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Abstract Multi-objective evolutionary optimization algo-
rithms are among the best optimizers for solving problems
in control systems, engineering and industrial planning. The
performance of these algorithms degrades severely due to
the loss of selection pressure exerted by the Pareto domi-
nance relation which will cause the algorithm to act ran-
domly. Various recent methods tried to provide more selec-
tion pressure but this would cause the population to con-
verge to a specific region which is not desirable. Diversity
reduction in high dimensional problems which decreases
the capabilities of these approaches is a decisive factor in
the overall performance of these algorithms. The novelty
of this paper is to propose a new diversity measure and a
diversity control mechanism which can be used in combi-
nation to remedy the mentioned problem. This measure is
based on shortest Hamiltonian path for capturing an order
of the population in any dimension. In order to control the
diversity of population, we designed an adaptive framework
which adjusts the selection operator according to diversity
variation in the population using different diversity mea-
sures as well as our proposed one. This study incorporates
the proposed framework in MOEA/D, an efficient widely
used evolutionary algorithm. The obtained results validate
the motivation on the basis of diversity and performance
measures in comparison with the state-of-the-art algorithms
and demonstrate the applicability of our algorithm/method
in handling many-objective problems. Moreover, an exten-
sive comparison with several diversity measure algorithms
reveals the competitiveness of our proposed measure.
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1 Introduction

Most of engineering and design problems include opti-
mizing a number of objectives, simultaneously [1] known
as Multi-Objective Optimization Problems (MOPs) which
continue to gain increasing attention among researchers to
find efficient methods of handling them. A Multi-Objective
Optimization Problem (MOP) can be stated as follows:

minimize {(f1 (x) .f2 (x) . . . . .fk (x))}
subject to x ∈ S

(1)

where f (x) is a vector of k objective functions which are
to be optimized and x is a vector of decision variables
[2]. Here and in the rest of this paper, without loss of
generality, we assume MOPs to be minimization problem.
In such problems, there exists no single solution to opti-
mize all objectives. Hence, it is desirable to find a set
of incomparable solutions which would be considered as
the optimal solutions to the MOP [1, 9]. Many researches
have been conducted in solving MOPs ever since their
introduction. Recently, a considerable number of studies
have been devoted to applying Evolutionary Algorithms
(EAs) for solving such problems. Evolutionary Algorithms
are suitable for solving MOPs due to their parallel search
capability and impressive performance in unknown environ-
ments [2–5]. Accordingly, one of the well-known problem
solvers for MOP are Multi-Objective Evolutionary Algo-
rithms (MOEAs). The main reason of their popularity is
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their ability to find multiple trade-off solutions in a sin-
gle run. As it is said, finding a set of solutions as optimal
is desirable in solving an MOP. These solutions are called
non-dominant solutions and the set containing all these solu-
tions is called Pareto front (non-dominated vectors are in
the objective space). Converging to the true Pareto-front and
maximizing the population diversity of non-dominated solu-
tions in the objective space are the two main targets of all
MOEA approaches. The formal definition of Pareto domi-
nation is: a vector u2 Pareto dominates another vector u1 if
and only if for all objectives we have [1]:

fi (u1) ≥ fi (u2) i = 12. . . . .m (2)

and

∃iε {1.2. . . . .m} ⇒ fi (u1) � fi (u2) (3)

Research in the field of Multi-Objective Evolutionary Algo-
rithm(MOEAs) has been very active in the last 10 years
and many potential algorithms with promising results have
been proposed [6, 7], and [8]. Although the existing MOEAs
show satisfying performance for MOPs with 2 or 3 objec-
tives, their search ability for problems with more than three
objectives often degrades. These problems are referred as
Many-objective Optimization Problem (MaOP) [6]. This
performance degeneration is due to the loss of selection
pressure exerted by the Pareto dominance relation which
will cause premature convergence of the algorithms [6–9].
Furthermore, approximating the Pareto front will become
difficult, since we need more points to represent a larger
space [2]. In high dimensional problems, Pareto dominance
relation loses its discrimination capability. In other words,
nearly all solutions in the population would become non-
dominated and algorithms which use dominance relation
directly would lose their selection pressure and accordingly
would not converge.

The search effort in MOEAs can be divided into two
main parts: converging to the Pareto Front and diversifying
the population (representing all regions of the Pareto front).
In many objective problems, the regular MOEAs would fail
to discriminate between solutions according to their fitness
so only the diversity part of their selection would work [6,
7]. Increasing selection pressure by modifying the domi-
nance relation would cause the population to converge to
a specific region while paying more attention to diversity
would prevent the algorithm from convergence. In this way,
convergence and diversity are two contradicting objectives
of an MOEA.

In this regard, this paper attempts to adaptively control
the population diversity among chromosomes to overcome
this dilemma. In the proposed method, a diversity control
mechanism is introduced along with a diversity measure
which can be used in high dimensional spaces. In this
approach, the selection of chromosomes is based on their

participation in the preservation of diversity in addition to
their fitness and we would adaptively change the impor-
tance of diversity in each generation. The proposed diversity
metric is based on finding shortest Hamiltonian path. The
experimental results confirmed that the proposed mecha-
nism is capable of creating a set of well-distributed and opti-
mal solutions which is competitive with the state-of-the-art
methods.

Our contribution in this paper is two folded. First we
have proposed a diversity control mechanism which is able
to adaptively control the population diversity which conse-
quently controls the amount of selection pressure and thus
helps the algorithm to produce a diverse set of solutions
close to real Pareto Front. Second, we designed a diversity
measure to be used in high dimensional problems. In view
of the fact that the proposed diversity control mechanism
requires a diversity measure to assess the diversity of each
generation and also other known diversity measures have
some drawbacks in high dimensions, a new diversity mea-
sure is proposed. This diversity measure is based on finding
a shortest Hamiltonian path in the complete distance graph
of solutions in the objective space. Using this concept, we
can capture a proper order in high dimensional spaces which
do not have any intrinsic order.

In our experiments, we obtained contradictory results
with respect to two well-known performance indicators:
Hypervolume and IGD (Inverted Generational Distance);
which was not odd according to similar experimental and
theoretical studies [37]. In the next step, using known
methodologies and arguments [20], we compared the two
metrics and revealed that IGD can give a more accurate
comparison between various methods. Since our method has
obtained relatively smaller values of IGD we can conclude
that the proposed framework along with the diversity mea-
sure have potential in optimizing many objective problems.

The rest of this paper is organized as follows: Section 2,
explains the background and related work. Proposed method
is described in Section 3. Section 4 shows the experimental
results and analysis. Finally, Section 5 includes conclusion
and future work in regard to the proposed method.

2 Related work

In this following section, we introduce the background and
the concept of Multi and Many Objective Evolutionary
Algorithms.

Many objective problems have been in the frontier
of multi-objective optimization research for more than a
decade. Since the main issue that hinders the evolution of
algorithms is the loss of discrimination ability of the Pareto
dominance operator, new algorithms are either using a mod-
ified version of this operator or using it in an indirect way
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[6]. Using modified versions of dominance operator can
be useful for 4-6 objectives but it would fail in higher
dimensional problems [6]. There are a variety of evolution-
ary meta-heuristic algorithms for handling many objective
optimization problems. Many studies have been focused
on improving the performance of these methods in solving
problems [7–9, 16, 17]; here we will explore their offered
approach.

By increasing the number of objective functions, in an
optimization problem, the amount of non-dominated solu-
tions will increase rapidly, leading to severe loss of pressure
in the selection mechanism [6]. In order to address this
problem, among many other methods, two classes of algo-
rithms have shown great potential in solving many objective
optimization problems: the decomposition based methods
and indicator based methods. Decomposition based meth-
ods use a set of pre-specified uniformly distributed weight
vectors, each of which constructs a single objective opti-
mization problem that ideally would find a point of the
true Pareto front. Collectively these sub-problems will find
an acceptable representation of the Pareto front [11]. The
pioneer method in this family is Multi-Objective Evolution-
ary Algorithm by Decomposition (MOEA/D) [11]. In order
to search effectively, a neighborhood is assigned for each
sub-problem which includes other problems that are near
to it in the weight space. Mating is restricted within the
neighborhoods so the variation operators would not be dis-
ruptive. In designing a decomposition based algorithm, one
has to choose how to generate the weight vectors. If there
is preference information available, it can be incorporated
in the distribution of weight vectors. But, in most cases, the
weights are generated uniformly using the procedure pro-
posed by Das & Dennis [12]. Another design choice is the
scalarization function which is used to combine the objec-
tive values and construct the sub-problems. Many different
functions have been proposed in the literature [11], but in
this paper we used the Tchebichev function.

Various attempts are provided to improve the perfor-
mance of the MOEA/D. First the SBX was considered as
its genetic operator but due to the poor performance of
this operator for maintaining population diversity, Zhang
et.al introduced MOEA/D-DE using DE operator to perform
more efficient search [13]. In order to avoid the problem
of high computational complexity, Zhang et al. introduced
the idea of dynamic resource allocation in the form of
MOEA/D-DRA [14]. This algorithm introduces a kind of
MOEA/D that uses a utility function for assigning computa-
tional resources to each sub-problem and on the basis of this
assignment, the computational load is distributed among all
of them. In another work, Zhang et.al introduced MOEA/D-
GM which presents two mechanisms to improve MOEA/D.
First, in order to take full advantage of the neighborhood
information of a sub-problem, it applies targeted mutation

operator that uses both global and local information. Then,
an update mechanism will apply to improve the algorithm,
when there is no uniform distribution of sub problems. This
update mechanism is implemented using a priority queue. In
2011, Gong et.al proposed iMOEA/D, this algorithm has an
interaction with decision maker and guides the search in the
direction of preferred regions in order to enhance the dis-
tribution of Pareto front and improve the search mechanism
of MOEA/D especially in dealing with many objective opti-
mization problems. Sato proposed a method named inverted
PBI scalarization in which an effective scalarization func-
tion is used to produce approximation sets which are widely
distributed in the objective space [15].

Another Many Objective algorithm that uses decompo-
sition is NSGA-III [16]. NSGA-III is not technically a
decomposition based MOEA but it borrows ideas from these
algorithms. In order to overcome the loss of diversity in
the population, NSGA-III uses a set of predefined points
in the objective space which are spread on a hyper-plane
and called reference points. All the solutions in the objec-
tive space are projected onto this hyper-plane and each
one is assigned to the nearest reference point on the plane.
For each solution the crowdedness of its corresponding
reference point is an indicator of its contribution to the
overall diversity. Yuan et al. proposed an improved NSGA-
III named �-NSGA-III that inherits specific characteristics
of NSGA-III including adaptive normalization and diver-
sity maintenance which with the aid of reference points
will lead to a well distributed Pareto front in the objective
space [17]. However, �-NSGA-III differs from NSGA-III
in various certain parts. It applies a new dominance relation,
�-dominance, which assigns solutions to different clusters.
These clusters are formed by reference points, which are
well distributed throughout the space. Just the solutions that
are found in similar clusters are participating in compet-
itive relation. In this competitive relation a penalty based
boundary intersection is described and the solutions will
perform based on it. During environmental selection, the
θ-dominance not only keeps the solutions with better fitness
in each cluster but also ensures that the solutions are evenly
distributed among all clusters [17].

Another class of algorithms for handling many objective
optimization problems includes Indicator based methods.
Indicator based algorithms are inspired by the idea of max-
imizing a performance indicator which would yield a good
result in terms of that indicator. The main problem with
these algorithms is the computational complexity of indi-
cator measures. Hypervolume is the most popular indicator
used in this context. In the following paragraphs we will
describe two of the most popular indicator based algorithms
briefly.

S-Metric Selection Evolutionary Multi-Objective Algo-
rithm (SMS-EMOA) [18] is a steady-state evolutionary
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algorithm which uses hypervolume. S-Metric is another
name for hypervolume which was more common in the
early years of this metric’s introduction [18]. Since comput-
ing hypervolume is a computationally intense task, SMS-
EMOA uses a steady-state population model to reduce the
number of hypervolume computations. So in each genera-
tion, one new solution is created and added to the population
and consequently one solution should be deleted. In each
generation, in order to remove one solution, all the individ-
uals in the first non-dominated front are sorted according to
their hypervolume contribution. The hypervolume contribu-
tion of an individual is defined as the difference between
the hypervolume of the population with and without that
individual.

Since the main shortcoming of indicator based algo-
rithms is their computational cost, Bader and Zitzler pro-
posed a method that tries to estimate the value of the hyper-
volume. They designed Hypervolume Estimation algorithm
(HypE), which uses Monte Carlo simulation for estimat-
ing the hypervolume contributions in an efficient way
[19]. Monte Carlo simulation is a well-studied method for
approximation of definite integrals and since hypervolume
is a kind of integral, good estimations are expected from
exploitation of this method.

3 Proposed method

As stated before, many objective optimization problems
have introduced new challenges to MOEA community. In
high dimensional problems, nearly all solutions in the pop-
ulation would become non-dominated which is caused by
loss of selection pressure and accordingly the algorithm
would not converge to Pareto front properly. Due to these
challenges, finding reasonable approximation of diverse
optimal Pareto-sets is so hard and requires a more deli-
cate balance between convergence and diversity [17]. In this
regard, common approaches in evolutionary multi-objective
optimization either fails to provide enough selection pres-
sure or the selection pressure is too much which causes
concentration of the population to a specific region of space
[6, 7], and [17]. In order to overcome this dilemma, one
obvious direction for improving MOEAs is to add more
effective diversity control mechanisms to algorithms with
acceptable selection pressure. With the aim of preserving
population diversity, this paper proposed a diversity con-
trol mechanism and also a new diversity measure which can
be used in combination. In order to control the population
diversity, we designed an adaptive framework which adjusts
the selection operator according to diversity variation in the
population. By an increase in the diversity of population the
selection operator will change to increase the selection pres-
sure and by a decrease in diversity the selection pressure

will decline. Additionally, a new diversity measure which
is based on shortest Hamiltonian path is proposed in order
to monitor the variation of population diversity during each
generation.

In the rest of this section, our contribution is presented
in three parts. The first part introduces the diversity main-
tenance mechanism. After that, in the second part the novel
diversity measure will be described and its details will be
expounded and finally refinements needed for incorporation
of diversity maintenance mechanism in MOEA/D will be
explained.

3.1 Diversity maintenance mechanism

Here in this section, we aim to propose a diversity con-
trol mechanism to streamline the optimization process. As
discussed in many other works, lack of discriminability in
dominance relation propels optimizers to modify it so as
to increase the selection pressure. Intensifying the selection
pressure usually leads to loss of diversity in the popu-
lation which is not desirable [10]. By using a diversity
measure, we can detect any variation in the population diver-
sity at each generation and make decisions based on that.
After we identified that the population diversity is decreased
we should regulate the selection mechanism in a way to
compensate for this reduction. In order to incorporate diver-
sity into the selection mechanism of algorithms in a more
controlled way, this paper proposed a diversity mainte-
nance framework. This framework is concisely illustrated
in the Flowchart 1 where it uses the diversity measure that
will describe in the next subsection. In most of common
MOEAs, solutions are selected according to their fitness and
diversity is used as a tie breaker [1]. We propose to alter
this order adaptively. For instance, there may be situations
where the population is converging toward a specific region
of the Pareto Front or even a single point. In such a situa-
tion, the selection operator should pay more attention to the
population diversity than fitness.

There are two important issues in our proposed frame-
work. First, we need to know when to switch the order of
selection. Second, we need to determine which chromosome
has the highest contribution in the diversity of the popula-
tion so we give it an advantage in the selection mechanism.
For the first concern, we measure the diversity of the popu-
lation in each generation using accepted diversity measure,
and by comparing to the one for the previous generation
we can determine whether the population has got or lost
diversity. Accordingly, we can set the order in the selection
operator, i.e. “Fitness first” or “Diversity first”. For each
chromosome we should be able to compute its contribution
in the population’s overall diversity which can be done in
different ways. This contribution in the diversity would be
used as the second measure of selection for each solution.
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In the case of “Fitness first”, the selection mechanism
will operate regularly, i.e. mainly based on the fitness of
individuals and based on the diversity contribution in case
of indifference. But for the “Diversity first”, we first select
based on the solution’s diversity contribution and the fitness
would be used breaking ties. You must note that by fitness
we mean the scalar value assigned to each solution based on
its objective values, like the domination rank or in NSGA2
or the scalarized value in MOEAD or distance to reference
point in NSGAIII.

In the next sub sections, we introduce some popular
diversity metrics and after exploring their inefficiencies we
will propose a novel diversity measure.

3.2 Planning for diversity measure

In the previous sub section, we proposed an adaptive frame-
work which adjusts the selection operator according to the
diversity variation in the population. This diversity control
mechanism requires to find the population diversity. As it
can be seen, the main part of this framework is monitoring
and computing the population diversity. In this section, first,

we introduce some popular diversity metrics and review
their features to find out whether they can be exploited in
our framework or not.

Toward understanding the motivation of our proposed
diversity metric, some quantitative metrics for multi and
many objective optimization are examined. In particular, the
quantitative metrics of multi-objective optimization realm
are commonly categorized in to four groups [sweing]:

1. Capacity metrics: These metrics quantify the number
(ratio) of non-dominated solutions in population that
satisfies given predefined requirements. In general, a
large number of non-dominated solutions in the popu-
lation is preferred. (e.g. Error Ratio (ER) [21], Ratio of
the Reference Points Found in [22, 23], non-dominated
Points by Reference Set (C2R) [23], etc.)

2. Convergence metrics: These are metrics for measuring
the degree of proximity of approximation set S based on
the distance between the solutions in S to those in the
Pareto Front. Convergence metrics measure proximity.
(e.g. Generational Distance (GD) [24, 25], ε-indicator
[26], ...)

Flowchart 1 Flowchart of the
proposed diversity maintenance
mechanism
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3. Diversity metrics: These metrics incorporate two
notions: Distribution and spread. Distribution focuses
on how evenly the solutions of the population are scat-
tered in the objective space. The Spread quantifies how
much of the extreme regions of the Pareto front are
covered by the population

4. Convergence–Diversity metrics: These metrics are indi-
cating both the convergence and the diversity of solu-
tion set S in a single value. (e.g. in [27, 28], Zitzler
et al. proposed the popular performance metric Hyper-
volume (HV) which gives the volume of optimal solu-
tion set S in the objective space and the metric Inverted
Generational Distance (IGD) in [29] which compute
the average distance of the true Pareto front from the
obtained optimal solution set S).

In this paper we concentrate on diversity metrics and pro-
pose a new measure with the aim of preserving popula-
tion diversity between generations. Since capacity metrics
and convergence metrics are not related to our aim, the
interested reader is referred to [20, 29] for further informa-
tion. More specifically, we investigate three representative
groups of diversity metrics including: distribution, spread
and distribution-spread.

3.3 Diversity metrics

Most researchers have been trying to define a description
that can characterize the concept of population diversity.
In the literature, scientists mentioned that Diversity metrics
should indicate the distribution and spread in the optimal
solution set S [20]. Here, Fig. 1 is presented to convey the
concept of distribution and spread.

In this figure a 2-dimentional PF is presented. The
bounding solutions of the PF are (0,1) and (1,0) which are
known as extreme points. The optimal solution set S with
five non-dominated solutions in Fig. 1a shows good distri-
bution and poor spread since S does not contain bounding
solutions. Conversely, the five non-dominated solution of
optimal solution set S in figure (b) have good spread but

(a) Good distribu�on, Poor spread (b) Poor distribu�on, Good spread

Fig. 1 Distribution and spread in a set

poor distribution since the solutions in S are not scattered
evenly.

To have a better comprehensive investigation, this part
express three classes of diversity metrics. As mentioned
before, diversity metrics are aimed to measure the distribu-
tion and spread of solutions in the optimal solution set S
[20]. So researchers categorize diversity metrics in to three
classes:

1- diversity metrics which focus on distribution
2- diversity metrics which focus on spread
3- diversity metrics which focus on both distribution and

spread

3.4 Diversity metrics which focus on distribution

As mentioned before Distribution focuses on how evenly the
solutions of an approximation set are scattered in the objec-
tive space [20]. Here we have investigated five representa-
tive diversity metrics which focus on distribution including:
�′ [30], M∗

3 [31], M∗
2 [31], Uniform Distribution(UD) [32]

and Spacing(SP) [33].

1) �′ : This metric is proposed by Deb et al. which com-
pares all the consecutive distances of solutions’ with the
average distance and is computed in the following way:

�′ (S) =
|S|−1∑

i=1

(di − d̄)

|S| − 1
(4)

where S is a solution set and di is the Euclidean distance
between consecutive solutions in S, and d̄ is the average of
di . The best distribution would produce a zero value when
all the solutions have equal distance to their successor. The
consecutive solutions are defined to be the next solution in
the lexicographic ranking of the population [30]. As you
can see �′ is a non-parametric metric with computational
complexity of O(m|S|2).
2) M∗

3 : It is a metric which is similar to �′ but instead
of average distance, this metric considers the maximum
distance instead [31]. So M∗

3 is also a non-parametric
metric with computational complexity of O(m|S|2).

3) M∗
2 : The M∗

2 metric is proposed by Ziztler and Deb
et al. [31] which operates with niche radius(σ) param-
eter and its formulation is as follow:

M∗
2 (S) =

∑
	s∈S | {	s2 ∈ S|| |	s1 − 	s2| | < σ } |

|S| − 1
(5)

For each solution this metrics compute the average number
of solutions in its local neighborhood defined by the niche
radius parameter. As you see M∗

2 is designed with user-
specified parameter (σ) and its computational complexity is
O(m|S|2).
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4) Uniform Distribution(UD): Uniform Distribution met-
ric reveals the degree of uniformity on a given distri-
bution. This measure computes the standard deviation
of the number of neighbors for each solution. These
neighbors are determined using a radius parameter. For
a given population S the uniform distribution would be
computed with the following formula [32]:

UD (S) = 1

1 + Dnc

(6)

,

Dnc =
√∑

	si∈S

(nc (	si) − n̄c(	s))2
/
(|S| − 1) (7)

,

nc (	si) = ∣∣{	sj ∈ S|| ∣∣	si − 	sj
∣∣ | < σ

}∣∣ − 1 (8)

In this equation nc(	s) is the average of nc (	si) This met-
ric is designed with a user-specified parameter which
determines the neighbors of a solution and its computa-
tional complexity is O(m|S|2).

4) Spacing (SP): In [33], the Spacing (SP) metric is
defined as:

SP (S) =
√∑|S|−1

i=1 (di − d̄)

|s| − 1
(9)

di = min
	s∈S 	si , 
=	sj

∣∣∣∣F (	si) − F
(	sj

)∣∣∣∣ and si ∈ S (10)

In order to compute mutual distances this metric finds
closest distance instead of lexicographic order. SP is a
non-parametric metric with computational complexity
of O(m|S|2).

3.5 Diversity metrics which focus on spread

The spread property of a solution set S quantifies how much
the solutions of S cover the PF completely or in other words
how much the extreme points are explored. The Overall
Pareto Spread (OS) is a famous metric for assessing the
spread of a set which is proposed by J. Wu in [34] and
expressed as:

OS (S, PGood, PBad) =
m∏

k=1

∣∣∣∣max
	s∈S

fk(	s) − min
	s∈S

fk(	s)
∣∣∣∣

|fk (PBad) − fk (PGood)|
(11)

where max	s∈s fk(	s)fk(	s) are the maximum and minimum
values of the kth objective in S, respectively. The metric OS
has a computational complexity of O(m|S|). In this metric
we need to know to points in the objective space: a good
point and a bad point. PBad is a point in the objective space

that is dominated by all the solutions of the Pareto front
and PGood is a point that dominates all the point of the true
Pareto front. Note that the good point would not be feasible
at all but here it is used to find the bounds of Pareto front.
In this paper we apply this measure for our comparison as
a nominee of this group and the good and bad points are
approximated using the offline archive of the algorithm.

3.6 Diversity metrics which focus on both distribution
and spread

This group of metrics considers both the distribution and the
spread of a solution set S simultaneously. Here we inves-
tigate five representative diversity metrics which focus on
both distribution and spread of a set which are: � [35], Gen-
eralized Spread (�∗) [20, 36], NDCμ and CLμ [20, 37],
Metrics σ and σ̄ [20, 38] and The Entropy-based metric [39]

1) � : The metric � is introduced by Deb et al. [35], which
is defined as follows:

�(S, P ) = df + dl + ∑|S|−1
i=1 |di − d̄|

df + dl + (|S| − 1)d̄
(12)

where di is the Euclidean distance to the consecutive
solution of i’th solution and d̄ is the average of di. The
terms df and dl are the minimum Euclidean distances
from solutions in S to the extreme (bounding) solutions
of the PF (P).

2) The Generalized Spread (�*): Requiring consecutive
sorting in metric � restricts its application to 2-
dimensional PFs only. Zhou et al. [36] introduced the
Generalized Spread (�*) as an extension of �, which
takes the following form and can be exploited in high
dimensional spaces.

�∗ (S, P ) =
∑m

k=1 d (	ek, S) + ∑|S|
i=1 |di − d̄|

∑m
k=1 d (	ek, S) + (|S|)d̄ (13)

,

d (	ek, S) = min ||F( 	ek
	s∈S

) − F(	s)|| (14)

,

di = min
	sj ∈S,	si 
=	sj

∣∣∣∣F (	si) − F
(	sj

)∣∣∣∣ and si ∈ S (15)

Where 	ek ∈ P is the extreme solutions on the kth objec-
tive and di is to identify the closest pairwise solutions
in S, and d̄ is the average of di.

These two measures (� and �∗) require true PF for
comparison set and both of them have the computational
complexity of O((m|S|2) + m |S| |P |).
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3) Metrics NDCμ and CLμ : The value of these metrics is

obtained by partitioning the objective space in to
(

1
μ

)m

grids where μ is a variable that can be varied between 0
and 1 [20, 37]. The number of grids that contains solu-
tion are take a part in these metrics. Since these metrics
construct a grid structure their computational complex-
ity exponentially increases with the dimension of space.
These metrics also demand subtle parameter settings.
(number of grids)

4) σ and σ̄ : Using a set of lines passing from the ori-
gin, the objective space would be divided into equal
angels. The metric value is based on the number of
reference lines. The computational complexity of these
two metrics is also exponential and also the values of
these metrics relay on the parameter settings (number
of reference points, sub-regions or angles and etc.) [20,
38].

5) Entropy-based metrics: This metric also divides the
objective space into some sub-regions and grids. By
employing an influence function (Gaussian in this
paper), it would compute a density value for each cell
of the grid. Then the Entropy-based metric calculates
the Shannon entropy of these density values [39].

As you see the main part of our proposed framework is
monitoring and computing the population diversity. Here,
we want to explore the possibility of these popular diver-
sity metrics being incorporated in our mechanism. In this
study we picked one candidate from each category, in order
to compare with our proposed measure.

For the first category which is focused on the distribu-
tion of solutions we picked Spacing (SP). Note that �′ and
M∗

3 . use consecutive distances and require the lexicography
order of solutions in the population. Also M∗

2 and Uniform
Distribution (UD) are depended on user-specified param-
eters σ and the neighbors of a solution). For the second
category, which is focused on spread, we selected Overall
Pareto Spread (OS) and finally for the third category which

considers both distribution and spread we chose Entropy-
based metric. In this category � and �∗ require the True
Pareto Front for comparison and it is not applicable for our
purpose. The computational complexity of other Metrics of
this group (CLμ and σ , σ and Entropy) are high but in this
work we picked Entropy-based metrics as an example of this
category.

All these metrics are either computationally expensive or
are not able to capture the diversity of a solution set in high
dimensions. Also many of these metrics relies on specific
knowledge of the true Pareto front which is not available
in practice and this would prevent their exploitation in the
mechanism of evolutionary algorithms. We have designed
a parameter free diversity measure which can be effec-
tively incorporated in evolutionary algorithms and also has
a polynomial computational complexity. The new diversity
measure is based on shortest Hamiltonian path and sup-
posed to effectively evaluate the diversity of populations in
high dimensional spaces. A summary of all these classes of
diversity measure is revealed in Table 1.

3.7 Proposed Diversity Measure

To explain our measure, let us assume that we are given
two approximation sets or generally two sets of points in
the objective space. For each set, we compose a complete
weighted graph using the points in the set and their mutual
distances. In such a graph, corresponding to each point we
have a node which is connected to all other nodes. Then,
we compute mutual distances between all the points and
set them as a weight for the corresponding edge. We need
to capture the distance between nearby points and the best
tool for this purpose is a Hamiltonian path. A path is called
Hamiltonian if it passes through all the points once and only
once. Here, we need to find a Hamiltonian path with short-
est length. It is worth noting that this effort is different from
finding nearest point for each solution, which has been uti-
lized in other measures like generalized spread [36]. Finding

Table 1 A summary of different classes of diversity measure

Classes of Metrics Parametric Computational Comparis

diversity metric complexity on set

Distribution �′,M∗
3,SP No O(m|S|2) None

M∗
2,UD Niche radius (σ ) O(m|S|2) None

Spread OS No O(m|S|) Pgood ,Pbad

Distribution Entropy, # of grids, # of exponential None

& Spread NDCμ and CLμ reference points,

σ and σ̄ sub-regions,

�, �∗ angles, μ

No O((m|S|2) + m|S|.|P |) Pareto front
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Fig. 2 Graph of a sample solution set

nearest point can be ineffective and there are usually situa-
tions that a distance would be missed while other distances
might be considered multiple times, for more details see [1,
20].

The problem of finding shortest Hamiltonian path is
NP-complete [40, 41], but there exist several heuristic
approaches with polynomial complexity that yields an
acceptable approximation to the optimal path. In this study,
we used 2-opt algorithm which has a proven complexity of
(n1.2) [41]. This algorithm starts by a random Hamiltonian
path in the graph and searches for a locally optimal solu-
tion. In each step a change involving two edges is applied to
the path and any improvement would be applied in a greedy
fashion. The algorithm continues until no change, involv-
ing two edges, would improve the path. These paths are
identified in order to quantitatively compare the diversity of
their corresponding sets of points. We propose to treat these
paths as time series using which we can better compare any
change in the density of the sets. In this regard, we need to
define and find segments in each path.

Each edge in the optimal Hamiltonian path is called a
segment. So, for a graph with n nodes we will have n-1

segments. We assume a natural order for the segments, the
first segment is the edge between first and second nodes of
the optimal path. The length of a segment is the weight of its
corresponding edge and the length of a path is the total sum
of the edge weights. As an example, we have constructed
a graph from a sample set of points whose corresponding
optimal path is illustrated in Fig. 2.

In order to compare the obtained paths, one can sim-
ply compare the sum of distances for each path but this
can be ineffective in high dimensional spaces. Known met-
rics tend to lose their granularity in higher dimensions due
to the infamous “curse of dimensionality” [20]. Beside,
avoiding aforementioned problem, the main advantage of
interpreting these paths as time series is that we can com-
pare each set by their acquired time series and there exists
a profound history of time series research that we can
exploit.

After determining the segments, a time series is con-
structed using these segment lengths. We visualize this time
series in a 2D graph where the x-axis shows the segments in
their order and the y-axis shows their corresponding length.
Figure 3 illustrates the time series corresponding to the
example shown in Fig. 2. The median segment length is
indicated by a horizontal line (red line in Fig. 3). In order to
compare two time series, we borrow a concept from statis-
tics, named run statistic. Each set of consecutive segments
which all have a length below or above the median, is called
a run [42]. In other words, if we travel on the time series’
plot, the set of all segments that we pass by, before crossing
the median line, is called a run. After crossing the median
line, we enter a new run. When a run is below the median
it contains points that are close to each other which implies
that the area represented by this run is dense; on the other
hand, when it is above the median line, it contains points that
are scattered. We can incorporate this knowledge obtained
from time series into diversity measure.

By considering the number and the length of these runs
we can compare the diversity of two sets without directly
comparing the distances between points. In order to com-
pare these time series precisely, a numerical value should be

Fig. 3 Time series for the found
path in Fig. 2
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extracted for each of them. We propose to use the following
equation in diversity comparison mechanisms:

D = Lmax

nl

(16)

In this equation Lmax is the length of the largest run below
the median and nl is the number of runs below the median.
Here for more simplicity, the runs located below the median
are called sub-median and the runs located above the median
are called super-median. Since sub-median runs are indica-
tor of how close the points are to each other, we decided to
incorporate these runs into the proposed diversity measure.
A set with a large sub-median run contains an area of dense
points so it is not considered as a diverse set. In an ideal set,
each point of the time series should constitute a single run
and half of them would be sub-median. So, smaller values
of this quantity is desired and lower values of D correspond
to more diverse sets. Our proposed diversity method is suit-
able for high-dimensional problems since its complexity is

polynomial in terms of number of objectives and also it uses
a graph structure to find the order of solutions in the space
which is more effective or efficient in higher dimensions
than using direct techniques [41]. In the next sub-section
utilization of this quality measure will be explained.

3.8 Diversity maintenance mechanism by means
of proposed diversity measure

Here in this section, we aim to utilize the proposed metric
into the evolution of algorithms and will propose a diversity
control mechanism to streamline the optimization process.
As stated in many other works, there is a dilemma between
controlling diversity and converging to the Pareto front in
MOEAs which is directly related to amount of selection
pressure applied by the algorithm. In this framework we
want to make a balance between these two contradicting
objective by maintaining a steady selection pressure in the
survival selection operator. In the previous sub section, we
proposed a diversity metric which is supposed to effectively

Flowchart 2 Flowchart of the
teamwork of proposed diversity
measure in proposed
maintenance mechanism
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evaluate the diversity of populations in high dimensional
spaces. Using this measure, we can detect any variation in
the population diversity at each generation. After we iden-
tified that the population diversity is decreased we should
regulate the selection mechanism in a way to compensate
for this reduction. In order to incorporate diversity into the
selection mechanism of algorithms, in a more controlled
way, we proposed a diversity maintenance framework. This
framework is concisely illustrated in the Flowchart 2 where
it uses the diversity measure described in the previous sub-
section. In most of common MOEAs, solutions are selected
according to their fitness and diversity is used as a tie
breaker [1]. We propose to alter this order adaptively. For
instance, there may be situations where the population is
converging toward a specific region of the front or even
a single point. In such a situation, the selection operator
should pay more attention to the population diversity than
fitness.

As stated before the two important issues in our proposed
framework was finding a schedule for switching the order
of selection and determining the chromosome which has
the highest contribution in the diversity of the population
to give it an advantage in the selection mechanism. For the
former we compare the diversity of each generation to its
predecessor and change the selection operator accordingly.
Assume that, using the proposed diversity measure, we have
acknowledged that diversity is decreased. So, we need to
change the selection mechanism in favor of diversity con-
trol. In this situation solutions are selected according to their
contribution to the diversity of the population rather than
their fitness. While choosing between a child and its parent,
the parent will be selected if it is located in a super-median
run and the child resides in a sub-median run, since it is in
a more scattered area of the space. And reversely the child
will be chosen if it belongs to a super-median segment and
the parent belongs to a sub-median one. If they both are in
either above or below of the median line, the selection will
be based on the run length. Different cases are illustrated
in Table 2. Note that when they both are below the median
we are selecting between two dense areas so the one with
shorter run length is in a less crowded region, i.e. it contains
fewer points. In the same way, when solutions are above the

Table 2 Different possible selection states

Parent Child Selection

Above Below Parent

Below Above Child

Below Below Smaller length

Above Above Larger length

median, they are both in a sparse area and we select the one
with larger run length which means less diverse.

The whole procedure of selection according to diversity
can be integrated into the following formula:

d(x) = (−1)[xisabovethemedium]

L(x)
(17)

In this equation we used Iverson bracket, here it returns
one if x is above the median and returns zero otherwise.
Also note that L(x) is length of the run containing x. Points
with smaller d values are in more sparse regions of the
approximation set. By this equation we determine which
chromosome has the highest contribution in the diversity of
the population so we give it an advantage in the selection
mechanism.

To better understand the selection, consider the plots in
Fig. 4 that correspond a hypothetical offspring population
and its parent population set. We are to select between
parents or their offspring.

First of all, note that the selection is according to diver-
sity. When comparing either A and D or B and C the
selection is based on their position relative to median line.
So, for these comparison the solutions below the median
line, namely A and C, will be selected. But when the solu-
tions are on the same side of median line we must consider

Fig. 4 These plots represent the time series constructed from two
hypothetical populations. The horizontal dashed line indicates the
median length and two runs are highlighted in each plot
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more information. For instance, when selecting between A

or C since both are below median we select the one which
resides in a shorter run, in this case C. Note that C is in a
run with one segments while A is inside a run with three
segments. When comparing B and B again we need to look
at the run lengths since they both are above median. Here
we select the one which is in the longer run. As highlighted
in the figure, B is in a run with one segment while D is in a
run with three segments so D will be selected.

3.9 Incorporation in MOEAD

So far, we proposed a measure to diagnose the reduction
of population diversity along the generations in the high
dimensional spaces and using this knowledge repaired and
reformed the mechanism of selection based on chromo-
somes’ participation in either fitness or diversity. In this
section, in order to investigate the capabilities of both the
proposed diversity measure and the proposed framework we
have made few modifications in the MOEA/D [10] algo-
rithm. Actually the selection mechanism of MOEA/D is
modified to use our method which is illustrated in Fig. 3.
Despite the fact that MOEA/D is a well-known method
in the MOEA community for sake of completeness, we
have provided a pseudo-code of the modified version of
it in Algorithm 1. In this algorithm the selection func-
tion (line 10) is the procedure described in Section 3.3,
which adaptively changes the selection priority according to
the difference in the computed diversity of current popula-
tion in comparison to the previous one. Also, in line 5 for
computing the diversity of current population we use our
devised diversity metric which was described in details in
Section 3.2.

Algorithm 1 Incorporation of proposed selection mecha-
nism in MOEA/D.

1. Initialization
2. generate uniform weights
3. find neighbors of each weight
4. P := create initial random population
5. Dp := Diversity(P) // Algorithm 3
and Equation (16)

6. FitnessFirst := True
7.
8. while not finished do
9. Q := Variation()
10. P := Selection(P, Q, FitnessFirst) // Flowchart1
11. Dq := Diversity(P) // Algorithm 3

and Equation (16)
12. FitnessFirst := Dp q

13. Dp := Dq

14. end while

Algorithm 2 The algorithmic structure of proposed method

function Selection(P,Q, FitnessFirst)
1. R = [] //empty population
2. for i = 1 to
3. if (FitnessFirst == true)
4. if (P[i].fitness Q[i].fitness d(P[i])

d(Q[i]))
5. R[i] = P[i]
6. else if (d(P[i]) d(Q[i]))
7. R[i] = Q[i]
8. else
9. R[i] = Random Q[i] or P[i]
10. else
11. if (d(P[i]) d(Q[i]) P[i].fitness

Q[i].fitness)
12. R[i] = P[i]
13. else if (P[i].fitness Q[i].fitness)
14. R[i] = Q[i]
15. else
16. R[i] = Random Q[i] or P[i]
17. end for
18. return R

4 The Experiments

This section describes the computational results of the eval-
uation of the proposed method that was introduced in the
previous section. This section outlines three parts. The first
part covers the experimental setup for the proposed method.
The second part will explain our assessment methodol-
ogy and two well-known evaluation metrics and finally the
third part reports results of the application of the proposed
method on a set of well-known artificial problems to test the
performance of the proposed algorithm.

4.1 Experimental setup

To prove the potential of our method, we aim at compar-
ing and demonstrating its behavior with known competing
algorithms to well-known criteria in terms of diversity and
convergence. For this target, we used MOEA/D as a baseline
for comparison. Since the proposed mechanism is presumed
to be an improvement over MOEA/D this comparison is
acceptable. In order to expose the prospects of our method
in solving many objective optimization problems, we have
also included NSGA-III [16] in our comparisons.

Many test problems have been proposed in the litera-
ture where we decided to utilize the most comprehensive
and fairly recent WFG problem family [43], since it cov-
ers various types of fronts and different form of hindering
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Table 3 Main characteristics of WFG problems (NS: non-separable,
S: separable, U: uni-modal, M: multimodal, D: deceptive, PD: param-
eter dependent bias)

Problem Feature

WFG2 NS, (U/M), Convex, Disconnected

WFG4 S, M, Concave

WFG5 S, D, Concave

WFG6 NS, U, Concave

WFG7 S, U, Concave

WFG8 NS, U, PD, Concave

WFG9 NS, M, D, PD, Concave

attributes. WFG Toolkit is designed in a systematic way that
can introduce many different attributes to a test problem.
Using this toolkit, they have created a set of 9 test problems.
The essential properties of each problem in the WFG fam-
ily are listed in Table 3. In a separable problem the Pareto
front obtained from optimization using all variables would
be equal to union of all Pareto fronts obtained from opti-
mization using each single variable. The modality stated in
Table 2 is for the function used for transforming the deci-
sion space to the objective space. For more information on
these properties one can refer to [43].

WFG problems are scalable in terms of number of objec-
tives and we used problems with 2, 3, 4, 6 and 8 objectives.
In our experiments, we used an open source Java library
named jMetal, which is a well-known framework for imple-
menting evolutionary algorithms [44, 45]. JMetal contains
original implantations of WFG problem family as well as
MOEA/D and NSGA-II algorithms.

There are a few parameters that must be set in both algo-
rithms and problems, which are summarized in Table 4.
These parameters are either selected empirically or chosen

Table 4 Parameter settings

Parameter Value

Population Size (N) 100

Goal Population Size (Ngoal) 100 * # objectives

Maximum Iterations 200

Tournament Size 2

SBX distribution index 15

PM distribution index 20

Crossover rate 1.0

Permutation rate 1/30

Position parameter, k #objectives 1

Distance parameter, l 10

the same as the values proposed by the original authors.
The invoked variation operators are polynomial mutation
and simulated binary crossover with the same parameteri-
zation as mentioned in jMetal framework. Other necessary
evolutionary parameters are also configured with the default
setting of jMetal.

4.2 Performance measures

There are various performance measures used for evalua-
tion of MOEAs. Two of the most commonly used measures
are Inverted Generational Distance (IGD) [29] and Hyper-
volume [27, 28]. These two measures are widely accepted
among the researchers in this field and we have employed
them in our study. Both measures are capable of evaluat-
ing diversity as well as convergence to the Pareto front [20].
These measures are described in the following paragraphs.
Hypervolume computes the volume dominated by the points
in the approximation set. In order to compute this value one
needs a point or a set of points as a reference to limit the
volume with it. It can be defined formally in the following
way [27, 28].

S(X, R) =
(∫ ⋃

x∈X

{x′|x � x′ � R}
)

(18)

Here X is the approximation set we want to evaluate and R

is the set of reference points. It is shown that hypervolume
is the only unary indicator that is compliant with the Pareto
operator [26].

A poor choice of reference point can significantly affect
the performance of this metric [31]. We normalized all the
values in the [0, 1] interval and chose 1 as the reference
point for all the problems. Computation of hypervolume is
exponential in number of objective and computing hyper-
volume for problems more than 6 objectives is impractical
[19, 26, 31]. In this study we used a Monte Carlo simulation
procedure to approximate the volumes for problems with
more than 6 objectives [19]. In order to compute inverted
generational distance, we need the true Pareto front or a
representative subset of it. IGD is computed as the mean dis-
tance from each point in the true PF to the nearest point in
the approximation set [29].

IGD(P ∗.P ) =
∑

vep∗ d(v.P )

|P ∗| (19)

Here, P is the approximation set we are evaluating and
P ∗ is the true Pareto front. Also, d(v, P ) is the distance
between v and the nearest point in P .
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Table 5 Obtained result for 2D-3D-4D-6D-8D convex problem

Hypervolume IGD

# Objs Proposed MOEAD NSGAIII Proposed MOEAD NSGAIII

WFG2 2 0.5458020 0.5526240 0.5465730 0.0024320 0.0021420 0.0023980

3 0.8854370 0.8802010 0.8832352 0.0021530 0.0027310 0.0024292

4 0.8790730 0.8764339 0.8824604 0.0036010 0.0054720 0.0040103

6 0.8504630 0.8349710 0.8510533 0.0040140 0.0048960 0.0043229

8 0.9139860 0.8903880 0.9028583 0.0043590 0.0049880 0.0045429

4.3 Results

To have a satisfactory and comprehensive analysis, this
paper has evaluated the proposed method using both

performance metrics (Hypervolume and the IGD). In
the following tables the values of HV and IGD are
reported for the algorithms on the selected WFG
problems.

Table 6 Obtained hypervolume values for 2,3,4,6, and 8 objective concave problems

Hypervolume IGD

# Objs Proposed MOEAD NSGAIII Proposed MOEAD NSGAIII

WFG4 2 0.2059640 0.2129911 0.2091233 0.0002481 0.0001219 0.0001240

3 0.3460447 0.3916662 0.3813246 0.0010391 0.0010129 0.0010280

4 0.3897091 0.3409792 0.3409792 0.0020820 0.0042571 0.0028381

6 0.3032500 0.2523533 0.2843258 0.0031410 0.0055255 0.0036428

8 0.2684160 0.3133470 0.3234750 0.0035010 0.0045855 0.0040402

WFG5 2 0.1856145 0.1890576 0.1842582 0.0003833 0.0003619 0.0003739

3 0.3345456 0.3568027 0.3437914 0.0009962 0.0008614 0.0008642

4 0.3579368 0.3271197 0.3370538 0.0025528 0.0035105 0.0003418

6 0.3129230 0.3300450 0.3156360 0.0040390 0.0053696 0.0051715

8 0.3400830 0.3811290 0.3763447 0.0041030 0.0052256 0.0052561

WFG6 2 0.2055719 0.2129355 0.2100539 0.0001877 0.0000270 0.0000257

3 0.3851618 0.4023562 0.3977418 0.0009152 0.0011171 0.0009889

4 0.3596272 0.4261959 0.4065304 0.0030080 0.0036563 0.0039456

6 0.2796310 0.3259030 0.3357770 0.0052710 0.0059357 0.0057249

8 0.3177050 0.3609460 0.3707799 0.0052843 0.0059550 0.0053605

WFG7 2 0.2067482 0.2131609 0.2214676 0.0006532 0.0003960 0.0003128

3 0.3586452 0.4031093 0.4194321 0.0009241 0.0008830 0.0007752

4 0.3676873 0.4292885 0.4314389 0.0028611 0.0034743 0.0031266

6 0.3949300 0.4358010 0.4234555 0.0038320 0.0063718 0.0069135

8 0.3243510 0.4226980 0.4047363 0.0050660 0.0062044 0.0067976

WFG8 2 0.4150068 0.4212617 0.4224958 0.0025378 0.0046303 0.0046303

3 0.5965659 0.6469618 0.6503757 0.0030006 0.0039740 0.0039740

4 0.5760403 0.7070111 0.7156532 0.0030209 0.0045937 0.0045937

6 0.5386450 0.4483630 0.5223528 0.0036750 0.0090459 0.0083864

8 0.5158290 0.4786990 0.5131469 0.0049960 0.0084600 0.0062698

WFG9 2 0.2161048 0.2249586 0.2133657 0.0001049 0.0000591 0.0000895

3 0.3592907 0.3874917 0.3908650 0.0009848 0.0010696 0.0010197

4 0.3663834 0.3264170 0.3695242 0.0022786 0.0042197 0.0028248

6 0.2491770 0.1879360 0.2382277 0.0035850 0.0061390 0.0056837

8 0.1949910 0.2473860 0.2593254 0.0057860 0.0056510 0.0057786
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Tables 5 and 6 illustrates the average of 30 independent
outcomes for each algorithm for concave and convex WFG
problems respectively. Here, several test problems with var-
ious numbers of objectives (2-8) are used to demonstrate the
prospective performance of the proposed method. In these
tables, the numbers in each cell is the average of both HV
and IGD values of 30 runs.

The evaluation of the proposed method on the benchmark
test problems had shown a significant improvement in the
solution space diversity. Since higher values for Hypervol-
ume and lower values for IGD signify better approximation
of Pareto front. These results show that the proposed method
performs fine in high dimensional spaces. In order to deter-
mine the significance of these results we have used Kruskal-
Wallis non-parametric statistical test [46]. The bolded num-
bers in each row are statistical different from others with 98

% confidence. For better comparison of the results, we have
included box plot for all the problems which are depicted in
the Figs. 5 and 6. These pictures show that the true median
of the proposed method is higher (better) than its competitor.

Results depicted in Tables 5 and 6 indicate that, generally
our method has better values of IGD while MOEAD shows
better performance in terms of HV. This distinction becomes
more obvious as the number of objectives increases. The
relative performance of the two algorithms is different for
convex problems in comparison with concave problems. In
concave problems the proposed method performs better in
terms of both assessment measures while in convex problem
it shows superiority only in terms of IGD. But the question
is which of the two measures are the true indicator of algo-
rithms’ performance. We answer this question in the next
section.
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Fig. 5 Box plots comparing hypervolume of each algorithm for 30 independent runs
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Fig. 6 Box plots comparing IGD values of each algorithm for 30 independent runs

4.4 Comparison with other classes of optimizers

In this section, we compare our algorithm with other promi-
nent classes of multi-objective optimizers. As claimed in
previous studies [49, 50] other types of population based
optimizers can perform better than common multi-objective
evolutionary algorithms in certain problem settings; in order
to indicate the potential of our method in comparison
with these methods we performed this experiment. Differ-
ential evolution and particle swarm optimization are two

important population based optimization methods which
have been generalized for solving multi-objective problems
as well [47, 49].

There are many multi-objective particle swarm optimiz-
ers (MOPSO) in the literature which are reviewed in the
survey by Durillo et al. [51]. One of the effective design
choices of an MOPSO is the method of selecting global
and personal best locations. Various methods for choosing
these locations in each generation is reviewed in the work
of Padhye et al. [48]. In order to compare the performance
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of our algorithm to this class we have selected Speed-
constrained Multiobjective PSO (SMPSO) to be included in
our experiments [50].

Differential evolution is a special class of evolutionary
algorithms suited for real-valued optimization. There are
various versions of these algorithms designed for solving
multi-objective optimization problems among which Gener-
alized Differential Evolution (GDE3) has shown promising
results [49]. We included this algorithm in our experimen-
tal comparison to show the competitiveness of our method
relative to this class.

Table 7 presents the Hypervolume and IGD values of
these two methods along with the corresponding values for
our proposed method in solving concave WFG problems. As

it can be seen in the table the proposed method has shown
superior results in most of the test problems.

Table 7 presents the average of 20 independent out-
comes for three algorithms (the proposed method, SMPSO,
and GDE3) on concave WFG problems. These test prob-
lems have dimensions in range of 2-8 to demonstrate the
prospective performance of the proposed method. This eval-
uation confirms that as the number of objectives in each
test function increased, the higher values for Hypervolume
and lower values for IGD obtained, comparing to the other
two methods, which signifies that the proposed method has
better approximation of Pareto front. These results show
that the proposed method performs fine in high dimen-
sional spaces. In order to determine the significance of these

Table 7 Comparing hypervolume and IGD values of Different classes of optimizers for concave WFG problems with 2,3,4,6, and 8 objectives

Hypervolume IGD

# Objs Proposed SMPSO GDE3 Proposed SMPSO GDE3

WFG4 2 0.205964 0.1790086 0.2067185 0.0002481 0.0003375 0.0000792

3 0.3460447 0.3035097 0.3775838 0.0010391 0.0011040 0.0007785

4 0.3897091 0.3056854 0.3643534 0.002082 0.0025109 0.0023573

6 0.30325 0.2072907 0.2432389 0.003141 0.0037442 0.0038569

8 0.268416 0.1451884 0.2278573 0.003501 0.0042793 0.0043368

WFG5 2 0.1856145 0.1870646 0.1886871 0.0003833 0.0003668 0.0003587

3 0.3345456 0.323611 0.3616125 0.0009962 0.0011220 0.0008430

4 0.3579368 0.2547447 0.3454159 0.0025528 0.0027813 0.0037543

6 0.312923 0.2200564 0.3224525 0.004039 0.0047235 0.0043536

8 0.340083 0.2145077 0.33694 0.004103 0.0050507 0.0047470

WFG6 2 0.2055719 0.195974 0.1839296 0.0001877 0.0001866 0.0003207

3 0.3851618 0.3031983 0.3348627 0.0009152 0.0013969 0.0010393

4 0.3596272 0.3178983 0.3557865 0.003008 0.0025698 0.0022131

6 0.279631 0.2454878 0.2664257 0.005271 0.0058785 0.0059181

8 0.317705 0.2225549 0.2330374 0.0052843 0.0061269 0.0057033

WFG7 2 0.2067482 0.2017039 0.2116647 0.0006532 0.0001420 0.0000562

3 0.3586452 0.2758958 0.3710991 0.0009241 0.0014721 0.0009248

4 0.3676873 0.2869787 0.3800807 0.0028611 0.0026998 0.0022016

6 0.39493 0.242296 0.2976645 0.003832 0.0042594 0.0044190

8 0.324351 0.1739119 0.2060591 0.005066 0.0057297 0.0060875

WFG82 0.4150068 0.3661964 0.3691485 0.0025378 0.0038328 0.0038523

3 0.5965659 0.4563235 0.5708926 0.0030006 0.0041885 0.0040750

4 0.5760403 0.468932 0.6627424 0.0030209 0.0053372 0.0047031

6 0.538645 0.417896 0.50806 0.003675 0.0051026 0.0067168

8 0.515829 0.377654 0.491508 0.004996 0.0072734 0.0069289

WFG9 2 0.2161048 0.213743 0.2148464 0.0001049 0.0001095 0.0000977

3 0.3592907 0.3253762 0.358357 0.0009848 0.0010571 0.0009102

4 0.3663834 0.293585 0.3412209 0.0022786 0.0032115 0.0031233

6 0.249177 0.1572768 0.2023494 0.003585 0.0044994 0.0042507

8 0.194991 0.1028697 0.1193904 0.005786 0.0065411 0.0067046



970 K. Bazargan Lari, A. Hamzeh

results we have used Kruskal-Wallis non-parametric statisti-
cal test [46]. The bolded numbers in each row are statistical
different from others with 98 % confidence.

5 Discussions

In this section we are going to discuss about the perfor-
mance of our framework and compare the proposed diver-
sity measure with other diversity metrics. In the first part the
workflow of our algorithm is analyzed to find out whether
it was able to maintain diversity beside convergence. In the
second part we compared the obtained results and provided
evidence for the superior performance of our algorithm.
Finally, in the last part we considered using other diversity
metrics in our framework and compared the results with the
main approach.

5.1 Diversity Maintenance

It is widely accepted that the main aggravating factor in evo-
lutionary many objective optimization is diversity reduction
and here we will show that how our approach can handle this
impediment. To better understand the effect of the proposed
framework we have studied the behavior of the algorithm by
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Fig. 7 Diversity plot of generations for each problem, Horizontal axis
is the number of generations and vertical axis is the diversity measure
computed by (4)

plotting the populations diversity in all generations which is
depicted in Fig. 7 for different test problems. The behavior
of the algorithm is similar for different number of objec-
tives so to make the paper brief we only presented the plots
for 4 dimensional problems. This figure shows the values
of the proposed diversity measure in different generations
of the algorithm. As it is illustrated in the Fig. 7, whenever
the diversity of a population was decreased, our approach
detected this failure and the application of its framework had
increased it in the next generation. So, over the course of
the algorithm the diversity of the algorithm is maintained at
a certain level while the population is being pushed toward
Pareto front.

5.2 Outcome analyzing

Results depicted in Tables 5 and 6 indicate that our approach
performs significantly better than their original counter-
parts in terms of IGD; but this is not true for hypervolume
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Fig. 7 (continued)
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Fig. 8 The optimal solution sets S1 and S2 for two dimensions. These figures are generated using the source code provided by the authors of [20]

metric. So the main question is that how can we justify
this contradiction? There have been many works on com-
parison between IGD and HV and their capabilities in the
MOEA literature. All of them proved experimentally or the-
oretically that these measures show contradictory results
in problems with concave Pareto front, especially in high
dimensional objective spaces [20].

In order to evaluate the proposed method, in this study,
we have applied our approach to both concave and con-
vex methods. For convex problems, as you can see in the
Table 4, our proposed method shows improvements with
regard to both quality measures, IGD and hypervolume. But,
in solving concave problems our method performed better
only according to the IGD measure and there was no sig-
nificant improvement in hypervolume values. In order to
comprehend which method is showing the correct perfor-
mance we refer to a comparative review of performance
measures used in MEOA by Jiang et al. [20]. They proved
that IGD and hypervolume measures act in contradiction
to each other when dealing with concave problems. In the
following, we will illustrate their point.

In their study they focused on problems with symmetric
and continuous Pareto fronts which may have concave or

convex shape. They define these types of fronts using the
following equation:

f
p

1 + f
p

2 + · · · + f
p
m = 1 (20)

In this equation the objective values are normalized in [0.1]
and p is a non-negative real number. The parameter p con-
trols the geometry of the Pareto front. If p is smaller than 1,
the Pareto front will be convex and if it is greater than 1 the
Pareto front will be concave. According to the instructions
given by Jiang et al. [20], we have created two sets of points,
S1 and S2, on a Pareto front as they did which had different
characteristics. In convex problems, the solutions in S2 are
distributed around the extreme points of the front and are
considered to be more diverse than the points in S1. This sit-
uation is illustrated in Fig. 7, where the sets are created for
a 2-dimensional space.

On the contrary, S2 has better diversity than S1 in con-
cave problems. For more details on generating S2 and S1
the interested readers may refer to [20].

As described in Section 4.2, smaller values of IGD and
larger values of HV are desired. Figure 8 compares IGD and
Hypervolume values for the previously defined sets. In this
figure, the vertical axis indicates the difference of measures

Fig. 9 The figures in the
section were generated using the
source code provided by the
authors of [20]



972 K. Bazargan Lari, A. Hamzeh

in a way that a positive value means S2 is better than S1
and a negative value means vice versa. The sets have been
designed in a way that for convex problems, 0 < p < 1, S2
would be better than S1 and as we can see in Fig. 9, both
measures acknowledge this fact. But in concave problems,
1 < p < ∞, we know that S1 is better than S2. In this
case, while IGD correctly prefers S1, hypervolume favors
S2 which is not true. In conclusion, when we have contradic-
tion between IGD and hypervolume in concave problems,
IGD results are more reliable. In fact, this distinction is com-
patible with the definitions of these metrics. Since IGD is
fed with a subset of the true Pareto front it have a knowl-
edge of the extreme points of the true front but Hypervolume
does not have this information, So IGD can exploit this extra
details and yield more reliable comparison.

5.3 Comparison with other diversity metrics

In order to experimentally compare our proposed diversity
metric with other measures we have selected three diversity
metrics to incorporate in the proposed framework (Section
3.3). These metrics are spacing, overall spread, and the
entropy based method proposed in [20] (for more simplic-
ity we call it the entropy metric). These metrics are briefly
introduced in the Section 3.1 yet for further information we
would refer readers to the original papers. To incorporate
a diversity metric in our framework we need to assess the
diversity of a population as well as computing the contri-
bution of a single solution in diversity of a set. The former
is straightforward since all the measures operate on a set
of solutions. But for a solution we used a simple procedure

Table 8 The performance
results obtained for various
WFG problems in different
dimensions

IGD

#objs Proposed Entropy Overall spread Spacing

WFG4 2 0.000248 0.000638 0.000558 0.000389

3 0.001039 0.001510 0.001795 0.002193

4 0.002082 0.002408 0.003486 0.004318

6 0.003141 0.003627 0.004005 0.004642

8 0.003501 0.003791 0.004982 0.006005

WFG5 2 0.000383 0.000391 0.000395 0.000397

3 0.000996 0.001110 0.001141 0.001182

4 0.002553 0.002163 0.003428 0.004091

6 0.004039 0.003245 0.004487 0.005942

8 0.004103 0.004686 0.005281 0.005930

WFG6 2 0.000188 0.000288 0.000360 0.000407

3 0.000915 0.001319 0.001200 0.001094

4 0.003008 0.003593 0.003688 0.003817

6 0.005271 0.005496 0.006241 0.007332

8 0.005284 0.005853 0.005640 0.005692

WFG7 2 0.000653 0.000639 0.000872 0.001198

3 0.000924 0.001138 0.001503 0.001776

4 0.002861 0.003338 0.004043 0.004558

6 0.003832 0.004860 0.006031 0.007128

8 0.005066 0.006223 0.006680 0.006996

WFG8 2 0.002538 0.003155 0.003844 0.004526

3 0.003001 0.002924 0.003943 0.003565

4 0.003021 0.002885 0.004006 0.004959

6 0.003675 0.005214 0.006517 0.008791

8 0.004996 0.005433 0.007413 0.009338

WFG9 2 0.000105 0.000160 0.000124 0.000083

3 0.000985 0.002229 0.002095 0.001941

4 0.002279 0.002258 0.003056 0.003817

6 0.003585 0.005040 0.004953 0.004879

8 0.005786 0.005975 0.005685 0.005898

Columns are the proposed framework with different diversity metrics in the MOEAD algorithm
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and the desired contribution is computed as the difference
between the population’s diversity with and without the
considered solution. This method would have extra compu-
tations but one should note that this is only for analysis and
assessment of our diversity measure.

Table 7 presents the IGD for the diversity control frame-
work with different metrics applied to WFG problems. As
you can see our proposed diversity measure performed bet-
ter in most of the test problems. Since the only difference
in the algorithms listed in the columns of this table is the
exploited diversity measure, we can claim that our proposed
diversity measure based on Hamiltonian path can better
capture a population’s diversity Table 8.

6 Conclusion

In this research, we tried to alleviate the sorts of diffi-
culties that have been ailing multi-objective optimization
of high-dimensional problems. Lack of selection pressure
propels optimizers to modify selection operators accord-
ingly. These modifications usually lead to loss of diversity
in the population which is not desirable and considered as
a low performance. Here we proposed a diversity measure
and a diversity control mechanism which can be used in
combination to remedy this problem.

To control the diversity of population, we used an
adaptive framework which changes the selection operator
according to changes in the diversity of the population. By
an increase in the population diversity, the selection opera-
tor will change to increase the selection pressure and by a
decrease in diversity the selection pressure will decline. In
order to find the variation of diversity this paper proposed
a diversity measure based on shortest Hamiltonian path to
monitor the diversity variation in each generation.

With the intention of assessing the proposed method, we
incorporated it into MOEA/D a well know multi-objective
evolutionary algorithm. The only diversity control facil-
ity used in MOEA/D is the initial decomposition of the
multi-objective optimization problem into a set of uniformly
distributed sub-problems. In high dimensions, this decom-
position is not coarse enough so it will not be as effective as
expected. We exchanged the MOEA/D selection mechanism
with our devised operator and used this new MOEA/D algo-
rithm in the experiments. For experiments we used WFG
problem family which are the most comprehensive and
recent group of test problems in the literature. To evaluate
and compare the obtained results two performance measures
were used, IGD and hypervolume. Applying both methods
to concave and convex problems revealed a contradiction
between the two performance metrics. While the modi-
fied MOEA/D performed better in terms of IGD in convex
problems, the original MOEA/D performed better in terms

of Hypervolume. In order to ascertain which performance
measure is right, we provided two types of solution sets with
known diversity contrast and proved that IGD yields more
accurate comparison. Consequently, our method is of a valu-
able potential and can be extended and refined to perform
even better.
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