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Abstract An indispensable part of the precise control
of multi-scroll chaotic systems, model identification has
received increasing attention in recent years. Because of
plant uncertainty and unmodeled dynamics, conventional
control methods cannot guarantee a sufficiently high-
performance for stabilizing multi-scroll chaotic systems.
In an effort to tackle the matter better, we propose an
intelligent controller called the adaptive neural network
prediction-based controller (NN-PbC ). The specified neural
network is trained with the system model, which is extracted
from a time series. In actual practice, the data are divided
into two sets. One set is used for training and the other set
for testing. In fact, a generalized NN will perform well for
both training and testing data. The prediction-based control
method is then applied to the obtained neural network model
to stabilize the multiple equilibrium points. The stability of
the closed-loop system is proven. In addition, simulation
examples on two typical multi-scroll chaotic systems are
presented to demonstrate the effectiveness of the proposed
controller.
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1 Introduction

Chaotic systems, which possess a dense set of unstable peri-
odic orbits, have been widely studied and applied in many
real-world applications and laboratory experiments in areas
such as electronic circuits, power system protection, secure
communication, and smart grids [1–4]. Furthermore, the
circuit design and implementation of multi-scroll chaotic
systems has been a subject of increasing interest because
of their potential applications in various chaos-based tech-
nologies and information systems [5–17]. Accordingly, a
good number of researchers and practitioners globally have
paid close attention to the control of multi-scroll chaotic
systems. Recent investigations have considered the control
problem of multi-scroll chaotic systems [18–21]. However,
few of them have considered the modeling task using neural
network (NN) systems. In fact, the main challenges of con-
trolling multi-scroll chaotic systems are sensitivity to initial
conditions, unpredictability, and the fact that the mathe-
matical models for almost real-world multi-scroll chaotic
systems are not available.

NNs have received much attention because they are able
to approximate complex nonlinear functions and learn well
[22, 23]. A number of studies have considered NNs for mod-
eling and controlling chaotic systems [24–32]. Currently,
the usual methods of modeling and controlling chaotic
systems may be categorized into offline and online meth-
ods, where the goal is to enable prediction and decision-
making. Offline methods explore stationary data. However,
the online methods mainly depend on intelligent algo-
rithms and optimization theories to estimate the parameters
of the NN. Some examples are the Levenberg-Marquardt,
descent gradient, and other intelligent algorithms. Poznyak
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Fig. 1 Block diagram of the NN prediction-based control scheme

et al. developed a sliding mode technique to learn the
weights of dynamic NNs [26]. A recurrent high-order NN
was developed by Lu et al. for both identifying and con-
trolling unknown chaotic systems, in which the feedback
linearization technique is used in an adaptive manner [28].
Qin et al. [32] introduced a control scheme based on the
back-propagation NN. The scheme can control the chaotic
response to a prospective external signal, which can be a
periodic, nonlinear, or even non-analytical discontinuous
function. However, the use of NNs has mostly focused on
classical chaotic systems, and very few results have been
obtained for the NN modeling of multi-scroll chaotic sys-
tems. Much of the literature on this problem has addressed
the automatic classification of multi-scroll chaotic systems
using discrete wavelet NNs and the modeling process using
bond-graph theory [33, 34]. In fact, developing models for
multi-scroll chaotic systems is needed for accurate predic-
tion, control, diagnostics, and design purposes in real-world
applications, where the system models are subject to param-
eter uncertainties. In contrast to conventional chaos control
methods, the modern intelligent algorithms using NNs and
fuzzy logic are able to promptly find solutions to chaos
control problems in real-world applications.

Recent contributions to the prediction-based control of
chaotic systems may be divided into two main categories: 1)

improving prediction-based control to stabilize continuous-
time chaotic systems [35] and 2) combining prediction-
based methods with intelligent algorithms such as NN and
fuzzy logic to stabilize a wide range of chaotic systems
subject to plant uncertainty and unmodeled dynamics [36,
37]. Although many techniques are devoted to the control
of chaotic systems, there is, to the best of our knowl-
edge, no contribution that concerns intelligent chaos con-
trol for stabilizing multi-scroll chaotic systems subject to
plant uncertainty and unmodeled dynamics. As a result, we
address in this paper the design of an NN for construct-
ing models that incorporate a priori knowledge in the form
of differential equations for multi-scroll chaotic systems.
Using this framework, the multi-layer perceptron (MLP)
feed-forward back-propagation NN is used to model some
well-known multi-scroll chaotic systems. The specified NN
is trained using the obtained system model extracted from
the forecasting time series. The Levenberg-Marquardt and
gradient descent algorithms are used for the training and
learning processes, respectively. Note that during the train-
ing process, the NN tries to match the outputs with the
desired target values. Slightly different from the training
process, the learning process changes or refines weights and
decides how they should be manipulated. Consequently, the
Levenberg-Marquardt algorithm is used for the training pro-
cess because global convergence can be established without
requiring the existence of an accumulation point. Further-
more, it is considered to be the fastest back-propagation
algorithm. However, it does consume more memory than
other methods. Hence, we make use of the descent gradient
algorithm in the learning process to address this shortcom-
ing. The prediction-based control method is then applied to
the obtained NN model in order to stabilize multiple equi-
librium points. The stability of the closed-loop system is
guaranteed using the Lyapunov stability theorem. Numer-
ical simulations are provided to confirm the ability of the
proposed NN to model and stabilize multi-scroll chaotic
systems .

The rest of the paper is organized as follows. Descrip-
tions of the dynamical properties of multi-scroll chaotic
systems and the NN structure are presented in Section 2.

Table 1 Performance of the NN modeling of a 3-D n-scroll Chua’s circuit

Results 1 hidden layer 2 hidden layers 3 hidden layers

60 160 [30 10] [72 12] [30 20 10] [42 12 6]

Time T (sec) 69 155 77 343 259 180

R test 1 1 0.998 0.999 0.998 0.999

MSE 0.0461 0.0002 0.2010 0.0027 0.2210 0.0645
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Table 2 Performance of the NN modeling of a 3-D Chen multi-scroll system

Results 1 hidden layer 2 hidden layers 3 hidden layers

160 280 [60 20] [90 12] [26 14 6] [40 20 10]

Time T (sec) 267 362 531 853 144 392

R test 0.9970 0.999 0.980 0.995 0.902 0.985

MSE 1.050 0.004 4.880 1.970 38 5.79

An improved variant of the prediction-based control method
and problem formulation are provided in Section 3.
Section 4 details the design of the intelligent prediction-
based controller. Section 5 presents an experimental study
on two typical multi-scroll chaotic systems. Numerical sim-
ulations are presented in Section 6. Finally, the conclusions
are drawn in Section 7.

2 System description

2.1 Multi-scroll chaotic systems

A multi-scroll chaotic system is a chaotic system modified
so that it generates multiple scrolls. Because its prototype
model was first introduced by Suykens et al. in 1993 [5],
extensive investigations have been conducted to develop
new models of multi-directional multi-scroll chaotic sys-
tems.

Multi-scroll chaotic systems can be designed using dif-
ferent approaches such as pulse width modulation func-
tions [5], nonlinear modulating functions [6], step cir-
cuits [7], positive-type second generation current conveyors,
negative-type second generation current conveyors [8], and
field-programmable gate array circuits [17]. In particular,
the design of multi-scroll chaotic systems via nonlinear
modulating functions has attracted much interest because
of their simple circuit implementations. One of the main
results of this design approach is the use of the sine function.

Consider the multi-scroll chaotic system expressed as

Ẋ(t) = f (t, X(t)), (1)

where X = [x1, x2, . . . , xn]T ∈ R
n is the state vector and

f (t, X(t)) is a continuous function.
Two typical examples of multi-scroll chaotic systems

that are based on nonlinear modulating functions are shown
below.
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Fig. 2 Results of NN modeling of an n-scroll Chua’s circuit. a Phase plane. b Time responses



796 M.A. Khelifa, A. Boukabou

Example 1 Consider the n-scroll Chua’s circuit, given by
the following equations [6]:
⎧
⎨

⎩

ẋ1 = α(x2 − h (x1))

ẋ2 = x1 − x2 + x3

ẋ3 = −βx2

(2)

where x1, x2, and x3 are the state variables, α and β are the
system parameters, and h (x1) is a nonlinear function such
that:

h(x1) =
⎧
⎨

⎩

bπ
2a

(x1 − 2ac) if x1 ≥ 2ac

−b sin
(

πx1
2a

+ d
)

if −2ac < x1 < 2ac
bπ
2a

(x1 + 2ac) if x1 ≤ −2ac

(3)

When α = 10.814, β = 14, a = 1.3, b = 0.11, c = 7,
and d = 0, an 8-scroll attractor is produced. This multi-
scroll chaotic system admits the origin X̄0 = (0, 0, 0) as an
unstable equilibrium point and has the following unstable
equilibrium points X̄±1 = (±2.6, 0, ∓2.6), X̄±2 = (±5.2,
0, ∓5.2), X̄±3 = (±7.8, 0, ∓7.8), X̄±4 = (±10.4, 0,
∓10.4), X̄±5 = (±13, 0, ∓13), X̄±6 = (±15.6, 0, ∓15.6),
and X̄±7 = (±18.2, 0, ∓18.2).
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Fig. 3 Results for NN modeling of an n-scroll Chua’s circuit

Example 2 A typical multi-scroll Chen system is described
by [15]:

⎧
⎨

⎩

ẋ1 = a(x2 − x1)

ẋ2 = (c − a − x3 + d sin x3) x1 + cx2

ẋ3 = x1x2 − bx3

(4)

where x1, x2, and x3 are the state variables, a, b, c, and d

are the system parameters. When a = 35, b = 3, c = 28,
and d = 8, a 6-scroll attractor is produced. This multi-scroll
chaotic system has multiple unstable equilibrium points
given by X̄0 = (0, 0, 0), X̄±1 = (±6.999, ±6.999, 16.331),
X̄±2 = (±7.457, ±7.457, 18.536), X̄±3 = (±8.102,
±8.102, 21.880), X̄±4 = (±8.792, ±8.792, 25.771),
X̄±5 = (±9.059, and ±9.059, 27.356).

Because a multi-scroll chaotic system is highly nonlinear
and subject to plant uncertainty, some effective approaches
like NNs and fuzzy logic are often used in its modeling and
controlling processes.
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Fig. 3 (continued)
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2.2 NN structure

A variety of NN structures have been proposed in the lit-
erature for system prediction, control, and diagnostics to
meet various kinds of modeling requirements [22, 23]. The
feed-forward back-propagation NN is one of the most well-
known NN structures, capable of approximating complex
nonlinear functions. Two important classes of feed-forward
NNs are the MLP and the radial basis function networks.
In common with other NN-based methods, the hidden lay-
ers and number of neurons are selected via a trial-and-error
method.

Based on the MLP approximation property, a nonlinear
function f (t, X(t)) can be approximated by [22]

f (t, X(t)) = WT ϕ(X) + ε (X) (5)

where W is the weight vector, ϕ (X) is the activation func-
tion, ε (X) is the approximation error of MLP, and X ∈ R

q

is the input vector, where q is the number of input nodes. A
sigmoid function is chosen as the activation function of the
hidden layer to help the network learn the nonlinear dynam-
ics of the multi-scroll chaotic system, i.e., the relationships
between the input and output layers of the neural network.
The activation function of the output layer is assigned a lin-
ear (purelin) function. Moreover, the following assumptions
are made throughout this paper.

A1 The weight vector W is bounded, i.e., ‖W‖ ≤ WM ∈
R

+.

A2 The approximation error ε (X) is bounded, i.e.,
‖ε (X)‖ ≤ εM ∈ R

+.

It is necessary to have accurate and sufficient train-
ing data for good NN model development. Thus, the NN
modeling is performed in two phases:

1 Training phase: the NN system memorizes the patterns
of the learning data set. It selects neuron characteristics
and topology, minimizes error, and stops according to the
stopping criteria.

2 Testing phase: the NN system predicts and tests data
sets. The performance of the NN system on the testing
data set represents its generalization ability.

In actual practice, the data are divided into two sets. One
set is used for training and the other set for testing. In fact,
a generalized NN will perform well for both training and
testing data.

3 Improvement of the prediction-based control
method and problem formulation

The prediction-based control method may be considered
as a kind of adaptive control strategy [38]. It was origi-
nally introduced by Ushio and Yamamoto in 1999 [39] and
has succeeded in controlling discrete-time chaotic systems.
Many studies have proposed extensions to deal with differ-
ent kinds of chaotic systems. Among them, Boukabou et
al. [35] proposed a chaos control method for continuous-
time systems. It was shown that this method guarantees
the stability of the obtained controlled system. It has also
been shown that the number of prediction steps has very
little effect on the tracking performance of the controller,
meaning that even one-step-ahead predictive control is suf-
ficiently effective.
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Fig. 4 Results of NN modeling for a multi-scroll Chen system. a Phase plane. b Time responses
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Fig. 5 Results of NN modeling of the multi-scroll Chen system

3.1 Prediction-based control principles

Consider a chaotic system with a state equation under
prediction-based control input up of the form

Ẋ(t) = f (t, X(t)) + up(t) (6)

where X ∈ R
n is the state vector, f : Rn → R

n is a con-
tinuous function, and up ∈ R

n is the control action. We
assume that f (·) is differentiable and the system generates
chaos when up(t) = 0. The task is to find a control up(t)

such that the controlled system trajectory tracks the target

lim
t→∞

∥
∥X(t) − X̄

∥
∥ = 0, (7)

where X̄ is the unstable equilibrium point to be stabilized.
The proposed prediction-based control method is based

on the prediction of a p-time future state and the control law
is calculated from the difference between the current state
and the future state of the uncontrolled multi-scroll chaotic
system. We choose the feedback control input as follows

up(t) = K(A − I )X(t) (8)
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Fig. 5 (continued)

where A = ∂f
∂X

∣
∣
∣
X=X̄

represents the system’s Jacobian

matrix, evaluated at the desired unstable equilibrium point
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Fig. 7 Stabilizing the NN model of the n-scroll Chua’s circuit on a X̄+1 and b X̄−1

to be stabilized, I is the identity matrix, and K is a feedback
gain matrix.

The linearized multi-scroll chaotic system at the desired
unstable equilibrium point is under prediction-based con-
trol, which is described as follows [35]

Ẋ(t) = AX(t) + K(A − I )X(t) = −ĀX(t) (9)

Remark 1 The prediction-based control method stabilizes
the chaotic system (6) for gain K , satisfying the sufficient
conditions Ā > 0 and det(A − I ) 	= 0 [35].

3.2 Problem formulation

Because of plant uncertainty and unmodeled dynamics,
conventional control methods, including prediction-based
control, cannot guarantee a sufficiently high-performance
for stabilizing multi-scroll chaotic systems. To solve this
problem, we propose an intelligent control design based on
the prediction-based control method and NN system. The
multi-scroll chaotic system (1) is under control input U(t)

as follows:

Ẋ(t) = f (t, X(t)) + U(t). (10)

0 10 20 30 40 50
0

10

20

x
1

0 10 20 30 40 50
−0.5

0

0.5

x
2

0 10 20 30 40 50
−20

0

20

x
3

0 10 20 30 40 50
−0.02

0

0.02

u

Time (s)

0 100 200 300 400 500 600
−20

0

20

x
1

0 100 200 300 400 500 600
−1

0

1

x
2

0 100 200 300 400 500 600
−50

0

50

x
3

0 100 200 300 400 500 600
−0.02

0

0.02

u

Time (s)

(b)(a)

Fig. 8 Stabilizing the NN model of n-scroll Chua’s circuit on a X̄+2 and b X̄−2
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Fig. 9 Stabilizing the NN model of the n-scroll Chua’s circuit on a X̄+3 and b X̄−3

In the following section, we address the problem of
designing a NN for constructing models that incorporate
a priori knowledge in the form of differential equations
for multi-scroll chaotic systems. The prediction-based con-
troller is then applied to the obtained NN models in order to
track the system trajectory towards the desired equilibrium
point.

4 NN-PbC design

Figure 1 shows the block diagram of the NN-PbC control
scheme. Clearly, the implementation of the NN basis func-
tions depends only on the desired reference information.

In order to stabilize the multi-scroll chaotic system effec-
tively, we propose an intelligent prediction-based controller.
We define the control input U(t) as follows:

U(t) = −f̂ (t, X(t)) + up(t), (11)

where up(t) is the prediction-based control law given in (8)
and f̂ (t, X(t)) is the adaptive NN system such that

f̂ (t, X(t)) = ŴT ϕ(X), (12)

where Ŵ is the estimated value of weight vector W.

Substituting (5) and (11) into (10) gives

Ẋ(t) = −ĀX(t) + WT ϕ(X) − ŴT ϕ(X) + ε (X)

= −ĀX(t) + W̃T ϕ(X) + ε (X) (13)
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Fig. 10 Stabilizing the NN model of the n-scroll Chua’s circuit on a X̄+4 and b X̄−4
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Fig. 11 Stabilizing the NN model of the n-scroll Chua’s circuit on a X̄+5 and b X̄−5

where W̃ = W − Ŵ represents the weight approximation
error.

Theorem 1 Let the control action be provided by the
prediction-based controller (8). The adaptation law of the
NN weight is given by

˙̂
W = F

(
ϕ (X) XT − γ ‖X‖ Ŵ

)
, (14)

where F is a positive definite matrix and γ is a positive
constant. The stability of the closed-loop system (13) can
then be guaranteed.

Proof Choose the Lyapunov function as follows:

V (v) = 1

2
XT (t)X(t) + 1

2
tr(W̃ T F−1W̃ ) (15)

The time derivative of V is given by

V̇ = XT (t)Ẋ(t) + tr(W̃ T F−1 ˙̃
W)

= XT (t)Ẋ(t) − tr(W̃ T F−1 ˙̂
W). (16)

Applying (13) and (14) to (16), we get

V̇ = −XT ĀX + XT W̃T ϕ (X) + XT ε (X)

−tr
(
W̃T ϕ (X) XT − γ ‖X‖ Ŵ

)
(17)
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Fig. 12 Stabilizing the NN model of the n-scroll Chua’s circuit on a X̄+6 and b X̄−6
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Fig. 13 Stabilizing the NN model of the n-scroll Chua’s circuit on a X̄+7 and b X̄−7

Because αT β = tr
(
βαT

)
, we have

XT W̃T ϕ (X) = tr
(
W̃T ϕ (X) XT

)
(18)

which, substituted in (17) yields

V̇ = −XT ĀX + XT ε (X) + γ ‖X‖ tr
(
W̃T Ŵ

)
(19)

Using the Frobenius norm ‖·‖F , we obtain

tr
(
W̃T Ŵ

)
= tr

[
W̃T

(
W − W̃

)]
=

〈
W̃ ,W

〉

F
−

∥
∥
∥W̃

∥
∥
∥

2

F

=
∥
∥
∥W̃

∥
∥
∥

F
‖W‖F −

∥
∥
∥W̃

∥
∥
∥

2

F
(20)

According to assumption A1, we have
∥
∥
∥W̃

∥
∥
∥

F
‖W‖F −

∥
∥
∥W̃

∥
∥
∥

2

F
≤

∥
∥
∥W̃

∥
∥
∥

F
WM −

∥
∥
∥W̃

∥
∥
∥

2

F
(21)

Completing the squares yields

∥
∥
∥W̃

∥
∥
∥

F
WM −

∥
∥
∥W̃

∥
∥
∥

2

F
= −

(∥
∥
∥W̃

∥
∥
∥

2

F
− 1

2WM

)2

+ 1

4
W 2

M (22)

Rewriting (19), we obtain

V̇ ≤ − ‖X‖
{

λmin(Ā) ‖X‖ + α
(∥
∥
∥W̃

∥
∥
∥

F
− 1

2WM

)2

−εM − 1
4αW 2

M

}

(23)

by virtue of assumption A2, where λmin
(
Ā

)
is the smallest

eigenvalue of matrix Ā. Inequality (23) is guaranteed to be
negative as long as either (24) or (25) holds:

‖X‖ ≥
(

εM + 1

4
αW 2

M

)

/λmin
(
Ā

) = 
X (24)

∥
∥
∥W̃

∥
∥
∥

F
≥

√

εM + 1

4
αW 2

M + 1

2
WM = 


W̃
, (25)

where 
X and 

W̃

are convergence regions. According to
Lyapunov stability theory [40], the closed-loop system is
stable. This completes the proof.

Remark 2 Note that there is no clear-cut methodology to
decide parameters, topologies, or the method of training.
The NN architecture is composed of one input layer, one
output layer, and one or two hidden layers. The data set is
extracted from a real system and then divided into three sets:
one set (60 %) is for training (these data are presented to the
network during training, and the network is adjusted accord-
ing to its error), another set (20 %) is for testing (these data
are not used during training and so provide an independent
measure of network performance during and after training),
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Fig. 14 Stabilizing the NN model of a multi-scroll Chen on X̄0
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Fig. 15 Stabilizing the NN model of a multi-scroll Chen on a X̄+1 and b X̄−1

and the final set (20 %) is for validation (these data are used
to measure network generalization and halt training when
generalization stops improving). The process of adjusting
the weights and biases of the NN system is repeated until
one of the termination conditions is met. The training pro-
cess may be terminated if (i) the mean squared error (MSE)
goes below a specific value, i.e., MSE ≤ εM , (ii) the mag-
nitude of the gradient falls below a certain value, or (iii) a
specified number of iterations have been completed.

Remark 3 In addition, note that the approximation error εM

has some influence over the learning process and controlled
loop performance in different ways. During the learning
process, it is a measure of similarity between the real

system and the NN model. Further, when εM is relatively
large, a different NN model is generated from the real sys-
tem, and consequently, its control is useless because the aim
is to control the originally modeled real system. Barron [41]
found that there exist lower bounds of order (1/NA)2/n on
approximation error εM if only the parameters of a linear
combination of basis functions are adjusted. The stability
proof of the proposed NN-PbC shows that the effect of the
bounds on the approximation error can be alleviated by the
judicious choice of gain matrix K.

Remark 4 Note that the stabilization process of multi-scroll
chaotic systems on desired unstable fixed points is a stan-
dard procedure. Likewise, the NN models with additive
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Fig. 16 Stabilizing the NN model of a multi-scroll Chen on a X̄+2 and b X̄−2
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Fig. 17 Stabilizing the NN model of a multi-scroll Chen on a X̄+3 and b X̄−3

feedback control can also be stabilized, where the parame-
ters of the NN-based controller are modified such that they
satisfy the stability requirement.

5 Experiments

In this section, we present the results of our experi-
ments. Here, NN system performance is quantitatively mea-
sured by the mean CPU time needed to train the NN to
approximate each multi-scroll chaotic system, MSE, and
linear regression index [42]. The results are summarized

in Tables 1 and 2. All experiments were run 10 times
to ensure the validity and accuracy of the experimental
measurements.

5.1 NN modeling of an n-scroll Chua’s circuit

In order to model an n-scroll Chua’s circuit, the data set was
extracted from a real system (2). Figure 2 depicts the results
of ANN training and testing with the data points extracted
from a time series of the real system. We can see that the
ANN approximates the n-scroll Chua’s circuit accurately
with a small error norm.
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Fig. 18 Stabilizing the NN model of a multi-scroll Chen on a X̄+4 and b X̄−4
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Fig. 19 Stabilizing the NN model of a multi-scroll Chen on a X̄+5 and b X̄−5

Table 1 and Fig. 3a–l present the results of diverse NN
architectures for 3-D multi-scroll Chua system identifica-
tion. From the results, we can clearly see that the NN with
one hidden layer performs better than the others.

5.2 NN modeling of a multi-scroll Chen system

Figure 4 shows the results of ANN training and testing on
data points extracted from the time series of a real sys-
tem. We can see that the ANN approximates the multi-scroll
Chen system accurately with a small error norm.

Table 2 and Fig. 5a–l present the results of diverse NN
architectures for 3-D multi-scroll Chen system identifica-
tion. From the results, we can clearly observe that the NN
with one hidden layer performs better than the others.

6 Simulation results

In this section, we present results for stabilizing the obtained
NN models of the two multi-scroll chaotic systems.

6.1 Stabilization of the n-scroll Chua NN model

The intelligent prediction-based adaptive NN control law
was constructed in the form of (8) and (14) with gains
F = 10I3×3 and γ = 2. The initial states were set to
X(0) = (0.1, 0.1, 0.1). For K = diag(−1.5, 0, 0) and dif-
ferent time values, the ANN model of the n-scroll Chua’s
circuit converges towards unstable equilibrium points X̄0,
X̄±2, X̄±4, and X̄±6. For K = diag(−0.8, 0, 0), the con-
trolled system states converges towards equilibrium points
X̄±1, X̄±3, X̄±5, and X̄±7. The simulation results are shown

in Figs. 6, 7, 8, 9, 10, 11, 12 and 13. Obviously, satisfac-
tory tracking performance can be guaranteed, as the system
states converges towards the desired equilibrium point with
a small applied force.

6.2 Stabilization process of the multi-scroll Chen NN
model

The intelligent prediction-based adaptive NN control law
was designed in the form of (8) and (14) with gains F =
10I3×3 and γ = 2. The initial states were set as X(0) =
(−3, 2, 20). For K = diag(0, −1.09, 0) and different time
values, the ANN model of the multi-scroll Chen system con-
verged towards the unstable equilibrium points X̄0, X̄±2,
and X̄±4. For K = diag(0, −0.97, 0), the controlled system
states converged towards the equilibrium points X̄±1, X̄±3,
and X̄±5. The simulation results are shown in Figs. 14, 15,
16, 17, 18 and 19. Consequently, satisfactory performance is
achieved and the effects caused by the ANN modeling have
been diminished.

7 Conclusion

A prediction-based tracking control design was proposed
and solved for a class of multi-scroll chaotic systems. An
NN system was employed to approximate the behaviors of
multi-scroll chaotic dynamics that include plant uncertainty
and unmodeled dynamics. Consequently, a prediction-based
adaptive NN controller called NN-PbC was developed such
that all the states of the closed-loop system converge
towards the desired equilibrium point and the control input
is as small as possible. The proposed control method is
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an optimal control strategy since future control inputs and
future system responses are predicted using a NN sys-
tem model and optimized at regular intervals with respect
to a performance index. The salient feature of the NN-
PbC design is that the control objective is obtained with
nonlinearities in the multi-scroll chaotic system that are
completely unknown. The proposed neural-adaptive learn-
ing shows both robustness and adaptation to changing sys-
tem dynamics. To this end, a control signal is incorporated
into the adaptive-learning scheme such that the obtained
controlled system converges towards the desired unstable
equilibrium point. Therefore, for practical applications, the
intelligent control scheme developed here can be employed
to handle a broader class of multi-directional multi-scroll
systems in the presence of high-degree time-varying uncer-
tainties. Finally, from the simulation results for various
situations, it can be concluded that the proposed design
achieves the desired results.
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