main edge connectivity loop was applied for a

Fig. 6 Performance on the scenario (a) Path Length, b Success Rate
and c Execution Time v/s Number of Iterations
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Fig. 7 Comparison of the proposed algorithm with uniform and
obstacle based sampling methods

maximum of 3000 iterations, with the strategies being called
with probabilities pκ =0.4, pL =0.2, p� =0.2, pR =0.2.

Figure 5a shows the initial vertices generated, which
are connected using the edge connection strategy shown in
Fig. 5b. In both the figures a rectangular robot of a reason-
able size is taken and hence the corridors are narrower than
they appear. A 3-D configuration space is superimposed on
the workspace for viewing. The path traced by the robot is
shown in Fig. 5c.

Two metrics are taken to assess the performance of the
algorithm. These are: success ratio, which is the ratio of the
total number of test cases for which the algorithm can find a
path, to the total number of test cases given; and path length
ratio, which is the ratio of the path length to the Euclidian
distance between the source and the goal averaged for all
the test cases. The metrics averaged for 100 test cases are
presented in Fig. 6. The figures have been smoothened to a
small extent by the use of moving average method. It can be
seen that the algorithm quickly converges to a 100 % suc-
cess rate and near-optimal path length along with increase
in the number of iterations. However the computational cost
also shows an increase. Even for a challenging scenario, it
is possible to get good results in small computational time.

The performance of the algorithm is compared with 2
techniques: obstacle based sampling and uniform sampling
technique. The only performance criterion common to the
3 algorithms is the computational cost. The 3 algorithms
were executed a number of times by increasing the num-
ber of iterations (proposed algorithm) or the roadmap size
(others). The success rate and path length ratio obtained

for the approaches is plotted in Fig. 7. It can be seen that
the proposed algorithm is significantly better than the other
two approaches. Although it initially resulted in poor path

Fig. 8 Results for a scenario 2 (a) Initial Vertices. b Final Roadmap.
c Path Traced by a robot
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lengths, as the focus was primarily narrow corridor discov-
ery, it quickly surpassed the other two algorithms; while also
consistently resulting in a higher success ratio.

An additional test case is presented for the problem and
its comparisons are made with the same other approaches to
make the claims more convincing. The scenario had a few
narrow corridors of varying widths and some open spaces
in different parts of the roadmap. The second scenario is
shown in Fig. 8. Figure 8a shows the initial vertices, Fig. 8b
shows the roadmap hence generated and Fig. 8c shows the
motion of a robot for some source and goal. It can be seen
that the algorithm was again able to produce a roadmap, dis-
covering all narrow corridors and connecting them with the
rest of the roadmap.

The performance metrics of success rate, path length and
computational time are studied to assess the working of the
algorithm. The performance metrics for different iterations
are shown in Fig. 9. It can be seen that the time to construct
a roadmap with respectable path lengths and success ratio is
still very small. The success rate converges to the maximum

Fig. 9 Performance on scenario 2 (a) Success Rate, b Path Length and
c Execution Time v/s Number of Iterations

Fig. 10 Performance on scenario 2 (a) Success Rate, (b) Path Length
and (c) Execution Time v/s Number of Iterations

value in a few iterations only, while the path length metric
shows a reasonable performance by quickly getting closer
to the optimal values.

Comparisons with the other methods are shown in
Fig. 10. It can be seen that even for this test case, the
proposed algorithm is significantly better than the other
approaches. Since the scenario had enough open spaces and
most of the corridors of respectable widths, some path using
a longer homotopic path group was always possible. Hence
the success rate does not show much trend among the meth-
ods. However the fact that all homotopic groups were not
discovered by the other methods is clear from the metric of
path length. Not discovering a narrow corridor led to the
robot taking a longer path length of a different homotopic
group.

4 Conclusions

In this paper a new method was proposed to quickly gen-
erate good roadmaps which result in discovering all narrow
corridors and conveniently connecting them with the rest
of the roadmap. A multi-strategized initial vertex genera-
tion and edge connection strategy was proposed, which very
quickly resulted in a redundantly connected roadmap dis-
covering all narrow corridors. The later iterations, if avail-
able, were used for increasing the optimality and adding
good redundant edges. The approach was adjudged better
than the uniform and obstacle based sampling using the met-
rics of success rate and path length over computation time.
The proposed method hence acts as a mechanism to quickly
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compute a homotopy conscious roadmap which has vital
use in the applications of motion planning for single and
multiple mobile robots, and complex mission planning.

The main strength of the approach is a multi-strategized
approach for generation of both the vertices and edges. Each
strategy is called with a certain probability, and hence the
contributions of the different strategies can be varied. Cur-
rently the probabilities are fixed, however considering the
basic motivation, it is possible to set good values to the prob-
abilities by intuition. This further gives the capability to add
any other mechanism to aid the current set of strategies. The
strategies together can cater to a wide variety of scenarios.
Further, the strength of the work is in the specific mecha-
nism of generation of samples inside the narrow corridors
by traversing from inside the obstacle to the outside, and
thereafter placing the sample in the middle of the corridor
for better connectivity. The strengths of the approach are
clear from the experimental results which showcased clearly
a better performance as compared to the other sampling
methods.

The major limitation of the work is that spending exces-
sive time in search for narrow corridors and otherwise
difficult regions can be wasteful if the scenario is inherently
simple. Without investing examination time one cannot
determine if the scenario is easy or complex, so there is less
that one can do about expenditure of this computation time.
Further, the performance of the algorithm largely depends
upon the parameters, which are currently static and manu-
ally set. Making these parameters adaptive is the solution,
however more parameters also need time to get to their opti-
mal values. Continuously growing the roadmap can result
in better paths and high success rates, however will make
the algorithm computationally expensive in the online query
phase. A consciousness to the same needs to be put in.
The approach aims to connect different sub-sets of disjoint
vertices in different connection attempts. Attempting con-
nection between one pair only with an apt choice of vertex,
and thereafter giving high local search time for making the
connections as in Sampling based Roadmap of Trees algo-
rithm can be a good alternative. This however can be fatal
when the selected pair cannot be connected due to obstacles.
The balance between local search attempts and attempting
connections between multiple vertex pairs is critical to the
approach, and needs to be studied by designing appropriate
metrics.

The roadmap construction was the first and most impor-
tant step towards the overall problem of mission planning
of multiple mobile robots. The aim is to use the roadmap
to schedule different robots at different parts of the map at
different times, much like the routing algorithms in traffic
scenarios. The homotopic conscious roadmap gives a basis
to formulate coarser level planners and some coordination
mechanism for the task. The actual task of planning and

coordination will be taken in the future. Further, the task to
adapt the roadmap in a dynamic environment, incrementally
build the roadmap as the robots move and use the roadmap
for multi-robot planning and mission planning tasks needs
to be undertaken in the future.
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