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Abstract In probabilistic planning problems which are usu-
ally modeled as Markov Decision Processes (MDPs), it is
often difficult, or impossible, to obtain an accurate estimate
of the state transition probabilities. This limitation can be
overcome by modeling these problems as Markov Decision
Processes with imprecise probabilities (MDP-IPs). Robust
LAO* and Robust LRTDP are efficient algorithms for solv-
ing a special class of MDP-IPs where the probabilities lie in
a given interval, known as Bounded-Parameter Stochastic-
Shortest Path MDP (BSSP-MDP). However, they do not
make clear what assumptions must be made to find a robust
solution (the best policy under the worst model). In this
paper, we propose a new efficient algorithm for BSSP-
MDPs, called Robust ILAO* which has a better perfor-
mance than Robust LAO* and Robust LRTDP, considered
the-state-of-the art of robust probabilistic planning. We also
define the assumptions required to ensure a robust solu-
tion and prove that Robust ILAO* algorithm converges to
optimal values if the initial value of all states is admissible.
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1 Introduction

Markov Decision Process (MDP) is a mathematical model
for sequential decision-making. An MDP models the inter-
action between an agent and its environment (fully observ-
able): the agent chooses an action that takes him to a next
state according with a probability distribution [19]. This can
be repeated for a horizon of n steps.

MDPs model a wide range of problems such as: (i) med-
ical diagnosis and treatment of diseases [18]; (ii) robot
navigation with probabilistic sensor models; and (iii) supply
chain management with uncertainty demand [10].

MDPs problems can have a finite, infinite or indefi-
nite horizon. In the particular case of problems with an
indefinite horizon, called Stochastic Shortest-Path Markov
Decision Processes (SSP-MDPs), the objective is to reach
a goal state with the minimum expected accumulated
action cost. In general, probabilistic planning problems are
modeled as SSP-MDPs, which are MDPs under special
assumptions.

Classical dynamic programming algorithms such as
value iteration and policy iteration [19], can be used to
solve SSP-MDPs; however, since these algorithms evaluate
the whole set of states, they are inefficient [11]. One way
to overcome this kind of inefficiency is to evaluate only
a subset of states that are relevant to the planning prob-
lem. Real-Time Dynamic Programming (RTDP) [1] and
LAO*[10] were proposed to solve SSP-MDPs when the ini-
tial state s0 is known, so they focus only on states that are
reachable from s0, which means that only a subset of all
states is evaluated.
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Another difficulty encountered when using SSP-MDPs
for probabilistic planning is that in real world applications
it is difficult, or impossible, to obtain exact probabilities. In
this case, it is necessary to deal with imprecise probabilities
and coming up with a robust solution, i.e., the best decision
for the worst-case scenario.

Example 1 [15] In a traffic-control problem at an intersec-
tion, it is difficult to estimate the ”turn probabilities” for
each traffic lane when drivers have the choice of going
straight on or making a turn. These lane-turning probabil-
ities may change during the day or throughout the year,
depending on the volume of traffic at other intersections,
and during holidays and special events. It is also difficult
to obtain an accurate estimate of ”arrival probabilities” at
all hours of the day. In general, it is impossible to accu-
rately model all of these complex dependencies. In this
case, the ideal situation would be to have a traffic con-
trol policy optimized over a range of probabilities so that
it can be robust to inherent non-stationarity turn and arrival
probabilities.

Example 2 [17] In an automated navigation system, the
probabilities of reaching different locations after a move-
ment may change depending on environmental factors (such
as weather and road conditions), and this can make the nav-
igation more difficult and subject to failure. It is hard to
model all these changes accurately since they can include
many external dependencies. In view of this, it would be
better to have a robust policy that is optimized for a range
of feasible probabilities.

Example 3 [17] In the field of genetics, a genetic regulatory
network and a range of activities (therapeutic interventions)
can be modelled as an MDP [2, 8, 22]. This procedure
should prevent the network from moving into undesirable
states associated with diseases. However, modelling the
exact MDP transition probabilities may not be possible
when there are few samples or when exogenous events
occur. In this case, it would be better to implement a robust
policy for therapeutic interventions.

These three examples can be modeled as Markov Deci-
sion Processes with imprecise probabilities (MDP-IPs) [5,
14–16], a general class of MDPs, where the transition func-
tion is parameterized and subject to a set of constraints.
When these constraints take the form of intervals, there is
a special class of MDP-IP, called Bounded-Parameter MDP
(BMDP) [21]. A BMDP with an indefinite horizon is a
Bounded-Parameter Stochastic-Shortest Path MDP (BSSP-
MDP). Two efficient algorithms for solving BSSP-MDP are
Robust LAO* and Robust LRTDP. However, they do not
make clear what assumptions must be made in order to find

a robust solution, i.e., searching for the best policy under the
worst model.

In this paper, we propose a new efficient algorithm for
BSSP-MDPs, called Robust ILAO* that has a better per-
formance when compared to Robust LAO* and Robust
LRTDP, considered the state-of-the-art of robust probabilis-
tic planning. We also define the assumptions that must be
made to guarantee a robust solution and prove that the
Robust ILAO* algorithm converges to optimal values if the
initial value of all the states is admissible.

2 Background

In this section, we review the basic concepts of SSP-MDPs
and BSSP-MDPs including the assumptions that these pro-
cesses must satisfy to ensure that an optimal policy can
exist. We also describe previously proposed algorithms to
solve BSSP-MDPs which are as follows: Robust Value Iter-
ation [25], Robust LRTDP [20] and Robust LAO* [24]. In
addition, we demonstrate the Robust (I)LAO* convergence
under the BSSP-MDP assumptions.

2.1 Stochastic shortest-path problem

A Stochastic Shortest-PathMarkov Decision Problem (SSP-
MDP) [7] can be defined by the tuple 〈S, s0, Sg, A, p, c〉,
where:

– S is a finite set of states;
– s0 ∈ S is the initial state;
– Sg ⊆ S is a set of goal states;
– A is a finite set of actions and A(s) ⊆ A denotes the set

of actions applicable in state s;
– p(s′|s, a) is the transition function that represents the

probability of reaching the state s′ when action a is
applied in state s. Furthermore, any action applicable
in a goal state must cause a transition to itself, i.e.,
p(s|s, a) = 1, ∀s ∈ Sg, ∀a ∈ A(s); and

– c(s, a) is a positive cost function that maps each state s

and action a ∈ A(s) to a real number.

An SSP-MDP has an indefinite horizon, i.e., the number
of actions carried out by the agent to reach a goal state is
finite and unknown. The objective of an SSP-MDP problem
is to reach a goal state with the minimum expected accumu-
lated costs. The solution for SSP-MDP is represented by a
mapping from states to actions, π : S → A, called a policy.
A stationary policy π is called proper if for every state, π

leads to a goal state with probability 1 (a policy that is not
proper is improper).

The following assumptions are made for SSP-MDP:

Assumption 1 There exists at least one proper policy.
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Assumption 2 Every improper policy has an infinite
expected cost in all the states that cannot reach the goal
state with probability 1.

The value of a policy π , known as evaluation function
f π , is defined as:

f π (s) =
⎧
⎨

⎩

0 if s is a goal state,
c(s, π(s)) +

∑

s′∈S

p(s′|s, π(s))f π (s′) otherwise. (1)

Finding an optimal solution means finding an optimal
policy π∗ such that f ∗ = minπ f π , which satisfies the
Bellman optimality equation [7]:

f ∗(s) =
⎧
⎨

⎩

0 if s is a goal state,
min

a∈A(s)
[c(s, a) +

∑

s′∈S

p(s′|s, a)f ∗(s′)] otherwise.

(2)

The classical synchronous dynamic algorithm for solv-
ing SSP-MDPs, named Value Iteration, finds the optimal
or ε-optimal evaluation function by iteratively performing
backups and improving f 0 (an initial evaluation function)
using the following equation:

f i+1(s) := min
a∈A(s)

[c(s, a) +
∑

s′∈S

p(s′|s, a)f i(s′)], (3)

where i is the ith iteration. These backups are performed
for all states s ∈ S at each iteration. Value Iteration stops
when the current error is less than ε. Finally, the ε-optimal
policy can be extracted by:

π(s) := arg min
a∈A(s)

[c(s, a) +
∑

s′∈S

p(s′|s, a)f (s′)],∀s ∈ S.

(4)

Asynchronous dynamic algorithms only perform updates
for a subset of S at each iteration. Examples of asyn-
chronous dynamic programming algorithms for solving
SSP-MDPs are: RTDP [1], LRTDP [4], BRTDP [13] and
Bayesian RTDP [23]. RTDP is a heuristic search algorithm
that runs simulations from the initial state until it reaches the
goal state [4]. LRTDP [4], BRTDP [13] and Bayesian RTDP
[23] are variants of RTDP. LAO* [10] is also a heuristic
search algorithm that searches on an explicit graph, but the
computation involves the states that are reachable following
the best current solution starting from the initial state [11].

2.2 Bounded-parameter Markov decision process

A Bounded-Parameter SSP-MDP (BSSP-MDP) is an exten-
sion of an SSP-MDP, where S, s0, Sg , A and c are the
same as SSP-MDPs, but the transition probability func-
tion is defined over closed intervals of real numbers, i.e.

P(s′|s, a) = [l, u] with l, u ∈ R, where l stands for the
lower bound of P and u stands for the upper bound. There
are three reasons for adopting this approach: (i) to represent
uncertainty in the model [3, 9, 21]; (ii) to model the occur-
rence of unpredictable events [26]; and (iii) to allow similar
states of an MDP to be aggregated into a single aggregate
state [21]. Three conditions must be satisfied to ensure that
P only allows well-formed functions [21]:

i. The interval must be in the range 0 ≤ l ≤ u ≤ 1.
ii. The sum of the lower bounds of P over all the next s ′

states for the pair (s, a) must be less than, or equal to,
1:
∑

s′∈S

P lower (s′|s, a) ≤ 1, ∀s ∈ S,∀a ∈ A, (5)

where P lower is the transition function P which only
has lower bound values.

iii. The sum of the upper bounds of P over all the next s′
states for the pair (s, a) must be greater than, or equal
to, 1:
∑

s′∈S

P upper (s′|s, a) ≥ 1, ∀s ∈ S,∀a ∈ A, (6)

where P upper is the transition function P which only
has upper bound values.

There are several optimization criteria for defining the
value of a policy in a BSSP-MDP. In this work, our aim was
to find the best solution in the worst-case scenario, (also
known as a robust solution). Under this criterion, the agent
(the minimizer) selects the actions that minimize its future
expected cost by assuming that the adversarial agent (the
maximizer) will choose the probability that maximizes the
agents future expected cost.

As for SSP-MDPs, there are special assumptions that
must be satisfied by BSSP-MDPs to ensure that an opti-
mal policy can exist. Since BSSP-MDP is a subclass of SSP
MDP-IP [17], the following assumptions for BSSP-MDPs
must be made:

Assumption 3 There is at least one proper policy for the
minimizer agent rooted at s0, i.e. a policy that leads to a goal
state with probability 1 for any possible initial state and for
any possible probability chosen by the maximizer.

Assumption 4 Any arbitrary policy π for the minimizer
agent and any probability that the maximizer chooses which
does not lead to the goal with probability 1, must have cost
equal to ∞.

Theorem 1 Given a BSSP-MDP that satisfies Assumptions
1 and 2, there is at least one stationary optimal policy with
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a value function that is the solution of the Bellman equation,
given by:

f ∗(s) = min
a∈A(s)

max
p∈P

[c(s, a) +
∑

s′∈S

p(s′|s, a)f ∗(s′)], (7)

where p is a real number in the interval of P .

The proof of this theorem follows from the proof of the
same theorem for SSP-MDP-IP (which is based on SSP
Games[25]), since BSSP-MDP is a sub class of SSP-MDP-
IP [17].

An optimization solver can be used to find the exact prob-
ability p in the maximization step in Equation 7, (as is used
by SSP MDP-IPs algorithms [17]). Givan [21] proposed a
more efficient optimal greedy algorithm, calledWorstModel
(Algorithm 1) [21]. Given a pair (s, a), this algorithm sorts
all the reachable states s′ in decreasing order of their cur-
rent evaluation function f i (Algorithm 1, Line 2). Then, for
each state s′ the probabilities are [21]:

p(s′
i ) =

⎧
⎨

⎩

P
upper
i if i < r,

1 − (
∑r−1

j=1 P
upper
j + ∑k

j=r+1 P lower
j ) if i = r,

P lower
i if i > r,

(8)

where k is the total number of states s′ and r is the first index
that satisfies the following equation:

r∑

i=1

P
upper
i +

k∑

i=r+1

P lower
i ≥ 1. (9)

The probabilities on Equation 8 are defined, in Algorithm 1,
Lines 7, 11 and 13 respectively.

Robust Value Iteration [25], Robust LRTDP [20] and
Robust LAO* [24] are algorithms that call Algorithm 1 to
find a robust ε-optimal solution for BSSP-MDPs, which are
briefly described in the next sections.

2.2.1 Robust value iteration

The Robust Value Iteration algorithm [25] iteratively
improves an arbitrary initial evaluation function by perform-
ing backups in the form:

f i+1(s) = min
a∈A(s)

max
p∈P

[c(s, a) +
∑

s′∈S

p(s′|s, a)f i(s′)]. (10)

In Equation 10, the maximizer chooses a probability (p ∈
P) by calling Algorithm 1 for each pair (s, a).

2.2.2 Robust LRTDP

The Robust LRTDP algorithm [20] is a sample-based algo-
rithm that performs simulations or trials, each one starting
in the initial state s0 and ending in a goal state. Each state
visited in a simulation has the evaluation function updated
considering the worst model, by calling Algorithm 1. Sim-
ulations are executed until the initial state s0 has converged.
This happens when all the states that are reachable through
the greedy policy from s0 have their evaluation function
changed by less than ε.

2.2.3 Robust LAO*

Robust LAO* [24] is a heuristic search algorithm that finds
an optimal policy without evaluating all the states. It exe-
cutes three main steps: (i) expansion; (ii) revision; and (iii)
convergence test. The idea of Robust LAO* is to find a path
from the initial state s0 to a goal state throughout expanding
reachable states, according with the current greedy policy, in
an explicit graph G′. This is the expansion step. Following
this, it updates the value function f (s) of each state on the
best partial solution graph. This is the cost revision step. The
evaluation function is updated by executing Robust Value
Iteration (or Robust Policy Iteration) for the expanded state
s and for all its ancestors (states that reach s by following
the current greedy policy). When there are no more states
on the fringe of the best solution graph, the convergence test
step is performed.

The convergence proof of Robust LAO* follows from
the convergence proof of LAO* [10] for SSP-MDPs. How-
ever, it should be taken into account that there are imprecise
probabilities.
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Proposition 1 If the initial evaluation function f 0 used in
the expansion step is admissible, the admissibility of the
evaluation function is maintained during the execution of
the Robust LAO*, i.e., if f 0(s) ≤ f ∗(s), ∀s ∈ S then
f (s) ≤ f ∗(s), ∀s ∈ S at every point in the algorithm.

Proof We will prove by induction that f t (s) ≤ f ∗(s), ∀s ∈
G at any time t , where G is the implicit graph, i.e.,
the graph specified by the initial state and the transition
function.

Base Case: For t = 0, f 0(s) ≤ f ∗(s), ∀s ∈ G is true
owing to the admissibility of the given heuristic evaluation
function.

Induction Step: By the induction hypothesis at some
time t in the algorithm, f t (s) ≤ f ∗(s), ∀s ∈ G, then if a
backup is performed for some state s,

f t+1(s) = min
a∈A(s)

[c(s, a) + max
p∈P

(
∑

s′∈S

p(s′|s, a)f t (s′))]

≤ min
a∈A(s)

[c(s, a) + max
p∈P

(
∑

s′∈S

p(s′|s, a)f ∗(s′))]

= f ∗(s),
(11)

i.e., f t+1(s) ≤ f ∗(s), ∀s ∈ G at any time t .

Theorem 2 The evaluation function f (s) converges within
ε of f ∗(s) for every state s of the best solution graph, after
a finite number of iterations of Robust LAO* if the heuristic
evaluation function f 0 used in the expansion step is admis-
sible and a Robust Value Iteration is used in the cost revision
step.

Proof This proof is similar to LAO* convergence proof
[10]. Since graph G is finite, the expansion of the explicit
graph G′ must eventually stop looking for a solution graph.
Additionally, since Robust Value Iteration is applied into
the solution graph, f (s) must also converge within ε of
f ∗(s) for every state s of the best solution graph, after a
finite number of iterations. This is a result of the proof of
convergence of the Robust Value Iteration algorithm [25].
Note that the proof of convergence of Robust Value Iteration
given for sequential SSP games, is also valid for BSSP-
MDP, because BSSP-MDPs can be seen as a particular case
of sequential SSP games [17].

3 Robust ILAO*

The main drawback of Robust LAO* is the fact that many
states are evaluated more often than necessary. In Robust

ILAO* two key improvements have been made to restrict
the number of times that states are evaluated (similar to
what has been proposed for MDPs [10]). First, we expand
all the states that are on the fringe of the best partial solu-
tion graph. Second, we revised the estimated cost of the
expanded states and its ancestors only once (i.e., with-
out calling the Robust Value Iteration algorithm at this
step).

Robust ILAO* (Algorithm 2) merges the cost revision
step with the expansion step and can be summarized in two
new main steps described as follows:

i. DepthFirstSearch (Algorithm 3) (called in Line 6 of
Algorithm 2) performs both the expansion and the cost
revision step. It expands the best partial solution graph,
updates the evaluation function and marks the best
actions. A depth-first search is carried out in the best
solution graph (Algorithm 3, Line 4-6) and some states
are added to the explicit graph (Algorithm 3, Line 8).
These states are all the successor states of a leaf state
that is not a goal state (also called a tip state). At the
end of each depth-first search, the evaluation function
is updated (Algorithm 3, Line 10) and the best action
is marked (Algorithm 3, Line 11) for each visited
state.

ii. A convergence step is performed by calling Robust
Value Iteration (Algorithm 4) in Line 9 of Algorithm
2. Algorithm 4 updates the evaluation function of all
the states that belong to the best solution graph. It
also makes two convergence tests: (a) if the maxi-
mum error falls below a given ε (Algorithm 4, Line
4), this means the ε-optimal solution has been found;
and (b) if the best solution graph has changed so that
it has an unexpanded leaf state (Algorithm 4, Line 10),
this means Robust ILAO* has not been converged yet
and both steps of Robust ILAO* must be executed
again.
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It is worth noting that the WorstModel method is called
every time that Q(s, a) is computed (Algorithm 5, Line
2) and the getSuccessors method must consider s′ as a
successor of s by action a if P(s′|s, a) = [0, 0].
Example 4 [10] In the simple example showed in Fig. 1(a),
a robot walks in a grid 3 × 3 and the states are the cells,
which are labeled from 1 to 8. The agent starts in the initial
state 1 and has to find a path to reach the goal state 8. In
any state, the agent can choose among one of the actions,
go up (U) , go down (D), go left (L) and go right (R) , each
of which can reach its desired effect (i.e., up, down, left and
right, respectively) with a probability interval [0.5, 0.7];
otherwise the agent remains in the same state with a proba-
bility interval [0.3, 0.5]. If the agent hits a wall, he will also
remain in the same position. Whenever the agent chooses an
action in a nongoal state, he must pay a cost of 1 unit for
actions D, L and R and a cost of 0.5 for action U.

Fig. 1 (a) The grid where the agent starts in the initial state 1 and has
to find a path to reach the goal state 8 (Example 4); (b) through (f)
are the steps that Robust ILAO* performs to solve this problem. Each
node represents an state and hyper-edges correspond to actions and

transitions. The label and the estimated cost of each state are shown
in the upper and lower half of the node, respectively. Solid lines show
the best partial solution graph, and dashed lines show the rest of the
explicit graph created.
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Figure 1(b) through (f) shows the steps that Robust
ILAO* performs to solve Example 4. In this example, it is
used the length of a deterministic path from the state s to
the goal state 8 as an admissible heuristic for s. Fig. 1(b)
shows the explicit graph that consists of the start state 1 with
4 as its heuristic value. Fig. 1(c) shows the result of expand-
ing the start state 1. The successor state 2 is added to the
explicit graph with 3 as its heuristic value and then the eval-
uation function of state 1 is updated. Finally, the best action
Right (R) for state 1 is marked. Fig. 1(d) through (f) shows
the result of expanding state 2, state 4 and state 7, respec-
tively. Each state is the only on the fringe of the best partial
solution graph, respectively.

After expanding state 7 ILAO* terminates because the
convergence test returns true, i.e., the best solution graph has
not changed and the maximum error falls below ε = 10−16.

4 Experiments

The performance of Robust ILAO*, Robust LAO* [24],
Robust LRTDP [20] and Robust Value Iteration [25] algo-
rithms were compared by carrying out some experiments
with modified versions of Grid World [10] and Race Track
[1] benchmark planning domains, as described in Sec-
tions 4.1 and 4.2.

4.1 Grid world domain

In the Grid World domain [10], a robot walks in a grid
n × m, where n is the number of rows and m is the num-
ber of columns. The agent starts in the initial state (1, 1)
and has to find a path to reach the goal state (m, n). In any
state, the agent can choose among one of the actions, go
up, go down, go left and go right, each of which can reach
its desired effect (i.e., up, down, left and right, respectively)
with a probability interval [0.8, 1]; otherwise the agent ends
up in one of the adjacent cells with a probability interval
[0.05, 0.25]. If the agent hits a wall, he will remain in the
same position. Whenever the agent chooses an action in a
state, he must pay a cost of 0.04 units.

4.2 Race track domain

In the Race Track domain [1], there is a race car on a
track represented by a grid n × m, where n is the number
of rows and m is the number of columns. The car begins
on the starting line and stops at the goal line. The state is
determined by the position of the car (x, y) and its speed
�v = 〈vx, vy〉 in the horizontal and vertical axis, respectively.
In any state, the car can try to alter its speed by adding the
vector �u = 〈ux, uy〉, where ux and uy are both in the set
{−1, 0, 1}. However, the resulting velocity �v is given by:

�v =
⎧
⎨

⎩

〈0, 0〉 if the car hits a wall
�v with probability [0.1, 0.3]
�v + �u with probability [0.7, 1.0]

(12)

Moreover, if the car hits a wall, it remains at the same posi-
tion. Whenever the car tries to change its velocity in a state,
a cost of 1.0 unit must be paid.

4.3 Convergence time

In Fig. 2, the convergence time of the 4 algorithms is
compared for 10 instances of the Grid World problem
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Fig. 2 Convergence time of
Robust LAO*, Robust ILAO*,
Robust LRTDP and Robust
Value Iteration algorithms for 10
Grid World problems. Note that
the scale of the time is log10.

(20 × 20 to 200 × 200 size). Note that in this domain
Robust ILAO* was up to 15.8 times faster than Robust
LAO*. In fact, Robust LAO* converges slower than Robust
Value Iteration for instances larger than 40x40. This is
because Robust LAO* calls a Robust Value Iteration algo-
rithm after each expanded state, performing too many robust
updates (Equation 10) which are very costly. Fig. 2 also
shows that Robust ILAO* was up to 4.7 times faster
than Robust LRTDP (considered the state-of-the art for
BSSP-MDPs).

In Fig. 3, the convergence time of the 4 algorithms
is compared for 6 instances of the Race Track domain

(problems of 1.2 ×103 to 4 × 105 states). It should
also be noted that in this domain, Robust ILAO* was
up to 4 times faster than Robust LRTDP and up to 22
times faster than Robust LAO*. The Race Track is a
good domain to show the efficiency of heuristic algo-
rithms that do not evaluate the entire state space. This
domain has a large number of states but only a fraction
of these will be part of an optimal policy. One reason
why Robust ILAO* outperforms Robust LRTDP is that a
sizable proportion of states in the optimal policy have low-
probability and thus they are slowly evaluated by Robust
LRTDP.

Fig. 3 Convergence time of
Robust LAO*, Robust ILAO*,
Robust LRTDP and Robust
Value Iteration algorithms for
six Race Track problems. Note
that the scale of the time is log10.
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Fig. 4 A comparison of the
convergence behavior of Robust
LAO*, Robust ILAO*, Robust
LRTDP and Robust Value
Iteration on the Race Track
problem with 4 × 105 states.

4.4 Convergence behavior

In Fig. 4, the convergence behavior of the 4 algorithms
is compared using the largest instance of the Race Track
problem. It should be noted that, although Robust LRTDP
improves the solution more quickly, Robust ILAO* con-
verges to an ε-optimal solution earlier , after 12 seconds
(small vertical line), whereas Robust LRTDP continues to
run for more 40 seconds until the convergence. The con-
vergence behavior of Robust ILAO* and Robust LRTDP
suggests that a combined strategy that focuses search in
high-probability paths first, and low-probability paths when

the solution is near to convergence, may result in a better
overall convergence time.

In the first three experiments (Fig. 2, 3 and 4), ε was set
to 10−3 for all instances and algorithms.

4.5 Convergence time versus precision (ε values)

In Fig. 5, the convergence time of the algorithms for the
largest instance of the Race Track problem were compared,
varying the value of ε. It was found that Robust ILAO* is
faster when ε gets smaller. In fact, when ε = 10−8, Robust
ILAO* was 10 times faster than Robust LRTDP.

Fig. 5 Convergence time of
Robust LAO*, Robust ILAO*,
Robust LRTDP and Robust
Value Iteration algorithms for
different ε values for the race
track problem with 4 × 105

states.
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5 Conclusion

In this paper, we have sought to provide a complete defini-
tion of BSSP-MDP problems, which includes the assump-
tions that must be made to guarantee the existence of a
robust stationary optimal policy. Although other works have
proposed algorithms for BSSP-MDPs, they can fail without
these assumptions.

We also propose an efficient algorithm to solve these
problems considering the worst-case model, called Robust
ILAO*. We have been able to prove the ε-convergence of
the Robust LAO* algorithm when the initial value of all
the states is admissible. In addition, it has been shown in
empirical terms that Robust ILAO* has a good performance for
Grid World and Race Track benchmark domains when com-
pared with the state-of-the-art Robust LRTDP algorithm.

It should be pointed out that attempts made in previ-
ous work to develop a robust version of LAO* [24] have
failed to prove convergence or to compare the Robust LAO*
with Robust LRTDP [20]. In fact, Robust LAO* showed the
worst performance in the analyzed domains, and was even
worse than the Robust Value Iteration in most of the instances.

In a future work we intend to analyze the convergence
behavior of a hybrid algorithm that first applies the Robust
LRTDP strategy and, then employs Robust ILAO* algo-
rithm when near convergence. This will combine the best
features of each algorithm.
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