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Abstract In this paper, we present a highly accurate
forecasting method that supports improved investment deci-
sions. The proposed method extends the novel hybrid
SVM-TLBO model consisting of a support vector machine
(SVM) and a teaching-learning-based optimization (TLBO)
method that determines the optimal SVM parameters, by
combining it with dimensional reduction techniques (DR-
SVM-TLBO). The dimension reduction techniques (feature
extraction approach) extract critical, non-collinear, relevant,
and de-noised information from the input variables (fea-
tures), and reduce the time complexity. We investigated
three different feature extraction techniques: principal com-
ponent analysis, kernel principal component analysis, and
independent component analysis. The feasibility and effec-
tiveness of this proposed ensemble model were examined
using a case study, predicting the daily closing prices of
the COMDEX commodity futures index traded in the Multi
Commodity Exchange of India Limited. In this study, we
assessed the performance of the new ensemble model with
the three feature extraction techniques, using different per-
formance metrics and statistical measures. We compared
our results with results from a standard SVM model and
an SVM-TLBO hybrid model. Our experimental results
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show that the new ensemble model is viable and effec-
tive, and provides better predictions. This proposed model
can provide technical support for better financial invest-
ment decisions and can be used as an alternative model for
forecasting tasks that require more accurate predictions.
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1 Introduction

In the business environment, we desire precise and effi-
cient forecasts of various kinds of financial variables, which
can then be used to develop successful strategies and
avoid large losses [7]. Over the last three decades, many
researchers have considered financial time-series data pre-
diction, with the prime objective of beating the financial
market. Financial forecasting is an interesting and challeng-
ing field, because there are a huge number of factors (e.g.,
economic, political, environmental, and psychological) that
must be considered during the forecasting process. Finan-
cial time series data are intrinsically noisy, non-stationary,
and deterministically chaotic [4, 39]. The noise in finan-
cial time-series data are caused by a lack of information
regarding the historical behavior of financial markets, which
makes it hard to map the future and past values. The non-
stationary and chaotic nature of the data indicates that the
data distribution varies over time and is unpredictable.

Because of successful developments in different com-
putational intelligence techniques, researchers have started
to apply computational intelligence approaches to financial
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markets. Example techniques include artificial neural net-
works (ANNs), support vector machines (SVMs), genetic
algorithms (GAs), particle swarm optimization (PSO), and
fuzzy technologies. Vapnik et al. [44] introduced SVM
methods to overcome the problems of ANNs (such as get-
ting trapped in local minima, overfitting to training data,
and long training times). Since then, several authors have
proposed financial instrument pricing using SVMs. For
example, Tay and Cao [39] and Cao and Tay [4] developed
pricing models for five specific financial futures in the US
market using SVMs, and Van Gestel et al. [43] used LS-
SVM (least squares support vector machine) for the T-bill
(treasury bill) rate and stock index pricing in the United
States (US) and German markets. Their experimental results
showed that SVM performed well when applied to finan-
cial markets and produced good predictions Sapankevych
and Sankar [38] published an exhaustive survey on SVMs
for time series data prediction. They surveyed papers in
the areas of financial market prediction, electric utility load
forecasting, environmental states, weather prediction, and
reliability forecasting. In their survey, they noted that the
selection of free parameters for the SVM and the kernel
function had a significant influence on the forecast. The
experimental result by Kim [21] showed that SVM predic-
tions are sensitive to these free parameters, and that it is
important to select optimal values. Improper selection of
free parameters can cause over- or under-fitting problems
[21]. To select the optimal SVM parameter(s) and kernel
function, several studies proposed a hybrid model combin-
ing an SVM and optimization techniques using PSO, GAs,
artificial bee colonies (ABCs), differential evolution (DE),
ant colony optimization (ACO), simulated annealing (SA),
and so on [19, 29, 30, 46, 47]. However, the optimization
model used to select the optimal parameter(s) itself intro-
duces additional user-specified controlling parameter(s),
making the user’s task even more complex. To determine
the influence of the user-specified controlling parameter(s)
of the optimization technique on the forecasting result,
Das and Padhy [8] proposed a novel hybrid SVM-TLBO
model. In the hybrid model, the teaching-learning-based
optimization (TLBO) algorithm proposed by Rao et al.
[37] is used to optimize the SVM parameters and ker-
nel function, which does not require user-specified control
parameters. Their extensive experimental results showed
that the SVM-TLBO novel hybrid model outperformed the
standard SVM model and the SVM+PSO model proposed
by Lin et al. [29].

Das and Padhy [8] proposed a novel hybrid regression
model for forecasting the value of the multicommodity
futures index (COMDEX) traded on the Multi Commod-
ity Exchange of India Limited (MCX). They considered
17 technical indicators as input variables (features) to the
SVM regression model, and predicted closing values of the

futures index from 1, 3, and 5 days ahead. The 17 tech-
nical indicators in their study were selected from different
literature surveys based on work by Hsu [12], Huang and
Tsai [13], Ince and Trafalis [18], Kim [21], Kim and Han
[22], Kim and Lee [23], Lai et al. [25], Liang et al. [27],
and Tsang et al. [41], and feedback from domain experts.
A detailed description of these technical indicators can be
found in Appendix A. When modeling financial time series
using SVM regression, technical indicators are used as input
and must be very carefully selected and identified. Includ-
ing irrelevant technical indicators as input to the regression
model may lead to noise. Training an SVM model with
the inherited noisy data may cause it to fit to undesirable
data, resulting in an inappropriate approximation func-
tion and loss of the generalization. Moreover, the model
could under- or over-fit to the noisy data [2]. Additionally,
almost all stock prediction techniques use many approaches
such as statistics, mathematical models, machine learn-
ing and artificial intelligence to determine potential future
rules. However, these approaches require high quality
features (inputs) before they can learn any knowledge,
because inaccurate information can produce erroneous
results [6].

To minimize the noise and collinearity in the data and
to extract the most relevant information for knowledge dis-
covery, we can use dimensionality reduction techniques
like independent component analysis (ICA), principal com-
ponent analysis (PCA), kernel principal component anal-
ysis (KPCA), and factor analysis (FA). The fundamental
objectives of dimensionality reduction are to identify and
extract more reliable information and effective features
from the original data [40]. Our literature survey iden-
tified different dimensional reduction techniques used in
machine learning and showed that the generalization capa-
bilities of these methods are improving. Cao et al. [3]
compared PCA, KPCA and ICA applied to SVM classi-
fication. Cai et al. [1] applied dimensionality reduction in
SVM using PCA, KPCA and ICA. Ekenel and Sankur [10]
applied ICA and PCA dimensionality reduction methods
to facial recognition. Lu et al. [32] used ICA for dimen-
sionality reduction with support vector regression (SVR)
for financial timeseries data forecasting. Ince and Trafalis
[17] used KPCA and factor analysis (FA) as dimensional-
ity reduction techniques with SVM to predict stock prices.
Lu [31] developed a hybrid model using non-linear inde-
pendent component analysis (NLICA), SVR and PSO to
forecast the stock index. Zhai et al. [48] used PCA with
SVM to improve material identification of loose parti-
cles in sealed electronic devices Their experimental results
showed that this model was effective. An improved SVM
model was proposed by Kuang et al. [24], which integrated
SVM, KPCA, and chaotic PSO for intrusion detection.The
focus of this research was to incorporate some well-known
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dimensionality reduction techniques (feature extraction
approaches) into the novel hybrid SVM-TLBO regression
model proposed by Das and Padhy [8], to develop an
improved prediction model (DR-SVM-TLBO) that fore-
casts COMDEX. Chang and Wu [6] concluded from their
experimental study that dimensional reduction using fea-
ture extraction techniques is superior to feature selection
techniques. We considered PCA, a non-linear version of
PCA with a kernel based trick (KPCA), and ICA to reduce
the dimensionality of the input variables (features), because
these three techniques are well-known methods [1, 3, 17,
33] More detailed information regarding the PCA, KPCA,
and ICA algorithms can be found in [6, 14–17, 20, 31, 32,
42] and Appendix B. We compared standard SVM without
dimension reduction and the novel hybrid SVM-TLBO [8]
model with our proposed model. The expected benefits of
the proposed model are that it can: (1) reduce the dimen-
sion of the financial time-series data, (2) reject noisy inputs,
(3) reduce the computational complexity, and (4) produce a
more generalized model.

The experimental results of our commodity futures index
data show that the forecasting results of the proposed
ensemble model are more accurate than those of the stan-
dard SVM regression model and the novel hybrid SVM-
TLBO model [8]. To measure and compare the forecasting
performances of the models, we used the root mean square
error (RMSE), mean absolute error (MAE), normalized
mean square error (NMSE), directional symmetric (DS),
and Diebold-Mariano (DM) statistical test. The outcome of
this study provides empirical confirmation of the usefulness
of the proposed model when forecasting in the financial
domain.

The contribution of this study and experiment was
to design a new ensemble system by integrating two
approaches: dimensionality reduction techniques using fea-
ture extraction methods and the novel hybrid SVM-TLBO
regression model. A small improvement in the forecasting
performance can minimize the stakeholders’ risk and lead
to a considerable investment profit. The proposed model
produced a system that revealed three key characteristics:
(1) the resulting model reduced the input features (technical
indicators) from seventeen to six features that had a greater
than 95 % cumulative variance; (2) the time complexity of
the proposed model was less than the benchmark models;
and (3) the forecasts were more accurate than those of the
benchmark models. The organization of this paper is as fol-
lows. Section 2 provides a summary of SVM for regression,
TLBO optimization methods, and the novel hybrid SVM-
TLBOmodel. In Section 3, we describe the proposed hybrid
model architecture and experiments, followed by the empir-
ical results and discussion in Section 4. Section 5 concludes
the study with a brief discussion of our findings and future
work.

2 Novel hybrid SVM-TLBO model

2.1 SVM for regression

Vapnik et al. [44] developed an SVM technique for regres-
sion. The method was presented in Hykins [11] as follows.

Given a training data set {(x1, y1), . . . , (x�, y�)}, where
each xi ∈ X ⊂ Rn (X denotes the input sample space) and
matching target values yi ∈ R for i = 1, . . . , l (where l

corresponds to the size of the training data), the objective of the
regression problem is to find a function f : Rn → R that
can approximate the value of y for x not in the training set.

The estimating function f is defined as

f (x) = (wT �(x)) + b, (1)

where w ∈ Rmb ∈ R is the bias, and � denotes a nonlinear
function from Rn to high-dimensional space Rm(m > n).
The aim is to find w and b such that the value of f (x) can
be determined by minimizing the risk.

Rreg(f ) = C

n∑

i=1

L∈(yi, f (xi)) + 1

2
‖w‖2 . (2)

Here, L∈ is the extension of the ∈-insensitive loss func-
tion originally proposed by Vapnik et al. [44], which is
defined as

L∈ =
{ |y − z|− ∈, |y − z| ≥∈
0, otherwise

}
. (3)

By introducing the slack variables ζi and ζ ∗
i , the problem in

(2) can be reformulated to the following.

(P) Minimize C[
l∑

i=1
(ζi + ζ ′

i )] + 1
2‖w‖2 subject to

(i)yi − wT �(xi) − b ≤∈ +ζi,

(ii)wT �(xi) + b − yi ≤∈ +ζ ′
i ,

(iii)ζi ≥ 0,
(iv)ζ ′

i ≥ 0,

(4)

where i = 1, . . . , l, and C is a user-specified constant
known as a regularization parameter.

We can solve (P) using the primal dual method to get the
following dual problem.

Determine ({αi}li=1 and
{
α∗
i

}l

i=1) (αi and αi∗ are the
respective Lagrange multipliers for constraints (i) and (ii)
of the primal quadratic optimization problem P in (4)), that
maximize the objective function

Q(αi, α
∗
i ) =

l∑

i=1

yi(αi − α∗
i )− ∈

l∑

i=1

(αi − α∗
i )

−1

2

l∑

i=1

l∑

j=1

(αi − α∗
i )(αj − α∗

j )K(xi, xj ),

(5)
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subject to

(1)

l∑

i=1

(αi − α∗
i ) = 0, and (6)

(2)

0 ≤ αi ≤ C, 0 ≤ α∗
i ≤ C. (7)

Here, i = 1, . . . , l, andK : X×X → Ris the Mercer kernel
defined by

K(x, z) = �(x)T �(z). (8)

The solution of the primal dual method yields

w =
l∑

i=1

(αi − α∗
i )�(xi), (9)

where b is calculated using the Karush-Kuhn-Tucker condi-
tions. That is,

αi(ε + ζi − yi + wT �(xi) + b) = 0,
α∗

i (ε + ζ ∗
i + yi − wT �(xi) − b) = 0,

(10)

(C − αi)ζi = 0 and (C − α∗
i )ζ ∗

i = 0 , where i = 1, . . . , l

(11)

Because αi • α∗
i = 0, and αi and α∗

i cannot simultaneously
be non-zero, there exists some i for which either αi ∈ (0, C)

or α∗
i ∈ (0, C). Hence, b can be computed using

b = yi −
l∑

j=1
(αj − α∗

j )K(xj , xi) − ε f or 0 < αi < C,

b = yi −
l∑

j=1
(αj − α∗

j )K(xj , xi) + ε f or 0 < α∗
i < C.

(12)

The xi corresponding to 0 < αi < C and 0 < α∗
i < C are

called support vectors. Using the expressions for w and b in
(9) and (12), f (x) can be computed using

f (x) =
n∑

i=1

(αi − α∗
i )(�(xi)

T �(x)) + b,

=
�∑

i=1

(αi − α∗
i )K(xi, x) + b. (13)

Note that we do not require the function � to computef (x),
which is an advantage of using the kernel.

2.2 Teaching-learning-based optimization technique

Teaching learning based optimization (TLBO) is a recently
established novel and effective meta-heuristic population
based optimization algorithm [37]. TLBO uses a certain

population of solutions to find the global solution, in a sim-
ilar way as other nature-inspired algorithms such as PSO,
GA, and ABC. The TLBO algorithm is based on a simu-
lation of a traditional learning process, that is, the transfer
of knowledge within a classroom atmosphere. The algo-
rithm consists of two stages: (i) learners (students) first
acquire knowledge from a teacher (teacher phase); and (ii)
they enhance their knowledge by interacting with their peers
(student phase). The TLBO population consists of a group
of learners. There are decision variables, similar to other
optimization algorithms. The different decision variables in
TLBO are equivalent to the different subjects offered to stu-
dents, and the students’ results are analogous to the ‘fitness’
value of the optimization problem.

2.2.1 Steps in the TLBO algorithm

The following steps of the TLBO algorithm were described
by Rao et al. [37].

Step 1: Define the optimization problem and create a
solution space: In the initial phase, we identify the deci-
sion variable(s) in the problem to be optimized and assign
them a range (minimum and maximum of the variable)
where we will search for the optimal solution. If the solu-
tion spaces and ranges are not properly defined, then
there is a chance that the optimization will take more
time.

Step 2: Identify the fitness function: In this step, we
design or identify the fitness function, which accurately
represents how well the optimized solution fits our prob-
lem using a single number. The TLBO algorithm uses
the fitness function to evaluate its candidate solutions
and obtains the optimal solution by minimizing (or max-
imizing) f (X) over the range of values of the decision
variables (X), where f (X) is the fitness function.

Step 3: Initialize the learners (or students): Each learner
(based on the population size) is initialized using ran-
dom values for each of the decision variables (within the
appropriate ranges). The i-th learner is represented by
row vectorXi , defined as

Xi = [xi,1, xi,2, xi,3, . . . , xi,D], i = 1, 2, . . . , N, (14)

whereD is the number of decision variables, and N is
the total number of learners. Each decision variable xi,j is
randomly assigned a value using

xi,j = xmin
j +rand()∗(xmax

j −xmin
j )j = 1, 2, . . . , D (15)

where xmin
j and xmax

j are the minimum and maximum val-
ues of the j -th variable of i-th learner, and rand()is a
function that returns a random number between 0 and 1.
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Step 4: Teacher phase

a. Compute the mean value of each of the learners’
decision variables and denote the population mean as

Xmean = [x1 , x2 , . . . , xj
, . . . , x

D
], where x

j
=

∑N
i=1 xi,j

N

b. Compute the fitness values of each learner X based
on the fitness function f (X).The learner with the
best fitness value (solution) is identified as the
teacher (Xteacher ) for the teacher phase.

c. Now the teacher (Xteacher ) transfers their knowl-
edge and tries to improve the fitness of other learners
(Xi) by shifting the mean of the learners towards the
teacher using
Xnew = Xi + rand() ∗ (Xteacher −(T F ) ∗ Xmean),

f or i = 1, 2, . . . , N, (16)

where,

T F = round[1 + rand(0, 1)]. (17)

Here, T F is the teaching factor (either 1 or 2), and
rand() is a random number function that returns a
number between 0 and 1.
Note that T F is not a parameter of the TLBO algo-

rithm. The value of T F is not provided as input to the
TLBO, but its value is randomly chosen with equal
probability by the algorithm using (17).

d. If the updated solution (Xnew) is better than the exist-
ing solution (Xi), then we accept the new solution,
otherwise we reject it.

Step 5: Student phase
In the student phase, the learners (students) enhance

their knowledge by interaction with other peer learn-
ers in the classroom. The practice of mutual interaction
between learners (students) tends to increase the knowl-
edge of the learner. Therefore, an individual learner
learns if the other individuals have more knowledge.

a. Randomly select any two solutions Xi and Xj such
that i 
= j.

b. Solution Xi interacts with solution Xj If f (Xi),that
is, the fitness value of Xi is better (superior) than
fitness value of Xj , then we update Xi to Xnew using

Xnew = Xi + rand() ∗ (Xi − Xj) (18)

otherwise, we update it to
Xnew = Xi + rand() ∗ (Xj − Xi) (19)

Step 6: Iterate until the termination criteria are satisfied
We then repeat Steps 4 and 5 until our termination con-

ditions are satisfied, i.e., the average value of the fitness
function for all learners does not improve, or we reach the
maximum number of generations. The Xi that minimizes

f (Xi)for a minimization problem (or Xi that maximizes
f (Xi)for a maximization problem) is the final solution
to the optimization problem.

A three-dimensional graphical illustration of single
learnerXi searching for the optimal solutions is presented in
Fig. 1. The initial stage represents the status of the decision
variables obtained by the learner for each of the parameters
in the optimization problem, as in (15) Xmean and Xteacher

represent the mean and current best status among all the
learners (populations). The updated Xnew is the status of
the learner after the teacher phase, which is updated based
on (16). Xnew after the student phase represents the learner
status after interacting with its peers in the student phase,
where the status is updated using either (18) or (19) Note
that the fitness value (i.e., distance between the X’s and
corresponding f (X’s)) of each learner improves after each
phase.

2.3 The novel hybrid SVM-TLBO regression model

The novel hybrid SVM-TLBO model proposed by Das and
Padhy [8] predicts using SVM regression and uses TLBO
to determine the SVM parameters. The hybrid model was
designed to work in a two-dimensional solution space, that
is, to optimize C and σ , where C is the regularization
parameter of the SVM regression model and σ is the band-
width of the radial basis (Gaussian) kernel function. The
values of different parameters used in the SVM-TLBO
novel hybrid model are presented in Table 1(a) and (b).
The flow chart of the SVM-TLBO hybrid regression model
is shown in Fig. 2. The raw time series financial data are
processed to prepare the input set (features), and then the
TLBO algorithm selects the optimal free parameters for the

Fig. 1 Three-dimensional graphical illustration of the learner (pop-
ulation) searching for optimal solutions, in the teacher and student
phases
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Table 1 (a) SVM and (b) TLBO parameters used in experiments [8]

SVM Parameter Parameter Value

C (regularization parameter) 0.01 to 35,000 [28]

σ (bandwidth) 0.0001 to 32 [28]

ε 0.0001 [28]

Kernel type Radial basis (Gaussian)

(a) SVM parameters

TLBO Parameter Parameter Value

Population size (learners/students) 15 [34, 36]

Maximum iterations 30 [34, 36]

Optimization category Minimum

(b) TLBO parameters

SVM regression model. We evaluate the fitness function for
the optimization algorithm using the RMSE of the SVM
regression results. In the training phase we apply the SVM
regression model for each set of parameter (C and σ ) values

Fig. 2 Flow chart representation of the novel hybrid SVM-TLBO
regression model [8]

obtained by the TLBO algorithm. These multiple execu-
tions of the SVM regression model in the training phase
increase the computational time, but this is the only over-
head involved in the hybrid model. After determining the
optimal parameters for the training data set, we apply the
trained model to the test (out-of-sample) data to evaluate the
performance of the forecasting model.

3 Proposed ensemble model architecture and
methodology

We propose a new ensemble model called DR-SVM-TLBO
for predicting financial time series, particularly the val-
ues of the energy commodity futures index. The proposed
model is presented as a flowchart in Fig. 3. In the first
step, the raw original time-series data collected from the

Fig. 3 Flowchart for the proposed DR-SVM-TLBO ensemble model
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market (i.e., MCX COMDEX) is input into the model for
preprocessing and is used to calculate the technical indi-
cators (see Appendix A). Detailed explanations of the data
collection methodology, data, and preprocessing are given
in Section 3.1. To determine the optimal number of fea-
tures (to reduce dimensionality) from the 17 normalized
input technical indicators, we used PCA dimension reduc-
tion to explain at least 95 % of the cumulative variance in
our data set. Then the flow chart is divided into two stages:
(1) dimensional reduction (critical feature extraction), and
(2) implementation of SVM-TLBO hybrid model. In the
dimensionality reduction stage, we apply feature extraction
techniques using PCA, KPCA, and ICA to the normalized
data. The number of critical features to be extracted is equal
to the optimal number of input features (N) determined
according to PCA to account for 95 % of the cumulative
variance. After the dimension reduction step, we construct
an input dataset containing the extracted features (reduced
in size) In the SVM-TLBO stage, we apply the model to the
reduced features. Here the training dataset is used to find the
optimal values for the free parameters of the SVM regres-
sion model and the kernel function. The SVM-TLBO hybrid
model used in the second stage is similar to the model devel-
oped by Das and Padhy [8] and presented in Fig. 2 The only
difference is that we have omitted the first two blocks (i.e.,
data preprocessing and input preparation). These changes
were required because data preprocessing and input prepa-
ration steps are already included in the proposed model. A
detailed overview of the computation techniques used in our
study is presented in Section 3.3 To forecast the values of the
commodity futures index for a new data pattern, X, we must
first apply the dimension reduction technique to extract the
optimal feature values. Then, the trained SVM regression
model is used to predict the value for the new data pat-
tern. The out-of-sample (test) data are historical data, so the
desired index values are known, and we can easily calculate
the forecast performance.

3.1 Experimental data

To examine the effectiveness of the improved forecast-
ing model, we applied it to real COMDEX data collected
from the MCX (http://www.mcxindia.com) [8]. We col-
lected daily trading series data points from January 1, 2010,
to May 7, 2014, and used them as training and testing data.
The total number of data samples in the time frame was

1,332. The time-series data consist of daily opening price,
low price, high price, closing price, and traded date. We used
17 technical indicators as the inputs. The raw daily prices
were used to calculate the technical indicators as per the
details given in Appendix A. The data period includes many
important and significant economic events so we consider
this data to be appropriate for training the proposed models.
Table 2 describes the dataset in terms of high, low, mean,
and median values, as well as standard deviation, kurtosis
(measure of the flatness of the distribution), and skewness
(degree of asymmetry of the distribution close to its mean).
Table 2 shows that the skewness value of the dataset is less
than zero i.e., the dataset is left skewed (most values are
concentrated to the right of the mean, with the extreme val-
ues to the left), there are lot of spikes in the dataset, and the
kurtosis value is less than three i.e., it is a platykurtic distri-
bution (flatter than a normal distribution with a wider peak).
After processing the 1,332 raw data points, we obtained
1,307 transformed data points with dates from February 1,
2010 to May 7, 2014. The technical indicators were nor-
malized to the range [0, 1] to minimize forecasting errors
and to prevent variables with large numeric ranges from
overwhelming the other data. The min-max normalization
process was applied to the input technical indicators and the
output closing prices. The technical indicators and closing
prices were normalized using

x̄d
i = xd

i − min
(
xd
i |Ni=1

)

max
(
xd
i |Ni=1

) − min
(
xd
i |Ni=1

) ,

d = 1, 2, . . . , 17(number of input variable) (20)

where x̄d
i is the normalized value, xd

i is the original value,
min(xd

i |Ni=1) is the minimum value in the original input data,
max(xd

i |Ni=1) is the maximum value in the original input
data, and N is the total number of trading days.

The normalized data were segregated into training and
test groups, approximately in the ratio of 5:1. The data were
divided into training and testing samples based on previous
work [7, 8, 21, 31, 45]. The ratio of training to test data used
by Chen et al. [7] was 9:1, Das and Padhy [8] used approx-
imately 5:1, Kim [21] and Lu [31] used 4:1, and Wang and
Wang [45] used approximately 6:1. In our case, 1085 data
points were used for training with 5-fold cross-validation,
and the remaining 222 were used to test the model. We con-
sidered three different forecasts of the closing prices: (1) 1
day ahead; (2) 3 days ahead; and (3) 5 days ahead.

Table 2 Brief description of
the MCX COMDEX dataset Parameter High Low Mean Median Standard Kurtosis Skewness

(for entire collection deviation

period)

Value 4689.6 2504.53 3539.56 3692.17 473.53 −0.4959 −0.7378

http://www.mcxindia.com
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3.2 Performance measures and statistical test

The performance of the proposed model was evaluated
using standard parametric statistical metrics: RMSE, MAE,
NMSE, and DS [4, 7, 39]. The descriptions and definitions
of these performance criteria are given in Table 3. The accu-
racy of the direction of the prediction is provided by DS (in
%). Larger DS values indicate a better forecast. These para-
metric statistical tests require a distributional assumption
(i.e., the data are normally distributed) and are not robust
to outliers, so they may occasionally produce ambiguous
results. Therefore, we also used nonparametric techniques
to evaluate the significance of any differences in the test
(out-of-sample) performance of the proposed model com-
pared with the benchmark models. We applied the DM
statistical test [9], which is a nonparametric statistical test
extensively used for forecasting model validation, especially
in economics and finance. In the DM test, the null hypoth-
esis states that the two forecasting methods have the same
forecasting accuracy, while the alternative hypothesis is that
the two forecasting methods have different levels of accu-
racy. The null hypothesis of equal forecasting accuracy is
rejected at the 5 % significance level; that is, if the computed
absolute value of the DM statistic is greater than 1.96 (i.e.,
|DM value| > 1.96). In this study, we used the square-error
criteria as the loss function in the DM test.

3.3 Computation techniques

We implemented Vapnik’s SVM regression technique using
LIBSVM, which is a SVM tool box [5]. We used the Gaus-
sian kernel (radial basis) function, because it performs well
under general smoothness assumptions. All the experiments
were executed on an Intel Core i7 CPU @ 2.10 GHz, with 6
GB primary memory. We wrote our own code to implement

Table 3 Performance evaluation metrics and their definitions

Performance Calculation

Metrics

RMSE

√
1
n

n∑
i=1

(pi − yi)2

NMSE

1
σ 2n

n∑
i=1

(yi − pi)
2

where: σ 2 = 1
n−1

n∑
i=1

(yi − y)2andy =
n∑

i=1
yi

MAE 1
n

n∑
i=1

|yi − pi |

DS
100
n

n∑
i=1

di

di = {1if (yi−yi−1)(pi−pi−1)≥0
0otherwise

* Note that n is the total number of data, yi is the actual output value,
and pi is the predicted output value of the i-th sample data

TLBO for the SVM-TLBO hybrid regression model. The
TLBO algorithm was defined in two dimensions, to opti-
mize σ (bandwidth) of the Gaussian kernel parameter and C

(regularization parameter) of the SVMs. In our experimen-
tal runs of the TLBO algorithm, there were no significant
changes to σ andCafter 25–30 iterations, when using a pop-
ulation size (learners/students) of 15. Pawar and Rao [34]
and Rao and Patel [36], observed that TLBO only requires
a small population and few iterations (generations). With
this in mind, we fixed the maximum number of iterations
for the TLBO to 30, with a population size 15. According
to Tay and Cao [39], SVRs are insensitive to ε (the extent
to which deviations are tolerated) if it is a reasonable value.
Cao and Tay [4] observed that the number of support vectors
decreases as ε increases. Thus, we chose ε = 0.0001. The
SVM parameter range of C was set to 0.01–35,000, and the
range of σ (bandwidth parameter of Gaussian kernel) was
set to 0.0001–32 [28].

For the proposed ensemble DR-SVM-TLBO model,
we designed our own code for dimensionality reduction
using the PCA, KPCA, and ICA techniques which we
implemented in R (https://www.r-project.org). The ensem-
ble model was implemented according to the flowchart in
Fig. 3. As previously discussed, we determined the optimal
number of features from the original 17 technical indicators
(features) using PCA. We selected the number of dimen-
sions based on the PCA results that accounted for at least
95 % of the cumulative variance in the dataset. The cumu-
lative variance of the PCA result is presented in Fig. 4.
The optimal number of features is six, because the cumu-
lative variance of the first six principal components (PC1
to PC6) was 95.41 %. So we set the optimal number of
features (components) for all the dimension reduction tech-
niques to six. In the implementation of the KPCA technique,
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we used a Gaussian kernel (radial basis) with a bandwidth
parameter of 0.01 and for ICA, we used the fast ICA
algorithm [15].

The dimensional reduction in the proposed ensemble
model uses PCA, KPCA, and ICA methods. So there are
three different variants of the proposed model: 1) DRPCA-
SVM-TLBO, the proposed model with PCA for dimen-
sionality reduction; 2) DRKPCA-SVM-TLBO, the proposed
model with KPCA for dimensionality reduction; and 3)
DRICA-SVM-TLBO the proposed model with ICA for

dimensionality reduction. We ran the new ensemble DR-
SVM-TLBO algorithm as per the flow chart in Fig. 3.
The simulation results are shown in Table 4. We com-
pared the results of all three variants (i.e., DRPCA-SVM-
TLBO, DRKPCA-SVM-TLBO, and DRICA-SVM-TLBO),
the new ensemble model with the standard SVM regression
without dimension reduction, and the novel hybrid SVM-
TLBO model [8]. We used a sequential optimization based
algorithm to train the SVM regression, because it is fast and
efficient for large data sets.

Table 4 Model performance with respect to the RMSE and the optimal parameters for standard SVM, SVM-TLBO novel hybrid, DRPCA-SVM-
TLBO, DRKPCA-SVM-TLBO, and DRICA-SVM-TLBO

Model Optimal Value Performance

Forecasting Cases C σ RMSE Average

Computational

Time

(milliseconds)

1-day-ahead forecast SVM∗ 100 0.01 TR: 0.0601 TR: 867

TE: 0.0992 TE: 41

SVM-TLBO∗ 2376.1150 2.1725 TR: 0.0363 TR: 8173

TE: 0.0440 TE: 45

DRPCA-SVM-TLBO# 1.5222 2.0021 TR: 0.0151 TR:496

TE: 0.0435 TE: 27

DRKPCA-SVM-TLBO# 37.3934 0.7444 TR:0.0144 TR:385

TE: 0.0219 TE: 29

DRICA-SVM-TLBO# 35.3597 0.6499 TR: 0.0150 TR: 279

TE: 0.0305 TE: 3

3-days-ahead forecast SVM∗ 10000 0.0001 TR: 0.0614 TR:2674

TE: 0.0922 TE: 41

SVM-TLBO∗ 25.5730 0.0234 TR: 0.0333 TR: 3483

TE: 0.0408 TE: 45

DRPCA-SVM-TLBO# 2.0044 4.5064 TR: 0.0240 TR:823

TE: 0.0354 TE: 26

DRKPCA-SVM-TLBO# 11.0621 2.8712 TR: 0.0241 TR:2545

TE:0.0292 TE: 29

DRICA-SVM-TLBO# 79.9654 1.2028 TR: 0.0250 TR:1922

TE: 0.0326 TE: 31

5-days-ahead forecast SVM∗ 0.1 1 TR: 0.0613 TR: 4292

TE: 0.1403 TE: 41

SVM-TLBO∗ 198.8539 0.1818 TR: 0.0434 TR: 9927

TE: 0.0599 TE: 39

DRPCA-SVM-TLBO# 6.5362 4.7105 TR: 0.0282 TR:2263

TE: 0.0509 TE: 31

DRKPCA-SVM-TLBO# 21.6708 2.5298 TR: 0.0289 TR:3775

TE:0.0479 TE: 28

DRICA-SVM-TLBO# 1.3585 7.1256 TR:0.0275 TR:817

TE: 0.0537 TE: 29

TR represents the training phase and TE represents the testing phase

Bold values represent the best performance. * Result based on Das and Padhy [8]. # Proposed model
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Table 5 Comparison of the out-of-sample results with respect to the RMSE, MAE, NMSE, and DS of the standard SVM, SVM-TLBO novel
hybrid, DRPCA-SVM-TLBO, DRKPCA-SVM-TLBO, and DRICA-SVM-TLBO ensemble models

Forecasting Cases Model RMSE MAE NMSE DS

SVM∗ 0.0992 0.0967 4.32E -05 58.79

SVM-TLBO∗ 0.044 0.033 8.49E -06 56.02

1-day-ahead forecast DRPCA-SVM-TLBO# 0.0435 0.0225 8.30E-06 55.09

DRKPCA-SVM-TLBO# 0.0219 0.0147 2.10E -06 52.78

DRICA-SVM-TLBO# 0.0305 0.0183 4.06E -06 57.87

SVM∗ 0.0922 0.0754 2.98E -05 51.54

SVM-TLBO∗ 0.0408 0.0333 7.37E -06 52.85

3-days-ahead forecast DRPCA-SVM-TLBO# 0.0354 0.0279 5.56E -06 51.39

DRKPCA-SVM-TLBO# 0.0292 0.0231 3.79E -06 52.77

DRICA-SVM-TLBO# 0.0326 0.0252 4.64E -06 53.24

SVM∗ 0.1403 0.1341 1.13E -04 50.93

SVM-TLBO∗ 0.0599 0.0442 1.58E -05 52.53

5-days-ahead forecast DRPCA-SVM-TLBO# 0.0509 0.038 4.20E -05 50.25

DRKPCA-SVM-TLBO# 0.0479 0.0363 1.00E-05 50.46

DRICA-SVM-TLBO# 0.0537 0.0406 6.90E -05 50

Bold values represent the best performance. ∗ Result based on Das and Padhy [8]. # Proposed model

Table 6 Diebold-Mariano
statistic: DM test values and
p-values (in parentheses) for
the MSE loss function

Model/ Forecasting 1-day-ahead 3-days-ahead 5-days-ahead

cases forecast forecast forecast

Standard SVM 31.4622∗ 20.377∗ 19.4791∗

(<2.2E -16) (<2.2E -16) (<2.2E -16)

SVM-TLBO 6.9828∗ -0.4223 2.5113∗

(3.517E -11) (0.6733) (0.0132)

DRPCA-SVM-TLBO 2.5026∗ 3.018∗ 2.9088∗

(0.013) (0.0029) (0.004)

DRICA-SVM-TLBO 2.5593∗ 0.286 3.5703∗

(0.0111) (0.7752) (0.0004)

* Significance level of 5%, |DM test |>1.96

Table 7 Percentage (%) improvement of the proposed new ensemble DR-SVM-TLBO (all three variants) model over the benchmark novel hybrid
SVM-TLBO [8] model for out-of-sample data, with respect to RMSE and MAE

Performance Forecasting Cases/ DRPCA-SVM-TLBO DRKPCA-SVM-TLBO DRICA-SVM-TLBO

Metrics Models

1-day-ahead 1.14 % 50.23 % 30.68 %

RMSE 3-days-ahead 13.24% 28.43% 20.10 %

5-days-ahead 15.03 % 20.03 % 10.35 %

1-day-ahead 31.82 % 55.45 % 44.55 %

MAE 3-days-ahead 16.22 % 30.63 % 24.32 %

5-days-ahead 14.03 % 17.87 % 8.14 %
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4 Experimental results and discussion

In this section, we present our experimental results regard-
ing the efficiency of the proposed new ensemble model. The
RMSE results and average computational time in millisec-
onds for all five models in the training phase (in-sample)
and testing phase (out-of-sample), and the optimal values
of C and σ are presented in Table 4. The testing phase
(out-of-sample) RMSE, MAE, and NMSE values presented
in Table 5 show that the new ensemble DRSVM-TLBO
model (all three variants) outperformed the standard SVM
regression and SVM-TLBO novel hybrid models in all
three forecasting cases. This is because the parameters (C
and σ ) of the standard SVM were selected using a tradi-
tional grid search method whereas the optimal values of
C and σ for SVM-TLBO, DRPCA-SVM-TLBO DRKPCA-
SVM-TLBO and DRICA-SVM-TLBO were obtained using
the TLBO algorithm starting at random values within the
defined solution space. In addition to the selection of the
optimal SVM and kernel parameters, the dimension reduc-
tion techniques (i.e., PCA, KPCA, and ICA) extracted the
input features from the original input set (17 technical indi-
cators). The extracted input features contain less noise and
more refined information. This changes the optimal values
(of C and σ ) derived by the optimization process and pro-
duced superior forecasting models. Table 4 clearly shows
that the dimension reduction techniques used in our models
reduced the average computational time and increased the
accuracy when compared to the benchmark models. With
respect to the DS performance metric, standard SVM per-
formed better than rest of the models in the 1-day-ahead
forecasts, DRICA-SVM-TLBO performed best in the 3-
days-ahead forecasts, and SVM-TLBO performed best for
the 5-days-ahead forecasts. Financial market practitioners
evaluate forecasting models using both the minimum fore-
cast error and directional accuracy [26]. The aim is to get
a directional accuracy (DS value) of over 50 % [7]. In our
study, the DS values for the benchmark and the proposed
new ensemble forecasting models were greater than 50 %
in all the forecasting cases. Table 5 clearly shows that the
proposed ensemble model with KPCA (i.e. DRKPCA-SVM-
TLBO) outperformed the other models under consideration
in this study. This is because the nonlinear kernel based
PCA (i.e., KPCA) can include more discriminatory infor-
mation to improve the accuracy of the forecasting model.
The number in bold corresponds to the best performance.

Table 6 summarizes the DM statistic with the p-values
for the DM test given in parentheses. We compared the
proposed ensemble DRKPCA-SVM-TLBO forecasting
model with two benchmark models (i.e. standard SVM and
novel hybrid SVM-TLBO) and two variants of proposed
models (i.e. DRPCA-SVM-TLBO and DRICA-SVM-TLBO)
for the 1-, 3-, and 5-days-ahead forecast cases. The results

(a) Box plot for 1-day-ahead forecast model 

(b) Box plot for 3-days-ahead forecast model 

(c) Box plot for 5-days-ahead forecast model 

Fig. 5 Box plot of MAE values using standard SVM, SVM-TLBO
novel hybrid, and our proposed new ensemble models (i.e. DRPCA-
SVM-TLBO, DRKPCA-SVM-TLBO, and DRICA-SVM-TLBO): (a) 1-
day-ahead forecast, (b) 3-days-ahead forecast, and (c) 5-days-ahead
forecast
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in Table 6 show that the p-values were smaller than the
chosen significance level (i.e., 5 %) and the DM test values
were greater than 1.96 except for the SVM-TLBO and
DRICA-SVM-TLBO models, when applied to the 3-days-
ahead forecast. The absolute value of the DM test results
of DRKPCA-SVM-TLBO compared to SVM-TLBO was
0.4223 (p-value: 0.6733) and for DRKPCA-SVM-TLBO
compared to DRICA-SVM-TLBO was 0.286 (p-value:
0.7752). These values are less than 1.96, so we cannot
reject the zero hypothesis at the 5 % significance level.
That is, the experimental difference between the forecasting
performance of these models is not significant and might
be due to stochastic variations. From these observations,
we can conclude that the proposed DR-SVM-TLBO (all
three variants) yields more accurate predictions than the
benchmark models. And among the proposed ensemble
models, DRKPCA-SVM-TLBO performed the best. Table 7
gives the percentage improvements of the proposed ensem-
ble model for all three variants (i.e. DRPCA-SVM-TLBO,
DRKPCA-SVM-TLBO, and DRICA-SVM-TLBO) over the
benchmark novel hybrid SVM-TLBO model for the out-
of-sample (test) data with respect to the RMSE and MAE.
Figure 5a, b, and c show box plots of the MAE for the 1-,
3-, and 5-days-ahead forecasts, respectively, for the stan-
dard SVM, SVM-TLBO novel hybrid, and the proposed
models (i.e. DRPCA-SVM-TLBO, DRKPCA-SVM-TLBO,
and DRICA-SVM-TLBO). The middle square in each box
plot represents the MAE. The box plots clearly show that
DRKPCA-SVM-TLBO has the smallest range and smallest
standard error deviation (denoted by the lines above and
below the box). This shows that the DRKPCA-SVM-TLBO
model outperformed all the other models.

5 Conclusions and future work

In this study, we extended the novel hybrid SVM-TLBO
model by incorporating dimension reduction techniques. To
reduce the number of input variables (features), we used
three well known dimensional reduction techniques: PCA,
KPCA, and ICA. We used multicommodity futures index
data collected from MCX to examine the feasibility of the
proposed ensemble model. Our models performed better
than existing methods. Our conclusions are summarized as
follows

1. The average computational time results (Table 4) sug-
gest that reducing the number of input variables (fea-
tures) decreased the computational time.

2. Our empirical results show that DR-SVM-TLBO
(i.e. DRPCA-SVM-TLBO, DRKPCA-SVM-TLBO,
and DRICA-SVM-TLBO) produced better predictions
than the standard SVM regression method and the

SVM-TLBO hybrid model. Among the three variants of
the proposed ensemble model, DRKPCA-SVM-TLBO
performed the best.

3. DRKPCA-SVM-TLBO improved the RMSE by 50.23
% (for the 1-day-ahead forecast), 28.43 % (for the
3-days-ahead forecast), and 20.03 % (for the 5-days-
ahead forecast), when compared with the SVM-TLBO
hybrid regression model. The DRKPCA-SVM-TLBO
model also improved the MAE result by 55.45 %
(1-day-ahead), 30.63 % (3-days-ahead), and 17.87 %
(5-days-ahead), when compared with the SVM-TLBO
novel hybrid regression model. There were similar
improvements in terms ofMAE and RMSE for the other
two variants of the proposed model (i.e. DRPCA-SVM-
TLBO and DRICA-SVM-TLBO).

4. The results of the DM statistical test (Table 6) show
that all the DM tests comparing the proposed model
(DRKPCA-SVM-TLBO) with the other models yielded
values greater than 1.96 (the threshold value at the
5 % significance level). The corresponding p-values
lie within the 5 % significance level in all cases
except DRKPCA-SVM-TLBO compared to SVM-TLBO
and DRKPCA-SVM-TLBO compared to DRICA-SVM-
TLBO, for the 3-days-ahead forecast. The DM test
confirms that the predictive accuracy of our proposed
model is statistically significantly better than that of the
benchmark models.

In this study, we selected quantitative technical indicators
(features) based on previous research work by different resear-
chers in this area and feedback fromadomain expert.We could
improve the predictive performance by including non-
quantitative factors like data from breaking news and social
media, efficient macroeconomics factors, and psychological
factors. One limitation of this study is that we used a rel-
atively small dataset. Despite this, we achieved reasonably
good forecasts. The proposed hybrid model should provide
better forecasting results when applied to larger volumes
of data. The successful application of our proposed model
to non-linear and highly complex financial time-series data
suggests that it may be useful in other domains.

Acknowledgments We would like to express our gratitude to the
National Institute of Science and Technology (NIST), for the facilities
and resources provided at the Data Science Laboratory at NIST for the
development of this study.

Compliance with ethical standards

Conflict of interests The authors declare that there are no conflict
of interests (either financial or non-financial) regarding the publication
of the paper.



1160 S. P. Das et al.

Appendix A: Technical indicators (features) used
in this study

Formulas for technical indicators (features)

Notation: i: i-th day [i days (i = 1, 2, . . . , N) since a reference date (February 1, 2010, in the experiment)]

HPi : highest index value of i-th day

LPi : lowest index value of i-th day

OPi : open index value of i-th day

CPi : closing index value of i-th day

Sl No. Technical Indicator Name Technical Indicator Description & Formula

1 10-day moving average The most current 10-day average closing value of the financial instrument.

MA10,i =
∑i

j=i−9 CPj

10

2 20-day bias Closing value and the moving average value deviation for the past 20 days.

BIAS20,i = CPi−MA20,i
MA20,i

, whereMA20,i =
∑i

j=i−19 CPj

20

3 Moving average MACD is the change between a 26-day and 12-day exponential moving

convergence/divergence average (EMA). **

(MACD)
MACDi = EMA12,i − EMA26,i , where

EMAN,i = (CPi − EMAN,i−1) × (2/(N + 1)) + EMAN,i−1

**EMA gives more weight to recent values and decreasing weight to older data.

4 Stochastic indicator%K Stochastic%K compares where a security’s value closed relative to its value

range over a given period. (In this experiment, we used a period of 9 days.)

%Ki = (CP i−LLP)
(HHP−LLP)

× 100

where LLP is the lowest low index value and HHP is the highest high index

value over the last N periods.

5 Stochastic indicator%D Moving average of%K (three-period simple moving average)

%Di =
∑2

j=0 %Ki−j

3

6 Stochastic slow%D Moving average of%D (three-period simple moving average)

%SDi =
∑2

j=0 %Di−j

3

7 Larry William’s%R Larry William’s%R is a momentum indicator that measures overbought/oversold

levels. (In this experiment, we used a period of 9 days.)

%Ri = (HP−CPi)
(HP−LP)

× 100

where LP is the lowest index value and HP is the highest index value over the last

N periods.

8 Rate of change (ROC) Ratio of current closing value to the value a certain number of periods (n periods)

ago. (In this experiment, we used a period of 10 days.)

ROCi = CPi

CPi−n
× 100

where CP i−n is the Closing Index Value of the (i-n)-th day.

9 Relative strength index (RSI) RSI is a momentum oscillator that compares the magnitude of recent gains to the

magnitude of recent losses. (In this experiment, we used a period of 5 days.)

RSIi = AGi

AGi+ALi
× 100,

where

Gi =
{

CPi−1 − CPi, if CPi > CPi−1

0
and Li =

{
CPi−1 − CPi, if CPi < CPi−1

0

AGi = 4
5 × AGi−1 + 1

5 × GiandALi = 4
5 × ALi−1 + 1

5 × Li
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Formulas for technical indicators (features)

Notation: i: i-th day [i days (i=1,2,. . . ,N) since a reference date (February 1, 2010, in the experiment)]

HPi : highest index value of i-th day

LPi : lowest index value of i-th day

OPi : open index value of i-th day

CPi : closing index value of i-th day

Sl No. Technical Indicator Name Technical Indicator Description & Formula

10 Commodity channel index (CCI) CCI measures the variation of a security’s value from its statistical mean. (In this

experiment, we used a period of 24 days.)

CCIi = T Pi−MAT Pi

0.015×MDi
,

where

T Pi = HPi+LPi+CPi

3 , MAT Pi =
∑i

j=i−23 T Pj

24 , MDi =
∑i

j=i−23 |T Pj−MAT P i|
24

where TPi is the typical value for the i-th day, MATPi is the 24-day simple moving average

of the typical value for the i-th day, and MDi is the 24-day mean deviation for the i-th day.

11 Psychological line Psychological line is the volatility indicator based on the number of time

intervals that the market was rising during the preceding period. (In this

experiment, we used a period of 13 days.)

PSYi = T DUi

13 × 100%

where TDUi is the total number of days with regard to the rise in index value in

the previous 13 days.

12 Buying/selling momentum Buying/selling momentum indicator (26 days)

indicator BSMIi =
∑i

j=i−25 (HPj −OPj )
∑i

j=i−25 (OPj −LPj )

13 Buying/selling willingness Buying/selling willingness indicator (26 days)

indicator BSWIi =
∑i

j=i−25 (HPj −CPj−1)∑i
j=i−25 (CPj−1−LPj )

14 Momentum Momentum measures the amount that a security’s value has changed over a

given period (4 days)

MOi = CPi − CPi−4

15 Disparity 5 Measures the distance between the current value and the moving average over 5 days

DIS5,i = CPi

MA5,i

where MA5,i is the 5-day moving average for the i-th day.

16 Disparity 10 Measures the distance between the current value and the moving average over 10 days

DIS10,i = CPi

MA10,i

where MA10,i is the 10-day moving average for the i-th day.

17 Moving average Value oscillator that displays the difference between two moving averages of

oscillators (MAO) different lengths (5 and 10 days)

MAOi = MA5,i−MA10,i
MA5,i

where MA5,i and MA10,i are the 5- and 10-day moving averages for the i-th day.

Appendix B: Dimensionality reduction techniques
used in this study

The objective of a dimension reduction technique is to
reduce the dimension (number of features) of the input from
a high-dimensional space to a low dimensional subspace.
Dimensional reduction methods can be divided into two
types: (i) feature selection and (ii) feature extraction. In
feature selection, a subset of features is selected from the
originals. In feature extraction new features are computed

by transforming the original features. We present brief
reviews of the dimensional reduction methods based on fea-
ture extraction that were used in our study. That is, PCA,
KPCA, and ICA.

B.1 Principal component analysis (PCA)

Principal component analysis is a well-known linear sta-
tistical approach for feature extraction. The objective is to
reduce the dimension of the input features from the original
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dataset [20]. It uses an orthogonal transformation to con-
vert a set of N patterns (samples) of l possibly correlated
features into a set of Nsamples of m(≤ l) uncorrelated
features called principal components (PCs). The transfor-
mation mechanism is designed such that the first principal
component (PC1) has the highest possible variance, the sec-
ond principal component (PC2) is orthogonal to the PC1 and
accounts for next highest variance, and so on for the other
PCs.

The PCA procedure is briefly described as follows

Step 1: Input Npatterns (samples) X1, X2, . . . , XN that
each have l features (Xj ∈ Rl). Each vector Xj for
j = 1, 2, . . . , N is such that the mean value of the fea-
tures in Xj is zero (that is, we subtract the mean value of
the original feature from each feature value).

Step 2: Compute the covariance matrix

C = 1

N

N∑

k=1

XkX
T
k (B.1)

The ij-th element of matrix Cis

Cij = 1

N

N∑

k=1

Xk(i)Xk(j) (B.2)

where Xk(i)denotes the ith component of the Xksample.
Step 3: Calculate l eigenvalues of C and arrange them in

non-increasing order λ1 ≥ λ2 ≥ ... ≥ λl . For each
eigenvalue λi , i = 1, 2, . . . , l, compute an associated
eigenvector αi ∈ Rlof matrix C using an eigenvector
decomposition technique [35].

Step 4: Choose the m ≤ l largest eigenvalues (choose the

smallest integer m, so that λm−1 −λm is large or
m∑

i=1
λi ≥

t
N∑

i=1
λi where t = 0.95 if we wish to retain 95 % variance

in the transformed data, where
N∑

i=1
λi represents the total

variance).
Step 5: Use the eigenvectors (column vectors)

α1, α2, . . . , αm to form the transformation matrix.

A = [α1α2...αm] (B.3)

Step 6: Transform each patternXi in the original spaceRl

to the vector Yi in the m-dimensional space Rm(m < l)

using

Yi = AT Xi, i = 1, 2, . . . , N (B.4)

So the j th component Yi(j) of Yi is the projection of Xi

on αi(i.e., Yi(j) = αT
j Xi).

B.2 Kernel principal component analysis (KPCA)

In the PCA technique, each input pattern (sample) in Rl is
linearly projected onto a lower dimensional subspace. This
is appropriate when the data approximately lie on a lin-
ear manifold (for example a hyperplane). However, in many
applications the input data lie on a low dimensional non-
linear manifold. Then it is more appropriate to use KPCA,
which is a nonlinear dimensional reduction technique. In
this method the input patterns Xi ∈ Rl for i = 1, 2, . . . , N
(where N is the number of input samples) are first mapped
onto a space H with more than l dimensions using a non-
linear mapping φ : Rl → H [42]. Their images φ(Xi) are
projected along the orthonormal eigenvectors of the covari-
ance matrix of φ(Xi)’s. These projections only involve the
inner product of the φ(Xi)’s inH,φ is not explicitly known,
and it is difficult to construct a kernel function. So we use
Kdefined by K : Rl × Rl → R such that

K(Xi, Xj ) =< φ(Xi), φ(Xj ) > (B.5)

(where <,> denotes inner product in H) to compute the
inner products involved in the projections leading to the
computation of Yi’s having fewer dimensions m(m <

l)than Xi’s. It has been proved that the components
Yi(k), k = 1, 2, . . . , m of the Yi’s are uncorrelated and the
first q(≤ m) principal components have maximum mutual
information with respect to the inputs, which justifies the
use of the method for dimensionality reduction.

The KPCA procedure is given in the form of the follow-
ing algorithm.

Step 1: Input the data patterns (samples) Xi ∈ Rl for i =
1, 2, . . . , N (where N is the number of input samples).

Step 2: Choose a kernel function K : Rl × Rl → R

and compute the kernel matrix K1whose ij-th element is
equal to K(Xi, Xj ) for i, j = 1, 2, . . . , l

Step 3: Compute the eigenvalues and eigenvectors ofK1.
Arrange the eigenvalues in non-increasing order λ1 ≥
λ2 ≥ ... ≥ λl . Let the corresponding eigenvectors be
a1, a2, . . . , al .

Step 4: Choose mdominant eigenvalues
λ1, λ2, . . . , λm(m ≤ l)[choose the smallest integer m

such that λm−1 − λmis large or
m∑

i=1
λi ≥ t

N∑
i=1

λi , where

t = 0.95 if we wish to retain 95% of the variance in

the transformed data, and
N∑

i=1
λirepresents the total vari-

ance], and normalize the corresponding eigenvectors
a1, a2, . . . , am using

a′
k = ak

‖ak‖√
λk

, k = 1, 2, . . . , m (B.6)

Step 5: For each Xi, i = 1, 2, . . . , N , compute the m pro-
jections Yi(k) of φ(Xi) onto each of the orthonormal
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eigenvectors ak′’s, k = 1, 2, . . . , m, i.e.,

Yi(k) =
l∑

j=1

ai
k(j)K(Xi, Xj ), k =1, 2, . . . , m (B.7)

B.3 Independent component analysis (ICA)

Independent component analysis (ICA) is a relatively new
statistical method [14, 16]. ICA does not transform uncor-
related components or factors, but instead attempts to find
statistically independent components or factors in the trans-
formed vectors. The primary goal of this method is to find
representations of non-Gaussian data, so those components
are statistically independent or as independent as possible
[16].

In ICA, we assume that lmeasured variables X =
[x1, x2, . . . , xl]T can be expressed as linear combinations of
n unknown latent source components S = [s1, s2, . . . , sn]T ,
i.e.,

X = AS (B.8)

whereAl×l is an unknownmixing matrix. Here, we consider
that l ≥ n if A is a full rank matrix. S is the latent source
data that cannot be directly observed from the input mixture
data, X. The basic ICA objective is to estimate the latent
source components, S, and unknown mixing matrix A from
X with appropriate assumptions on the statistical properties
of the source distribution. The basic ICA model for feature
transformation aims to find a de-mixing matrix Wl×l that
can be written as

Y = WX (B.9)

where Y = [y1, y2, . . . , yn]T is the independent component
vector. The elements of Ymust be statistically independent
and are called independent components (ICs). Here, W =
A−1(i.e., the de-mixing matrix W is the inverse of mixing
matrix A). The ICs (yi) can be used to compute the latent
source signals si .

Many algorithms can perform the ICA. The fixed-point
fast ICA method presented by Hyvärinen and Oja [15] is
the most popular. We used fixed-point fast ICA in our
experimental study. In this algorithm, PCA is first used to
transform the original input vectors (X) to a set of new
uncorrelated vectors with zero means and unity variance.
This process reduces the dimension of X and consequently
reduces the number of Y . Then, the uncorrelated vector

obtained by PCA is used to estimate the independent com-
ponents vectors (Y ) and the transformed matrix using the
fixed point algorithm.
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