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Abstract Artificial Fish Swarm is a kind of swarm intelli-
gence algorithm, which focuses on the behavior of individ-
ual fishes and information interactions among them during
foraging and preying on something in real environment. A
novel Artificial Fish Swarm Optimization Algorithm Aided
by Ocean Current Power (abbreviation for AFSAOCP) is
proposed, which assumes the ocean current always causes
certain influence on the fishes’ activity speed. Firstly, the
computing model of ocean current is developed and con-
structed. Then the influence level of the ocean current on
fishes is analyzed. If fishes are swimming along ocean
current direction, ocean current will drive fishes’ speed
increment, which is called positive influence; if fishes are
swimming against ocean current, the current will hinder the
fishes’ speed, which is called negative influence. In addi-
tion, fishes’ speed is not influenced by the ocean current,
which is called merits offset faults. To sum this up, fishes in
each group have different speed range, respectively. Group-
ing strategies can not only increase species diversity, but
it can also make the algorithm escape from local opti-
mal value in the iteration process. The proposed variant,
AFSAOCP, is examined on several widely used bench-
marked functions, and the experimental results show that
the proposed AFSAOCP algorithm improves the existing
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performance of other algorithms when dealing with the
different dimension and multimodal problems.

Keywords Artificial swarm algorithm - Swarm
intelligence - Ocean current power - Optimization problem

1 Introduction

Swarm intelligence algorithms have been widely used in
different areas in order to solve various problems. There
are many algorithms in swarm intelligence that are devel-
oped by simulating the behaviors of the creatures in nature
[1, 20, 21]. There are some relatively popular algorithms
such as ant colony optimization algorithm (ACO) [2], par-
ticle swarm optimization algorithm (PSO) [3] and so on.
Among them, a novel optimizing method, Artificial Fish
Swarm Algorithm (AFSA), was referred to the behavior of
fish swarm. It was proposed by the domestic scholars LI
Xiao-lei, SHAO Zhi-jiang and QIAN Ji-xin in 2002 [4].
Similar to most social animals, the fish has its unique way
of living. In the water, most fishes exist in the place that
has rich food. According to this, AFSA is a kind of swarm
intelligence algorithm that imitates the specific behavior of
individuals and information interactions among them dur-
ing preying process in real environment. As far as order
is concerned, in AFSA each artificial fish (AF) individual
explores food by four behaviors, which are random mov-
ing, preying, following, and swarming. Preying behavior
laid the foundation of algorithm convergence, swarming
behavior enhances the stability and global convergence of
the algorithm, following behavior speeds up the algorithm
convergence, evaluating of the four behaviors provides guar-
antee of algorithm convergence speed and stability. Each AF
individual has a self-information that includes visual range,
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current position, food concentration, moving step length,
crowing divisor etc., which decided the fish chooses next
behavior in the range of motion, and these behaviors can
influence each other. Ref. [5, 22] expounded five charac-
teristics of AFSA: (1) parallelism, (2) simplification, (3)
global searching ability, (4) fast convergence and (5) not
sensitive to the requirements of the objective functions.
Therefore, more scholars have studied on AFSA to pursuit
better performance in many aspects.

Many practical (industrial/engineering) and challenging
problems are multi-objective, where the related solution is
a set of points that give trade-offs for the different tar-
gets. Introducing multi-objective optimization for AFSA is
inspired by our team’s research in evolutionary comput-
ing for similar problems [6]. In this paper, a new method
named “A novel Artificial Fish Swarm Optimization Algo-
rithm Aided by Ocean Current Power (AFSAOCP)” has
been proposed.

Section 2 introduces the standard AFSA. In Section 3, a
detailed description about some recent variants is put for-
ward. Section 4 presents the proposed AFSAOCP. Section 5
makes comparative experiments on several widely used
benchmark function and analyzes the related experimental
results, and conclusions are made in Section 6.

2 Basic Artificial Fish Swarm Algorithm (AFSA)

Artificial Fish in the environment is the main part of the
problem solution space, where an Artificial Fish next-step
behavior depends on the previous moment and the current
state of environment. Artificial Fishes exert influence on
their neighbor or companions by their own activities and
vice versa

As shown in Fig. 1, an Artificial Fish perceives external
things with sense of sight. Current position of an Artificial
Fish can be written as: X = {X, X», ..., X}, where X; (i =
1,2, ...,n) is the control variable. The Visual is used to
indicate sight field of an Artificial Fish and X, is a position
in visual where AF’s view for a moment. The step length
is expressed as Step and the next position of an Artificial
Fish is described as X ;... If X, has better food consistence
than current position of AF, it will consider to go one Step
toward X, which causes change in AF position from X to
Xnext,but if the current position of AF is better than X, it
continues searching in its Visual area. The process can be
expressed as follows in formulas (2-1) and (2-2):

Xy = X + Visual e Rand() 2-1)
X X4 o Step o Rand() (2-2)
= —_— e ep e an -
next ||XU _ X|| p

Fig. 1 The concept of AF’s vision

In the two formulas, Rand () denotes some random numbers
which are between O to 1.

Food consistence in position X represents fitness value of
this position and ¥ = f(X)Y is an objective function. The
distance between two AFs which are in # and X’ positions
is shown by d;; = |X; — X|. The maximum tries of AF
during preying process is represented by Best Fish! = X*,
which means the maximum number of attempts by the fish.

AF has four kinds of behaviors and are described as
follows:

1) Preying behavior

This is a natural behavior of AF that is the tendency of food,
the current position of AF i is X; and randomly chooses a
position in its sight field is x; by formula (2-3).
X; = X; + Visual e Rand() 2-3)
If Y; < Y;, the AF makes a step towards the position of X ;
by formula (2-4).

X —X!
xit! :X?+#0StepoRand()
! X=X

(2-4)
But while ¥; > Y; is true, the position will be updated,
namely, position X ; is selected again, and then AF needs to
judge whether it satisfies the forwarding condition or not.
If Try_number still does not find the fitness condition, AF
will move a new position randomly by formula (2-5).

X = X! + Visual o Rand() (2-5)
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The Pseudo code of preying behavior is show as follows:

float prey()
{
for(i =0;i<Try_number;i + +)
{
X; = X; + Rand() e Visual;
if(Yj<Y;)
Xi/next =Xi+Rand() e Step o X=X
X — Xill,
else
Xi/next = Xi + Rand() e Step;
}

return foodconsistence(X;/next);

}
2) Swarming behavior

During searching for food, AFs will group together spon-
taneously so as to guarantee their own survival. This kind
of behavior can not only be helpful to reduce the amount
of AFs that are trapped into local optimal solutions, but
are also useful to gather around the regions of the majority
AFs that have global optimal solution. There are two action
rules among AFs in the AFSA: (1) as far as possible move
toward the center of the adjacent partners; (2) to avoid over-
crowding. The current position of AF i is X;, the number of
partners in the current field (d;; <Visual) is ny and center
positionis X.. If Y. /ny > §Y;, there is plenty of food in the
partner’s center and it’s not too crowded here. Then the AF
can move a step towards that central position according to
formula (2-6). Otherwise, it executes preying behavior.

t
C_Xi

X{+1 = X[ 4+ —
' PN Xe = X; |

e Step @ Rand() (2-6)

The Pseudo code of swarming behavior is show as follows:

float swarm()
{
ny = 0; Xc = 0;
for(j =0; j<FishNumber; j + +)
{
if(d;,j<Visual)
{ny++ Xc+=X;:}
X
",

o Xe
if(— >é8Y)
nf

X, =

Xi/next = Xi +Rand() ® Step o X=X
I X;—Xill.
else
prey();
}

return foodconsistence(X;/next);

}

@ Springer

3) Following behavior

When AF finds a region that has enough food and is
not too crowded, AF’s nearby partners will follow it and
quickly reach to this hot point. Following behavior is a
kind of pursuit behavior where the neighbors have highest
fitness. In optimum algorithm, it can be understood as a
process of moving forward nearby optimal partner. The cur-
rent position of AF is x,, AF searches for partner X; with
the maximum food consistence in current field(dl.j<v,- sual)
written as Y- If y /=8, there is enough food in the part-
ner’s center and it’s not too crowded here. Then, the AF
can move a step towards that central position according to
formula (2-7). Otherwise, it executes preying behavior.

X;—X 4

L — o Step @ Rand()

X = Xi |l

The Pseudo code of following behavior is show as follows:

Xt = x4+ (2-7)

float follow()
{
Yin = 00;
for(j =0; j<FishNumber; j + +)
{
if(dij<Visual&&Yj<Yuin)
{Ymin = Y/a Xmin = st }
nf—0;
for(j = 0; j<FishNumber; j + +)
if (dmin,j<Visual)
{ny++:}

Y.
if (== > 8Y))
nfy

Xmin— Xi
X =X;+Rand St Ty .. —v. 1
i/next i+Rand() e 6170” Xmin—Xi |l

else
prey();
}
return foodconsistence(X;/next);

}

4) Random behavior

To enlarge its search space, artificial fish will move a step
randomly in its perception range and reach to a new posi-
tion. This is a simple behavior that chooses a position
randomly in AF’s sight field, and then move forward to it.
In a word, it is a default behavior of preying behavior.

AFSA should initialize relative parameters, evaluate the
four behaviors and choose the optimal behavior. The proce-
dure of the basic AFSA is show as follows:

Step 1: Initializing parameters.
Step 2: Randomly generating initial population
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Step 3: Calculating every fish’s food concentration (objec-
tive function), and putting the optimal value in the
bulletin board

Step 4:  For each of AF
1) Calculating the fitness value of following

behavior and swarming behavior, and then
selecting the optimal behavior as the mov-
ing direction of AF by selection strategy, the
default behavior is preying behavior.

2) Calculating every AF’s food concentration,
and its optimal value compared with the val-
ues in the bulletin board, the bulletin board
always maintains optimal values.

Step 5:  Determining whether it satisfies the end’s condi-

tion, if satisfy ends, otherwise go to step 4.

3 The related research

The basic AFSA requirement is not limited in the objec-
tive function, parameters and initial values, but it’s one
of the most effective algorithms in solving optimization
problems. Many researchers have worked on improving its
performance in various ways and developed many variants.

In Ref. [7], a method of population adaptation which has
the feature of fast convergence, good global search capa-
bility, strong robustness. In this paper, the author applied
the Artificial Fish Swarm (AFSA) to multi-objective opti-
mization problems. An improved AFSA named IAFSA is
proposed in Ref. [8], where the author suggests that adjust
parameters v;s,q; and ., adaptively with iterative opera-
tion is necessary, so Visual and Step are put forward to
optimize the parameters of LS-SVM. Ref. [9] introduces an
improved algorithm that two new adaptive methods based
on AFSA execution in order to control the capability of
global and local searching adaptively. In this paper, firstly,
selected larger initial value for Visual and Step. After
that, by approaching the target, AF can accurately investi-
gate the environment by smaller Visual and Step. In Ref.
[10], an improved AFSA by genetic algorithm is proposed,
where the variation factor of genetic algorithm is intro-
duced to AFSA. With a concept that is mentioned when
(record FC — FC < eps) has appeared for several times
continuously, it will execute variation factor on each AF’s
parameter with probability p. An improved AFSA named
HAFSA is applied in Ref. [11]. This algorithm is based on
PSO and AFSA: it makes full use of the fast local con-
vergence performance of PSO and the global convergence
performance of AFSA, and then is used for solving ill-
conditioned linear systems of equations. Modified artificial
fish swarm algorithm (MAFSA) is proposed to optimize the
reactive power optimization is in Ref. [12].

Based on the above discussion, a novel Artificial Fish
Swarm Optimization Algorithm Aided by Ocean Current
Power (called AFSAOCP) fully considers the characteris-
tics of fish life. The algorithm improves the performance
of optimization algorithm through the implementation of a
new mutation strategy and demonstrates a significant per-
formance improvement over the AAFSAL1 (the adaptive step
length) [13], AAFSA2(introduces a new behavior) [14] and
IAFSA [15].

4 The AFSAOCP

In order to keep balance between global search ability and
local search ability of artificial fish swarm algorithm, step
strategies can help AF timely to arrive at the extreme value
point of convergence. But if the step length exceeds a cer-
tain range, it can possibly slow convergence speed, but
also appear even oscillation phenomenon. In order to deal
with these problems, and inspired by the phenomenon of
symbiosis, AFSAOCEP is put forward.

4.1 Ocean current

The ocean current is the surface water in the density of sea
water, wind, and a variety of other factors which influence it
along the direction of a certain large scale regular flow [16].

There are dozens of major ocean currents, often called
the high temperature from tropical sea warm current, known
as a cold snap from cold water temperature is relatively low.
Ocean current is generally divided into wind current, com-
pensation flow and density flow, and wind current is the
main form [17, 18].

Figure 2 is the wind current schematic diagram. If the
water on the surface of the ocean is in the atmospheric circu-
lation and near the ground under the action of wind current,
we call it wind current. In the northern hemisphere, the
wind current is flowing by clockwise direction around the
subtropical high. However, in the southern hemisphere, it
is anticlockwise direction. The wind current is close to the
ground under the action of wind, and to produce water fric-
tion coriolis force balance of current. There is a significant
impact on ocean current in the global scope of sea: Pacific
equatorial current, north equatorial current, south equatorial
current, north Pacific warm current and warm Atlantic [19].

This above is a macroscopic description of ocean current.
For microcosm, on the one hand, we know that there are
many reasons that cause currents, one of which was caused
by uneven terrain. According to the flow, it’s not parallel
degree and bending degree, but the ocean is divided into
the gradient flow and rapidly varied flow. The gradient flow
refers to streamline the parallel linear flow. Rapidly varied
flow refers to the curvature of the streamline, the flow that
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Fig. 2 The formation of the ocean current

has the bigger curvature or included angle. It is shown in
Fig. 3.

On the other hand, we know that wind current is the main
form of ocean current. Therefore, with the increasing depth
of the sea, the influence of the wind on the water is more
and more small. In other words, the flow velocity of ocean
current reaches the maximum at the surface, slowing down
with the increase of depth. In order to facilitate research, we
divided the ocean into three layers (shown in Fig. 4). From
the top to the bottom velocity decreases, which is for us to
face the artificial fishes after grouping analysis is done. The
flow rate from the ocean surface to the seabed decreasing,
which is based on artificial fish grouping.

Next, let us analyze the situation of fishes in the ocean.
In order to facilitate the research, we assume an artificial
fish as a particle which is in a three-dimensional space. The
particle under the action of external force is affected by the
following Fig. 4.

In the Fig. 5, particle P is moving along the Y axis. At
the same time, the velocity component vy and vy, which

Gradually Ra
varied flow_ Varge CI,) ;‘;]y
G,
\V v, i,
p 2)
N ‘7’7801170/()/ Rapidly Gradually
pi varied flow l’;ﬂrled flow
7 p 7

Fig. 3 Gradually varied flow and Rapidly varied flow
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Fig. 4 The hierarchical diagram of ocean

are coming from the X axis and Z axis, affect P’s speed.
The trajectories of P will be decided according to the
three directions of the three speeds eventually. The detailed
trajectory is shown in Fig. 5.

In Fig. 6, the X axis and Y axis show the flow of ocean
current, fishes from point A to point B. Rl showed that
fishes’ swimming route without ocean current effect. R2
said fishes under the influence by ocean current move to
point B with curve of the parade route.

4.2 New searching strategy

Since the ocean current is one of the Marine natural phe-
nomena, its velocity will inevitably affect the speed of
artificial fishes. Firstly, AF is swimming along ocean cur-
rent, saying there is a pair of invisible hand to promote AF
forward. Details are followed in Fig. 7.

Secondly, if AF is swimming against the current, their
ability to pursue food may be impeded. Details are followed
in Fig. 8.

AF depends on a swimming motion to go from place to
place in their search for food, and gradually they populated
the ocean with different speed. With this in mind, we divide
artificial fishes in different groups according to their speed
range. By comparison, the optimal fish (local best) in each
group can be chosen out, at the same time each iteration of

zZ

Fig. 5 Effects of the particle in three-dimensional space
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R2

Fig. 6 The trajectories of fishes

the optimal fish (global best) can also be concluded. The
graphical description of grouping and procedures of each
subgroup will be shown in Fig. 9.

In Fig. 9, Artificial fishes are divided into three groups
by the strength of influence (‘+’,” and *’), each subgroup is
moving with the different step length. The normal artificial
fishes’ (*” subgroup) speed is v, the speed of ocean current
1S Uocean, SO the step length is Step and mobile way accord-
ing to formula (2-7). Therefore, in contrast to the current
direction (that is adverse current) of artificial fishes’ speed
isvi(‘“+’ subgroup), we knowv; > v, so the step length is
Step + Vopcean - €OS @, and mobile way according to formula
(4-1).

X; — X!
I X;—X; |l

1

le“ =X+ o (Step+vycean-cosa)e Rand()
4-1)

The same as the current direction (that is fair current) of the
artificial fishes’ speed is v2(** subgroup), we know vy < v,

Fig. 7 Ocean currents make a positive difference in fish’s preying
(‘“+” influence)

Fig. 8 Ocean currents make a negative difference in fish’s preying
(‘=" influence)

so the step length is Step — vycean - cOs(r — B). And mobile
way is computing according to formula (4-2).

t

Xf“:Xf—i— J T A

Step — . - Rand
I X; —Xf I o (Step — vocean - c0s(w — B)) @ Rand()

(4-2)

after each iteration finishes, artificial fishes will be divided
into three subgroups again.

4.3 Procedures of AFSAOCP

The procedures of the AFSAOCP is similar to the AFSA
described in Section 2, including initialization, evaluation
of behaviors, and selection of the optimal behavior. Repeat
these steps until the conditions of the end of the algorithm
are met.

But there is a difference between AFSAOCP and AFSA.
The main difference is that considering the influence of the
ocean current to living conditions of the fish in Section 4.1,
we improve the evolution of fish: each individual in the ini-
tial population will generate three subgroups to improve the
convergence speed through the iteration of the algorithm. So
flow chart of AFSAOCP is shown in Fig. 10.

In Fig. 10 and Table 1:

FishNum : The number of artificial fishes.

b_value : The best value of every iteration

iter Num : The maximum number of iterations
tryNum : The maximum number of attempts

Y; : The fish i fitness values

value . AFSAOCP The optimal value of the
AFSAOCP.

According to the above chart of the AFSAOCEP, the rel-
ative algorithm is defined as follows. Pseudo code of the
AFSAOQOCP is shown in Table 1 and the grouping part of the
algorithm is from line 04 to line 37.
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l‘ Groupl
W Group2
m’ Group3

(a) Random initial

Optimal Fish

(c) Grouping and procedures of each subgroup

Fig. 9 Grouping and procedures of each subgroup

5 Experimentation 5.1 The analysis of parameters

In this section, the proposed AFSAOCP is compared with ~ The main basic parameters of AFSAOCP is the number of
the AFSA, AAFSA1, AAFSA2 and IAFSA . artificial fishes Fish Num, field of vision Visual, crowded

@ Springer
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Fig. 10 Flow chart of

AFSAOCP Start

A 4
Initial artificial fishes

\ 4

Iteration start

v
Put artificial fishes into three
groups

<
i Each every fish
Swarming behavior Following behavior
fitness1 fitness2

A,
Y, < value _ AFSAOCP

N
v
N Preying behavior
fitness3
Y, <value _ AFSAOCP
Comparing fitness1 and
fitness2, performing which

N
value is best i
Y Y

v
Random

behavior

A 4

Update the optimal value
in the group

v

Compare the optimal
value of 3 groups

A 4
Update
"1 value _ AFSAOCP

iter<iterNum

Y
v
Output the optimization

result

End

degree factor § and the angle of artificial fishes and ocean  test function for Rosenbrock, specific expression such as

a, B. This section analyses the influence of various parame-  (5-1).

ters on the algorithm precision in the algorithm, so that the

subsequent simulation experiments can be more effectively N-l

carried out than before. fx) = Z (100G} — x7 )% + (i — 1)) (5-1
This section forms different parameter values using =1

test function experiment and comparison, which used (1) The number of artificial fishes FishNum
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Table 1 Pseudo code of the

AFSAOCP 01 For i =1 to FishNum
02 Fish(i,:) = xmin+(xmax-xmin). *rand(1,N)
03 EndFor
04 For j =1 to iterNum
05 iter = iter + 1
06 If(iter > 1)
07 b_value(iter) = b_value(iter-1)
08 Else b_fish = zeros(1,N)
09 End if
10 best_af = xmin+(xmax-xmin). *rand(1,N)
11 For i = 1to 1/3FishNum
12 Fish(i,:) = evaluate(Fish(i,:))
13 If (foodconsistence(Fish(i,:),smax) < foodconsistence(best_afl,smax))
14 best_afl = Fish(i,:)
15 End if
16 If(foodconsistence(Fish(i,:),smax) < b_valuel (iter))
17 b_valuel (iter) = foodconsistence(Fish(i,:),smax)
18 End if
19 End for
20 For j = 1/3FishNum +1 to 2/3FishNum
21 Fish(j,:) = evaluate(Fish(j,:))
22 If (foodconsistence(Fish(j,:),smax) < foodconsistence(best_af2,smax))
23 best_af? = Fish(j,:)
24 End if
25 If(foodconsistence(Fish(j,:),smax) < b_value2(iter))
26 b_value(iter) = foodconsistence(Fish(j,:),smax)
27 End if
28 End for
29 For k = 2/3FishNum +1 to FishNum
30 Fish(k,:) = evaluate(Fish(k,:))
31 If (foodconsistence(Fish(k, :),smax) < foodconsistence(best_af3,smax))
32 best _af3 = Fish(k,:)
33 End if
34 If(foodconsistence(Fish(k,.),smax) < b_value3(iter))
35 b_value3(iter) = foodconsistence(Fish(k,:),smax)
36 End if
37 End for
38 If (b_valuel (iter)<b_value?2(iter))
39 min = b_valuel (iter)
40 Else min = b_value2(iter)
41 End if
42 If (min<b_value(iter))
43 b_value(iter) = min
44 End if
45 End for

The size of the artificial fish decided the convergence speed
of the algorithm. This experiment respectively sets the
number of artificial fish to 10, 30, 60, 100, 200 and the
experimental results are shown in Table 2.

According to Table 1, we can see that when the scale is
small, the algorithm requires a short period of time, but the
optimal value is poorer; the scale is large, the optimal value of
the algorithm is better, but at the same time the execution time is

Table 2 The influence of different artificial fish scale for solution

too long. Therefore, the size of the artificial fishes should be mo-
derate that the algorithm not only has the better optimal value,
but also can make the execution time as short as possible.

(2) The artificial fishes’ view Visual

Behavior evaluation in view of artificial fishes has a bigger
impact and it will affect the convergence of the algo-
rithm. We know the fish’s field of vision is limited, so this

Table 3 The influence of different view for solution

FishNum 10 30 60 100 200

Visual 0.1 1 10 30 50

avg 1.04E+02 4.13E4-00 7.60E-01 6.06E-02 3.64E-01
avgtime 5.712724 17.145010 32.626828 93.661618 130.434474

avg 3.41E+04 2.25E403 1.52E403 1.95E+00 2.30E4-00
avg time 5.083687 25.461808 27.344758 34.273285 34.495084
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Table4 The influence of different crowding degree factor for solution

Table 6 The influence of mobile angle g for solution

) 0.618 5 10 15 20

B 90° 120° 145° 160° 180°

avg time 8.06E+00 1.66E400 5.48E+400 7.05E-01 2.98E4-00
time 35.012018 35.143308 32.183541 31.960114 31.908152

avg 8.14E4+00 9.12E-01 6.48E-01 7.05E-01 2.98E+00
avg time 36.012352 34.99378 35.135123 35.35211 38.35829

experiment set of artificial fishes’ view of 0.1, 1, 10, 30, 50
and experimental results are shown in Table 3.

According to Table 2, when the view of the artificial
fish is small, the time required for the algorithm to run is
shorter, but the optimal value obtained is the worst. With the
increase of test field of vision, the average time of the algo-
rithm is getting longer and longer, and the average optimal
value of the algorithm is gradually tending to be ideal. The
reason is that when the sight is small, the main behavior of
artificial fishes are the preying behavior and random behav-
ior, whereas if the visual field is larger, the main behavior
of artificial fishes are the following behavior and swarming
behavior. Overall, under the condition of the same time, it is
easier to find the global optimal value and convergence of
the artificial fish with larger view.

(3) Crowding degree factor &

Crowding degree factor is one of the standards that is
being used to determine whether artificial fishes perform
the behavior. This experiment set crowding degree factor to
0.1, 0.618, 5, 10, 15, and experimental results are shown in
Table 4.

According to Table 4, the crowding degree factor influ-
ence on the speed of the algorithm implementation is not
big, so crowding degree factor should be to achieve the
optimal value is closer to the ideal.

(4) The angle of artificial fishes and ocean «, 8

If there is an angle between the direction of the current, it
will affect the speed of artificial fishes. «, B expresses the
angle of artificial fishes and ocean.

According to Table 5, the angle « influence on the speed
of the algorithm implementation is not big, so crowding
degree factor should be to achieve the optimal value is closer
to the ideal.

According to Table 6 , the angle § influence on the speed
of the algorithm implementation is not big, so crowding

Table S The influence of mobile angle « for solution

o 15° 30° 45° 60° 90°

avg 6.16E+00 1.78E400 5.48E-01 7.05E-01 8.98E4-00
avg time 36.274839 34.03712 34.182453 35.24216 37.28710

degree factor should be to achieve the optimal value is closer
to the ideal.

5.2 Description of benchmark functions

All the definitions of the benchmark functions are given
according to the number in Table 7.

N
D fi = > (xl.2 — 10cos(2mx;) + 10) Rastrigin is a
i=1
non-convex function. It is highly multimodal and val-
uated on the hypercubex; € [—10, 10], for all i =

I,..,N.
) L =

/20,2
Xy+x5

— DI+ 1)%, Cross-in-Tray function has multiple
global minima. It is usually evaluated on the square
x; € [—10,10], foralli =1, 2.

. sin (x}—x2)—0.5 .
3) fax) =05+ m, Schaffer function N.2

is shown on a smaller input domain in the second plot

to show detail. It is usually evaluated on the square

x; € [—100, 100], for alli =1, 2.

14-cos(12 x12+x%)

4) fa= TS D2
timodal and highly complex. It is usually evaluated on
the square x; € [—5.12,5.12], foralli =1, 2.

2,.2
Xy+x5

—0.0001(] sin(x1) sin(x2) exp(]100 —

, Drop-Wave function is mul-

5) fs = —|sin(x1)cos(xz) exp(|1 — ~——1)|, Holder
Table function has many local minima, with four

global minima. It is usually evaluated on the square
x; € [—10,10], foralli =1, 2.

N
6) fo = )cl.2 Sphere function is usually evaluated on
i=1
the hypercube x; € [—10, 10], foralli =1, ..., N.
7 fr(x) = sin®(ror)  +
N—1
3 (w; — D[ + 10sin®(rew; — D]+ (on — D?[1+
i=1
sin? (2rwy)], Levy function is usually evaluated on
the hypercube x; € [—10, 10], foralli =1, ..., N.

N N

8) fe(x) = ﬁ S x2 -1 con(%) + 1, Griewank
i=1 i=1

function is usually evaluated on the hypercube x; €

[—100, 100], foralli =1, ..., N.
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Table 7 Dimensions, search
ranges, and brief description of Func. # brief descriptions Uni/Multi Dimension Range Optimums
test functions

fi(x) Rastrigin Multi 10 [-10,10] 0

fr(x) Cross-in-Tray Multi 2 [-10,10] 0

fz(x) Schaffer Multi 2 [-100,100] 0

fa(x) Drop-Wave Multi 2 [-5.12,5.12] -1

f5(x) Holder Table Multi 2 [-10,10] -19.2085

fo(x) Sphere Uni 10 [-10,10] 0

fr(x) Levy Uni 10 [-10,10] 0

fe(x) Griewank Multi 10 [-10,10] 0

fo(x) Rosenbrock Uni 10 [-100,100] 0

flo(x) Schwefel Problem1.2 Uni 10 [-100,100] 0

N-—1
9 folx) = Y (100(x? — x2 )* + (x; — 1)?), Rosen-

10)

i=1

brock function is usually evaluated on the hypercube

x; € [—100, 100], foralli =1, ..., N.

N i
fio@) = 3 Oxi)? + shifting , and shifting =

i=1

J
10, Schwefel Probleml1.2 function is usually evalu-

5.3 Experimental setting and parameterization

To be fair, the initial conditions of each algorithm are con-

sistent. The population size is set to be 60. The size of

the subgroup is set to 20. The 10 dimensional test func-
tion experiments are running in f7(x), fs(x), fo(x), flo(x),
others are running in the 2 dimensional test function experi-

ated on the hypercube x; € [—100, 100], for all i =  ments, and in order to demonstrate their general performances
that each function id running independently for 25 times.

I,...,N.

Table 8 Avg and szd. different of test functions about nine algorithms

Function Indicator AFSAOCP AFSA AAFSA1 AAFSA2 IAFSA
J1(x) avg 1.58E-03 1.94E-02 1.26E-02 1.37E-02 4.26E-03
std 5.96E-01 2.31E+00 1.63E-01 2.80E+00 9.02E-01
o (x) avg 3.14E-09 9.42E-07 6.49E-06 1.86E-07 7.58E-05
std 8.66E-02 8.86E-03 5.53E-02 3.09E-02 2.54E-02
f(x) avg 5.82E-05 1.15E-03 1.59E-03 3.66E-04 8.82E-04
std 4.79E-02 2.98E-02 1.20E-02 3.41E-02 2.19E-02
Sfa(x) avg -9.36E-03 -9.53E-03 -9.97E-03 -1.17E-02 -9.36E-03
std 4.45E-02 4.19E-02 1.34E-02 3.70E-02 3.05E-02
Sf5(x) avg -1.92E-01 -1.82E-01 -1.92E-01 -1.86E-01 -1.92E-01
std 2.63E+00 4.77E+00 2.19E+00 5.78E+00 1.42E+00
Je(x) avg 6.14E-04 6.27E-03 1.19E-02 1.11E-02 5.71E-03
std 1.27E-01 8.48E-02 1.89E-02 1.66E+00 2.09E-01
f1(x) avg 2.71E-03 8.97E-03 1.48E-01 1.03E-02 4.26E-03
std 1.30E+00 1.79E+00 1.63E-01 2.09E+00 9.47E-01
Sfa(x) avg 3.97E-03 9.08E-03 9.18E-03 1.13E-02 9.65E-03
std 5.03E-02 3.86E-02 6.65E-03 3.05E-02 9.24E-03
Sfo(x) avg 1.02E-02 4.90E+00 8.35E+01 3.41E+00 4.01E+00
std 1.53E+02 7.08E+02 4.27E+03 1.27E+03 3.84E+02
Sfio(x) avg 9.76E-04 1.75E-03 8.44E-02 1.63E-02 1.46E-02
std 2.40E-01 3.30E-01 1.90E+00 1.72E+00 7.13E-02
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Fig. 11 The convergence curve o = - 10’ 7 T :
of the f(x) to fo(x) test —=—arsaoce S = ASAOCE
> fi(x) to fo(x) _ ey 1 e aren
functions in different algorithms iy AAESAT AAFSA1
10" ‘\ —&—AAFSA2 7 —e—aaFsa2
il IAFSA IAFSA
o 1 @
3 A 3
S e © E
L H > E2 s
50’k s
k5 T
c c E
3 3
w w
10°E
I S S S S S e === 71 I IR S B IO S S B S
0 10 20 30 4 5 6 70 8 90 10 0 10 20 30 40 5 60 70 80 9 100
Iteration times Iteration times
@ fi(x) b) f,(x)

Experimental environment configuration: Operation sys-
tem is Windows 7; Minimum memory is 4G; Processor Type
is Intel-Core-i3; Development tools & version is Matlab-
R2012a.

5.4 Computational results and discussion

For each test function, Table 8 shows the comparison results
of AFSA, AAFSA1, AAFSAL, IAFSA and AFSAOCP. In
this table avg and std, respectively represent the optimal
value and standard deviation after 25 independent experi-
ments.

Figures 11, 12, 13, 14 and 15 illustrate the detailed con-
vergence curves of AFSA, AAFSA1, AAFSAL, IAFSA and
AFSAOCP for the 10 benchmark functions, which were
drawn by using the average value of the 25 runs.

Figures 11 to 15 and Table 8 show that the conver-
gence rate and accuracy of AFSAOCP are much bet-
ter than other AF algorithms with the same dimen-
sion in solving great majority benchmark functions, such

asfo(x), f3(x), f5(x), fe(x), fs(x), fo(x), fio(x). That is

AFSAOCP has a more powerful global search capabil-
ity and faster convergence speed than AFSA, AAFSAI,
AAFSA2 and TAFSA but its performance is not as good
as fi(x)and f1(x). In the two functions, we can see that
AAFSA2? is best among other algorithms. The cause of this
result may be that the algorithm introduces a new behavior:
swallowing behavior. The fishes in the process of iteration
will gradually appear the worst fish, which will affect the
convergence rate of the whole fishes. Therefore, swallowing
behavior can eliminate the worst fish, and effectively avoid
the worst fish affect on the overall effect of the algorithm.

On the basis of precision guarantee, we count the time
required for different algorithms to get results. Specific data
is shown in Table 9 and we line out the time in bold which
is the shortest.

According to the data on Table 9, AFSAOCP takes the
shortest time in benchmark functions test, except in f3(x)
and f1(x), where these functions are relatively simple and
low-dimensional, and performs worst in fg(x).

To compare AFSAOCP with different algorithms, we
select some algorithms which have come from our team’s

Fig. 12 The convergence curve i
of the f3(x) to fa(x) test
functions in different algorithms

—&— AFSAOCP -&— AFSAOCP
| —+—AFsA —+—AFSA
AAFSA1 AAFSAT
—&— AAFSA2 —O—AAFSA?
IAFSA IAFSA

Function Value

O//
Function Value

0 10 20 30 40 50 60
Iteration times

() f3 (x)

! H i i H : i H i i
70 8 9% 100 0 10 20 30 40 50 60 70

80 % 100

Iteration times

by ()
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Fig. 13 The convergence curve a0 . iR
of the f5(x) to fe(x) test —&—AFSAOCP : s il —a— AFSAOCP i
. . . . ——AFSA —+— AFSA
functions in different algorithms AAFSAT : AAFSAT
.| —e—AAFSA2 || —&—AAFSA2 ||
IAFSA IAFSA
] o 10' :
3 S
© Sen ©
810k ; . : T s
3 as‘%;\ww HHEA A 44 3
g =S VE;'XX'XX'XX'ZX;XX'XXX'XX’XXZXX'ZX'ZX'X ] g 0
w na ¥ % w o
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a0 : i N i : Deeeeend : B - 10" i 1 . i ! i i
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Iteration times Iteration times
(@ Jfs(x) (b) fe(¥)

research results, this is Ref. [23]. Specific data is shown in
Table 10.

6 Convergence analysis of the AFSAOCP

In this section, we analyze the convergence of AFSAOCP
algorithm. Firstly, the values of the parameters used in the
analysis are given for details.

e Xg¢ — — aset of All artificial fishes;

e [ (X)-A certain kind of food concentration;

o X g—non-empty subsets of Xg;

e X"J — —position information of j-th Artificial Fish
inX ’S ;

[ ]

X4J — Xkl_gtate transition probability p;; k13

®  pjjk— state transition probability of any Artificial Fish
fromX’Jto X§;

® p; ;— state transition probability of any Artificial Fish

Lemma In the artificial fish algorithm, VX" e X.,i =

1,2,..,F,j=12,.. Xg, there are constraint of formula
(6-1) and (6-2):

Vk >i,pix=0 (6-1)

dk <i, pix >0 (6-2)

Proof X' is after the t-th iteration of Artificial Fish
which has gotten the best food concentration, it is called
BestFish' = X*, and then F(BestFish') = F;. From the
update value after each iteration, we can see:

F(X™™) < F(X") = Vk > i, piju =0 = Yk > i,
x5
Pijk = Zpi,j,kl =0=Vk>ipir=0
=1

i . will choose one behavior that according to the results o
from X'sto X’§ AF will ch beh that ding to th Its of
k the evaluation of foraging behavior, and the probability of
Xl F Yy
e Then p;jx = 3 Dij ks > pijk=1,pik > pijk three behaviors should be pswarm, P foliow> Pprey = 0.
I=1 k=1 The AF eventually will choose one correct behavior in
Fig. 14 The convergence curve 10° ; — s . . :
ofthef7(x)t0fg(x)test : _ﬁ_zssiocp: 19 By T ||:~|‘>;‘*F:£§20CP"
functions in different algorithms : AAFSAT =2 f AsFsat ||
............. | —e—AAFSA2 ] i s s S —&— AAFSA2
IAFSA 1% i : o IAFSA  f
S B S ‘
k5 § 0™ \
g 5 \
l ef = 1
S 5 =1 A
w 10 w ‘1;
10°? : \l
|
L3 .
4 i i i i i i H i i 04 i i i i i , ."k
L 0 10 20 30 40 50 60 70 80 0 100 10 0 10 20 30 40 50 60 705 80 0 100

Iteration times

@ fr(x)
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Fig. 15 The convergence curve 10° — . SE— . 10°
of the fo(x) to fio(x) test : - ; : *ﬁzAOCP i
. . . . : Y —— A
functions in different algorithms . : AAFSA1
10" Frend | —o—anFsm2 o i
< IAFSA
S 3 ]
5 10 \A ; ; 5
> i i >
- o cinannannasm ey r mg
k=3 4 o 3
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AFSAOCP, S0 pswarm + P follow + Pprey = 1, and then
dk < i, pix > O [ proven | O

Theorem AFSAOCP has global convergence.

Proof the theorem will use the stability of the random
matrix reasoning. For each Xi.i = 1,2,..., F, it can be
seen as a state of finite markov chain. According to (51),
transfer matrix of the markov chain is:

p11 0 ... 0
P21 .. 0

P=|. . . (€Y
: : : RT
PF.1 PF2 ... PF,F

According the (6-2), we can infer that:

P21 > 0, R = (pa1, P31, PRI,

Therefore, P is the random matrix that can be classified, and
meets the conditions of the theorem, so there is

Ck
POO — llm k—1 . . cee O
k—oo | 3. TERCK .. Tk
i=1
o0
- [;w (;] C® =), R® = (1, 1,.., DT,
And then,
10..0
.0
P> =
10..0

The matrix is stable random matrix, so tlim p{F(X") =
— 00

¢ s o D22 .. 0 20, Fhest} = 1 F_bm is }he optimal objective function value,
namely Fpesr = f(X'). Therefore, AFSAOCP has global
PF2 -« PFF convergence, prove to complete. [ proven | O

Table 9 The mean time of different algorithms
# AFSAOCP AFSA AAFSAlL AAFSA2 IAFSA
1 35.4635 38.5535 41.6838 35.7237 40.8809
2 29.7476 29.8377 33.0537 29.8280 31.5170
3 23.0279 22.6242 33.5681 31.5968 32.9383
4 26.9454 27.1657 30.0801 25.7271 28.5732
5 20.4825 219112 27.3724 21.4130 32.4824
6 45.7415 41.7542 43.0991 41.2156 42.0789
7 38.7957 39.0761 40.2842 41.6629 40.6588
8 31.0065 33.4853 36.6641 31.2848 33.5483
9 29.5249 31.3681 31.4547 29.9404 29.9539
10 30.9985 32.8960 35.2120 34.4783 32.4373
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Table 10 The comparison results of function optimization

Function Dim Algorithm Avg Std

N N _
fO) = qo55 2 x2 =[] con(f—’ﬁ_) +1 30 MSFLACM 7.39E-03 2.46E-03
i=1 i=1
SBDE 9.10E-06 7.44E-07
DE 8.90E-06 7.39E-07
SFLSDE 1.57E-04 1.03E-03
OBDE 4.78E-03 2.20E-03
jDE 1.58E-03 3.29E-04
AFSAOCP 1.11E-02 5.21E-02
N—1
fox) =Y (IOO(xi2 — xi2+1)2 + (x; — D?) 30 MSFLACM 4.93E-03 0.00E-00
i=1

SBDE 4.16E4+-01 2.63E401
DE 3.05E+01 1.87E+01
SFLSDE 2.34E4-01 2.82E401
OBDE 2.97E401 3.53E+01
jDE 2.49E4-01 3.65E+01
AFSAOCP 6.91E4-01 1.42E4-03

7 Conclusion

Optimization problems exist in many areas, A novel Artifi-
cial Fish Swarm Optimization Algorithm Aided by Ocean
Current Power (AFSAOCP) is put forward in this paper.
The main idea has the following two points: introduce the
current ideas and grouping evolution. The main idea to con-
sider that the ocean current always influences fishes’ speed,
including positive influence and negative influence. The
experimental studies in this paper show that the proposed
AFSAOCP algorithm improves the existing performance of
other algorithms compared to some same benchmarks.

The AFSAOCEP also has a very big development space.
In the future, it is very interesting to discuss that differ-
ent fish have different speeds and the problem angle of fish
swimming. In addition, it is very meaningful to change the
mutation strategy of the fish’s Step . We believe that the
dynamic value of Step or other fixed value would make the
AFSAOQOCP better.
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