Appl Intell (2016) 45:904-922
DOI 10.1007/s10489-016-0797-8

CrossMark

@

MASE-BDI: agent-based simulator for environmental land
change with efficient and parallel auto-tuning

Cissio G. C. Coelho! - Carolina G. Abreu! - Rafael M. Ramos! - Aldo H. D. Mendes! -

George Teodoro! - Célia G. Ralha!

Published online: 4 June 2016
© Springer Science+Business Media New York 2016

Abstract This paper presents an agent-based simulator for
environmental land change that includes efficient and par-
allel auto-tuning. This simulator extends the Multi-Agent
System for Environmental simulation (MASE) by introduc-
ing rationality to agents using a mentalistic approach—the
Belief-Desire-Intention (BDI) model—and is thus named
MASE-BDI. Because the manual tuning of simulation
parameters is an error-prone, labour and computing inten-
sive task, an auto-tuning approach with efficient multi-
objective optimization algorithms is also introduced. Fur-
ther, parallelization techniques are employed to speed up the
auto-tuning process by deploying it in parallel systems. The
MASE-BDI is compared to the MASE using the Brazilian
Cerrado biome case. The MASE-BDI reduces the simula-
tion execution times by at least 82x and slightly improves
the simulation quality. The auto-tuning algorithms, by eval-
uating less than 0.00115 % of a search space with 6 million
parameter combinations, are able to quickly tune the sim-
ulation model, regardless of the objective used. Moreover,
the experimental results show that executing the tuning
in parallel leads to speedups of approximately 11x com-
pared to sequential execution in a hardware setting with
16-CPU cores.

b4 Célia G. Ralha
ghedini @unb.br

Computer Science Department, Institute of Exact Sciences,
University of Brasilia, P.O. Box 4466, Zip Code 70.904-970
Brasilia, DF, Brazil

@ Springer

Keywords Belief-desire-intention - Environmental
simulation tool - Land-use and cover change -
Multi-agent system

1 Introduction

The establishment of modelling and simulation frameworks
that perform land use and land cover change (or land
change)—which allow humans to include environmental
information in their decision-making processes—is becom-
ing increasingly important. Land change is a term associated
with the human modification of earth’s terrestrial surface
[1], that is one of the most intense causes of earth’s recent
alterations [2]. The intensification of land modification pro-
cesses results in ecosystem changes at global scales, bring-
ing negative consequences to the environment including
biodiversity loss, climate change, deforestation, water, soil
and air pollution, among other factors that impact human
populations today [3].

Due to the large number of factors involved in land
changes, any environmental modelling software is nec-
essarily complex, involving several parameters related to
many individual interactions. These software frameworks
apply different techniques and technologies that include
remote sensing, geospatial and image analysis along with
an interdisciplinary assortment of natural and social scien-
tific methods, as discussed in Section 3.1. Nevertheless, to
the best of our knowledge, there is no agent-based environ-
mental simulation tool to represent these complex individual
interactions using rational agents, where each individual
agent’s decisions can vary based on its beliefs, desires and
intentions. This representation affects agents’ actions, thus

http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s10489-016-0797-8-x&domain=pdf
mailto:ghedini@unb.br

MASE-BDI: agent-based simulator for environmental land change with efficient and parallel auto-tuning 905

creating emerging behaviours through group interactions.
Another novel aspect of this paper is the use of auto-tuning
techniques in parallel and distributed machines to improve
the MASE-BDI results.

Thus, in this paper, we present an extension to the Multi-
Agent System for Environmental simulation (MASE),!
which employs the Belief-Desire-Intention (BDI) model to
add rationality to agents through a mentalistic approach
and is thus named MASE-BDI. According to [4], agent-
based simulation platforms can represent the complexity of
individual interactions through the general rule for ecologi-
cal applications, a feature that is important for successfully
supporting decision-making processes. Towards this goal,
improvements in the agent’s reasoning process amplify
the agents’ autonomy and capabilities for reasoning more
independently about their actions.

The MASE-BDI also addresses the problem of auto-
matically tuning the simulation model parameters, which
is a complex, labour-intensive, and error-prone task. The
MASE-BDI performs this task by employing efficient opti-
mization algorithms to tune the simulation model parame-
ters with respect to a user-defined single- or multi-objective
function of interest. Because the tuning process is com-
pute intensive (it requires executing the simulation several
times), we have also proposed and implemented the ability
to leverage parallel systems to speed up the tuning pro-
cess. All our propositions are evaluated using the real-world
Brazilian Cerrado biome land change case study.

The rest of the paper is organized as follows: Section 2
presents a short background overview of the BDI model
and auto-tuning algorithms. Section 3 discusses related
approaches, including environmental simulation tools and
auto-tuning solutions. The MASE-BDI simulator, with its
implemented architecture, a description of the agents and
their reasoning, and the MASE-BDI auto-tuning module
with parallel auto-tuning are presented in Section 4, and
the Brazilian Cerrado case study used to demonstrate and
evaluate the MASE-BDI simulator capabilities and the auto-
matic tuning of the simulation settings is introduced in
Section 5. The experiments and results, including MASE-
BDI vs. MASE sequential executions and the MASE-BDI
auto-tuning with distributed and parallel performance com-
parisons, are covered in Section 6. Finally, Section 7
discusses conclusions and future work.

2 Background
Artificial Intelligence (AI) concepts, methods, and tech-
niques have been successfully applied to numerous

domains. This paper focuses on the use of Al to support

!'Visit the MASE website: http://mase.cic.unb.br

human decision-making processes in an environmental
simulation context, where individuals’ behaviour must be
considered. To do this, we applied a multi-agent system
(MADS) to integrate the individual interactions implemented
in distributed and high-performance computational environ-
ments. Because the environmental simulation frameworks
implement complex models with several parameters, we
also applied tuning algorithms to adjust the simulation
parameters with respect to user-defined goals. Thus, in this
section, we provide a short background on the BDI model
and on auto-tuning algorithms.

2.1 BDI model

The basis for implementing agents with rationality and men-
talistic notions is to describe the behaviour of individuals.
One of the most influential theories with respect to agent
rationality is the BDI model conceived by [5] as a theory
of human practical reasoning [6]. Practical reasoning is rea-
soning towards action and includes first deciding what state
of affairs one wants to achieve, also known as deliberation,
followed by deciding how to achieve this state of affairs,
called means-end reasoning [7].

The main aspects of a BDI model are summarized in [8].
Beliefs represent the information an agent has about both
the world it inhabits and its own internal state. A belief pro-
vides a domain-dependent abstraction of entities and affects
the way an agent perceives and thinks about the world.
Desires represent the motivational attitudes of agents, cap-
turing an agent’s wishes and driving the course of its actions.
Nevertheless, an agent may have a conflicting set of desires.
A goal deliberation process must select a subset of con-
sistent desires that represents the states to be achieved or
maintained and, therefore, the reasons why actions are exe-
cuted. The concept of achieving a goal allows the modelling
of agents that are not purely reactive but that exhibit pro-
active behaviour. For instance, a desire can be triggered by
the occurrence of a set of events.

Plans are the means by which agents achieve their goals
and react to occurring events. When an agent has decided
on pursuing a goal with a certain plan, it commits itself
(momentarily) to the accomplishment of that goal and,
hence, has established an intention towards a sequence of
plan actions. A well-established reasoning mechanism is
required to determine the set of plans that are necessary to
satisfy a certain goal and to foresee the consequences if a
plan is not successful. Plans can be either abstract or quite
concrete when composed of basic actions.

2.2 Auto-tuning algorithms

The process of tuning parameters is iterative and typically
consists of running the simulator with a specific set of

@ Springer

http://mase.cic.unb.br

906

C. G. C. Coelho et al.

parameter values, checking for the quality of the simula-
tion results, modifying the parameter values, and repeating
this process until an acceptable result level is attained. The
tuning process is time-consuming because the search space
formed by the combination of parameter values involved in
a simulation model may lead to millions of possible parame-
ter combinations (approximately 6 million in our model). To
alleviate this problem, auto-tuning algorithms can automate
the tuning process and minimize the number of parameter
sets that must be tested.

In this work, auto-tuning algorithms are implemented
using Active Harmony (AH) [9], which was primarily
designed and employed for tuning parameters of high-
performance applications and kernels with the goal of maxi-
mizing performance. Therefore, we make a novel use of AH
for searching parameter space to improve our application’s
quality analysis results. The AH framework includes two
efficient optimization algorithms and both are integrated
into the MASE-BDI simulator: Nelder-Mead simplex (NM)
[10] and Parallel Rank Order (PRO) [11]. The NM and PRO
algorithms try to minimize (or maximize by negation) an
unknown function by probing and exploring the parameter
search space. One motivating characteristic for using AH
and its tuning algorithms is that they account for variability
in the execution output for the same input parameter. This
is essential for the MASE-BDI because multi-agent based
simulators have intrinsic uncertainty levels, which leads to
different results when executing a simulation multiple times
with the same input. The characteristic of uncertainty is
fundamental in models of rational agents, where the deci-
sion of each individual can differ based on their beliefs,
the factors that affect their actions, and the creation of
emerging behaviours through interactions of individuals in
a group.

Fig. 1 Changes in a 4-point
simplex (2D space) A
1
1
1
1
1
]
]
1
1
]
1
1
1
]
1
]
1
1
)
]
1
1
]
I
1
1
]

@ Springer

Original
simplex

The NM algorithm uses a simplex or polytope of k£ + 1
vertices in k-dimensional search space. This simplex is
updated in each iteration of the method by removing the
vertex with the worst value (v,) and replacing it with a
new vertex that has a lower function value. This operation
involves computing the centroid ¢ of the remaining simplex
vertices to replace v, with a point on line v, + a(c — v;).
Typical o values are 2, 3 and 0.5. The values of o define
whether the transformation on the simplex is a reflection
(¢ = 2), an expansion (¢ = 3), or a contraction (o = 0.5).
The NM method usually performs a reflection first, which
may, depending on the results, be followed by an expansion
or contraction. The original method has been modified in
AH to deal with non-continuous search spaces.

The PRO algorithm uses a set of K points from a simplex
(K = N + 1) for a N-dimensional space. Each itera-
tion of the algorithm calculates up to K — 1 new vertices,
which are computed by a reflection, expansion, and shrink-
ing of the simplex around its vertex with the optimal value.
Multiple vertices generated during each iteration may be
evaluated in parallel. The reflection step succeeds if at least
one of the evaluated vertices lead to an improvement of the
optimization results. If no point succeeds during reflection,
the simplex shrinks around the best vertex. The expansion
check follows a successful reflection and is executed to
accept or reject the simplex. The simplex is expanded when
accepted, and then the search continues with a new itera-
tion. The algorithm stops when it converges to a point in
the search space or after a predetermined number of itera-
tions have been executed. Figure 1 exemplifies the simplex
transformations in a 4-point simplex with a 2D space. The
PRO algorithm has better convergence guarantees than the
NM method because the latter may converge to a degenerate
simplex [11].

Expanded
:.:%implex
/ Reflected

MASE-BDI: agent-based simulator for environmental land change with efficient and parallel auto-tuning 907

3 Related work

Although the use of MAS in land change simulators is a
valuable approach, it has not been well explored in the lit-
erature, especially considering agents’ rationality. This is
presented in more detail in Section 3.1, where we summa-
rize and compare the features of well-known frameworks.
In addition, auto-tuning techniques have been successfully
applied to optimization problems, but not to environmental
simulators as discussed in Section 3.2. Thus, in this section,
we present related approaches to emphasize the main pros
and cons of implementing efficient and parallel auto-tuning
with the MASE-BDI simulator.

3.1 Environmental simulation tools

The development of environmental simulation tools, espe-
cially those that address land change problems, has been
approached from different perspectives. The tools differ in
methods, modelling techniques and model complexity. We
briefly compare three very well-known frameworks by con-
sidering their different methods and modelling approaches
(Table 1):

— IDRISI s a framework for GIS analysis, image process-
ing, and modelling that was developed by Clark Labs
at Clark University [12]. IDRISI is a PC grid-based
system that offers a modelling tool for researchers and
scientists engaged in monitoring and modelling Earth
systems and includes tools for surface and statistical
analysis, decision support, land change and prediction,

and image time series analysis. The IDRISI Macro-
Modeler provides a general-use graphical modelling
environment for executing multi-step models and sim-
ulations. Various methods can be used in the models,
for example, CA-MARKOYV, which uses Markov chain
matrices to determine the quantity of change along with
suitability maps and cellular automata to spatially allo-
cate change. Another possibility is the Land Change
Modeler (LCM), a suite of tools in which land change
analysis can be combined with other environmental
issues to provide ways to assess and forecast changes in
land cover to understand their implications for habitat
and species biodiversity.

ArcGIS is a commercial GIS (Geographic Information
System) developed by Esri that enables one to visualize,
examine, analyse and interpret data to reveal relation-
ships, patterns, and trends. ArcGIS is one of the most
popular frameworks for image processing, GIS analysis
and modelling [13]. ArcGIS’s ModelBuilder technol-
ogy allows users to model, store, automate, publish,
and run complex operations and workflows. The Mod-
elBuilder can be used as an application that allows users
to perform exploratory project work, or as an applica-
tion for building generic tools that can be reused and
shared. Using ModelBuilder, users can create models
that chain tools together, using the output of one tool as
the input to another tool.

DinamicaEGO (Environment for Geoprocessing
Objects) is a freeware platform for environmental mod-
elling developed at Federal University of Minas Gerais
[14]. DinamicaEGO uses transition probability maps

Table 1 Overview of the

general characteristics of each Name Model What it Strengths Weakness
framework type explains
IDRISI Markov Markov_CA Spatial LCM Proprietary
chain +LCM patterns software
models
ArcGIS Discrete Several Spatial Image Proprietary
finite subroutines patterns processing software
state for different +GIS
model tasks analysis
Dinamica Spatial Several Environmental User friendly Limited
EGO dynamic subroutines dynamics + graphical human
model for different user interface decision-
tasks making
MASE Spatial MAS to Land change Agents Graphical
simulation land change dynamics autonomy user interface
MASE-BDI Spatial MAS to Land Change Agents Graphical
simulation land change dynamics autonomy user
+ auto-tuning + rationality interface

@ Springer

908

C. G. C. Coelho et al.

based on the weight of evidence and genetic algorithm
methods. The transition probability maps simulate the
spatial patterns of changes in the landscape using both
Markov chain matrices to determine the quantity of
change and a cellular automata approach to reproduce
spatial patterns. DinamicaEGO is a generic modelling
tool that enables the design and implementation of
simulation models for environmental management.

— The MASE is a multi-agent based modelling and sim-
ulation tool for land change dynamics. A complete
theoretical and methodological description is available
in [15]. The MASE-BDI extends The MASE agents
with rationality through the implementation of the BDI
model. The MASE-BDI also implements an efficient
and parallel auto-tuning module. Both versions of the
framework allow multiple types of agents with differ-
ent behaviours to represent the interactions and rela-
tions between agents and the physical environment.
The MAS approach qualifies the flexible interaction of
agents to integrate levels of the complexity of human
decisions in typically spatially explicit models in the
context of land change. Furthermore, the use of agents
is well suited to solving complex tasks, which are pro-
cessed into levels with actions performed in parallel or
sequentially.

A comparison of the MASE and MASE-BDI to these
three well-known frameworks is presented in Table 1. The
comparison shows that the MASE is the only multi-agent
based simulator. Nevertheless, there are other simulation
frameworks that use agent-based approaches, such as Netl-
ogo [16, 17], RePast [18] and CORMAS [19]. These tools
implement simple agent approaches (purely reactive) that
focus on understanding the coordination or relations of
agents to the environment, but they do not involve agents’
rationality. But the design of MAS includes not only prop-
erties for assigning reactivity, pro-activeness and social
ability to agents, but also more complex aspects such as
adaptability, learning and rationality through mentalistic
notions (e.g., belief, desire, intention, obligation, choice)
[7,20].

The MASE and the MASE-BDI are also distinct from
popular peer-reviewed land change models for the amount
of pixels they correctly predict in land change using well-
established statistical evaluation methods proposed by [21].
In [21] various land change applications were summarized
and compared using two statistics: the null resolution and
the Figure of Merit (FoM). Considering the FoM, the more
accurate applications were the ones where the amount of
observed net change in the reference maps is larger. The
simulation model is considered good when its FoM is equal
to or greater than 50—that value means that the amount
of correctly predicted change is larger than the sum of the

@ Springer

various types of errors. As stated by [21], twelve of the
thirteen land change modelling applications in this paper’s
comparison contain more erroneous pixels than pixels of
correctly predicted land change at fine resolutions of the raw
data. The MASE and the MASE-BDI were able to surpass
these statistics, presenting results that show high quality in
the accuracy of their predictions. The complete explanation
of the MASE simulation results using Pontius’ statistical
techniques of map comparison to land change models is pre-
sented in [15]. The MASE-BDI results are also discussed
more detail in Section 6.

3.2 Auto-tuning systems and solutions

Tuning techniques have been successfully applied to opti-
mization problems in a large spectrum of systems. Large-
scale dynamic and open systems, with communication
delays due to the interaction of many artefacts, automated
and wireless devices, network access bandwidth, load con-
trol, and information management flows with distributed
process control algorithms are natural foci for the appli-
cation of auto-tuning. The success of auto-tuning in these
problems and areas has motivated the development of a
number of tuning techniques and systems that offer a diver-
sity of tuning algorithms. Examples of auto-tuning systems
and solutions include the Dakota toolkit [22], OKSI [23],
AH [24], PATUS [25], and OpenTuner [26], among others.

In the MAS scenario of a naturally distributed applica-
tion with a large exchange of information between agents,
studying and applying different tuning strategies to achieve
a totally decentralized fashion of stability formation holds
many challenges [27-30]. In addition, real-world prob-
lems using distributed multi-agent based simulation models
(allied to Al techniques) raise new aspects in the study
of auto-tuning applications in diverse areas such as traf-
fic control [31-33], automotive development process [34],
environmental simulations—hydrological [35] and virtual
air pollution monitoring stations in urban areas [36].

In [33] and [30], for instance, auto-tuning optimizations
based on a genetic algorithm and a particle swarm opti-
mization algorithm were employed to tune the parameter
of a fuzzy logic controller model that drives the actions
of a certain type of agent to improve the simulation qual-
ity. In our work, we apply auto-tuning to an agent-based
system used in another problem: land change simulation.
Additionally, we proposed tuning the system as a black-
box, without exporting any information of the model being
tuned to the auto-tuning algorithm. This strategy creates a
more extensible solution that can be reused in other models
and problems. Further, we perform auto-tuning with objec-
tive functions that may be defined by the user according to
the goal of interest. We also support multi-objective opti-
mizations that are critical in many contexts. Moreover, we

MASE-BDI: agent-based simulator for environmental land change with efficient and parallel auto-tuning

909

propose and implement an efficient execution strategy that
makes use of parallel computing and distributed systems
to accelerate the auto-tuning process, which is novel in the
MAS area.

4 MASE-BDI simulator

In this section, the MASE-BDI simulator is described from
two complementary directions: Section 4.1 describes the
architecture, the agents, and the transformation agent (TA)
reasoning process, and Section 4.2 presents the MASE-
BDI auto-tuning process with distributed and parallel
capabilities.

4.1 Architecture

The BDI model views an agent as a goal-directed entity that
acts in a rational manner. The MASE is implemented in the
Java Agent DEvelopment framework (JADE) [37], and the
MASE-BDI is implemented in Jadex [8]. Jadex was cho-
sen because it implements a BDI-infrastructure for JADE
agents, keeping all the previous defined features. Figure 2
presents the MASE-BDI architecture, which is composed of
three layers: the user interface layer, the utility layer, and the
agent layer:

The user interface layer is subdivided into two modules:
the Jadex Control Centre (JCC) and the Graphical Interface

Fig. 2 The MASE-BDI
architecture User Interface

Layer

Graphical
Interface

Utility
Layer

Image
Processing

Agent
Layer

GRID
Manager

Belief
Database
\

Belief
Database

Transfor-
mation
Manager

Spatial

Other
Managers

Belief
Database

Manager
Belief
Database

Transfor-
mation

Belief
Database

Symbols

C -
Object Module JADEX ommu
bioct nication
Objec Link

Cognitive
Reasoning
Module

Database
Module

@ Springer

910

C. G. C. Coelho et al.

(GD). The JCC is part of the Jadex framework; it provides
tools for programming and debugging purposes. The GI is
the module designed for users of the MASE-BDI system; it
provides visualization and controls for the simulation model
in relation to variable settings. By using the GI, it is pos-
sible to change the model attributes, including the number
of agents and the number of simulation steps. It is also pos-
sible to pause or restart the simulation at any point during
execution. Sometimes it is desirable to run the MASE-BDI
in a console-only environment or users simply want to run
the model simulation to obtain the results without chang-
ing its attributes through the GI module. When GI is not
required, the model attributes can be defined directly in a
configuration file (with the simulation settings), or passed
as parameters when the application is invoked.

The utility layer implements several activities related to
the simulation such as the configuration and evaluation of
the simulation, the tuning of parameters and the preprocess-
ing of input images and maps. User-defined settings need
to be interpreted and processed before the simulation starts
to be available for use by the MASE-BDI agents. Also,
because the input can involve large data files, depending
on the model attributes and size defined, the MASE-BDI
already stores some preprocessed images in serialized files
but deserializes them as needed. When the simulation exe-
cution reaches the predefined number of steps, the final
simulation state is presented via a map. This map can then
be compared to real maps of the environment to compute the
correctly simulated scores. These tasks are accomplished
by the evaluation and the image processing modules. After
the user has entered the simulation settings, the configu-
ration module checks whether the current settings match
the ones in the serialized files. If so, this module deserial-
izes them, otherwise, it evaluates the images provided by
the user. After this process, the information is made avail-
able by the configuration module to the to-be-created agents
in the simulation, using a common memory space. The
image processing module is activated when the settings and
images entered by the user do not match the stored files.
In this case, the image processing deletes the old stored
files, reads the new images and variables, treats them with
the simulation rules, and makes the information available to
the configuration module. It also serializes these new ver-
sions of processed images to be used in the future by the
MASE-BDI system. The image processing module is called
again at the end of simulation to convert the final simulated
space into images and to provide information to the eval-
uation module. The evaluation module compares the final
state of the simulation with the real representation of the
environment to measure the similarities and discrepancies
between them for correct scoring. This layer also hosts the
tuning module, which is a configurable module that seeks

@ Springer

to optimize configurations for the simulation with respect to
some objective. The tuning module is described in detail in
Section 4.2.

Agent layer is the bottom layer of the architecture, where
agents are implemented. Agents are represented hierar-
chically based on their tasks in the simulation and their
domains of influence. The agent at the top of the hierar-
chy is the GRID Manager (GGRID). This agent is created
in the Jadex platform as soon as the configuration mod-
ule completes. The GGRID’s main purpose is to set up and
coordinate the simulation. When the GGRID starts execut-
ing, it performs two tasks: (i) instantiate the Transformation
Manager (TM), the Spatial Managers (SM), and the Trans-
formation Agents (TAs); and (ii) setup the TM goals. When
these tasks complete successfully, they return a success flag
to the GGRID. After instantiating the TM, the SM, and the
TAs, the GGRID runs the simulation. During this process,
it is responsible for (i) receiving and processing requests
(e.g., pausing or restarting the simulation) and (ii) counting
the number of steps of the simulation. The step counting is
tied to the work of the TAs. TAs are asynchronous agents,
but are configured to do a certain number of transforma-
tions per step. The GGRID starts the steps, the TAs do their
jobs, report their successes, and wait. When all of the TAs
have reported success, the GGRID ends the step, increases
the step counter and verifies whether the user-preconfigured
number of steps has been reached. If so, a kill signal is
sent to all managers and agents, and the simulation evalu-
ations are carried out; otherwise, the next simulation step
is started.

4.1.1 Agents’ description

The TM is a management object responsible for setting up
the TAs and solving their conflicts. The TM instantiates
the TAs as its first goal, passing them an initial position.
These positions are previously retrieved from the SM. The
SM decides what the best positions are based on the policy
(land-use rules) defined for the simulation. During simula-
tion execution, the TM is responsible for conflict resolution,
which occurs when two or more neighboring TAs are dis-
puting over the land use. When such a conflict occurs, the
TM decides which agent gets the desired location and real-
locates the others. Thus, the SM manages the simulation
spatial resources, providing the TM with new positions for
the TAs.

The TAs move and explore the environment by rules
predefined in the simulation modeler. When they are instan-
tiated by the TM, they wait for the GGRID to start the
simulation. TAs have two goals: explore (land-use) and
move (backup objective if the first fails). When a TA tries
to achieve its explore goal, it first checks whether the

MASE-BDI: agent-based simulator for environmental land change with efficient and parallel auto-tuning

911

area where it is currently located has sufficient exploration
potential. If so, it uses the area’s potential; otherwise, the
explore objective fails. In this case, the TA moves to an
adjacent location and explores that. When two or more TAs
want to move to the same location (grid cell), they are in
conflict and report to the TM, who solves the conflict by
moving both TAs to nonclashing areas. Then, they restart
their cycle to try to explore or move. The TA reasoning
process is further explained in the following section.

4.1.2 Agents’ reasoning

The agents’ rationality in the MASE-BDI simulator is based
on the mentalistic BDI model. The agents’ internal reason-
ing process can be explained by describing how the practical
reasoning interpreter works. Figure 3, based on the concep-
tual foundations of Jadex [38], illustrates the main elements
of the practical reasoning module, which is composed of
the means-end reasoning phase (handle internal events) and
the goal deliberation phase (handle deliberation situations).
The internal events are generated by agents’ beliefs (condi-
tion events), goals (goal events) and plans (plan events). The
goal deliberation module selects the new goals (restricted
by agents’ capabilities) based on agents’ beliefs. The beliefs
module imposes goal conditions to the goals module, i.e.,
a goal can automatically fail if a specific belief is false or

Fig.3 Agents’ internal abstract
architecture

does not exist. According to external events (incoming mes-
sages), the means-end reasoning module selects the agents’
plans through the plans module. The plans module can read
and write facts dynamically to the agents’ belief modules. It
can also dispatch sub-goals to the agent’s goals module and
send outgoing messages to other agents.

This reasoning engine is identical within each class
of agents throughout the simulation execution. When the
GGRID starts the simulation or any specific simulation step,
it sends an incoming message to start TA execution. The
TA execution cycle is presented in Fig. 4. The TA message
receiver generates an event from this message (the inter-
nal events of Fig. 3). In this case, the receiving agent’s first
objective is triggered: explore the current area. The dis-
patcher selects the best plan to be executed at the moment
from a repertoire of possible plans based on the current
objective. This selection considers the nature of the event
and the current beliefs and, finally, returns the best plan
to be executed (made in the meta-level reasoning module).
After the returned plan is chosen, its actions are stacked in
a ‘ready list’ to be executed by the agent’s scheduler.

If the objective is to explore the area, the agent will try
to explore the land’s full potential. If the agent explores
it successfully, it will report success and end its actions
for that step, generating both an internal and an external
event. The internal event will update its own belief, and the

Outgoing
messages

Agent

event
handling

dispatch

events

External events
(e.g. messages)

select new

oal
write facts 9

dinamically

condition
events

Goal
conditions

handle
deliberation
situations

Practical reasoning interpreter

Plan
selection

Goal
deliberation

Means-end
reasoning

@ Springer

912

C. G. C. Coelho et al.

Fig. 4 Transformation agent
execution cycle

v v

Message: authorize exploration | | Message: change position

Transformation
Yy
Agent Y
Event List:
Message Select message Messages events:
receiver authorize_exploration
Create event change_position
for message exploration_results
: Internal events:
+ cant_explore_position
Goal events:
Find applicabl
> el\?en:ipnpel\c/Zntelist < »| exploration_successful
Dispatcher YSelect event) Planbase:
- - Move plan
Find Fappllcable w| Exploreplan
candidates) 771 Ask for new position plan
* Report success
Select P | Meta-level
Internal or goal candidate <€ 7| reasoning
events:
can't explore /
position Y
OR
exploration Ready List
successful
A Y
(Scheduler YSeIect intention
Execute plan Message: exploration results |——)
L step

external event will notify the manager (TM) about the explo-
ration that was executed. However, if the area’s potential is
depleted but the agent still has actions in its scheduler, the
explore goal will fail. In this case, only one internal event
will be generated, updating the current objective to ‘move’
instead of to ‘explore’. The agent’s dispatcher will list the
possible plans for handling that objective, and the meta-level
reasoning module is once again activated. The actions for
the chosen plan are stacked, and each is tried. If there is
no nearby agent considering moving to the same location
as the one desired by the agent, the move is successful, and
the agent can change its location and finish its remaining
actions for the explore goal. If another agent is considering
a move to the possible locations, the agents are in conflict,
and they report to the TM.

When in conflict, the TAs generate an internal event to
update their own belief database. The conflict state is per-
ceived by the TM, who asks for new locations from the
SM. After the SM informs the TM of new areas, the TM
chooses one of the conflicting agents to take the desired
location and re-allocates the others. This is performed by
sending a message to the conflicting TAs to change posi-
tion, informing each which new position it should move to.
This message is again transformed into an external event
by the agent’s message receiver, and its plans to handle the

@ Springer

event are considered by the dispatcher. Because the message
already indicates which position the TA should take, the dis-
patcher simply chooses the plan that moves the agent to the
determined area. The TAs then move and continue with the
rest of their actions.

4.2 MASE-BDI auto-tuning

The auto-tuning process is illustrated in Fig. 5. The figure
shows the interactions of the three MASE-BDI architectural
layers in the auto-tuning execution. In this process, users
interact with the Graphical Interface to provide typical sim-
ulation rules and inform the simulation of the ranges of
the parameter values to be tuned (1). In the next step (2),
the auto-tuning module receives the information about the
parameters to be varied and their range values as input. One
of the tuning algorithms (presented in Section 2.2) from the
auto-tuning module is used to select a value for each simu-
lation parameter being tuned. This information is forwarded
to the Configuration component, which outputs a configu-
ration file with all the data needed to execute the simulation
(3). The MASE-BDI reads the configuration information
(4), and the agent layer is invoked to run the simulation.
The output of the simulation is then evaluated for accu-
racy or quality by the evaluation module (5), using the FoM

MASE-BDI: agent-based simulator for environmental land change with efficient and parallel auto-tuning 913

Fig. 5 The interactions between
the simulation layers when the
auto-tuning module is activated

@ Configurations
and rules

configuration of
the simulation

‘ best results

Parameter values

Graphical and performance

Interface

@

parameters
values to be@
evaluated

evaluation output
(performance)

range value
of parameters

results of C

GRID

simulation quality metric (as presented in Section 3.1). The
output simulation metric is fed back to the auto-tuning sys-
tem (6), and a new set of parameters (or multiple sets, for
parallel execution) may be generated for execution with the
MASE-BDI.

This cyclic process continues until the tuning algorithm
converges to a final solution or the maximum number of
simulations (preset by the user) have been executed. After
the tuning process completes, the set of parameter values
with the best performance is provided to the user along
with the simulation results (7 and 8). In our system, tun-
ing may be performed for single or multiple objectives,
which could have combined goals, for example, both simu-
lation quality and execution speed. This is possible because
the user may define arbitrary functions that combine differ-
ent metrics into a value to be minimized or maximized by
the auto-tuning algorithms. In this work, we evaluate single
tuning with the goal of maximizing the simulation qual-
ity and multi-objective tuning using a goal that combines
typically conflicting metrics—maximizing the simulation
quality while minimizing the execution time.

4.2.1 Parallel auto-tuning

This section presents the approach used to employ dis-
tributed and parallel computing environments to accelerate

the simulation

Manager

Belief
Database

the MASE-BDI tuning process. The distributed tuning in
our systems is attained with the parallel and independent
execution of the MASE-BDI simulations with different
input parameter values, which consists of evaluating multi-
ple points of the search space in parallel. This approach is
possible with the PRO algorithm, which allows for a con-
figurable number of points or parameter sets to be retrieved
into a single iteration of the tuning process.

Figure 6 presents the internal auto-tuning architecture for
parallel and distributed computing environments. The auto-
tuning module has an Auto-Tuning Manager (ATM) and
Worker processes. The ATM is a multi-threaded process
responsible for running the tuning algorithm and assigning
simulations for execution in the distributed and parallel sys-
tem with the Workers. The communication between ATM
and Workers is carried out using the Message Passing
Interface (MPI), which is a standard tool for efficient com-
munication and process management in high-performance
distributed machines [39].

After a Worker process has been assigned a simulation
task (or a specific parameter set to be evaluated), the con-
figuration of the model to be computed is generated, the
simulation executes, and the quality of the simulation output
is evaluated using the MASE-BDI components previously
described in the tuning process overview (Fig. 5). The eval-
uation of the simulations is also sent to the ATM process.

@ Springer

914

C. G. C. Coelho et al.

Fig. 6 Internal auto-tuning
architecture for parallel and

Parameter Sets

Auto-tuning

distributed environments Manager N

3W0rker 1 Parallel Environment

Set1 :|[Generate Execute Evaluate Eval. 1
- | (Configuration] | Simulation Results
‘Worker 2 o

Set2 Generate Execute Evaluate Eval. 2
- | (Configuration] | Simulation | | Results :
‘Worker N :

SetN Generate Execute Evaluate E\;al.N
“ | |Configuration Simulation Results

As in the sequential execution scheme, the ATM will run the
selected tuning algorithm using the evaluation results and—
if the tuning algorithm does not converge or the maximum
number of iterations has not been reached—the tuning will
proceed into another round.

5 Cerrado case study

Figure 7 presents the Federal District of Brazil, which
is located in the Central-West region (15°47'42"S
47°45/'28"W) with a total area of 5,779.999 km?. Located in
the Central Plateau of the Brazilian Highlands, the Federal
District is in the Cerrado biome. The Cerrado (Span-
ish/archaic Portuguese for hilly) is a vast tropical savanna
ecoregion of Brazil. The Cerrado’s climate is typical of
moister savanna regions of the world, with a semi-humid
tropical climate. Thus, the Federal District climate has only
two seasons: a wet season (summer) and a dry season (win-
ter). During the dry season, the humidity can reach critical
levels.

Fig. 7 Location of the Federal District of Brazil

@ Springer

A vast amount of research has demonstrated that the Cer-
rado is one of the richest of all tropical savanna regions and
has high levels of endemism [40]. Characterized by enor-
mous ranges of plant and animal biodiversity, the World
Wide Fund for Nature named it the most biologically rich
savanna in the world, with approximately 10,000 plant
species and 10 endemic bird species. There are nearly 200
species of mammals in the Cerrado, although only 14 are
endemic.

Even though it is a land of high ecological value, the
Cerrado is currently one of the most threatened biomes
in South America due to the rapid expansion of agricul-
ture [41]. Data from the Brazilian Institute of Environment
and Renewable Resources (IBAMA) show a cumulative
loss of 47.8 % of the Cerrado natural vegetation cover in
the last three decades. Experts point out that conservation
efforts fall far short of the real needs of the biome. Only
2.2 % of the territory occupied by the Cerrado is legally
protected [42].

These changes come mainly from the replacement of
native vegetation for agricultural activities because the Cer-
rado is considered one of the last agricultural production
frontiers in the world [43], responsible for almost 70 % of
Brazil’s beef cattle production. Surpassing even the large-
scale grazing operations is soybean production, in which soy
farmers apply chemical lime (CaC O3) that changes the pH
of soils, resolves aluminium toxicity, and mobilizes plant
nutrients that were previously tightly bound to clay particles
[44]. The expansion of these activities is driven by a series
of interconnected socio-economic factors, often encouraged
by government policies.

To understand this complex land change dynamic,
Brazil’s Federal District, specifically, the Cerrado biome
was chosen as a case study for the MASE and used for

MASE-BDI: agent-based simulator for environmental land change with efficient and parallel auto-tuning 915

comparison in this work. The physical state of the cells
in the simulation grid correspond to the real input using
land cover maps provided by IBAMA at an initial time
(2002—t0) and a final time (2008-t6). The input maps are
LANDSAT ETM satellite images from the Remote Sens-
ing Centre (CSR) of IBAMA, classified by the PROBIO
software (IBAMA/Environment Ministry of Brazil-MMA).
These maps are public domain data being used by the gov-
ernment for deforestation control and land use planning.
The maps contain two basic categories: anthropic land use
and native vegetation; the water courses were not explored.

5.1 Simulation settings

The experiments were executed with the MASE and the
MASE-BDI to verify how adding rationality to the agents
would affect the accuracy and execution times of the result-
ing simulations. The initial model setting considers the
environmental changes between the years of 2002 and 2008,
making up a total of 365 simulations steps (one week in real
time is converted to one simulation step).

The total area of study was divided into cells in which
every set of four cells represents one hectare, and each
hectare is occupied by a different agent. The physical state
of the cells corresponds to the set of real spatial data that
are preprocessed using the image processing module. Con-
sidering that the exploitation of land use depends on aspects
such as social, economic, geographic and political factors,
information from the maps is taken into account to create
land use simulations, which are called proximal variables.
Thus, the simulations include six proximal variables: (i)
water courses (rivers); (i) water bodies (lakes); (iii) build-
ings; (iv) highways; (v) streets; and (vi) protected areas.
The political aspects are also considered as a compelling
force in the simulation by translating the PDOT (Federal
District Spatial Plane) onto an influence matrix for the
TAs. In both simulations, the proximal variables are used to
create a probabilistic model that reflects the likelihood of
exploration.

The natural environment (not anthropized) has an
exploratory potential of 1,500 per area, while the
anthropized area has only 500. The TAs were defined as
farmers or ranchers, who could be individual or group pro-
ducers. An individual TA can consume only 500 of the
exploratory potential of its current area per step while
grouped producers can explore 1,500 per step. When the
potential of the area reaches zero, the agent moves. After
a TA moves and begins exploring an area that was orig-
inally natural, that area changes state to anthropized (500
of exploratory potential), independently of the amount of
potential actually consumed.

The proximal matrix is a combination of the environ-
mental attributes and represents the likelihood of a TA to

move to a specific area. In the Cerrado case, area proxim-
ity to water bodies, water courses, and highways attracts
TAs (farmers or ranchers in this case), but area proximity
to buildings, streets and protected areas repels them. The
total attractive forces minus the total repulsive attributes
composes the first part of the proximal matrix. The PDOT
influence is subsequently applied in the matrix using the
following rules: matrix elements that are in the prohibited
polygon of PDOT are set to zero; elements that are in the
incentive polygon have their value boosted by ten percent;
and the rest of the elements are left intact, retaining their
original sum.

6 Experiments and results

In this section, the MASE-BDI functionalities are evaluated
and compared to the MASE using the Brazilian Cerrado
biome case. Section 6.1 describes the experimental results
with sequential executions and Section 6.2 details the paral-
lel and distributed auto-tuning experimental results.

6.1 MASE-BDI vs. MASE

The MASE-BDI vs. the MASE experiments were executed
using a machine with an Intel® Core i5 and 4GB RAM
memory, running the Windows 7 operating system and with
the Java 7 64-bit platform installed. The experiments were
conducted by varying the number of TAs and registering the
simulated environment in the last step, as well the elapsed
time, from the start of the simulation to its end. Starting
with 20 TAs, 10 ranchers and 10 farmers, the simulation is
executed until the 365 step mark is reached, and then, the
simulated environment is registered. After the simulation
completes, it restarts, increasing the number of TAs by 10
TAs of each type and cycling the executions until there is
no available space for the number of exploring agents and
the steps have not reached the 365 mark. For the experi-
ments using MASE, the saturation state was reached with
150 agents of each type, while when using MASE-BDI it
was reached with 70 agents of each type. It is important to
highlight that in auto-tuning experiments, these configura-
tions are modified automatically by the tuning algorithms
used (Section 6.2).

When the saturation state was reached, the simulated
final states were compared to the real representation of
the Federal District Cerrado in 2008 using the methodol-
ogy described in [21]. The comparison was performed by
acquiring each area in the simulated state and correlating
it to the equivalent area in the real observed location. An
area anthropized in both simulated and observed spaces is
considered a correct change, but when it remains in the
same state in both simulated and observed spaces, it is

@ Springer

916

C. G. C. Coelho et al.

Table 2 MASE experimental results

Agent quantity FoM Simulation time
(each type of TA) (hh:mm:ss)
10 13.14499263 0:14:23

20 23.38390255 0:17:25

30 30.96450862 0:26:20

40 33.16913627 0:35:11

50 40.20544277 0:59:19

60 41.76096015 1:24:24

70 43.83395872 1:49:05

80 48.33650662 2:34:13

90 52.93650662 3:00:45

100 50.76171565 3:24:19

110 50.37117590 4:03:04

120 50.84269911 5:12:51
130 52.40097387 6:23:41

140 51.95890604 6:46:13

150 51.42224730 7:45:12

considered a correct permanence. However, when a sim-
ulated area changed but the observed area is preserved,
or conversely, when a simulated area is preserved but the
observed area was anthropized, it is considered an incor-
rect change or an incorrect persistence, respectively, and the
error is calculated. Some areas of the total space are omit-
ted from comparison because they should not influence the
result, such as pixels in a middle of a river or a street. At
the end of the comparison, the number of correct changes is
divided by the sum of the correct changes, incorrect changes
and incorrect persistence. The resulting quotient is called
the FoM, which measures how closely the simulated model
approached the observed space (as stated in Section 3.1).
The final FoM and the simulation time of the MASE and
the MASE-BDI experiments are presented in Tables 2 and 3,
respectively. Note that the MASE simulations reached the
best FoM (52.93) with 90 TAs (time = 3 h 45 s) as listed in
Table 2. The MASE-BDI simulations reached the best FoM
(54.04) with 30 TAs (time = 43 s) as presented in Table 3.

Table 3 MASE-BDI experimental results

Agent Quantity FoM Simulation time
(each type of TA) (hh:mm:ss)

10 14.87036418 0:00:14

20 29.79210311 0:00:27

30 54.04066592 0:00:43

40 51.98603923 0:01:04

50 52.27247897 0:01:50

60 51.75358084 0:02:22

70 50.87789301 0:04:21

@ Springer

As shown, the rationality added to the MASE-BDI agents
did not affect either the correct scoring or the execution time
of simulations because the MASE-BDI maintained the qual-
ity of results with only 1/3 the number of agents (30 TAs;
FoM = 54 for the MASE-BDI compared to 90 TAs; FoM
= 52 for the MASE) and did so in less time (43 s vs. 3 h
45 s). The simulations presented considered TA agent type
variations (ranchers and farmers), but percentage variations
in group agents were also used to represent condominiums
using different land exploitation rates.

To provide a visual assessment of the nature of the
MASE-BDI simulation results, we used a validation tech-
nique that overlays three maps as proposed by [21], namely,
the reference map from the initial time (2002), the refer-
ence map of the ending time (2008), and the prediction
map for the ending time (2008). This three-map compari-
son visually distinguishes the pixels that are correct due to
persistence versus the pixels that are correct due to change.
Figure 8 presents the best MASE-BDI experimental result
with 30 TAs and an FoM of 54.04 (Table 3). The black pix-
els show the proximal variables in different layers for rivers,
lakes, buildings, highways, streets, railways and PA that
were not considered in the land transformation simulation.
The dark grey pixels show where the land change model pre-
dicted change correctly, while the medium grey pixels show
the error locations where change was observed at locations
where the model predicted persistence (anthropic persis-
tence). The light grey pixels show the error locations where
persistence was observed at locations where the model pre-
dicted change (native vegetation persistence). Finally, the
white pixels show locations where the land change model
correctly predicted persistence (anthropic loss). When there
are more light grey pixels than medium grey pixels, the land
change model predicted more change than was observed.

The presented results show how the space occupation is
well-represented by the BDI metaphor. Even using fewer
agents than the MASE, the MASE-BDI simulation results
scored by FoM reached the 50-point threshold in the
MASE-BDI. Thus, agents with rationality are more effi-
cient because they are capable of reasoning about their next
action on their own. The MASE also had the handicap of
TAs that were too dependent on the TM. In the MASE, when
a TA had explored its area completely, it always needed to
ask the TM for a new space, which overburdens the TM as
this scheme requires it to be able to handle several requests
for every step of the simulation. The TA scheduling used
in the MASE was modified in the MASE-BDI architecture.
In the MASE, TAs are scheduled in small groups and in a
sequential manner. In other words, when one group finishes
executing, another group starts executing.

In the MASE-BDI, independent of quantity, all TA are
executed simultaneously when the step opens because TAs
in the MASE-BDI are aware of their possibilities, local

MASE-BDI: agent-based simulator for environmental land change with efficient and parallel auto-tuning 917

Fig. 8 Validation map for the
Federal District of Brazil
simulation by overlaying the
three maps

Symbols

- Layers

- Anthropic gain

environment, and other agents. In the MASE-BDI, the TM
authorizes all agents to work as soon as the step opens. Sub-
sequently, the TM has to handle only requests for relocation
by conflicting agents (agents disputing the same space). The
changes implemented in the MASE-BDI explain the mas-
sive improvement in simulation execution time as compared
to the MASE execution times. For comparison, the execu-
tion times of the MASE (with 90 TAs) and the MASE-BDI
(with 30 TAs), for the configurations in which they attained
the highest FoM metric values show that the MASE-BDI
is 535 faster than the MASE. This performance improve-
ment is even more impressive because it is achieved simul-
taneously with an improvement in the FoM metric (which
increased by approximately 1.1).

6.2 MASE-BDI auto-tuning

The parameters to be tuned in the simulation model in our
system are presented in Table 4 along with their descrip-
tions and range values. The search space size with these
parameters leads to more than 6 million possible parameter
configurations.

The MASE-BDI auto-tuning experimental evaluation
was also carried out using the Cerrado case (detailed in
Section 5). The auto-tuning algorithms (Section 2.2) were
configured to adjust the parameters presented in Table 4
to maximize different objective functions. The details of
the actual objective functions used are presented along with
the experimental results. These experiments were executed
using a machine with a dual socket Intel® Xeon® E5-2640
v3 processor clocked at 2.6 GHz (for a total of 16 physi-
cal CPU cores with 2-way hyper-threading) with 64 GB of
RAM memory and running the Linux operating system.

Anthropic persistance

|:| Anthropic loss

Native vegetation persistence

To evaluate the proposed auto-tuning techniques in the
MASE-BDI, we organized the experimental evaluation as
follows: (i) in the next three sections (Sections 6.2.1 to
6.2.3), we perform a comparative analysis of the auto-tuning
algorithms in single- and multi-objective configurations and
analyse their stability with respect to the initialization con-
ditions; and (ii) we examine the performance improvements
attained using the parallel auto-tuning in Section 6.2.4.

6.2.1 Auto-tuning for quality

This set of experiments intends to evaluate the ability of
the auto-tuning algorithms to find a set of parameters that
improve the quality of the simulation output using the FoM
metric (see Section 5.1). In this experiment, FoM is com-
puted using the MASE-BDI evaluation module (Fig. 5)
for each simulation output (parameter value used) and the
result is fed back directly to the tuning algorithm. We have

Table 4 MASE-BDI simulation model parameters

Parameter Range value
min max step

Agent quantity 10 100 1
Percentage of

group agents 10 100 1
Agent potential of

individual exploration 200 1500 50
Group potential

of exploration 200 1500 50

@ Springer

918

C. G. C. Coelho et al.

evaluated the performance of both the NM and PRO tuning
algorithms (Section 2.2) and compared their results to those
attained by the model using parameters that were set by a
specialist in a manual tuning.

As a result, the NM and PRO auto-tuning algorithms
were able to reach FoM values of 55.377 and 54.828,
respectively. This level of quality is better than the best value
attained with the manual tuning (FoM = 54.04 with 30 TAs,
43 s) presented in Table 3 (Section 6.1). This is an important
result because the auto-tuning reached better quality results
as compared to the manual tuning while minimizing the user
interaction required for this labour-intensive and error-prone
task. Further, for the same experiments, the NM and PRO
converged in 69 and 62 iterations of the tuning process (or
simulation executions), respectively, with the PRO attain-
ing higher FoM values with a smaller number of iterations.
We want to emphasize that the cost of retrieving a new set
of parameter values from the auto-tuning algorithms is no
higher than 10 ms, which is much smaller than the cost of
executing the actual simulation runs (on the order of tens
of seconds). As such, minimizing the number of iterations
while achieving good output quality results is the main goal
of the auto-tuning in this evaluation.

6.2.2 Multi-objective auto-tuning

In this section, we analyse the auto-tuning algorithms in
scenarios with multi-objective tuning tasks. These objective
functions combined simulation output quality and execution
time. These functions have the form G = w; x ¢/100 +
wy X t', where ¢ and ¢’ refer to the quality (FoM) and
the execution time, respectively. The weighting factors w
and w; can be used to prioritize the components of the
objective functions according to the user’s goal. The FoM
quality metric assumes values between 0 and 100, but this
is not true of execution time. Therefore, we scaled the com-
ponents to the same scale (0 to 1). The ¢ component is
simply divided by 100. We normalized the execution time
¢ to compute ¢’, which is also expected to be between 0
and 1. The normalized execution time is computed as t' =
(Esiowest — 1)/ (Eslowest — tfastest)’ where f57owes: and Lrastest
are, respectively, the slowest and fastest execution times of
the simulation with the given parameter range values. In this
normalization, the value of ¢’ tends towards either O or 1
because ¢ is close to either the slowest or fastest possible
execution time.

To estimate the slowest and fastest execution times
of our simulation model with the used parameter value
ranges, we executed 15,000 simulations with parameter val-
ues randomly selected from the range values defined by
the user (Table 4) and extracted the slowest and fastest
execution times from those simulations to be used in our
normalization.

@ Springer

The experimental results of auto-tuning for the multi-
objective function G as the value of the weight w; is varied
while maintaining a fixed value of wp, = 1 are listed in
Table 5. In this set of experiments, both the NM and PRO
algorithms were evaluated by selecting a single parameter
set for evaluation per iteration of the tuning process. As pre-
sented, the auto-tuning algorithms were able to quickly tune
our system model under different scenarios. The maximum
number of iterations (and model simulation executions)
until convergence were 101 (0.00167 % of the search space)
and 126 (0.00208 % of the search space) for NM and PRO,
respectively, out of a search space with more than 6 million
possible parameter value combinations (Table 4). Although
NM and PRO both attained good quality (g) in all tuning
experiments, the latter was able to achieve higher values
of ¢ for all tuning tasks. Also, as the w; value increases,
the optimization prioritizes the quality component of the
equation; therefore, the resulting g value tends to increase.
This compromise is most noticeable for the configuration
where w; = 1 in which the best value was reached with
substantially smaller execution times.

6.2.3 Impact of auto-tuning seed to performance

This section evaluates the impact of varying the auto-tuning
seed parameter set to its performance. Our tuning algo-
rithms allow for an initial seed point or parameter set to be
first evaluated by the tuning algorithm and then selected in
the interval of the input parameter range values. This point
or parameter set is calculated as a shift from the beginning
of the range value by a percentage of the range size of each
parameter.

Figure 9 presents the best performance (G /(w1 + w3)) of
the auto-tuning algorithms for w; = 3 and wp = 1 as the
seed point used is varied by modifying the shift value used.

Table 5 Auto-tuning of the function G as the weight of the quality
component (wl) of the objective function is increased. The q and t
values refer to those measured with the best G presented.

wi Policy Iterations L t
wy + w2

1 NM 101 0.679 51.00 24
PRO 101 0.672 53.62 27

2 NM 68 0.589 54.84 37
PRO 126 0.591 55.01 37

3 NM 72 0.550 54.63 39
PRO 92 0.608 55.11 31

4 NM 82 0.588 54.35 30
PRO 66 0.583 55.39 35

5 NM 67 0.582 55.06 32
PRO 84 0.574 55.23 36

MASE-BDI: agent-based simulator for environmental land change with efficient and parallel auto-tuning 919

Fig. 9 Performance

(G/(w; 4+ wy)) attained by NM
and PRO as the initial point in
the search space (parameter set)
evaluated by the tuning is varied.
Each parameter is initialized
with a value that is a shift from
the beginning of the parameter
range, and the shift value is
calculated as a percentage of the
range size of each parameter

)] o0
o N

[
00

w
-

Tuning performance (G/(w,+w,))
w v
N (-]

w
o

ENM ZPRO

%
?
%

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

As presented, although the performance of the auto-tuning
algorithms is affected by the seed parameter set chosen, they
are still able to attain good performance for all shift values.
Also, the difference between the best and worst G values
attained by the tuning algorithms as the seed point is varied
is no higher than 1.09 x. Further, the PRO algorithm attained
better performance (G value) than NM for more than 95 %
of the seed point configurations tested, and it improved the
result of G by approximately 1.1x as compared to NM. The
default shift value used in previous experiments was 90 %
because it leads to better performance for both auto-tuning
algorithms.

6.2.4 Performance of parallel auto-tuning

This section evaluates the ability of our system to speed up
the auto-tuning process by taking advantage of a parallel
environment. This evaluation is carried out in two steps. We
first investigate the upper limit gains of our parallelization
scheme by executing a batch of simulations in parallel as the
number of the MPI processes used is varied. The second set
of experiments consists of an actual auto-tuning employing
the PRO algorithm to perform the tuning task in the parallel
infrastructure we proposed and implemented in this work.
The results for the first set of experiments are presented
in Fig. 10. In this evaluation, a batch with 1,000 simula-
tion tasks using the same parameters is created to analyse
the speedups attained by executing them in parallel on the
proposed architecture. As shown, we were able to achieve
a speedup value of up to approximately 11x using 16
MPI processes and, as a consequence, 16-CPU cores are
employed to perform the simulations in parallel. Using addi-
tional processes to take advantage of hyperthreading in our
processor did not lead to any additional performance gains.
Although the performance improvement with the use of
16 MPI processes is high, the speedup achieved is below
linear. The sub-linear gains could be caused either by (i)

Seed point shift size (% of the range size)

higher costs of the simulation runs as the machine is shared
by multiple simulations (or MPI processes) or by (ii) a
bottleneck in the parallelization scheme. Table 6 shows the
average execution time of the simulation runs as the num-
ber of MPI processes used is varied. As presented, there is
an increase of 1.47x in the simulation execution time as the
number of MPI processes grows from 1 to 16. This increase
in execution times is a consequence of sharing the machine
resources. More specifically, competition for the caching
and memory subsystems impact the simulations because
they are memory-intensive. The execution time with 16 MPI
processes is 1.47x higher than when 1 MPI process is used,
which limits the efficiency of the parallelization with 16
MPI processes to up to 0.68 (1/1.47). Because the measured
efficiency in our execution for 16 MPI processes was 0.67,
the increasing execution times explain most of our speedup
limitations that, as a consequence, cannot be attributed to
any bottleneck in our parallelization strategy.

Finally, we executed a parallel version of the auto-tuning
tasks using PRO on the same tuning tasks evaluated in
Section 6.2.3, which maximizes G for w; = 3 and wy = 1.
In this experiment, we retrieved multiple parameter sets
from PRO in each iteration of the tuning process for parallel

12

10

4
z .
.omm IR
. 8 16

2 4
Number of MPI processes

Speedup

Fig. 10 Improvement in execution time attained for execution of a
batch of 1,000 simulations as the number of MPI processes and CPU
cores used was varied

@ Springer

920

C. G. C. Coelho et al.

Table 6 Average execution time (in seconds) of simulation runs
according to the number of MPI processes used

Number of MPI processes

1 2 4 8 16

AVG time (s) 46.3 53.0 63.3 66.7 68.1

evaluation in each of the MPI processes used. We scaled our
execution until the 16 CPU computing cores available in our
system were all being used and were able to reduce the tun-
ing time compared to the sequential case by up to 10.2x
while achieving the same level of performance (G value).
This new parallel auto-tuning feature of our system allows
us to quickly introduce and tune new models and simulation
objective functions.

7 Conclusions

This article presented the MASE-BDI agent-based simula-
tor for environmental land changes coupled with an efficient
and parallel auto-tuning method. Compared to popular peer-
reviewed land change tools such as IDRISI, ArcGIS, and
DinamicaEGO, the MASE-BDI and the MASE are the only
multi-agent based tools. In addition, compared to well-
known agent-based simulation frameworks including Netl-
0go, RePast and CORMAS, the MASE-BDI is the only one
that implements rational agents through mentalistic notions
using the BDI model. The MASE-BDI and the MASE simu-
lators were validated using the real world Brazilian Cerrado
Case study—currently one of the most threatened biomes
of South America. The results show that the MASE and the
MASE-BDI are distinct from popular land change frame-
works in the number of pixels for which they correctly
predicted land change according to the statistical methods
proposed by [21]. Moreover, the MASE-BDI was able to
attain slightly better simulation results than the MASE with
sequential execution using the FoM metric (1.03x) as well
as a significant improvement on the execution time (535 x
faster).

We also developed a novel auto-tuning module in the
MASE-BDI to automate the work of finding appropriate
simulation parameters that maximize or minimize a metric
of interest set by users (i.e., simulation quality and/or exe-
cution time). We evaluated different auto-tuning algorithms
to implement a module for efficient parallel execution of
the tuning process. The experimental results demonstrated
that the evaluated auto-tuning strategies were able to quickly
converge while guiding the simulator to provide good

@ Springer

results. For example, out of a search space with more than
6 million possible parameter configurations, the auto-tuning
evaluated less than 0.00115 % of the possible parameter
sets while maximizing the simulation score. Further, the
parallel auto-tuning version, executing in a hardware set-
ting with 16-CPU computing cores, achieved a speedup
approximately 11 x faster compared to sequential execution,
while maintaining the level of performance (G value).

We expect that the MASE-BDI simulator may be help-
ful to evaluate other real environmental scenarios to support
human decision-making processes because the implemented
rational agents can represent the complexity of individual
interactions that are desirable for ecological applications.
Also, the implemented distributed and parallel auto-tuning
features may allow the quick introduction and tuning of new
models and simulation objectives, which are also impor-
tant qualities for environmental simulators. Finally, the
auto-tuning approach was designed to be flexible, which
will be useful for future work related to sensitivity anal-
ysis. The MASE-BDI simulation model sensitivity analy-
sis is directed to evaluate the degree of uncertainty level
embodied in the multi-agent approach, which is a novel
research topic in the context of environmental land change
frameworks.

Acknowledgments This work was supported in part by the Brazil-
ian National Council for Scientific and Technological Development
(CNPq) and the Coordination for the Improvement of Higher Educa-
tion Personnel (CAPES).

References

1. Ellis E (2013) Land-use and land-cover change. Retrieved from
http://www.eoearth.org/view/article/154143

2. BL Turner II, WC Clark, RW Kates, JF Richards, JT Math-
ews, WB Meyer (eds) (1993) The Earth as transformed by
human action: global and regional changes in the biosphere over
the past 300 years. Cambridge University Press. ISBN 052144
6309

3. Foley JA, DeFries R, Asner GP, Barford C, Bonan G,
Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK,
Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Mon-
freda C, Patz JA, Prentice CI, Ramankutty N, Snyder PK (2005)
Global consequences of land use. Science 309(5734):570-574.
doi:10.1126/science.1111772. ISSN 1095-9203

4. Railsback SF, Lytinen SL, Jackson SK (2006) Agent-based simu-
lation platforms: review and development recommendations. Sim-
ulation 82(9):609-623. doi:10.1177/0037549706073695. ISSN
0037-5497

5. Bratman ME (1987) Intention, plans, and practical rea-
son. Harvard University Press, Cambridge. ISBN 1575861925.
doi:10.2307/2185304

6. Rao AS, Georgeff MP (1995) Bdi agents: from theory to practice.
In: Proceedings of the 1st international conference on multi-agent
systems (ICMAS-95), pp 312-319

http://www.eoearth.org/view/article/154143
http://dx.doi.org/10.1126/science.1111772
http://dx.doi.org/10.1177/0037549706073695
http://dx.doi.org/10.2307/2185304

MASE-BDI: agent-based simulator for environmental land change with efficient and parallel auto-tuning

921

10.

11.

12.

13.

14.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

. Wooldridge M (2009) An introduction to multiagent systems, 2nd

edn. Wiley Publishing. ISBN 978-0-470-51946-2

. Braubach L, Lamersdorf W, Pokahr A (2003) Jadex: imple-

menting a BDI-Infrastructure for JADE agents. EXP 3(3):76-
85

. Tapus C, Chung I-H, Hollingsworth JK (2002) Active harmony:

towards automated performance tuning. In: Proceedings of the
2002 ACM/IEEE conference on supercomputing, SC ’02. IEEE
Computer Society Press, Los Alamitos, pp 1-11

Nelder JA, Mead R (1965) A simplex method for function mini-
mization. Comput J 7(4):308-313. doi:10.1093/comjnl/7.4.308
Tabatabaee V, Tiwari A, Hollingsworth JK (2005) Parallel param-
eter tuning for applications with performance variability. In:
Proceedings of the 2005 ACM/IEEE conference on supercom-
puting, SC ’05. IEEE Computer Society, Washington, DC, p 57.
doi:10.1109/SC.2005.52. ISBN 1-59593-061-2

Eastman JR (2015) IDRISI 32.2—guide to GIS and image pro-
cessing. Clark Labs, Clark University, Worcester. Retrieved from
https://clarklabs.org/

Esri (2015) ArcGIS. Retrieved from http://www.esri.com/
software/arcgis

Soares-Filho BS, Rodrigues HO, Souza Costa WL (2009) Model-
ing envitonmental dynamics with dinamica ego. Belo Horizonte,
Minas Gerais, Brazil. Dinamica EGO guidebook, ISBN 978-85-
910119-0-2

. Ralha CG, Abreu CG, Coelho CGC, Zaghetto A, Macchiavello

B, Machado RB (2013) A multi-agent model system for
land-use change simulation. Environ Model Softw 42:30-46.
doi:10.1016/j.envsoft.2012.12.003

Tisue S, Wilensky U (2004) Netlogo: a simple environment for
modeling complexity. In: International conference on complex
systems, pp 16-21

Wilensky U (1999) NetLogo.
northwestern.edu/netlogo/

North MIJ, Collier NT, Ozik J, Tatara ER, Macal CM,
Bragen M, Sydelko P (2013) Complex adaptive systems mod-
eling with Repast Simphony. Complex Adapt Syst Model 1:3.
doi:10.1186/2194-3206-1-3. ISSN 2194-3206

C Le Page, F Bousquet, I Bakam, A Bah, C Baron (2000)
Cormas: a multiagent simulation toolkit to model natural and
social dynamics at multiple scales. In: Workshop “The ecology of
scales”—Wageningen (The Netherlands)

Weiss G (ed) (2013) Multiagent systems, 2nd edn. MIT Press,
Cambridge. ISBN 978-0-262-01889-0

Pontius RG, Boersma W, Castella J-C, Clarke K, de Nijs T,
Dietzel C, Duan Z, Fotsing E, Goldstein N, Kok K, Koomen E,
Lippitt CD, McConnell W, Sood AM, Pijanowski B, Pithadia S,
Sweeney S, Trung TN, Veldkamp AT, Verburg PH (2008) Com-
paring the input, output, and validation maps for several models of
land change. Ann Reg Sci 42:11-37

Eldred MS, Giunta AA, Van Bloemen Waanders BG, Wojtkiewicz
SF Jr, Hart WE, Alleva MP (2002) DAKOTA, a multilevel paral-
lel object-oriented framework for design optimization, parameter
estimation, uncertainty quantification, and sensitivity analysis -
version 3.0 users manual

Vuduc R, Demmel JW, Yelick KA (2005) OSKI: a library of auto-
matically tuned sparse matrix kernels. J Phys Conf Ser 16(1):521
Tiwari A, Hollingsworth JK (2011) Online adaptive code
generation and tuning. In: 2011 IEEE international paral-
lel distributed processing symposium (IPDPS), pp 879-892.
doi:10.1109/IPDPS.2011.86

Christen M, Schenk O, Burkhart H (2011) PATUS: a code gen-
eration and autotuning framework for parallel iterative stencil
computations on modern microarchitectures. In: Proceedings of

Retrieved from http://ccl.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

the 2011 IEEE international parallel & distributed processing
symposium, IPDPS ’11. IEEE Computer Society, Washington,
DC, pp 676-687. doi:10.1109/IPDPS.2011.70. ISBN 978-0-7695-
4385-7

Ansel J, Kamil S, Veeramachaneni K, Ragan-Kelley J, Bosboom
J, O’Reilly U-M, Amarasinghe S (2014) OpenTuner: an exten-
sible framework for program autotuning. In: Proceedings of
the 23rd international conference on parallel architectures
and compilation, PACT ’14. ACM, New York, pp 303-316.
doi:10.1145/2628071.2628092. ISBN 978-1-4503-2809-8

Munz U, Papachristodoulou A, Allgower F (2008) Delay-
dependent rendezvous and flocking of large scale multi-agent
systems with communication delays. In: 47th IEEE confer-
ence on decision and control, 2008. CDC 2008, pp 2038-2043.
doi:10.1109/CDC.2008.4739023

Lendek Z, Babuska R, De Schutter B (2009) Stability of cascaded
fuzzy systems and observers. IEEE Trans Fuzzy Syst 17(3):641-
653. doi:10.1109/TFUZZ.2008.924353. ISSN 1063-6706
Daneshfar F, Bevrani H (2010) Load-frequency control: a ga-
based multi-agent reinforcement learning. IET Gener Transm
Distrib 4(1):13-26. doi:10.1049/iet-gtd.2009.0168. ISSN 1751-
8687

Jarraya Y, Bouaziz S, Alimi AM, Abraham A (2014) Multi-agent
evolutionary design of beta fuzzy systems. In: 2014 IEEE interna-
tional conference on fuzzy systems (FUZZ-1IEEE), pp 1234-1241.
doi:10.1109/FUZZ-1EEE.2014.6891722

Yang S, Gechter F, Koukam A (2008) Application of reactive
multi-agent system to vehicle collision avoidance. In: 20th IEEE
international conference on tools with artificial intelligence, 2008.
ICTAI *08, vol 1, pp 197-204. doi:10.1109/ICTAL.2008.134
Balaji PG, German X, Srinivasan D (2010) Urban traffic signal
control using reinforcement learning agents. IET Intell Transp
Syst 4(3):177-188. doi:10.1049/iet-its.2009.0096. ISSN 1751-
956X

Abdelhameed MM, Abdelaziz M, Hammad S, Shehata OM (2014)
A hybrid fuzzy-genetic controller for a multi-agent intersection
control system. In: 2014 international conference on engineer-
ing and technology (ICET), pp 1-6. doi:10.1109/ICEngTech-
n0l.2014.7016755

Klein CE, Bittencourt M, Coelho LS (2015) Wavenet using
artificial bee colony applied to modeling of truck engine
powertrain components. Eng Appl Artif Intell 41:41-55.
doi:10.1016/j.engappai.2015.01.009. ISSN 0952-1976

Oliveira GG, Pedrollo OC, Castro NMR (2015) Simplifying arti-
ficial neural network models of river basin behaviour by an auto-
mated procedure for input variable selection. Eng Appl Artif Intell
40:47-61. doi:10.1016/j.engappai.2015.01.001. ISSN 0952-1976
Shahraiyni HT, Sodoudi S, Kerschbaumer A, Cubasch U (2015)
A new structure identification scheme for {ANFIS} and its
application for the simulation of virtual air pollution monitor-
ing stations in urban areas. Eng Appl Artif Intell 41:175-182.
doi:10.1016/j.engappai.2015.02.010. ISSN 0952-1976
Bellifemine FL, Caire G, Greenwood D (2007) Developing multi-
agent systems with JADE. Wiley, New York. ISBN 0470057475
Braubach L, Pokahr A (2011) Jadex active components
framework—BDI agents for disaster rescue coordination. In:
Essaaidi M, Ganzha M, Paprzycki M (eds) Software agents,
agent systems and their applications, chap. 3, vol 32. IOS Press,
pp 57-84

Message P Forum (1994) MPI: a message-passing interface stan-
dard. Technical report, Knoxville

Jepson W (2005) A disappearing biome? Reconsidering land-
cover change in the Brazilian savanna. Geogr J 171(2):99-111.
doi:10.1111/j.1475-4959.2005.00153.x. ISSN 1475-4959

@ Springer

http://dx.doi.org/10.1093/comjnl/7.4.308
http://dx.doi.org/10.1109/SC.2005.52
https://clarklabs.org/
http://www.esri.com/software/arcgis
http://www.esri.com/software/arcgis
http://dx.doi.org/10.1016/j.envsoft.2012.12.003
http://ccl.northwestern.edu/netlogo/
http://ccl.northwestern.edu/netlogo/
http://dx.doi.org/10.1186/2194-3206-1-3
http://dx.doi.org/10.1109/IPDPS.2011.86
http://dx.doi.org/10.1109/IPDPS.2011.70
http://dx.doi.org/10.1145/2628071.2628092
http://dx.doi.org/10.1109/CDC.2008.4739023
http://dx.doi.org/10.1109/TFUZZ.2008.924353
http://dx.doi.org/10.1049/iet-gtd.2009.0168
http://dx.doi.org/10.1109/FUZZ-IEEE.2014.6891722
http://dx.doi.org/10.1109/ICTAI.2008.134
http://dx.doi.org/10.1049/iet-its.2009.0096
http://dx.doi.org/10.1109/ICEngTechnol.2014.7016755
http://dx.doi.org/10.1016/j.engappai.2015.01.009
http://dx.doi.org/10.1016/j.engappai.2015.01.001
http://dx.doi.org/10.1016/j.engappai.2015.02.010
http://dx.doi.org/10.1111/j.1475-4959.2005.00153.x

922

C. G. C. Coelho et al.

41. Marquis RJ, Oliveira PS (2002) The Cerrados of Brazil: ecology
and natural history of a Neotropical Savana, 1st edn. Columbia
University Press, New York

42. Klink CA, Machado RB (2005) A conservagdo do
Cerrado brasileiro. Megadiversidade 1(1):147-155.
doi: 10.1590/S0100-69912009000400001

43. Sano EE, Rosa R, Silva Brito JL, Ferreira LG (2008) Mapeamento
semidetalhado do uso da terra do Bioma Cerrado/Semidetailed

@ Springer

44,

land use mapping in the Cerrado. Pesqui Agropecu Bras
43(1):153-156

Killeen TJ (2007) A perfect storm in the amazon wilder-
ness: development and conservation in the context of
the initiative for the Integration of the Regional Infras-
tructure of South America (IIRSA), vol 7. Advances in
Applied Biodiversity Science (AABS). ISBN 1-934151-
07-6

http://dx.doi.org/10.1590/S0100-69912009000400001

	MASE-BDI: agent-based simulator for environmental land change with efficient and parallel auto-tuning
	Abstract
	Introduction
	Background
	BDI model
	Auto-tuning algorithms

	Related work
	Environmental simulation tools
	Auto-tuning systems and solutions

	MASE-BDI simulator
	Architecture
	The user interface layer
	The utility layer
	Agent layer

	Agents' description
	Agents' reasoning

	MASE-BDI auto-tuning
	Parallel auto-tuning

	Cerrado case study
	Simulation settings

	Experiments and results
	MASE-BDI vs. MASE
	MASE-BDI auto-tuning
	Auto-tuning for quality
	Multi-objective auto-tuning
	Impact of auto-tuning seed to performance
	Performance of parallel auto-tuning

	Conclusions
	Acknowledgments
	References

