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Abstract On-line statistical and machine learning analytic
tasks over large-scale contextual data streams coming from
e.g., wireless sensor networks, Internet of Things environ-
ments, have gained high popularity nowadays due to their
significance in knowledge extraction, regression and clas-
sification tasks, and, more generally, in making sense from
large-scale streaming data. The quality of the received con-
textual information, however, impacts predictive analytics
tasks especially when dealing with uncertain data, outliers
data, and data containing missing values. Low quality of
received contextual data significantly spoils the progres-
sive inference and on-line statistical reasoning tasks, thus,
bias is introduced in the induced knowledge, e.g., classi-
fication and decision making. To alleviate such situation,
which is not so rare in real time contextual information pro-
cessing systems, we propose a progressive time-optimized
data quality-aware mechanism, which attempts to deliver
contextual information of high quality to predictive analyt-
ics engines by progressively introducing a certain controlled
delay. Such a mechanism progressively delivers high quality
data as much as possible, thus eliminating possible biases
in knowledge extraction and predictive analysis tasks. We
propose an analytical model for this mechanism and show
the benefits stem from this approach through comprehen-
sive experimental evaluation and comparative assessment
with quality-unaware methods over real sensory multivari-
ate contextual data.
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1 Introduction

In real-life scenarios, wireless sensor networks in Internet
of Things (IoT) environments have been widely utilized
in contextual information monitoring and on-line large-
scale predictive analytics, including environmental moni-
toring, forest/marine environmental monitoring, and smart
cities intelligence applications. IoT predictive intelligence
applications process contextual information captured from
a number of dedicated sensor (stationary and/or mobile)
nodes (sources of contextual information) with advanced
sensing and computing capabilities. Sources sense and
monitor, e.g., physical contextual parameters (context) and
transmit the collected pieces of context to a central pre-
dictive analytics and information processing system (here-
inafter referred to as System) using wireless communication
technologies, e.g., multi-hop communication. However, the
sensory field of the sources, e.g., IoT wireless devices
within a city area, has a number of inherent characteristics
including uncontrollable environments and topological con-
straints. Sources are typically powered by batteries and thus
having limited energy resources. Moreover, environmental
monitoring, IoT smart applications, and on-line statistical
analytics applications require efficient, accurate and timely
data analysis in order to facilitate (near) real-time critical
decision-making, and situation- and context- awareness.

Accurate predictive analytics relies on the quality of
context and quality of context inference expressed by meta-
information [1], e.g., contextual value validity thresholds,
outliers, expiration thresholds, contextual information with
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enhanced semantics. Raw contextual observations collected
from sources, however, may have low quality and reliabil-
ity due to limited energy and computational resources and
harsh deployment environments. Predictive analytic tasks
like outliers detection, multivariate regression and classi-
fication, information fusion (e.g., aggregation), and situa-
tional context inference and reasoning, are in need of high
quality of sensed context. Inaccurate observations resulting
from sources malfunction need to be corrected or removed
[8]. This however yields bias in the extracted knowledge
and analytics tasks, e.g., false alarms for fire detection, high
prediction error in regression models, incompatible context
inference, high misclassification errors, inconsistent rea-
soning. Machine and Statistical Learning (MSL) methods
are adopted for (i) identifying and (ii) (ideally) correct-
ing problematic context (e.g., missing values, obsolete data,
and outliers). Such MSL methods are of high importance
for knowledge extraction, inference, and decision making
over incomplete underlying data [6]. Most MSL techniques,
such as neural networks and support vector machines, fail
if one or more inputs contains missing values and thus can-
not be used for predictive analytics and decision-making
purposes [7].

In the state of the art, it is possible to find quite a few
IoT monitoring and predictive analytics solutions such as
forest monitoring [2], fire-event prediction and classifica-
tion [3], agriculture monitoring [4], marine environment
states prediction [5], watershed prediction systems [20],
health states prediction in rivers [21], or energy manage-
ment solutions to reduce both the amount of resources
needed and the atmospheric emissions [22]. The reader
could also refer to the survey [23] and the references therein.
Sensor networks as the pillars of the contextual information
sources promise to revolutionize sensing in a wide range
of intelligent application domains because of their reliabil-
ity, accuracy, flexibility, cost effectiveness [24] and ease of
deployment. However, contextual data streams pose a chal-
lenge to large-scale predictive analytics because, traditional
approaches to quality control cannot efficiently (i) handle
large-scale observations and (ii) deal with the demands of
real-time processing. There is an increasing need for pre-
dictive intelligence methods to check and correct (sensed)
context to ensure that is delivered in near real time and is
of the highest quality. Time-optimized context quality con-
trol expedites post-processing and analytics (e.g., missing
values substitutions, concept drift correction) so that the
final delivered context is of high quality for further pro-
cessing regression/classification tasks. This motivated us
to introduce an optimally scheduled context quality aware
mechanismwhich improves the quality of the delivered con-
text to the System for near real time predictive analytics and
knowledge extraction. The proposed mechanism material-
izes quality assessment prior to delivery of the context to the

System by minimizing the induced bias in statistical infer-
ence and/or estimation processes due to problematic sensed
context. As it will be shown in the experimental evaluation
section, our mechanism delivers contextual information to
the System of high quality (e.g., as much non-problematic
and accurate data as possible) inducing a relatively small
delay compared to solutions that either immediately deliver
context or decide on context delivery upon threshold-based
rules that do not take into account the quality dynamics of
the contextual data.

2 Rationale

The rationale behind the proposed mechanism is to deliver
high quality context to the predictive analytics System
through a stochastically, optimally controlled (delivery)
delay. Within such delay tolerant delivery, the mechanism
optimally decides when to deliver context with the highest
possible quality, thus, improving predictive analytics tasks.
The mechanism delivers context (represented by a row vec-
tor) x = [x1, . . . , xn] of n measurements (values), where
each xi corresponding to the i-th source, with the least pos-
sible problematic pieces of data. We require that System
receive good context x in the sense that it consists with as
many non-problematic values as possible. This is manda-
tory since the quality of x affects the predictive analytics
tasks for monitoring the state of nature in the receptive field
and/or MSL methods for knowledge extraction. We abstract
such methods/tasks through a function f (x) over sensed
context x, which formulates a MSL/predictive analytics pro-
cess. For instance, f (x) refers to a statistical metric like
mean value, or to a multivariate regression model, e.g., lin-
ear regression model f (x) = w�x + b, b > 0 with x
being the predictor vector and w the learned parameter, or
to a classification model, e.g., f (x) = sign(w�x + b).
Inevitably, the more non-problematic values the System
receives, the more accurate an analytics process in terms of
f (x) can be achieved. Our mechanism attempts to deliver
as good context as possible to achieve a high quality of the
invoked analytics process. In that sense, we delay the deliv-
ery of context to the System in hope of observing a relatively
good one to deliver, however at the expense of a certain
delay. Figure 1 shows the rationale of the proposed mech-
anism. The baseline solution is to immediately deliver the
current context x to the System not taking into account the
context quality semantics.

2.1 Motivation

We report on four real-life cases / scenarios in order to
further exemplify our motivation on the application of
quality-optimized predictive analytics.
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Fig. 1 Overall idea: context x
from the sensory field is fed to
the optimally quality-driven
scheduled mechanism, which
either delivers x to the System or
waits for possibly high quality
context

Case 1 [Incomplete Contextual Data] If, at a given time
instance, a portion of the received values to System are prob-
lematic, say x1, . . . , xm with m < n missing values, then
there might be a bias in further processing of x. For instance,
consider the deviation on estimating the mean value of n−m

observed values i.e., f (x) = 1
n−m

∑n−m
i=1 xi instead of n

values 1
n

∑n
i=1 xi , or on estimating the order statistics, e.g.,

f (x) = min(x1, . . . , xn−m) instead of min(x1, . . . , xn);
recall the ‘effect size’ problem in statistics [25] where the
statistical error is proportional to 1/

√
n − m. Moreover, a

missing value substitution algorithm (MVA) [26] running
on the System, which is able to predict the most plausible
values for the m missing values of x, results in higher accu-
racy when m is relatively smaller compared to n. Hence, a
delay in avoiding the delivery of bad x (with a high number
of missing values) could be of high importance in terms of
accuracy of prediction and, more interestingly, avoiding the
MVA invocation each time a bad vector is available, thus
eliminating redundant waste of resources [9].

Case 2 [Validity of Contextual Data] Consider that an
analytic task like concept drift detection or novelty detec-
tion task that requires its input x to contain a high number
of non-expired values. Here we deal with the fact that the
validity of each value xi is characterized by an expiration
window. That is, for each value xi there is an expiration
indicator Ii(xi) = 1 if xi is a valid value; 0 otherwise (i.e.,
expired value). The mechanism has to ‘delay’ the delivery
of x to the detection algorithm by attempting to find a bet-
ter vector of n values at some unknown time in the future,
which maximizes the f (x) = ∑n

i=1 Ii(xi), i.e., context that
contains a high number of valid values.

Case 3 [Contextualized Inference] Contextual data fusion
processing has gained significant importance [10]. Con-
textual data fusion refers to the problem of combining
diverse and conflicting contextual information provided by
sources, in a consistent and coherent manner [11]. The
objective of the contextualized inference is to infer a sub-
taxonomy of situations (from the very abstract to the very
specific) of a system that is being observed or taxonomy
of activities being performed [13, 14]. Specifically, con-
textualized inference methods [14] are generally applied

in situation- and context-aware systems [16, 17], where a
more specific situation (positioned at the lower levels of
the situational taxonomy) is represented by the logical con-
junction of situational components [12, 15]. Let us adopt
the by far popular IF-THEN situational knowledge repre-
sentation inference rule, i.e., the logical conjunction f (x) =∧n

i=1(fi(xi)) ∈ {TRUE, FALSE} of n logical operators
fi(xi) over aggregated (or not) values xi , e.g., the situa-
tional component fi(xi) = TRUE if xi ∈ [xlow

i , x
high
i ];

FLASE, otherwise. That is, f (x) is envisaged as an IF-
THEN situational rule for evaluating the current situational
context given the current context x. A predictive analyt-
ics system caters for inferring the most specific situation
within a situational taxonomy. That is, situation f (x) con-
veys more information to the system than situation f ′(x)
iff one can deduct f ′(x) from f (x), i.e., f (x) contains
more TRUE situational components than the f ′(x). Such a
situation-aware system has to ‘delay’ its situational infer-
ence by observing as much true facts, i.e., components with
{xi = TRUE}, as possible to reason about more specific situ-
ations, which further activates more specific actuation rules
and decisions, compared with the ‘trivial’ abstract situa-
tions, i.e., those containing a high number of {xi = FALSE}
components.

Case 4 [Progressive and Maintenance Analytics] The
author would like to mention the prior work [18] and [19]
on dealing with the optimal maintenance of the top-k list of
objects over incomplete multivariate data streams and intel-
ligent progressive Big Data analytics. The work [18] refers
to an intelligent scheduling of top-k list maintenance with
the purpose of increasing the quality of the delivered list to a
analytics back-end system. Generally speaking, in this case
the f (x) abstracts the degree of updates of sequential partial
results x from merged top-k lists. Hence, a predictive ana-
lytics system ‘delays’ its final top-k list maintenance based
on the up-to-now seen quality of partial results. The work
in [19] deals with continuous queries over a distributed fed-
eration of data nodes and returns the final outcome to users
or analytics applications. The system based on the current
quality of the up-to-now retrieved partial results (abstracted
by a non-trivial f (x) over partial results x) engages a sub-
set of query processors to further execute the issued queries.
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In both analytics systems, one has to define an optimally
scheduled mechanism over queries to provide optimal deci-
sions on when to invoke a maintenance process [18] or
further analyzing data given analytics queries [19].

In all these real-life cases, the predictive analytics system
requires more information or quality information in order
to proceed with an analytics task, e.g., either situational
inference, aggregation, or classification tasks. However, a
delay in the delivery of vectors x to the System incurs some
penalty, especially when dealing with real time predictive
analytics as in the above mentioned cases. On the one hand,
we require immediate consumption of the observed pieces
of context x by the predictive analytic tasks. On the other
hand, we require a high quality of the analytics / prediction
/ classification results, which fundamentally relies on the
quality of the received pieces of context, i.e., the input to the
System. We attempt to reduce the redundant invocations of
predictive analytics tasks with inputs of low quality, which
inevitably lead to ‘biased’ inference and statistical reason-
ing results. Evidently, there is a trade-off between delaying
the consumption of the observed context (thus feeding the
System with high quality of context) and the near real time
processing associated with a delay-tolerant predictive ana-
lytics process. The problem here is to determine when to
deliver high quality context balancing between quality of
analytics results and near real time predictive analytics.

2.2 Contribution & organization

The contribution of this paper is an analytical stochastic
optimization mechanism, which monitors streams of pieces
of context and optimally determines when to deliver con-
text of high quality to the System for predictive analytics.
Such mechanism is based on the principles of the theory
of optimal stopping [27] through which we derive an opti-
mal decision time to ‘stop’ observing the contextual data
stream and to ‘deliver’ context such that the expected pre-
dictive analytics quality is maximized given a certain cost
per observation. The theory of optimal stopping [27] is
proved to be very efficient in cases where we try to find
the appropriate decision time instance to stop the observa-
tion of a stochastic process with the objective of maximizing
our payoff or reward. Naturally, we build our mechanism
on the principles of the optimal stopping theory to maxi-
mize the quality of predictive analytics results by inducing
a controlled delay. Through this delay we attempt to bal-
ance between immediate and delayed predictive analytics
in hopes of observing higher quality pieces of contextual
information as illustrated in Cases 1–3. The outcome of
the mechanism indicates whether we should stop observing
the quality of the context streams and activate a predic-
tive analytics and/or MSL method, or to continue. This

delay-tolerant activation supports intelligent analytics appli-
cations that can tolerate some delay in hopes of obtaining
high quality results, like: (i) progressive query analytics
applications in large-scale distributed systems [19], (ii)
results maintenance of rank-based queries over data streams
[18], (iii) efficient networking analytics applications for
location-based services [34], (iv) efficient and progressive
recommendations of recommendation systems and appli-
cations [35], (v) efficient user’s mobility and trajectory
patterns extraction in mobile computing environments [36],
(vi) quality information forwarding and dissemination in
mobile applications over IoT environments [37–39], and
(vii) security analytics for location-privacy [40].

As it will be shown in the performance assessment, our
mechanism provides a wide range of quality results, rang-
ing between medium quality results with almost zero delay
and high quality results with an acceptable delay. Through
this delay (in terms of the application tolerance), the System
saves computational resources and eliminates redundant
activations of MSL methods/analytics tasks.

The contribution of this work is summarized as follows:

– A novel stochastic optimization mechanism which
decides when a predictive analytics task should be
activated over large-scale contextual data streams by
guaranteeing the highest possible quality results.

– An analytical model under the principles of the opti-
mal stopping theory that derives the optimal time for
activating the predictive analytics tasks.

– Comprehensive experimental results showcasing the
benefits of our mechanism to real life intelligent pre-
dictive analytics applications over real contextual data
involving widely applied aggregation analytics vis-à-

Table 1 Nomenclature

Concept Description

t, T discrete time instance, optimal stopping time instance

n number of contextual data streams

x context vector

f (x) predictive analytics function over x (abstraction)

β probability of ‘good’ value

Xi
t quality indicator of the i-th measurement at time t

Y quality reward

M quantity of ‘good’ values

Ft filtration up to time t

V ∗ maximum expected quality reward

y scalar value/estimation of V ∗

c delay cost per observation

Lt log-likelihood up to t
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vis the threshold-based and immediate context delivery
approaches.

The paper is organized as follows: Section 3 introduces
the concept of context quality for data streams of (pos-
sibly problematic) contextual data and some preliminaries
in the theory of optimal stopping. Section 4 formulates
and provides a solution to the quality-optimized mecha-
nism for the considered stochastic optimization problem.
Section 5 reports on the experimental results of our mecha-
nism through a sensitivity analysis of the basic parameters
and provides a comparative assessment with threshold-
based and immediate context delivery rules over real sensors
contextual data. Finally, Section 6 concludes the paper and
discusses future research on that topic.

3 Definitions

Table 1 refers to the nomenclature.

3.1 Quality of contextual information

Consider a discrete time domain T = {1, 2, . . .} such that
x = [x1, . . . , xn] contains real values xi ∈ R at time
t ∈ T for each dimension i ∈ 1, . . . , n (or in a com-
pact notation i ∈ [n]). We assume that xi at time t refers
to the measurement of source i or the aggregation result
over K measurements xi1, . . . , xiK launched on source i,
K > 0. (The value xij could refer to a measurement of the
j -th neighboring node in the spatial neighborhood of source
i, j ∈ [K].) Each measurement xi is received instantly
and that a new possible value might be received from the
same source i only at the next time slot t + 1, i.e., in
the interval [t, t + 1) source i reports only once or not
at all.

We proceed with a generic model representation to cap-
ture the idea of a good piece of context x. Specifically, the
characterization of x as a ‘good’ piece of context intuitively
indicates that x contains a relatively high number of good
values, e.g., a percentage of 75 % of the n values of con-
text x refers to non-missing values. A ‘good’ value xi at
time t means, for instance, that xi is a valid value, a non-
incomplete value, or a TRUE fact/situation, i.e., Ii(xi) = 1
as discussed in Cases 1 and 2 or Ii(xi) = TRUE in Case
3, while Ii(xi) = 0 indicates a bad value, or a missing
datum (Cases 1,2) or a situation does not hold true (Ii(xi) =
FALSE in Case 3). Or, if xi is observed at time t thus not
being missed as discussed in Case 1, then xi is called a good
value, otherwise it is called a bad value, i.e., a missing value.
Based on all these interpretations, we provide the following
definitions:

Definition 1 The quality indicator of the i-th measurement
(i.e., from the i-th source) is define as the random variable
(r.v.) Xi

t such that:

Xi
t =

{
1(TRUE) with probability βi

0(FALSE) with probability 1 − βi,
(1)

where a zero value, i.e., Xi
t = 0, indicates a bad value of

dimension i at time t while a value Xi
t = 1 refers to a good

value xi at t .

The r.v. Xi
1, X

i
2, . . . are independent and identically dis-

tributed (i.i.d.). with expectation E[Xi] = 1 · P(Xi =
1) + 0 · P(Xi = 0) = βi > 0 given that βi ∈ (0, 1), i ∈
[n]. The value of βi can be estimated by historical data
and/or combined with information provided by the manu-
facturer of source i, e.g., quantifying sensor node degree
of reliability of measurement. (Remark 2 provides an esti-
mation of the β parameter.) Each time t the mechanism
observes context x and does not immediately deliver it to
the System, we encounter fixed a (delay) cost of observation
c > 0.

Definition 2 We define as quality reward of context x at
time t the r.v. Yt , which refers to the quantity of the good
values Mt = ∑n

i=1 Xi
t minus the total observation cost up

to time t , i.e.,

Yt =
n∑

i=1

Xi
t − t · c = Mt − t · c. (2)

3.2 Preliminaries on the optimal stopping theory

The theory of optimal stopping [27, 28] is concerned with
the problem of choosing a time instance to take a certain
action, in order to minimize an expected loss (or maximize
an expected payoff). A stopping rule problem is associated
with:

– a sequence of random variables (r.v.) M1, M2, . . .,
whose joint distribution is assumed to be known and

– a sequence of payoff (reward) functions
(Yt (M1, . . . , Mt))1≤t which depend only on the
observed values of the corresponding r.v.s M1, . . . , Mt .

The available information up to t is a sequence Ft of
values of the r.v.s M1, . . . , Mt (a.k.a. filtration). The opti-
mal stopping rule problem is defined as follows: We are
observing the sequence of the r.v.s (Mt)1≤t , and at each time
instance t , we can choose to either stop observing or con-
tinue. If we stop observing at time instance t , we get reward
Yt . We desire to choose a stopping rule or stopping time to
maximize our expected reward.



Quality-optimized predictive analytics 1039

Definition 3 An optimal stopping rule problem is to find
the stopping time T which maximizes the expected reward,
i.e., E[YT ] = sup0≤t≤T E[Yt ]. Note, T might be ∞.

4 Time-optimized quality-driven mechanism

The mechanism observes the sequence of r.v. M1, M2,

. . . , Mt without delivering the corresponding pieces of con-
text x1, x2, . . . , xt to the System. Our aim is to find the best
strategy in the sense of having the highest expected quality
reward E[Y ] at the lowest cumulative cost of delay. At each
time t we only need to decide:

– whether to deliver xt to the System, thus, proceeding
with a predictive analytic task over f (xt ) or

– to continue with the next observation xt+1 without
delivering xt to System, thus, delaying the predictive
analytic task.

Hence, a strategy is a function which assigns to each
sequence M1, M2, . . . a stopping time. Furthermore, since
we cannot see the future, a decision to stop observation at
time t can only depend upon M1, M2, . . . Formally we have
to solve the following problem:

Problem 1 Given the sequence of sums of quality indica-
tors M1, . . . , Mt , find the optimal stopping time T which
maximizes E[YT ] = sup0≤t<∞ E[Yt ].

The idea is to find a criterion at time instance t such that
given the current value of Mt , denoting the current quality
of context observed at the mechanism, the latter immedi-
ately decides whether to deliver xt to the System or to
continue to the next observation. We require an immedi-
ate decision making over the contextual data streams, thus,
avoiding any redundant computations. As it will be shown
in the remainder, the mechanism at time instance t proceeds
with a time-optimized decision in O(n) time involving sim-
ply the counting of quality indicators Xi

t from all n sources,
i ∈ [n].

In order to solve Problem 1, we rest on the principle
of optimality. Specifically, let T be the optimal stopping
time where the supremum in our Problem 1 is attained, i.e.,
E[YT ] = V ∗ with V ∗ = supt E[Yt ]. We can now pro-
vide the optimality equation given the filtrationFt , i.e., after
observing M1, . . . , Mt , as follows:

Theorem 1 Let T be an arbitrary stopping time and V ∗
t =

supT ≥t E[Yt |Ft ]. Then, V ∗
t = max(Yt , E[V ∗

t+1|Ft ])

Proof See [27] �

The optimal stopping time T given by the principle of
optimality from Theorem 1 is represented by the rule:

T = min{t ≥ 0|Yt = V ∗
t }. (3)

Let us put the reward Y0 = −∞ to force our mechanism
to take at least one observation. Also, we put Y∞ = −∞
as naturally the cost of an infinite number of observation is
infinite. Consider now the V ∗ the expected quality reward
for the System based on an optimal stopping rule in (3).
Suppose that the mechanism induces cost c and observe the
M1. Note that if the mechanism continues from this point
then quality M1 is ‘lost’ and the cost c is already paid.
Hence, it is just like starting the problem over again. That
is, if the mechanism continues from this point, the System
can obtain an expected quality reward of V ∗ but no more.
Therefore, from the principle of optimality in Theorem 1
we derive that if M1 < V ∗ then the mechanism should con-
tinue; if M1 > V ∗, then the mechanism should stop and
deliver context to the System. For M1 = V ∗ both decisions
are optimal; we adopt here a stopping decision. This argu-
ment is made at any stage t by the mechanism, thus, in our
case we provide the optimal stopping rule, which is adopted
by the mechanism, as follows:

Theorem 2 Given the sequence M1, . . . , Mt there is a real
number y = V ∗ such that the optimal stopping time T is
given by T = min{t ≥ 1|Mt > y} with E[YT ] = y.

Proof The r.v. M = ∑n
i=1 Xi takes realization discrete val-

ues from {0, 1, . . . , n}. Now, at the optimal stopping time
t = T , i.e., the first time at which Mt > y, we obtain
E[YT ] = E[MT ]−E[T ]c = ∑n

i=1 E[Xi
T ]−E[T ]c. More-

over, let γ = P(M > y) and δ = 1 − γ = P(M ≤ y).
Then, we obtain

E[MT ] =
∞∑

k=1

E[Mk|Mk > y,M1 ≤ y, . . .Mk−1 ≤ y]

=
∞∑

k=1

E[Mk|Mk > y]δk−1 = E[M1|M1 > y] 1
γ

.

The quantity E[MT ] = 1
γ
E[M1|M1 > y] indicates that

at the optimal stopping time T , the expected context quality
equals to the expected context quality given that the latter is
above the criterion threshold y = V ∗. In addition, for the
optimal stopping time T we obtain

E[T ] =
∞∑

k=1

kP (Mk, Mk > y,M1 ≤ y, . . .Mk−1 ≤ y)

= γ

∞∑

k=1

kδk−1 = 1

γ
.
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The problem now is to compute y = V ∗. This is done
through the optimality equation in Theorem 1 and the above
mentioned argument, i.e.,

V ∗ = E[max(M1, V
∗)] − c ⇔

c = E[(M1 − V ∗)+]
That is a quality reward E[YT ] is obtained at the optimal
stopping time T with quality reward greater than y and y is
the solution of the E[(M1 − y)+] = c, with (x − y)+ =
max(0, x − y)

Hence, having an y such that c = E[max(0, M1 − y)] =
E[(∑n

i=1 Xi
1 − y)+], we obtain

E[YT ] = E[MT ] − 1

γ
c

= 1

γ
(E[M1|M1 > y] − E[M1 − y|M1 > y])

= 1

γ
E[y]P(M1 > y) = y.

Hence, the optimal stopping time T achieves the maximal
expected quality reward E[YT ] = y.

Remark 1 The optimal rule in Theorem 2 is optimal for
our problem since E[(M − y)+] − c is monotonically non-
decreasing with M for M > y almost surely and E[(M −
y)+] is continuous in y and decreasing from +∞ to zero.
Hence there is a unique solution for y for any c > 0.

The mechanism stops the observation process of pieces
of context and delivers context xt at the first time instance
t at which the quantity of the good values Mt is above a
threshold y ∈ R, which refers to the highest quality of
reward that can be obtained. The problem now reduces on
the evaluation of the y value such that E[(M1 − y)+] =
c. The algorithm of our mechanism is shown in Fig. 2.
The input of the algorithm is the stopping criterion y. At
each received context xt , the mechanism calculates Mt and
decides whether to deliver xt to the System or not. In the for-
mer case, the mechanism start-off with the next sequence of

Fig. 2 Algorithm of the quality-optimized mechanism

(Mt). Evidently, the computational time for evaluating the
criterion Mt > y is O(n).

We proceed our analysis with the case where βi = β for
all sources, i ∈ [n]. If we notate Z = max(M − y, 0) and
FM(y) = P(M ≤ y) be the cumulative distribution func-
tion of M then y is the solution of E[Z] = c. We have that
E[Z] = E[M − y|M > y](1 − P(M ≤ y)) = (E[M|M >

y]−y(1−FM(y)))(1−FM(y)). In this case, M = ∑n
i=1 Xi

is a Binomial random variable with parameters (n, β).

Hence, we obtain FM(y) = ∑�y�
j=0

(
n

j

)

βj (1 − β)n−j .

Moreover, we have that E[M|M > y] = ∑n
m=0 mP(M =

m|M > y) or

E[M|M > y] = 1

1 − FM(y)

n∑

m=y+1

m

(
n

m

)

βm(1 − β)n−m.

Hence, the expectation of Z is:

E[Z] =
n∑

m=y+1

m

(
n

m

)

βm(1−β)n−m −y(1−FM(y))2 (4)

Based on the criterion E[Z] = c and on (4), we can
find analytically the value of y. However, the assumption
βi = β,∀i does not spoil the theoretical results and is
adopted for eliminating the computations of FM(y) for solv-
ingE[(M1−y)+] = c. Obviously, when βi �= βj , i, j ∈ [n]
then FM(y) is provided in [29] (a.k.a. Poisson-Binomial
distribution) thus, we can obtain the corresponding value
for y.

Remark 2 The probability β of a non-problematic piece of
contextual value Xi can be incrementally estimated by the
maximum likelihood estimation of β of the Binomial dis-
tribution with parameters (n, β) after observing a series of
m pieces of context (xt )

m
t=1, m > 1. Specifically, recall

that the probability density function for the Binomial is(
n

M

)

βM(1 − β)n−M with M = 0, . . . , n. Hence, the log-

likelihood Lm(β) of a series of m samples of M1, . . . , Mm

is

Lm(β) =
m∑

i=1

ln

(
n

Mi

)

+ lnβ

m∑

i=1

Mi

+
(

nm −
m∑

i=1

Mi

)

ln(1 − β).

SinceLm(β) is a continuous function of β givenm obser-
vations, i.e., β = βm, its maximum value derives from
the derivative of Lm(β) with respect to βm by setting it
equal to zero, i.e., ∂L

∂βm
= 0. After this calculation, we

obtain that up to the m-th observation, the probability βm is:
βm = 1

nm

∑m
i=1 Mi . Hence, we can incrementally estimate
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the βm value by the previous βm−1 and the current value of
Mm by using the recursion βm = m−1

m
βm−1 + 1

nm
Mm, with

β1 = 1
n
M1. After a series of m observations, we can learn

the β = βm and then initiate our mechanism.

5 Experimental evaluation

5.1 Sensitivity analysis

5.1.1 Simulation setup

We study the performance of the proposed Optimal Delivery
Approach (ODA) on both analytical model and simulations
with respect to the basic parameters, i.e., probability of a
good value β, number of sources n, and cost per obser-
vation c. We also provide a comparative assessment with
a Threshold-based Delivery Approach (TDA) on deciding
when to deliver context to System for further processing.
Specifically, TDA choses a threshold θ ∈ {1, n} and delivers
context x at the first time t at which Mt ≥ θ . That is, when
context x has at least θ (out of n) non-problematic values,
then TDA immediately delivers x to System.

We define as ‘epoch’ the number of pieces of context
an approach (ODA, TDA) has observed until it decides to
deliver the current context to the System. Each time t con-
text xt is delivered to System, then a new epoch for the
approach starts-off. TDA at the beginning of each epoch
choses a threshold θ uniformly at random from {1, n}, while
ODA for every epoch applies the threshold y as estimated
using (4). In the j -th epoch we measure the quality reward
Ytj when an approach (ODA, TDA) delivers context xtj

at stopping time tj . We run experiments for N = 104

epochs, thus obtaining the average value of Y , i.e., E[Y ] ∼
1
N

∑N
j=1 Ytj for both approaches.

5.1.2 Performance assessment

Figure 3(left) shows the impact of probability β on the
average quality reward E[Y ] with different cost values c

for the analytical model and the simulation results using
n = 30; we obtain similar results for other n values. It is
worth mentioning how accurately the simulation curves fit
with the analytical model curves for all parameter values,
denoting the capability of the proposed model for pre-
dicting the average quality reward given β and c values.
Moreover, we observe that as β increases then we obtain
higher quality rewards, as expected, since we deal with
less problematic pieces of data. With the term problem-
atic piece of data, here, we denote that the context vector
x contains more non-missing values than missing values.
Statistically, for β > 0.5, context x is less problematic
than a piece of context x′, with β ′ < 0.5, since the for-
mer contains, at least, more non-missing values than the
latter one. That is, in context x, over 50% of the n val-
ues are non-missing given that each value is non-missing
with probability over 0.5 by expectation of the Binomial
distribution ∼ B(n, β). Also, the impact of the delay cost
on E[Y ] is low compared to the impact of β especially
when c > 0.5.

In Fig. 3(right) we plot the average delay E[T ] against
the cost c for different values of n with β = 0.8. E[T ]
indicates the average number of observations that the mech-
anism neglects in each epoch before stopping and then
delivering context to the System for predictive analytics.
As shown in Fig. 3(right), a relatively small delay is tol-
erated in order to proceed with delivering context of high
quality. This indicates the applicability of the proposed
ODA to near real-time predictive analytics. Moreover, as
the cost per observation decreases then a relatively higher
delay is encountered, since low cost c gives the ‘opportu-
nity’ to the mechanism to observe more pieces of context
before stopping at a good one, thus, increasing the like-
lihood of receiving context of high quality. On the other
hand, a high cost value reinforces the mechanism to stop
(and thus deliver context) at an early stage of each epoch.
For instance, for c = 0.8 the mechanism, on average,
delivers the second received context to System. By tuning
the cost we can control the degree of tolerance of the sta-
tistical analytics process, with c → 1 indicating a very

Fig. 3 (Left) Quality reward
E[Y ] against probability β for
analytical model and simulations
with different cost c and n = 30;
(right) average delivery delay of
the proposed approach, i.e.,
E[T ], against cost c for
different n values with β = 0.8
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Fig. 4 The NQI and BNQI
against number of sources n for
different cost c with (left)
β = 0.8 and (right) β = 0.1
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conservative system, while c → 0 indicating high tolerance
to information processing.

Let us define the Normalized Quality Indicator (NQI)
1
n
Mt of an approach which evaluates the quality of the deliv-

ered context xt when stopping at time t within an epoch.
Recall that Mt indicates the number of non-problematic val-
ues that context xt contains with 0 ≤ Mt ≤ n. Hence
a high NQI value close to unity denotes delivered context
of high quality. Figure 4 illustrates the average NQI for
the ODA (for all epochs, i.e., 1

n
E[M] ∼ 1

nN

∑N
j=1 Mtj )

against number of sources n for different cost values c

and β ∈ {0.1, 0.8}. It is worth noting that the NQI of an
approach that stops the observation process at an arbitrary
time and, then, delivers context at that time to the System is
1
n
E[M] = 1

n
βn = β, where E[M] = βn is the expectation

of the Binomial distribution ∼ B(n, β); we notate this value
as BNQI. This approach does not take into consideration the
sequence of the r.v. M1, . . . , Mt−1 in order to proceed with
a decision at stopping at time t . On the other hand, ODA
takes into account the sequence (Mt)

T
t=1 thus exploiting the

knowledge up to T and then obtaining always higher values
than BNQI, even for high cost values as shown in Fig. 4. In
addition, NQI for relatively medium/high cost values does
not depend on the number of sources n, which means that
E[M] increases linearly with n. Note also that the higher the
β value, the higher NQI gets since the received context is of
high quality, while as β → 0 then NQI comes with lower
values. However, in that case, NQI is always higher than
BNQI indicating the applicability of ODA in cases where
the received context contains a high portion of problematic
values. Indicatively, for β = 0.01 we obtain NQI = 1.16
and BNQI = 0.01, i.e., our approach delivers two orders of
magnitude more quality context with n = 30, c = 0.1.

Table 2 Average quality reward E[Y ] for ODA and TDA with n = 30

ODA TDA ODA TDA ODA TDA

β c = 0.1 c = 0.5 c = 0.8

0.1 5.15 -0.13 3.33 -7.94 2.82 -22.80

0.5 18.82 12.16 16.50 2.62 15.65 -8.69

0.8 26.59 22.37 24.84 19.79 24.21 13.81

Nonetheless, we have to evaluate the performance of the
ODA including also the incurred delay, i.e., E[T ], required
to proceed with context delivery of high quality. We com-
pare the expected quality reward E[Y ] for both approaches
(ODA / TDA) for certain values of c, β and n.

Tables 2 and 3 show the average reward E[Y ] for both
approaches against cost per observation c and probability β

with n ∈ {30, 50}, respectively. E[Y ] quantifies the quality
of context delivered when an approach stops at a stopping
time t accounting also the cumulative cost for observing
t pieces of context. ODA achieves always higher E[Y ]
value than TDA for all parameters. More interestingly, ODA
is deemed appropriate for adopting for delay-tolerant pre-
dictive analytics when context contains a high portion of
problematic values, i.e., low β values, compared with the
performance of TDA. We can observe that for β = 0.1 and,
especially, when the cost of observation is relatively high,
i.e., c = 0.8, ODA delivers context of (112,129) % more
quality compared to TDA in terms of quality reward with
n = (30, 50). Moreover, as β increases then ODA and TDA
proceed with relatively high E[Y ]. This is due to the fact
that high β values refer to received context of high quality,
thus, evidently both approaches would deliver high qual-
ity context. However even in this case, ODA outperforms
TDA. When the cost of observation is relatively high and
the received context contains a low portion of problematic
values, ODA is 84 % and 48 % more efficient than TDA in
terms of quality reward for n = 30 and n = 50, respectively;
see Tables 2 and 3.

Overall, ODA delivers high quality context to the Sys-
tem, thus, improving the quality of predictive analytics, even
when context contains, with a high probability, problem-
atic values and the cost per observation is not negligible.

Table 3 Average quality reward E[Y ] for ODA and TDA with n = 50

ODA TDA ODA TDA ODA TDA

β c = 0.1 c = 0.5 c = 0.8

0.1 7.98 0.23 5.76 -4.08 5.11 -17.15

0.5 30.36 17.85 27.57 13.89 26.57 5.94

0.8 43.76 36.05 41.55 33.36 40.69 27.84
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This is attributed to the fact that ODA exploits the history
of the observed sequence of Mt and then decides on the
optimal stopping time to deliver context at the expense of a
controlled (relatively low) delay.

5.2 Comparative assessment

5.2.1 Experiment setup

We experiment with real contextual data from K = 16
chemical sensors exposed to three gases of three chemi-
cal compounds at a certain concentration level [32, 33].
Each sensor detects three specific environmental contex-
tual parameters corresponding to Ethylene, Ammonia, and
Toluene, respectively. Each sensor k ∈ [K] measures a
triplet sk = [xk1, xk2, xk3], where each dimension of sk cor-
responds to the three contextual parameters. The context is
then a n-dimensional vector with n = 3K = 48 dimen-
sions at time instance t , i.e., xt = (s1, s2, . . . , sK) and
the dataset contains 13,910 48-dimensional contextual vec-
tors. We focus in the case where there are missing values
for each dimension of the context vector at time instance
t . For experimentation, we set the probability of a miss-
ing (problematic) value in a dimension with p = 1 −
β ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, i.e., the probability of being a
parameter non-problematic at time instance t is β = 1 − p.

We consider two scenarios. In the first scenario (Sce-
nario 1), the System processes the delivered context vector
xt , which might include missing values. The process of the
System refers to a fusion operator over the contextual values
of the vector (described later). In the second scenario (Sce-
nario 2), the System before processing the context vector
xt invokes a Missing Value substitution Algorithm (MVA)
for handling the missing values in xt . After the invocation
of the MVA, the System calls for a fusion operator over the
‘imputed’ contextual values. The process of the System over
context x refers to two fusion operators over the contex-
tual data. For demonstration, we define two vectorial fusion
operators: favg(x) is associated with the mean value of each
chemical compound over all K sensors, and fmin(x) is asso-
ciated with the minimum value of each chemical compound
over all K sensors, as follows:

favg(x) =
[
1

K

K∑

k=1

xkj

]

, j = 1, 2, 3 (5)

fmin(x) =
[

min
k∈[K]{xkj }

]

, j = 1, 2, 3 (6)

Scenario 1 In this scenario, when a dimension xkj is miss-
ing, k ∈ [K], j = 1, 2, 3 then, evidently, the operators favg

and fmin do not take into account that dimension in the cal-
culation of the mean or the minimum, respectively; note,

there is not MVA invocation in this scenario. We experi-
ment with three approaches (we repeat the ODA and TDA
for convenience):

– The Optimal Delivery Approach (ODA), which
observes Mt and delivers xt when Mt > y. Then
the System invokes the vectorial operators favg(xt )

(and fmin(xt )). Otherwise, the System takes the next
observation, i.e., the next incoming context vector.

– The Immediate Delivery Approach (IDA), which deliv-
ers context xt at each time instance t to the System.
Then, the System invokes at each t the vectorial opera-
tors favg(xt ) (and fmin(xt )).

– The Threshold-based Delivery Approach (TDA) with
threshold parameter θ ∈ (0, n), which observes Mt and
delivers xt when Mt > θ . Then the System invokes the
vectorial operators favg(xt ) (and fmin(xt )). Otherwise,
the System waits for the next time instance to process
the incoming vector.

The comparative assessment in Scenario 1 is to examine
whether the ODA compared with the delay of the TDA and
the non-delay of the IDA results to accurate fusion results.
Specifically, if x′

ti
is the delivered context to the System by

an approach at some time instance ti within the i-th epoch,
i = 1, . . . , N , and xt is the ground truth (actual) context
at that time instance (i.e., without missing values), then we
define as mean fusion error for the favg(·) operator as the
root mean squared error of the vectorial fused vector, i.e.,

eavg =
(
1

N

N∑

i=1

‖ favg(xti ) − favg(x′
ti
) ‖2

)1/2

(7)

The fusion error emin for the fmin(·) operator is similarly
defined and N is the total number of epochs for each
approach. Moreover, we have to include the corresponding
expected delay ωavg (and ωmin) of context delivery to the
System by an approach (ODA,TDA,IDA) to obtain a certain
fusion error. Evidently, the delay for the IDA is zero, since it
immediately delivers context to the System for fusion. The
expected delay for both ODA and TDA is defined as:

ω = 1

N

N∑

i=1

t∗i , (8)

where t∗i refers (i) to the optimal stopping time T for the i-
th epoch in the ODA, i.e., the first time instance at which
Mti > y and (ii) to the threshold-based stopping time for the
i-th epoch in the TDA, i.e., the first time instance at which
Mti ≥ θ for a specific θ .

Scenario 2 In this scenario, when a dimension xkj is miss-
ing then its value is filled-in (a.k.a. imputed) by the Expo-
nential Smoothing MVA (ES-MVA) [30] with smoothing
factor a ∈ (0, 1), which is used in time-series contextual
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Table 4 Scenario 1: Fusion error eavg and delay ω (in parenthesis)

β = 0.5 β = 0.7

η = θ
n

ODA IDA TDA ODA IDA TDA

0.1 80.88 (3.4) 161.96 161 (0) 52.8 (2) 109.5 109.5 (0)

0.3 160 (10) 106.3 (7)

0.5 95.7 (15) 94.5 (12)

0.7 12 (504) 14.3 (443)

0.9 10 (988) 9.5 (1099)

data. Specifically, if the dimension xkj,t at time instance t

is missing, which corresponds to sensor k ∈ [K] and to
the chemical compound j ∈ {1, 2, 3}, then the ES-MVA
replaces it with an estimate ukj,t based on xkj,t−1 and the
trajectory of this dimension up to t − 1, that is:

ukj,t = axkj,t−1 + (1 − a)ukj,t−1, (9)

with ukj,1 = xkj,0. The smoothed statistical estimate ukj,t

for the corresponding missing value xkj,t is a weighted aver-
age of the previous observation xkj,t−1 and the previous
smoothed statistical estimate ukj,t−1. In this scenario, the
three approaches ODA, TDA and IDA deliver the context
xt to the System as described in Scenario 1. Nonetheless,
the System upon receiving the xt vector it firstly involves
the ES-MVA for imputation and then invoking the fusion
operators favg(xt ) and fmin(xt ) of the imputed vector xt .
Moreover, the fusion errors eavg and emin in this scenario is
defined as in Scenario 1 by simply involving the imputed
contextual values.

5.2.2 Comparison evaluation

Tables 4 and 5 show the fusion errors eavg and emin for the
favg and fmin operators, respectively, and the correspond-
ing delay ω (shown within parenthesis) with β ∈ {0.5, 0.7}
using the approaches ODA, IDA, and TDA repeated for
N = 104 epochs. The results are produced with observa-
tion cost c = 1; similar results are obtain with other c

values. The ODA achieves the lowest error compared to

Table 5 Scenario 1: Fusion error emin and delay ω (in parenthesis)

β = 0.5 β = 0.7

η = θ
n

ODA IDA TDA ODA IDA TDA

0.1 621.2 (3.4) 1240 1240 (0) 439.7 806.9 806 (0)

0.3 1202 (10) 784 (7)

0.5 765 (15) 702 (15)

0.7 50 (504) 46 (443)

0.9 16 (988) 2 (1099)

IDA for all cases with a relatively small delay, i.e., number
of observations until the mechanism delivers context to the
System. This indicates the applicability of our approach for
near real-time predictive analytics, by achieving low fusion
error compared with the IDA, which achieves 100% higher
fusion error by immediately delivering context. Moreover,
we experiment with different threshold values for the TDA,
i.e., θ = ηn, with different η ∈ {0.1, . . . , 0.9} percent-
age. Evidently, the lower the threshold, i.e., the TDA stops
at the first time instance the percentage of non-problematic
values out of n is over η, the sooner that mechanism deliv-
ers context to the System. As shown in Tables 4 and 5,
TDA achieves higher fusion error than ODA with relatively
higher delay. Specifically, with η ≤ 0.5, ODA outperforms
TDA in both error and delay. On the other hand, for η > 0.5,
i.e., TDA considers stopping when at least more than 50 %
of the contextual values are non-problematic, it achieves
lower fusion error compared to ODA. However, this comes
at the expense of a significantly high delay (indicatively
% for η = 0.7). This high delay is prohibitive for (near)
real-time statistics analytics, especially in the environmen-
tal monitoring, since significant events cannot be captured
at the early stages of a monitoring process, e.g., fire or flood
detection. Evidently, as β increases all approaches obtain
relatively lower fusion error, since less problematic pieces
of context are observed. Nonetheless, in this case, TDA
achieves extremely high delay for obtaining a low error. In
both cases for all β values, the proposed mechanism with
significantly low delay achieves low fusion error (in both
types of fusion operators). The IDA approach never outper-
forms ODA in each case, while TDA for η > 0.5 attempts
lower fusion error with one or two orders of magnitude
higher delay than that of ODA, thus, yielding it inappropri-
ate for real-time monitoring. It is worth noting that similar
behavior will be obtained with other fusion operators that
take into consideration the number of current contextual
values, since the more non-problematic values we receive
the better the accuracy of the event detection. For instance
fusion operators over the current context xt could be higher
order statistics over the n current measurements, the top-K

Table 6 Scenario 2: Fusion error eavg and delay ω (in parenthesis)

β = 0.5 β = 0.7

η = θ
n

ODA IDA TDA ODA IDA TDA

0.1 61.02 (3.4) 111.55 111 (0) 32.8 (2) 99.6 99 (0)

0.3 102 (10) 92.4 (7)

0.5 88.3 (15) 74.4 (12)

0.7 9 (504) 11.9 (443)

0.9 7 (988) 8.1 (1099)
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Table 7 Scenario 2: Fusion error emin and delay ω (in parenthesis)

β = 0.5 β = 0.7

η = θ
n

ODA IDA TDA ODA IDA TDA

0.1 580 (3.4) 1224 1224 (0) 377.5 838.6 838 (0)

0.3 1212 (10) 824 (7)

0.5 715 (15) 587.6 (15)

0.7 46.7 (504) 47.6 (443)

0.9 17.8 (988) 2.3 (1099)

sources with respect to score functions over their measure-
ments, the outliers of xt using the median absolute deviation
about the median [31], or a weighted sum over the current
contextual values.

In the case we adopt a MVA for missing values impu-
tation before delivering context to the System, we obtain
analogous performance of all mechanisms. Tables 6 and 7
show the impact of the adoption of the ES-MVA on the
fusion errors for both fusion operators using all approaches.
Obviously, by adopting a MVA, we obtain lower fusion
errors since the missing values are replaced with the most
plausible enough thus, statistically reducing the error. Even
in this case, ODA outperforms IDA significantly. This is due
to the fact that the ODA takes into account all information
(i.e., the series Mt ) before proceeding with an optimal deci-
sion whether to stop at time t or continue and take the next
observation. Recall that the highest possible expected con-
text quality reward is obtained by the stopping rule stated
in Theorem 2. This justifies the capability of our mecha-
nism to deliver context of high quality with relatively low
delay. The TDA assumes low fusion error but with very high
delay compared with the ODA and, obviously, IDA. Over-
all, in both scenarios (by either adopting MVA algorithms
or not) the ODA is deemed as an appropriate mechanism
for near real-time analytics assuring high quality of deliv-
ered context, thus, improving the quality of MVAs inducing
a tolerable delay.

6 Conclusions

We introduce a quality-optimized mechanism for delaying
context delivery to predictive analytics engines in hope of
receiving context of higher quality in data streams, thus
eliminating possible biases in knowledge extraction and in
decision making. The idea behind this mechanism is to
avoid immediately delivering context by introducing a cer-
tain controlled delay. The proposed mechanism, based on
the principles of optimal stopping theory, proceeds with
an optimal stopping rule for delivering context taking into
consideration the observation cost and the statistics of
the quality indicators seen so far. An analytical stochastic

optimization model is proposed and, through experimental
evaluation and comparative assessment with a threshold-
based and immediate delivery approach, our mechanism
is deemed appropriate for adoption especially when the
received context is (stochastically) of low quality and the
observation cost is not negligible. In our future agenda
we study the analysis and development of a mechanism in
which the decision time for context delivery is contained
within a finite time interval which is application specific.
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