Appl Intell (2016) 45:868-880
DOI 10.1007/s10489-016-0796-9

@ CrossMark

Improved initial vertex ordering for exact maximum clique

search

Pablo San Segundo! - Alvaro Lopez! - Mikhail Batsyn? -
Alexey Nikolaev? - Panos M. Pardalos®?

Published online: 24 May 2016
© Springer Science+Business Media New York 2016

Abstract This paper describes a new initial vertex ordering
procedure NEW_SORT designed to enhance approximate-
colour exact algorithms for the maximum clique problem
(MCP). NEW_SORT considers two different vertex order-
ings: degree and colour-based. The degree-based vertex
ordering describes an improvement over a well-known
vertex ordering used by exact solvers. Moreover, colour-
based vertex orderings for the MCP have been tradition-
ally considered suboptimal with respect to degree-based
ones. NEW_SORT chooses the “best” of the two orderings
according to a new evaluation function. The reported experi-
ments on graphs taken from public datasets show that a lead-
ing exact solver using NEW_SORT —and further enhanced
with a strong initial solution— can improve its performance
very significantly (sometimes even exponentially).

Keywords Maximum clique - Branch-and-bound -
Approximate colouring - Combinatorial optimization

b4 Pablo San Segundo
pablo.sansegundo@upm.es

' Centre for Automation and Robotics (UPM-CSIC),
C/ Jose Gutiérrez Abascal, 2; 28006, Madrid, Spain

Laboratory of Algorithms and Technologies for Networks
Analysis, National Research University Higher School

of Economics, 136 Rodionova, Niznhy Novgorod, Russia

Center for Applied Optimization, University of Florida,
303 Weil Hall, Gainesville, FL 32611, USA

@ Springer

1 Introduction

A simple, undirected graph G = (V, E) is defined by a set
of vertices V = {v, vz, - - - , v, } and a set of edges £ made
up of pairs of distinct vertices (E € V x V). A clique in
graph G is a complete subgraph, that is, a subgraph in which
vertices are pairwise adjacent. In this work, we consider the
maximum clique problem (MCP), which asks for a clique of
the largest cardinality in the graph. The size of a maximum
clique is called the clique number of the graph and is usually
denoted as w(G).

The MCP is a well known and deeply studied NP-hard
problem in graph theory. Moreover, it has found appli-
cations in many different fields, such as data association
problems in bioinformatics and computational biology [1—
3], computer vision [4], and robotics [5]. Such association
problems may be reduced to the MCP in a correspondence
graph, which subsumes the matching criteria between the
two entities involved. With the upsurge of Web technolo-
gies, cliques have also been applied to capture the structure
of massive networks. For example, in social networks a
clique can identify a group of cooperating agents (e.g. a ter-
rorist cell); in the World Wide Web, cliques or quasi-cliques
can help detect frequently visited pages concerning a certain
topic. Clique kernels can also help to identify clusters.

Relevant definitions and notation used in the paper are
the following:

- G[W] = (W, E[W]) : a subgraph of graph G induced
by a vertex set W C V.

— N(@u) ={v € V|(u, v) € E} : the neighbour set of ver-
tex u in graph G, that is, the set of vertices adjacent to
u. Notation may include a vertex set as a subscript (e.g.

http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s10489-016-0796-9-x&domain=pdf
mailto:pablo.sansegundo@upm.es

Improved initial vertex ordering for exact maximum clique search

869

Nw (u)) to refer to the neighbourhood in the induced
subgraph G[W].

— deg(u) = |N(u)|: the degree of vertex u.

— k-colouring: an assignment of k different numbers
(colours) to every vertex of graph G such that adjacent
vertices have different colours, that is, u € N(v) =
c(u) # c(v). A k-colouring partitions the vertex set V
into k disjoint colour sets Cy, Ca, ..., Cg, also called
colour classes. Each colour set Cq, Ca, ..., Cg, is an
independent set, that is, a set of pairwise non-adjacent
vertices.

— x(G): the chromatic number of graph G, that is, the
minimum number k of colours required to colour G.

— greedy sequential colouring (SEQ): a colouring heuris-
tic which sequentially assigns the lowest possible
colour number to each vertex.

- w() = |Nw;) N{vy, ..., vi_1}|: denotes the width at
the i-th vertex in a sequence, that is, the number of ver-
tices in N (v;) that precede v;. The width of an ordering
is the maximum width at any of its vertices.

— degeneracy (or width) of G: the minimum width of any
ordering of V.

— minimum-degree-last ordering of vertices: a vertex
ordering of minimum width obtained by iteratively
removing vertices with minimum degree and placing
them in reverse order in the new ordering.

- o)=Y deg(u): the neighbourhood support of v,
ueN (v)
that is, the sum of its neighbours’ degrees.

1.1 Exact branch and bound algorithms

In the literature, there are many different approaches
to solving the MCP exactly. Most successful exact
solvers belong to the family of branch-and-bound algo-
rithms that employ approximate-colour bounds [6-19].
Fahle’s algorithm [7] is possibly the first solver of
this type.

Exhaustive enumeration can be traced back to the classic
Bron-Kerbosch algorithm [19]. Exact solvers keep track of
a growing clique in S and a candidate set of vertices U that
can enlarge S. At each step, a single vertex v is selected from
U to build a bigger clique in S and create a new, smaller
subproblem, with a set of candidates Ny (v). Leaf nodes of
the search tree correspond to maximal cliques and during
enumeration, they are checked to see whether their size is
greater than the incumbent solution stored in a global vari-
able S,,4.. Every time a bigger clique is found, it is written
t0 Simax.

The basic branch-and-bound approach for the MCP can
be traced to Carraghan and Pardalos in [22]. Approxi-
mate colour bounds for a maximum clique achieve a good
compromise between tightness and computational effort.

Proposition 1 provides theoretical justification for this, and
may be derived trivially from [20].

Proposition 1 Any k-colouring of a graph G gives an upper
bound on its clique number (v (G) < x(G) < k).

In most of the effective exact maximum clique
approximate-colour algorithms for the MCP, the greedy
sequential colouring heuristic SEQ is employed to colour
each subproblem. SEQ is a constructive heuristic that iter-
atively assigns the smallest possible colour to every vertex
such that no conflicts with the already coloured vertices
occur. It has a worst-case running time of 0 (n?).

Relevant recent improvements reported in the litera-
ture for exact maximum clique algorithms that employ
approximate-colour bounds are (in chronological order):

— Branching on maximum colour: at each step (a recursive
call of the algorithm), vertices are selected for branch-
ing in non-increasing order of their colour numbers.
This was first described in algorithm MCQ [8].

— Recolouring: an additional computation which aims at
reducing the size of the colouring obtained by SEQ, but
increases its complexity linearly to O (n3). It was first
described in algorithm MCS [9].

— Static ordering of vertices: vertices in every subprob-
lem are always sorted in the order determined at the
beginning of the search. This was first described inde-
pendently both in MCS and in the bit-parallel kernel of
the BBMC family of algorithms [10, 11].

— Bitstring encoding of the MCP [10-12, 15]: the BBMC
family of algorithms represents vertex sets, as well as
the input graph, via bitstrings. The advantage is that
critical operations related to child problem generation
and bound computation are performed more efficiently
using bitmasks.

— Selective colouring: a partial SEQ colouring in which
only the subset of vertices to be pruned in the child sub-
problem is coloured. It was first described in BBMCL
[12] (the ‘L’ stands for seLective).

— Strong heuristic for a ’'good’ initial solution, as
described in [17].

— Infra-chromatic bound: a bound tighter than the one
obtained by SEQ. This bound can possibly be lower
than the chromatic number of the input graph. In Max-
CLQ [13, 14], the authors proposed one such bound
based on reducing the maximum clique problem deter-
mined by each coloured subgraph to the partial max-
imum satisfiability problem. The term infra-chromatic
first appeared in [15], where the BBMCX algorithm is
described. BBMCX shares the bitstring BBMC kernel
and implements an infra-chromatic bound by looking
for triplets of colour sets in which there are no vertices

@ Springer

870

P. San Segundo et al.

that can form a triangle. For each such triplet, denoted
inconsistent, the bound is decremented from 3 to 2.
BBMCX is currently the fastest published algorithm of
the BBMC family for dense graphs.

Table 1 summarizes the majority of algorithms described in
this section, together with their most relevant properties.

This work describes two initial orderings of vertices that
are efficient for successful approximate-colour solvers, such
as MCS or BBMCX, with the exception of MaxSAT-based
MaxCLQ.

Related to branching on maximum colour and static
ordering is the fact that the initial sorting of vertices is well
known to have a significant impact on the size of the MCP
search tree. We discuss this issue in the next subsection, as
itis very much concerned with the contribution of this work.

1.2 Initial ordering of vertices

A well-known initial sorting strategy for exact MCP solvers
is to branch on vertices with the smallest degree at the root
node. The idea is similar to branching on variables with
a small number of values used in constraint satisfaction

problems. In practice, vertices with the smallest degree are
placed last in V and branching in all subproblems, including
the root node, is done by selecting vertices in reverse order.

The most successful initial sorting strategies for exact
MCP algorithms reported in the literature are the following:

— Minimum width MW): a minimum-degree-last order-
ing (ties broken randomly or in natural order), which
can be traced back to [22] in connection with the MCP.
As explained previously, it is a degenerate ordering
achieved by removing, at each iteration, the vertex with
the minimum degree and placing it in reverse order in
the new ordering.

— Minimum width with tie break by minimum support
(MWS): Similar to MW but with a tie-break strategy: it
selects the vertex with the minimum support from the
set of vertices with the same degree.

A lighter variant for computing MWS was brought to
our attention in a personal communication [23] and will be
referred to as MWSS (Minimum Width with Static Sup-
port). It is similar to MWS, but instead of recalculating
neighbour support at each step it uses the vertex support

Table 1 A number of relevant

exact maximum clique solvers Name

Search strategy

in chronological order
Bron-Kerbosch [19]

EA [22]

Cliquer [6]

X +DF [7]

MCQ [8]

MCS [9]

BBMC [10]

BBMCL[12]

MaxCLQ [13, 14]

BBMCX [15]

Lists all maximal cliques. The worst-case
complexity is O (3"/3) for this problem.
Describes the basic branch-and-bound

strategy (EA stands for Enumerative Algorithm).
Examines subproblems incrementally,

in reverse order with respect to EA. At present,
it is still a leading algorithm for the weighted
maximum clique problem.

The first time approximate colouring

has been described as bound.

The first time branching on maximum

colour has been described.

Uses a fixed order of vertices in all subproblems.
Describes recolouring for the first time.

The first efficient bit-parallel exact solver.

Uses a fixed order of vertices in all subproblems
(found independently of MCS).

Colours only a subset of vertices in

each subproblem.

Reduces each subproblem to a partial
maximum satisfiability problem. Uses

logical inferences to improve a colour bound.
Looks for triplets of colour sets that are
triangle-free to improve a colour bound.

The first time the term infra-chromatic

has been used to refer to a bounding strategy.

@ Springer

Improved initial vertex ordering for exact maximum clique search 871
Fig.1 Colouring and vertex .
selection directions in each colouring
subproblem —>
0 () G) 4
N 4
branching
—

determined by the initial ordering in every iteration. MWSS
is very useful in graphs of high order, in which the computa-
tional cost of MWS is high. By default, support tiebreak in
this paper always refers to MWS. MWSS will be explicitly
mentioned when disambiguation is required.

Initial sorting by degree has been the standard choice
of successful approximate-colour exact algorithms for the
MCEP. Recently, a colour-based ordering was described in
[18] as a possible enhancement of the MaxCLQ algo-
rithm. However, the specific impact of the ordering was not
analysed.

In Section 2 of this paper, we describe a new ini-
tial sorting procedure, DEG_SORT, which improves stan-
dard MW/MWS degree-based orderings. Section 3 starts
by describing a colour-based initial sorting procedure
COLOUR_SORT, based on [18], and explains why it can
also be successful for MCS or the BBMC family of
algorithms. The final part of the section describes the
NEW_SORT algorithm proposed in this work. NEW_SORT
selects DEG_SORT or COLOUR_SORT according to a new
evaluation function. Section 4 covers the experiments and
validation. Finally, Section 5 presents the conclusions and
future work.

2 Improved degree-based initial sorting

Branching on vertices with the highest colour was first pro-
posed in MCQ [8] and, since then, has been applied by
most successful MCP exact solvers. In practice, as men-
tioned previously, vertices are sorted in a highest-colour-last
fashion and taken in reverse order in every subproblem.
Figure 1 depicts the control flow: vertices are coloured by
greedy SEQ according to the initial ordering (Fig. 1, top),
sorted according to non-decreasing colour number, and then
selected in reverse order (Fig. 1, bottom).

2.1 Analysis of largest-first vertex colouring heuristic

To evaluate the quality of the bounds obtained by direct
implementation of the flow in Fig. 1 (very much related
to the proposed new sorting heuristic), we consider the
Largest-First (LF) decision heuristic for greedy vertex
colouring of Welsh and Powell. In [24], they proved that
given a non-increasing degree ordering of vertices (i.e.
deg(vy) > deg(vy) > ... > deg(vy,)), SEQ would always
produce not more than ng;(min{i, 1+deg(v;)} colours. This
1

is known as the Welsh and Powell bound. We will refer to the

Table 2 Comparison between Largest-First and Smallest-First colouring heuristics for a number of structured (see Appendix) and uniform

random graphs

n SF LF [24] Yoimp Family SF LF [24] Yoimp
100 25.0 21.9 124 C 81.0 75.5 6.8
150 33.7 30.0 11.0 MANN 175.0 180.0 2.9
200 41.9 37.6 104 brock 75.8 71.0 6.3
250 49.7 449 9.7 c-fat 52.9 52.1 1.4
300 57.1 52.0 8.8 dsjc 65.5 60.3 8.0
350 64.5 58.9 8.7 frb30-15 67.8 494 27.1
400 71.5 65.6 8.3 gen200 81.0 70.0 13.6
450 78.5 72.2 8.0 p-hat 106.8 744 30.3
500 85.5 78.7 7.9 san 61.1 58.3 4.6
1000 149.4 140.6 5.9 sanr 76.5 68.8 10.1

Each cell reports average colour sizes for each case. In the case of random graphs (n, p) we consider, for each value of n, densities from 0.1 to 0.9.
Colour sizes for each density are averaged over 50 runs. In the case of structured instances, average colour sizes are reported for typical members
of each family. The “%imp” column shows the improvement of LF over SF as a percentage.

@ Springer

872

P. San Segundo et al.

opposite (bad) ordering deg(vy) < deg(v) < ... <deg(v,)
as Smallest-First (SF).

The key idea of LF is to assign colour numbers to the
most conflicting vertices early in the hope that those remain-
ing will require a small number of colours (ideally, not
different from those used in the early stages). Moreover,
Observation 1 is widely accepted (see for example [25]) and
many recent exact MCP solvers apply some variant of LF
ordering for SEQ colouring [8-12, 15-17].

Observation 1 Greedy sequential colouring of vertices
sorted according to the LF rule almost always produces
tighter colourings than the Welsh and Powell bound.

A qualitative measure of the impact of LF ordering in
SEQ may be found in Table 2. There, LF is compared with
its counterpart SF in structured and non-structured uniform
random graphs. Note that we do not compare the number of
colours in LF colouring with the chromatic number since it
is impractical to compute the chromatic number in most of
the graphs.

In the case of structured instances, the table reports
average colour sizes for typical members of each family
(brock200_1 — brock4004, dsjc 500.1/5 — dsjc 1000.1/5,
MANN_a9 — MANN_a27 etc.; see the Appendix for the full
list). In the case of Erdos-Rényi random graphs G(n, p),
the table reports average colour sizes for different values of
n and density p (we consider 50 instances for each graph
type). Table 2 gives evidence that the LF rule produces
tighter sequential colourings, on average, than the SF one:
up to 12 % improvement for non-structured graphs and 30
% for structured graphs. The exception is the MANN fam-
ily, in which SF actually improves the colouring. This may
be explained by the high density (p > 0.92) of these partic-
ular graphs. We note that even a small bound improvement
can produce an exponential reduction in the size of the
maximum clique search tree.

25.0
23.0
21.0
19.0
17.0
15.0
13.0 +—
11.0

Improvement of LF vs. SF (%,

vy o
o o o

T T T —

01 02 03 04 05 06 07 08 09 500

Density 1000

Fig. 2 Impact of Largest-First sequential greedy colouring on Erdos-
Réényi graphs of different sizes and densities. The Y-axis refers to the
improvement with respect to Smallest-First as a percentage. Each line
corresponds to a different graph order

@ Springer

Another interesting result to be derived from Table 2
is Observation 2, where the term benefit refers to the gap
between LF and SF as a percentage.

Observation 2 The benefit of LF ordering for SEQ colour-
ing diminishes with the growth of graph size and density in
the case of uniform random graphs.

Figure 2 corresponds with the data in Table 2 but includes
density information for each graph order considered. Obser-
vation 2 is captured by the fact that lines in the line chart
are aligned by increasing graph size from top to bottom in
the figure. Lines cross for some neighbour sizes and differ-
ent densities [e.g. (200, 0.1) shows a 16.81 % improvement
whereas (250, 0.1) shows a superior 17.65 % improvement],
but the trend is clearly there. We are not aware of this fact
being reported elsewhere and consider Observation 2 as an
additional contribution of the paper.

We propose the following intuition as an explanation. Let
us consider the cases in which any sequential ordering mis-
takenly uses colour x (G)+1 for some vertex v, where x (G)
is the chromatic number of the coloured graph G. Such a
case is shown in Fig. 3, in which vertex v has x neighbours
with colours 1,..., x and has to be coloured with colour
x + 1.

In the case of the LF sequential colouring, this happens
when vertex v has a smaller degree than each of these x
neighbours. For a better understanding, we present several
such cases in Fig. 4. Colours are shown with numbers near
vertices. In the first graph, vertex v has two neighbours and
colour 3, although the chromatic number is 2; in the second
graph, it has three neighbours and colour 4; in the third, it
has four neighbours and colour 5.

We now show informally that the bad case depicted in
Fig. 3 is more likely to occur when the number of edges

V2 oo o

vX-l

Fig. 3 An example where vertex v has x neighbours vy, .

.., Uy with

colour numbers 1, ..., x respectively

Improved initial vertex ordering for exact maximum clique search

873

2
2

Fig.4 Examples in which Largest-First sequential colouring uses x +
1 colours

per vertex is small. This would explain the decrease in per-
formance of LF with graph order as well as density. For
a given graph G = (V, E), let us consider an increase in
the ratio |E|/| V| and thus an increase in average and maxi-
mum degrees. This also results in an increment of the clique
number w and the chromatic number x because y > w.
In this scenario, the probability of the case shown in Fig. 3
decreases mainly for two reasons: first, because the degree
of vertex v cannot be less than y, and therefore its expected
degree increases faster than the expected minimum degree
of its x neighbours; second, because the probability of
these x neighbours all having degree greater than deg(V)
decreases as the number y of these neighbours increases.

What we have presented is just an intuitive explanation
of Observation 2. We believe that attempting to provide rig-
orous proof is, at this point, impractical. It would probably
require a big theorem for a relatively simple result.

2.2 Sorting a fraction of vertices by non-increasing
degree

Having established the relevance of LF sorting in sequen-
tial colouring, we now proceed to describe a new sorting
procedure for exact maximum clique algorithms. In MCQ
[8], the colour ordering required for branching (Fig. 1, bot-
tom) is inherited in child subproblems. As a consequence,
SEQ is given a suboptimal (non-LF) ordering and its prun-
ing ability is diminished. A first alternative to improve this
situation, and described in [16], was to reorder vertices by
non-increasing degree prior to colouring (i.e. explicit LF),
but its computational cost is high. The paper also described a
way to selectively apply this strategy in the shallower levels
of the search tree.

A better compromise (currently considered the best
approach) is to use a static ordering in all subproblems.
As mentioned in the introductory section, this decision
heuristic was first proposed independently in [9] and [10]
and is currently used by state-of-the-art BBMC and MCS
solvers. In static ordering, vertices in every subproblem are
always kept in the same relative order as determined ini-
tially. Specifically, the pruning ability of static ordering is
high in the shallow levels of the search tree and degrades
with depth, as subproblems become smaller and the initial
sorting is gradually lost.

Related to the colour flow in Fig. 1, both initial
vertex ordering strategies MW and MWS described in
Section 1.2 are reasonably consistent with LF greedy
colouring, in the sense that vertices with high degrees

Fig. 5 Different initial vertex
orderings for the MCP. The
small numbers near the vertices
in B, C, and D indicate their new
positions

C) MWS ordering {6, 5, 1, 3, 2, 4}

D) DEG_SORT ordering {1, 5, 6, 3, 2, 4}
(p=2)

@ Springer

874

P. San Segundo et al.

are implicitly placed first in V and colouring pro-
ceeds from first to last. However, vertices are actually
placed following a smallest-degree-last strategy, which
can differ considerably from an explicit highest-degree-
first sorting because both MW and MWS are degenerate
orderings.

It is easy to see this effect with the example depicted
in Fig. 5. Figure 5A shows a simple graph G in which
vertices are numbered according to an initial default order-
ing that uniquely identifies them in the rest of the figures.
This ordering will also determine tiebreaks when required.
From the perspective of the control flow in Fig. 1, vertices
are coloured in natural order (i.e. starting from vertex {1}
and going anti-clockwise) and selected in reverse order (i.e.
starting from {6} and going clockwise).

Figure 5B presents the minimum width ordering (MW)
of the graph, and Fig. 5C the minimum width ordering with
vertex support (MWS). The difference between them lies
in the support of vertices {2} and {4}, which have both the
same degree (deg(2) = deg(4) = 2). Ties are broken by ver-
tex number for MW, so vertex {2} is picked first (and placed
last) in the new ordering. In the case of MWS, 0 (2) = 7,
whereas o(4) = 6, so vertex {4} is the one placed at the
end. After removing {4}, two triangles appear: {1, 2, 3} and
{1, 5, 6}; vertices {2, 3, 5, 6} all have minimum degree
and support, so vertex {2} is selected in second place and so
on.

Examining the resulting MW and MWS orderings from
the perspective of the control flow in Fig. 1, it is clear that
vertices are not sorted by non-increasing degree at the head
of the ordering. In particular, the vertex with the highest
degree {1} (deg(1) = 4) comes in third place in both cases.
The reason for this lies in the degenerate ordering, which
iteratively removes each sorted vertex and thus reduces
the degree of the remaining vertices to their core number.
In the example, vertices {1, 5, 6} are the last remaining
vertices for both MW and MWS (a three-clique). The latter
graph is obviously also regular, so all vertices have the same
degree and are sorted in reverse order of their numbers. As
a consequence, vertex {1} is misplaced.

In the light of the above considerations, we propose an
improved initial sorting procedure DEG_SORT, which can
be seen as a repair mechanism for MW and MWS with
respect to (maximum) degree at the head of the order-
ing. DEG_SORT takes as input MWS and sorts, according
to non-increasing degree, a subset of the first k vertices
vy, vp -+, v (vertices with the same degree are taken
according to their number). This second ordering is abso-
lute (not degenerate) since it is directed to be as close as
possible to LF in the subproblems that appear in the shal-
low levels of the search tree. The remaining n — k vertices
are not modified and remain sorted by minimum width with
vertex support. Figure 5.D shows the ordering obtained by

@ Springer

DEG_SORT in the example: vertex {1} with the highest
degree is swapped with vertex {6} and placed first in the list.

Parameter k (the number of vertices reordered by
DEG_SORT) should be neither too small (and thus with low
impact) nor too big (the original minimum width ordering
would be lost). Rather than using k as a tuning parameter,
we consider a new parameter p related to the total number
of vertices and define it as follows:

_{MJ ={2,3 }
p= T ,p=12,3,...

In practice, DEG_SORT performs best when p ranges
between 2 (50 % of the vertices) and 10 (10 % of the
vertices). In non-structured Erdos-Rényi graphs, the best
results on average appear when p is set to 3. In the case of
structured graphs, they are obtained when p is set to 4, but
tuning is recommended in both cases whenever possible.

3 Colour-based initial ordering of vertices
3.1 Preliminaries

As explained in previous sections, an initial ordering of ver-
tices based on degree is well known to reduce the size of
the search tree in exact maximum clique search. It is also
employed by successful modern algorithms such as BBMC
and MCS. The logic behind it is to minimize branching in
the first level of the tree. Moreover, BBMC and MCS pre-
serve the ordering in every other subproblem as well (to
improve the bound obtained by SEQ (see Fig. 1), so the
benefits of a good initial ordering also propagate down the
search tree to a certain depth.

In [18], the possibility of sorting vertices initially accord-
ing to a colouring of the graph C(G) = Cy, Ca, ..., Cy,
was described. The intuition is that it should somehow prune
the maximum clique search space effectively in graphs
where k is a good bound on the clique number, but this was
not analysed systematically in the original paper. Interest-
ingly, the current implementations of BBMCX and MCS
spend little effort in computing upper bounds on maximum
clique at the root node. A typical strategy is to assign to
a vertex as colour number the minimum value between its
index and maximum graph degree. The above considera-
tions motivate a systematic study of colour-based initial
sorting.

The next subsection describes the sorting procedure
COLOUR_SORT, which is based on [18] with additional
refinements. In Subsection 3.3, we give additional expla-
nations as to why COLOUR_SORT can be successful for
BBMCX or MCS with an example. Finally, the last sub-
section describes the new sorting algorithm NEW_SORT,
which is the main contribution of this work.

Improved initial vertex ordering for exact maximum clique search

875

3.2 The colour-based sorting algorithm

COLOUR_SORT is described in Algorithm 1. The main
computation is a variant of the constructive recursive-
largest-first (RLF) colouring heuristic, which was first
described in [26]. RLF computes colour classes one at a
time and does not proceed with another colour until no more
vertices can enlarge the current one. In the original paper,
the assignment is implemented in the following way: when
anew colour class Cy is opened, set W contains all remain-
ing uncoloured vertices and set W, is empty. Iteratively, a
vertex v € W) is selected, added to Cy, and removed from
Wi. If v has any neighbours, they are also removed from
W1 and placed in W5. The assignment of vertices proceeds
until Wi = ¢. The selection of vertices is based on degree.
The first vertex is the one with maximum degree in G[W]
and the rest of vertices are those with maximum degree in
G[W;]. Once W becomes empty, the next colour class is
built.

COLOUR_SORT orders vertices in V according to the
colour classes obtained by RLF. The specific variant used
takes into account two factors:

— A strong exact maximum clique algorithm is available,
in this case BBMCX.

— The graph to be ordered is expected to be dense, since
finding its clique number presents a challenge.

The actual RLF variant used by COLOUR_SORT com-
putes each new colour set as an independent set (a maximum
clique in the complement graph G) (steps 2 to 7). Once a
colour set is produced, its vertices are placed in order in
Ovcolor and removed from G. COLOUR_SORT then pro-
ceeds with a new colour set until no more vertices are left in
G.

Algorithm 1 An initial colour-based ordering of vertices for
efficient maximum clique search

Input: A simple graph G = (V, E)

Output: A vertex ordering Ocojor and a number k related to
its computation

Initial values: Ocolor < ¢,k <— 0, W <V

COLOUR_SORT(G)
1. G <« compute the complement graph of G
2. repeatuntil W = ¢

3 U < a maximum clique of G[W]

4. Ocotor <= Ocotor YU

5. W <« W\U

6 k<~ K+1

7. endrepeat

8. return (Ocpjor, k)

3.3 An example

To see why COLOUR_SORT can be beneficial for success-
ful approximate-colour algorithms, we will use the coloured
graph G depicted in Fig. 6. We assume G to be a subprob-
lem, close to a leaf node, of a maximum clique search tree.
The output of SEQ for the graph is C; = {l, 2}(green),
C> = {3, 4}(yellow), and C5 = {5}(cyan), as shown. The
figure also indicates the colour threshold kp;, (the differ-
ence between the size of the best clique found so far | Spax|
and the size of the clique being built in the branch |S])
for the subproblem, which is 3. This implies that all ver-
tices belonging to colour classes below this threshold (in the
example, sets C1 and C;) will be pruned in any derived child
node (for a more detailed description of the threshold, see
[12] amongst others).

In algorithms such as BBMC or MCS, pruning the search
space can be seen as a technique that accumulates as many
vertices as possible behind the ki, threshold. There are
three main alternatives to achieve this:

I Incrementing the colour threshold ky;,, or, alterna-
tively, moving the dotted line to the right: this can
be done by finding good solutions early, either by
making good branching choices or by computing a
strong initial solution. Note that the latter can produce
very effective pruning, since it increases |Smax| in the
shallow levels of the search tree.

II Shifting vertices from the right to the left of the thresh-
old: this can be achieved with techniques such as
recolouring or infra-chromatic pruning. In the exam-
ple, BBMCX detects that the induced subgraph G[C;U
C> U C3] is triangle-free and reduces the bound from 3
to 2, so that {5}now falls below the threshold.

Il Improving the quality of the greedy SEQ colouring, that
is, changing its output to produce colour classes Cj,
i < kmin, that are as large as possible.

The last point is especially relevant to explain why
COLOUR_SORT could be successful for some graphs. SEQ
is an oriented heuristic. If, in the example, the vertices were
presented in the order {2}, {3}, {5}, {1}, {4}, it would find
the optimum colouring C; = {2,3,5} and C; = {1, 4}
(after all, the graph is bipartite). Intuitively, since the relative

Foin =S

|=Is]=3

Fig. 6 An example of a coloured graph

@ Springer

876

P. San Segundo et al.

order of vertices determined initially remains the same for
all subproblems (see Subsection 1.1), a colour-based sorting
of vertices at the root node could improve the SEQ colour-
ings of many subproblems (possibly also in the deeper levels
of the search tree). This can prune the search space bet-
ter (sometimes even exponentially better) than a standard
degree-based ordering in some cases, as will be shown in
the next section.

To summarize, we believe that COLOUR_SORT can be
successful for the BBMC family of algorithms when the
following two conditions are met:

— it is possible to greedily find a colouring of the input
graph that is close to optimal.

— the chromatic number of the graph is a tight bound on
its clique number.

Moreover, COLOUR_SORT can be even more effective if it
is combined with a strong initial solution at the start of the
search. As explained, a good initial lower bound would shift
the threshold k;,;, to the right and increase the number of
colour classes to the left of the threshold in the shallow (and
critical) levels of the search tree.

3.4 The initial sorting algorithm

Before selecting COLOUR_SORT as the initial sorting pro-
cedure, we first need to compare it with its degree-based
counterpart. In [18], the tail of the colouring, that is, the
colour classes with the highest colour numbers, is used for
evaluation. A colouring is defined as regular if its tail con-
tains not more than one colour class with a single vertex. If
two or more singleton sets exist, it is considered irregular
and dismissed.

In this work, we propose to compare any two ini-
tial vertex orderings for exact maximum clique search in
the following manner. For a given vertex ordering O =
V1, v2,...,v,), let Gy, = G[N,vs,....v;—1}(vi)] be the
subproblem induced by the preceding neighbours of v; in
the ordering and let u(vy) > 14+w(G,,;) be any upper bound
on w(G[Ny, v,,....vi—1(v;) U v1]). We then define an upper
bound for the ordering O as u(0O) = mea‘p/({u(v,-)}. We con-

v

i

sider the ordering O to be preferable to the ordering O if
u(01 < u(0y)).

With the help of this new bound u(0O), our algorithm
NEW_SORT (Algorithm 2) evaluates both vertex ordering
procedures —degree-based Oy, (described in Section 2)
and colour-based O.q;,-— and selects the one with smallest
value of #(0O). There are different ways to compute valid
upper bounds for an ordering according to our previous
definition. NEW_SORT uses greedy colouring SEQ (step
5). The notation SE Qo deg indicates that Oy, is the initial
order of vertices for SEQ. A value of u(O.o10r) is equal to

@ Springer

the number of colours of the RLF colouring {C1, ..., C¢}
computed by COLOUR_SORT. This is because, in this
colouring, v; € C; = u(v;) = j for any vertex in the order-
ing. Based on the u (o) value for both orderings, a decision is
made; NEW_SORT selects O if k is strictly lower than
1(Oygeg) and selects Oy, otherwise (step 6).

Algorithm 2 The NEW _SORT algorithm

Input: A simple graph G = (V, E)
Output: An ordering of V
Initial values: Ogeg < @, Ocolor < ¢,k <0

NEW_SORT(G)
1. Ogoy < DEG_SORT(G)

2. if p < 0.7 then return Oy, //p is the uniform
density of G
3. else
4, (k, Ocoior) < COLOUR_SORT(G)
5. u <« 1+ mélé(number of colors required by
v;
SEO 0, (G[Npuy.....vi_} 1)
6 if (k < u) return Oy,
7. else return O,
8 endif
9. endif

Finally, we note that if the input graph is not suffi-
ciently dense, the task of finding a maximum clique in
the complement graph becomes impractical. To avoid this,
NEW_SORT follows the same strategy as [18] and dis-
misses Ol if the average density of the graph p(G) is
below a certain threshold (step 2).

4 Experiments

The hardware used for the experiments was a 20 core
Xeon with 128 Gb of RAM and Linux OS. All the algo-
rithms considered were run on a single core. These were the
following:

— BBMCX [15]: The most recent and efficient variant of
the BBMC family of algorithms. Worth noting is the
fact that in the comparison survey [21], the bitstring ker-
nel of BBMCX [10-12] reported the best performance
over a set of graphs from public benchmarks. A simi-
lar comment appears in a more recent survey [27], and
therefore we consider the choice of BBMCX justified.

— MaxCLQ [14]: A state-of-the-art PMAX-SAT-based
maximum clique solver, which uses an upper bound
based on the Partial MAXimum SATisfiability problem.
It was considered very efficient in [27].

For this report we consider the following initial sorting
procedures:

Improved initial vertex ordering for exact maximum clique search 877
Table 3 Evaluation of NEW_SORT
MaxCLQ [14] BBMCX [15] BBMCX + NEW_SORT BBMCX/NEW

O] o Steps time steps time wo(ILS) steps time P steps time
C125.9 34 32 1201 0.020 2919 0.025 34 1854 0.019 3 1.6 1.3
C250.9 44 37 21226766 249 77522385 738 44 53944321 542 3 1.4 1.4
MANN_a27 126 125 2006 0.130 4679 0.178 126 4552 0.182 any 1.0 1.0
MANN_a45 345 342 70262 16.68 118384 3743 344 117529 37.27 any 1.0 1.0
MANN_a9 16 16 7 <0.001 16 <0.001 16 16 <0.001 any 1.0 1.0
brock200-1 21 17 35909 0.350 37153 0.183 21 28915 0.154 4 1.3 1.2
brock200-2 12 9 1094 0.020 379 0.002 12 143 0.002 4 2.7 1.1
brock200-3 15 11 2356 0.030 1543 0.009 15 1497 0.011 4 1.0 0.8
brock200-4 17 14 10375 0.090 5556 0.035 17 2785 0.019 4 2.0 1.8
brock400-1 27 21 18372917 185 16420935 143 25 12997259 118 4 1.3 1.2
brock400-2 29 19 8169969 85.47 7024159 63.72 25 4101170 45.72 4 1.7 1.4
brock400-3 31 20 15190268 144 13964442 110 31 914128 13.71 4 15.3 8.0
brock400_4 33 20 9063733 89.94 7370261 63.56 33 374392 6.92 4 19.7 9.2
brock800-1 23 17 359232471 4140 159657583 2233 21 154387948 2192 4 1.0 1.0
brock800-2 24 16 293733416 3596 147005629 2038 21 120270391 1794 4 1.2 1.1
brock800-3 25 16 173918786 2248 92850736 1324 22 59912902 1011 4 1.5 1.3
brock800_4 26 17 125189650 1671 60470543 920 21 46774809 788 4 1.3 1.2
dsjc1000.1 6 5 966 0.630 254 0.005 6 208 0.003 4 1.2 1.5
dsjc1000.5 15 11 21048687 245 6245865 79.44 15 5807719 76.20 4 1.1 1.0
dsjc500.1 5 4 439 0.100 21 <0.001 5 5 <0.001 4 4.2 1.0
dsjc500.5 13 11 275859 2.62 117613 0.738 13 103363 0.631 4 1.1 1.2
frb30-15-1 30 26 32046329 515 110874737 991 30 1 <0.001 8 1.1E+08 9.9E+05
frb30-15-2 30 24 42946247 696 74975855 669 30 1 <0.001 8 7.5E+07 6.7E+05
frb30-15-3 30 24 27267464 440 37741280 333 30 1 <0.001 8 3.8E+07 3.3E+05
frb30-15-4 30 25 55238114 879 121534953 1058 30 2 <0.001 8 6.1E+07 1.1E+06
frb30-15-5 30 24 40485579 652 83244519 721 30 2 <0.001 8 4.2E+07 7.2E+05
gen200_p0.9.44 44 33 6977 0.110 25638 0.208 44 5562 0.079 4 4.6 2.6
gen200_p0.9.55 55 37 7576 0.110 45663 0.347 55 108 0.006 4 423 57.8
gend00_p0.9.55 55 44 — >24h 1834718567 24722 55 1 <0.001 4 1.8E+09 2.5E+07
gend00_p0.9.65 65 41 2038023795 33721 — >24h 65 1 <0.001 4 00 o0
gend00_p0.9.75 75 43 565148461 9182 — >24h 75 373 0.012 4 00 o0
hamming10-2 512 512 1 0.760 1 0.018 512 1 0.024 4 1.0 0.8
hamming8-2 128 128 1 0.010 1 0.001 128 1 <0.001 4 1.0 1.0
hamming8-4 16 16 1996 0.040 2905 0.015 16 2780 0.020 4 1.0 0.8
johnsonl6-2-4 8 8 45738 0.470 102230 0.059 8 102230 0.059 4 1.0 1.0
johnson8-2-4 4 4 9 <0.001 9 <0.001 4 8 <0.001 4 1.1 1.0
johnson8-4-4 14 14 o6 <0.001 40 <0.001 14 29 <0.001 4 1.4 1.0
keller4 11 8 1348 0.020 2009 0.010 11 1485 0.010 4 1.4 1.0
keller5 27 16 266122691 4505 3702995074 44109 27 119012711 1346 4 31.1 32.8
p-hat1000-1 10 9 48774 1.53 20007 0.134 10 18567 0.148 10 1.1 0.9
p-hat1000-2 46 40 4518975 90.36 2180084 57.82 46 983911 29.95 10 2.2 1.9
p-hat1500-1 12 10 300447 9.22 106757 1.22 12 85739 1.14 10 1.2 1.1
p-hat1500-2 65 58 229810475 7188 107564564 5260 65 37287206 2098 10 2.9 2.5
p-hat300-1 8 7 424 0.040 236 0.001 8 169 0.002 10 1.4 0.5
p-hat300-2 25 23 1041 0.040 470 0.012 25 196 0.006 10 2.4 2.1
p-hat300-3 36 33 91552 1.08 59846 0.592 36 12004 0.164 10 5.0 3.6
p-hat500-1 9 8 4387 0.160 629 0.008 9 599 0.007 10 1.1 1.2

@ Springer

878

P. San Segundo et al.

Table 3 (continued)
MaxCLQ [14] BBMCX [15] BBMCX + NEW_SORT BBMCX/NEW
0] ®y Steps time steps time mo(ILS) steps time P steps time
p-hat500-2 36 33 22343 0470 7451 0.109 36 1980 0.050 10 3.8 2.2
p-hat500-3 50 44 2166987 36.44 1517820 30.63 50 644203 14.93 10 24 2.1
p-hat700-1 11 8 14941 0.440 1649 0.022 11 631 0.017 10 2.6 1.3
p-hat700-2 44 41 141935 2.76 58199 1.22 44 17493 0.465 10 3.3 2.6
p-hat700-3 62 56 37780362 800 17326756 589 62 5971698 233 10 2.9 2.5
san1000 15 8 21754 0.730 17395 0.531 8 17218 0.550 5 1.0 1.0
san200.0.7-1 30 17 107 0.010 285 0.003 30 1 <0.001 5 285 3.0
san200.0.7.2 18 12 294 0.020 205 0.003 18 1 <0.001 5 205 3.0
san200.0.9.1 70 45 216 0.010 300 0.016 70 1 <0.001 5 300 16.0
san200.0.9.2 60 38 7087 0.100 31168 0.315 60 2 <0.001 5 1.6E+04 315
san200.0.9.3 44 31 11871 0.170 3328 0.028 44 5 <0.001 5 666 28.0
san400.0.5.1 13 7 457 0.050 542 0.006 13 1 <0.001 5 542 6.0
san400.0.7-1 40 21 4523 0.120 9495 0.151 40 1 0.003 5 9.5E+03 50.3
san400.0.72 30 15 644 0.070 2971 0.039 30 1 0.002 5 3.0E+03 19.5
san400.0.7.3 22 13 35049 0410 54673 0435 22 1 0.003 5 5.5E+04 145
san400.0.9.1 100 48 19481 0.740 282092 4.44 100 1 0.003 5 2.8E+05 1480
sanr200.0.7 18 14 20375 0.160 16428 0.077 18 11981 0.070 5 1.4 1.1
sanr200-0.9 42 36 351501 3.94 855156 7.78 42 386841 3.90 5 2.2 2.0
sanr400_0.5 13 12 69118 0.640 25349 0.141 13 15343 0.116 5 1.7 1.2
sanr400_0.7 21 17 7866669 7343 5967522 3949 21 5834680 38.78 5 1.0 1.0

Times are measured in seconds with precision of milliseconds. For each row, the best time is shown in bold and the minimum number of steps in
italics (a step is a call to the recursive search procedure). BBMCX/NEW columns report the ratio of time and steps between BBMCX without and
with NEW_SORT. oy refers to the size of the initial solution computed by BBMCX (and also used by MaxCLQ). wg (ILS) refers to the size of the
initial solution computed by the leading approximate local search heuristic ILS. Time cells with times below 1 ms (<0.001) are counted as 0.001

for the BBMCX/NEW ratio

— MW: Minimum width sorting of vertices.

— MWS: Minimum width sorting, breaking ties by mini-
mum vertex support o. In all graphs over (and includ-
ing) 1,000 vertices, o has been computed statically
(MWSS) because it is much faster.

— NEW_SORT: the sorting procedure described in Algo-
rithm 2, which selects the best ordering between
DEG_SORT and COLOUR_SORT. DEG_SORT is
implemented with the parameter p € {3,4,..., 10}
tuned for the best performance for each family of
graphs. For this task we consider only easy instances
in each family, that is, graphs with estimated running
times below 5s. Thus, the tuning process does not
constitute a significant constraint in practice.

We also compute a strong initial solution with a state-
of-the-art heuristic. This was reported to improve the per-
formance of exact maximum clique solvers in [17]. It was
also discussed in Section 3.3 as a possible enhancement of
COLOUR_SORT. The heuristic we used was ILS (Iterated
Local Search, described in [28]) as in the original paper
[17]. In all experiments, time is measured in seconds (with

@ Springer

precision of milliseconds) and only running times for the
actual search are given (the common procedure in maximum
clique literature). The time limit for each experiment was
fixed at 24 h.

Graphs employed for the tests are taken from DIMACS'
(presented at the Second DIMACS Implementation Chal-
lenge) and BHOSHLIB? public data sets. The concrete 67
instances chosen are representative of all families and fre-
quently used in similar reports that may be found elsewhere.

Table 3 reports all the results used to evaluate
NEW_SORT. The best time for each graph is shown in bold
and the minimum number of steps is shown in italics. The
column header w, shows the initial clique computed during
standard preprocessing. The column header w,(ILS) shows
the initial clique found by the ILS heuristic, which was opti-
mal in 60 out of the 67 graphs considered. Concerning the
algorithm configuration, MaxCLQ was run as provided by

Thttp://cs.hbg.psu.edu/txn131/clique.html

Zhttp://www.nlsde.buaa.edu.cn/~kexu/benchmarks/graph-benchmarks
.htm

http://cs.hbg.psu.edu/txn131/clique.html
http://www.nlsde.buaa.edu.cn/~kexu/benchmarks/graph-benchmarks.htm
http://www.nlsde.buaa.edu.cn/~kexu/benchmarks/graph-benchmarks

Improved initial vertex ordering for exact maximum clique search

879

the developer and given the same initial solution w, as the
one computed by BBMCX; BBMCX + MW is the cur-
rent release of BBMCX and BBMCX + NEW_SORT is
the enhanced algorithm, which also includes the stronger
wo(ILS) lower bound. Finally, the column headers under
BBMCX/NEW report the time and steps ratio between
BBMCX + MW and BBMCX + NEW_SORT. In the cases
where the performance of an algorithm is below a millisec-
ond (reported as <0.001), the actual value is rounded up to
a millisecond to compute the time ratio.

4.1 Evaluation

Of the 67 instances considered, BBMCX + NEW _SORT (or
NEW_SORT for simplicity) performs better than BBMCX
without NEW_SORT in 49 graphs. It is slower in only 5
graphs and prunes the search space better in 56 graphs.
Moreover, the performance is improved by more than
15 times in 15 graphs, notably from the gen, keller,
frb, and san families. Interestingly, NEW_SORT prefers
COLOUR_SORT to the degree-based sorting computed by
DEG_SORT in all graphs of three of those four families,
specifically gen, keller, and frb.

We will now discuss the results for each family of graphs
concerning BBMCX and NEW_SORT to try to provide
explanations for the obtained results. The results by families
may be summarized as follows:

— MANN, hamming and johnson: these sets are not signif-
icantly affected by any of the enhancements. A possible
explanation for the MANN family is its very high den-
sity, which makes preprocessing irrelevant. The graphs
from the other two families are easy for all the algo-
rithms, so it is not possible to draw any conclusion.

— C: DEG_SORT, as well as the strong initial solution,
explain the difference in performance of BBMCX for
this family of graphs. We estimate the reduction of the
search tree with the new initial ordering to be around
7 % in the more difficult C250.9 graph.

— brock and dsjc: The impact of DEG_SORT is not
very significant here. In the cases of almost an order
of magnitude of improvement (i.e. brock400_3 or
brock_400_4), it is explained by a strong initial solution.

— frb, gen, and keller: When exponential improve-
ments occur, the explanation is mainly due to
COLOUR_SORT. Specifically, the frb-30 instances
have 30 as both the chromatic and the clique num-
ber, and DEG_SORT is unable to capture this struc-
ture. COLOUR_SORT, however, finds an optimum
colouring, and when vertices are initially sorted in
that way, the problem becomes trivial. Instances
gend400_p0.9_.55 and gen400_p0.9_65 are also triv-
ially solved by BBMCX with COLOUR_SORT, while
keller5 is solved more than 30 times faster.

— p-hat: This family contains non-structured graphs in
which significant differences between DEG_SORT and
prior orderings were not expected. Interestingly, in three
cases DEG_SORT reduces the size of the search tree by
more than 10 %. Performances over this threshold are
due to the improved initial solution.

— san, sanr: DEG_SORT improves performance by a
small margin, compared with MW, in more difficult
graphs (i.e. with 0.9 density). However, these types
of instances are well known to be sensitive to a
good solution, so whenever NEW_SORT gives a vast
improvement in performance (as in the san400_ 0.7—
0.9 graphs), the main explanation is the strong initial
solution.

Concerning parameter p in DEG_SORT, the best overall
value is 4 (in five families) followed by 5 (in san and sanr),
3 (in C), 8 (in frb30), and finally 10 for the p_hat family. As
mentioned previously, the tuning procedure uses the easier
instances, so it does not constitute a significant disadvantage
in a real application.

With respect to MaxCLQ, the proposed NEW_SORT
enhances BBMCX so that the latter performs better in the
majority of graphs; specifically, it is faster in 60 cases, more
than three times faster in 43 cases, and more than an order of
magnitude faster in 26 cases. MaxCLQ is supposed to out-
perform standard BBMCX only in some of the harder, more
dense, graphs (independently of the initial sorting). It does
so significantly in the graphs MANN_a27, MANN_a45, and
C250.9.

5 Conclusions

This work describes a new initial vertex ordering
(NEW_SORT) that significantly improves the performance
of a family of exact approximate-colour-based solvers for
the MCP.

It does so by selecting the “’best” ordering between an
improved typical degree-based ordering and a colour-based
one. Both sorting procedures have polynomial time com-
plexity and are easy to implement, which makes them useful
in practical applications where the exact solution for the
maximum clique problem is critical. The best results are
obtained when NEW_SORT is further enhanced with a
strong initial solution. The reported results show that the
improved performance may even be exponential for some
graphs.

As a side result, this work also provides an interesting
observation for Erdos-Rényi uniform random graphs. It has
been observed that the effectiveness of ordering vertices
by non-increasing degree for sequential greedy colouring
heuristic SEQ is inversely related to the size of these graphs.

@ Springer

880

P. San Segundo et al.

Work in progress is concerned with further analysis of this
result and, if considered appropriate, establishing theoretical
proof.

Acknowledgments Pablo San Segundo and Alvaro Lopez are
funded by the Spanish Ministry of Economy and Competitiveness
(grants ARABOT: DPI 2010-21247-C02-01 and NAVEGASE: DPI
2014-53525-C3-1-R). Mikhail Batsyn, Alexey Nikolaev, and Panos M.
Pardalos are supported by the Laboratory of Algorithms and Tech-
nologies for Network Analysis, NRU HSE. We would also like to
thank Jorge Artieda for his help with the experiments. Finally, we
express our gratitude to Chu-Min Li for providing the source code of
MaxCLQ.

Appendix

The list of instances from DIMACS and BHOSHLIB bench-
marks employed in the reported results in Table 2 is:
CI125.9, C250.9, Mann_a9, Mann_a27, Mann_a45,
brock200_1/4, brock_400_1/4, c-fat200-1, c-fat200-2, c-
fat200-5, c-fat500-1, c-fat500-2, c-fat500-5, c-fat500-10,
dsjc500.1, dsjc500.5, dsjc1000.1, dsjc1000.5, frb30-15-1/5,
gen200_p0.9_44, gen200_p0.9_55, hamming6-2, hamming6-
4, hamming8-2, hamming8-4, hamming10-2, johnons8-2-4,
johnons8-4-4, johnonsl6-2-4, keller4, p_hat300-1/3,
p-hat500-1/3, p_hat300-1/3, p_hat700-1/3, p_hat1000-
172, p_hatl500-1, san200.0.7_1/2, san200.0.9_1/3,
san400.0.5_1, san400.0.7_1/3, san400_0.9_1, sanl000,
sanr200_0.7, sanr200_0.9, sanr400_0.5, sanr400_0.9.

References

1. Konc J, Janezic D (2010) ProBiS algorithm for detection of struc-
turally similar protein binding sites by local structural alignment.
Bioinformatics 26:1160-1168

2. Eblen J, Phillips C, Rogers G, Langston M (2012) The maxi-
mum clique enumeration problem: algorithms, applications, and
implementations. BMC Bioinforma 13:S5

3. Butenko S, Chaovalitwongse W, Pardalos P (eds) (2009) Cluster-
ing challenges in biological networks. World Scientific, Singapore

4. San Segundo P, Artieda J (2015) A novel clique formulation
for the visual feature matching problem. Appl Intell 43(2):325-
342

5. San Segundo P, Rodriguez-Losada D (2013) Robust global fea-
ture based data association with a sparse bit optimized maximum
clique algorithm. IEEE Trans Robot 29(5):1332-1339

6. Ostergird P (2002) A fast algorithm for the maximum clique
problem. Discrete Appl Math 120:1:97-207

@ Springer

11.

12.

13.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

. Fahle T (2002) Simple and fast: Improving a -and-bound algo-

rithm for maximum clique. In: Proceedings ESA-2002, pp 485-
498

. Tomita E, Seki T (2003) An efficient branch and bound algo-

rithm for finding a maximum clique. In: Calude C, Dinneen
M, Vajnovszki V (eds) Discrete Mathematics and Theoretical
Computer Science. LNCS, vol 2731, pp 278-289

. Tomita E, Sutani Y, Higashi T, Takahashi S, Wakatsuki M (2010)

A simple and faster branch-and-bound algorithm for finding a
maximum clique. LNCS 5942:191-203

. San Segundo P, Rodriguez-Losada D, Jimenez A (2011) An exact

bit-parallel algorithm for the maximum clique problem. Comput
Oper Res 38:2:571-581

San Segundo P, Matia F, Rodriguez-Losada D, Hernando M
(2013) An improved bit parallel exact maximum clique algorithm.
Optim Lett 7:3:467—479

San Segundo P, Tapia C (2014) Relaxed approximate coloring in
exact maximum clique search. Comput Oper Res 44:185-192

Li C-M, Quan Z (2010) An Efficient Branch-and-Bound Algo-
rithm based on MaxSAT for the Maximum Clique Problem. In:
Proceedings AAAI, pp 128-133

. Li C-M, Quan Z (2010) Combining Graph Structure Exploitation

and Propositional Reasoning for the Maximum Clique Problem.
In: Proceedings ICTAI, pp 344-351

San Segundo P, Nikolaev A, Batsyn M (2015) Infra-chromatic
bound for exact maximum clique search. Comput Oper Res
64:293-303

Konc J, Janeci¢ D (2007) An improved branch and bound algo-
rithm for the maximum clique problem. MATCH Commun Math
Comput Chem 58:569-590

Batsyn M, Goldengorin B, Maslov E, Pardalos P (2014) Improve-
ments to MCS algorithm for the maximum clique problem. J
Comb Optim 27:397-416

Li C-M, Fang Z, Xu K (2013) Combining MaxSAT Reasoning and
Incremental Upper Bound for the Maximum Clique Problem. In:
Proceedings ICTAL pp 939-946

Bron C, Kerbosch J (1973) Algorithm 457: finding all cliques of
an undirected graph. Commun ACM 16:9:575-577

Balas E, Yu C (1986) Finding a maximum clique in an arbitrary
graph. SIAM J Comput 15:4:1054-1068

Prosser P (2012) Exact algorithms for maximum clique: a compu-
tational study. Algorithms 5:4:545-587

Carraghan R, Pardalos P (1990) An exact algorithm for the
maximum clique problem. Oper Res Lett 9:6:375-382

Personal communication with researchers Ciaran McCreesh and
Patrick Prosser

Welsh D, Powell M (1976) An upper bound for the chromatic
number of a graph and its application to timetabling problem.
Comput J 10:1:85-86

Syslo M (1989) Sequential coloring versus Welsh-Powell bound.
Discret Math 74:241-243

Leighton F (1979) A graph coloring algorithm for large scheduling
problems. J Res Natl Bur Stand 84(6):489-506

Wu Q, Hao J (2015) A review on algorithms for maximum clique
problems. Eur J Oper Res 242:3:693-709

Andrade D, Resende MG, Werneck R (2012) Fast local search for
the maximum independent set problem. J Heuristics 18:4:525-547

	Improved initial vertex ordering for exact maximum clique search
	Abstract
	Introduction
	Exact branch and bound algorithms
	Initial ordering of vertices

	Improved degree-based initial sorting
	Analysis of largest-first vertex colouring heuristic
	Sorting a fraction of vertices by non-increasing degree

	Colour-based initial ordering of vertices
	Preliminaries
	The colour-based sorting algorithm
	An example
	The initial sorting algorithm

	Experiments
	Evaluation

	Conclusions
	Acknowledgments
	Appendix 1
	References

