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Abstract For solving a class of �2-�0- regularized prob-
lems we convexify the nonconvex �2-�0 term with the help
of its biconjugate function. The resulting convex program
is explicitly given which possesses a very simple struc-
ture and can be handled by convex optimization tools and
standard softwares. Furthermore, to exploit simultaneously
the advantage of convex and nonconvex approximation
approaches, we propose a two phases algorithm in which
the convex relaxation is used for the first phase and in the
second phase an efficient DCA (Difference of Convex func-
tions Algorithm) based algorithm is performed from the
solution given by Phase 1. Applications in the context of
feature selection in support vector machine learning are pre-
sented with experiments on several synthetic and real-world
datasets. Comparative numerical results with standard algo-
rithms show the efficiency the potential of the proposed
approaches.
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1 Introduction

Zero-norm, defined as a total number of non-zero elements
in a vector, is an important basic concept for modeling data
sparsity. Resulting optimization problems are nonsmooth
nonconvex programs with many application domains, which
have attracted increasing attention from researchers in
recent years.

Given a vector x ∈ R
n. The support of x, denoted

supp(x) , is the set of the indices of the non-zero compo-
nents of x, say

supp(x) = {i ∈ {1, ..., n} : xi �= 0} ,

and the zero norm of x, denoted �0-norm, is defined as

‖.‖0 := cardinality of supp(x).

Note that although one uses the term ”norm” to design ‖.‖0,
‖.‖0 is not a norm in the mathematical sense. Indeed, for all
x ∈ R

n and λ �= 0, one has ‖λx‖0 = ‖x‖0 , which is not
true for a norm.
Formally, a so called �0-regularized problem takes the form

min
{
φ(x, y) + ρ ‖x‖0 : (x, y) ∈ R

n×R
p

}
, (1)

where the function φ corresponds to a given criterion and
ρ is a positive number, called the regularization parame-
ter, that makes the trade-off between the criterion φ and the
sparsity of x.

In some applications, one wants to control the sparsity of
solutions (for example, in order to limit the number of assets
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to be investigated in portfolio management), the �0-term is
thus put in constraint, and the corresponding optimization
problem is
{
minx,y φ(x, y)

s.t. ‖x‖0 ≤ k, (x, y) ∈ R
n × R

p.
(2)

These are challenging nonconvex programs in machine
learning, image analysis and finance.

In this paper we consider a class of �0-regularized prob-
lems (1) where the function φ is defined by

φ(x, y) := f (x, y) + λ‖x‖22. (3)

Here λ > 0, and f is a loss function which is assumed to be
convex. The �0-regularized problem becomes the so called
�2-�0-regularized problem

min
(x,y)∈Rn×R

p

{
Fλ,ρ(x, y) := f (x, y) + λ‖x‖22 + ρ ‖x‖0

}
.

(4)

If the function φ is strongly convex in the variable x, i.e.,
there is λ > 0 such that the function f (x, y) := φ(x, y) −
λ‖x‖22 is convex in the couple of variables (x, y), then the
�0 -regularized problem (1) can be expressed as the �2-�0-
regularized problem (4) and so the techniques developed in
this paper can be used for the �0-regularized problem in this
case.

Let us mention some important applications in machine
learning related to the model (4).

Feature selection in support vector machine (SVM)
learning Feature selection is one of the fundamental prob-
lems in machine learning. In many applications such as text
classification, web mining, gene expression, micro-array
analysis, combinatorial chemistry, image analysis, etc, data
sets contain a large number of features, many of which are
irrelevant or redundant. Feature selection is often applied to
high-dimensional data, prior to classification learning. The
main goal is to select a subset of features of a given data
set while preserving or improving the discriminative abil-
ity of a classifier. Research on feature-selection methods is
very active in recent years, and an excellent review can be
found in the book by [16]. We will show that the embed-
ded (feature and classifier are simultaneously determined
during the training process) feature selection method for
linear classification in SVM learning is an instance of the
problem (4).

Given a training data {ai, bi}i=1,...,m where each xi ∈ R
n

is labeled by its class bi ∈ {+1, −1}, the goal of SVM
learning is to construct a linear classifier function that dis-
criminates the data points � := {ai}i=1,...,m with respect
to their classes {bi}i=1,...,m. A classical way to obtain this

classifier consists of minimizing the following loss function,
[2, 8],

f (w, γ ) := 1

m

m∑

i=1

max(0, 1 − bi(〈ai, w〉 + γ )), (5)

on w ∈ R
n and γ ∈ R. If (w, γ ) is a solution of this prob-

lem, then the classifier is given by F(x) = sign(〈ai, w〉 +
γ ). Since in many practical applications the data set � is
large, the model based directly on solving (5 ) leads to over-
fit. [8] proposed to take into account the margin, between
the separating hyperplane x �→ wT x+γ and the data points
{ai}i=1,...,m, and to make it maximal as possible. This results
in the classical SVM problem, which is the �2 -regularized
problem

(�2 − SV M) min
(w,γ )∈Rn×R

{
f (w, γ ) + λ‖w‖22

}
.

The regularization parameter λ > 0 makes the trade-off
between the classifier criterion f and the amplitude of the
margin.

The embedded feature selection in SVM involves deter-
mining the separating hyperplane x �→ wT x+γ which uses
as few features as possible, which leads to the following
optimization problem like (4):

(�2 − �0 − SV M) min
(w,γ )∈Rn×R

{
f (w, γ ) + λ ‖w‖22 + ρ ‖w‖0

}
.

(6)

Sparse linear regression Consider a training data set
{bi, ai}mi=1 of m independent and identically distributed
samples, composed of explanatory variables ai ∈ R

n

(inputs) and response variables bi ∈ R (outputs). Let b :=
(bi)i=1,...,m and A := (ai,j )

j=1,...,n
i=1,...,m denote the vector of

outputs and the matrix of inputs respectively. Linear regres-
sion aims to find a relation which can possibly exist between
A and b, in other words, relating b to a function of A and
a model parameter x. Such a model parameter x can be
obtained by solving the optimization problem

min
x

1

m
‖Ax − b‖22 . (7)

In many practical applications simple least squares regres-
sion leads to over-fit. This occurs when the fitted model
has many feature variables with (relatively) large weights
(i.e., xi is large). A classical way to remedy to these curses
is provided by regularization methods, among them the �2
regularization technique, called ridge regression in the sta-
tistical literature [17, 18], is very useful. This technique
leads to the convex quadratic program

min
x∈Rn

{
1

m
‖Ax − b‖22 + λ‖x‖22

}
. (8)
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The sparse linear ridge regression problem aims to find a
sparse solution of the above linear ridge regression model,
it takes the form of ( 4):

min
x∈Rn

{
1

m
‖Ax − b‖22 + λ ‖x‖22 + ρ ‖x‖0

}
. (9)

This problem has many important applications, among them
sparse signal/image recovery and feature selection in classi-
fication.

Sparse fisher linear discriminant analysis Discriminant
analysis captures the relationship between multiple inde-
pendent variables and a categorical dependent variable in
the usual multivariate way, by forming a composite of the
independent variables. Given a set of m independent and
identically distributed samples composed of explanatory
variables ai ∈ R

n and binary response variables bi ∈
{−1, 1}. The idea of Fisher linear discriminant analysis is
to determine a projection of variables onto a straight line
that best separates the two classes. The line is determined
so as to maximize the ratio of the variances of between and
within classes in this projection, i.e., maximize the func-
tion f (ζ ) = 〈ζ,SBζ 〉

〈ζ,SW ζ 〉 , where SB and SW are, respectively,
the between and within classes scatter matrix (which are
symmetric positive semidefinite) given by

SB := (s+ − s−)(s+ − s−)T , SW = S+ + S−,

S+ = ∑m
i=1,bi=+1(ai − s+)(ai − s+)T ,

S− = ∑m
i=1,bi=−1(ai − s−)(ai − s−)T .

Here, for j ∈ {±}, sj is the mean vector of class j , lj is
the number of labeled samples in class j . If ζ is an opti-
mal solution of the problem, then the classifier is given by
F(a) = ζ T a + c, c = −0.5ζ T (s+ + s−).
The sparse Fisher Discriminant model is defined by (ρ > 0
)
{
min(ζ ) ζ T SWζ + ρ ‖ζ‖0
s.t. ζ T (s+ − s−) = b,

(10)

which takes the form of (4) (with the additional constraint
ζ T (s+ − s−) = b which is imposed to avoid multiplicity of
solutions) when SW is a symmetric positive definite matrix.
Indeed, let λmin(SW ) > 0 be the smallest eigenvalue of SW .
For any 0 < λ < λmin(SW ), the matrix SW − λI is positive
definite, and then the function ζ T SWζ − λ ‖ζ‖22 is convex.
The problem (10) can be expressed as
⎧
⎨

⎩

min(ζ ) ζ T SWζ − λ ‖ζ‖22︸ ︷︷ ︸
convex

+λ ‖ζ‖22 + ρ ‖ζ‖0

s.t. ζ T (s+ − s−) = 1.
(11)

During the last two decades, research is very active in
models and methods optimization involving the zero-norm.

Works can be divided into three categories depending on
how to treat the zero-norm: convex approximation, noncon-
vex approximation, and exact reformulation via Difference
of Convex functions (DC) programming.

The best known convex approach is the �1 regulariza-
tion approach proposed in [41] in the context of linear
regression, called LASSO (Least Absolute Shrinkage and
Selection Operator), which consists in replacing the �0 term
‖w‖0 by ‖w‖1, the �1-norm of the vector w. Since its intro-
duction, several works have been developed to study the �1
-regularization technique, from the theoretical point of view
to efficient computational methods (see [17], Chapter 18).
The LASSO penalty has been shown to be, in certain cases,
inconsistent for variable selection and biased [46]. Hence,
the Adaptive LASSO is introduced in [46] in which adap-
tive weights are used for penalizing different coefficients in
the �1 -penalty.

In parallel, nonconvex approximation approaches (the �0
term ‖w‖0 is approximated by a nonconvex function) were
extensively developed

A variety of sparsity-inducing penalty functions have
been proposed to approximate the �0 term: exponential con-
cave function [3], �p-norm with 0 < p < 1 [11] and
p < 0 [37], Smoothly Clipped Absolute Deviation (SCAD)
[10], Logarithmic function [43], Capped-�1 [33]. The shared
properties of these approaches are that the nonconvexreg-
ularization used for approximating the �0 norm are DC
functions, and the resulting optimization problems are DC
programs.

Using these approximations, several algorithms have
been developed for resulting optimization problems, most
of them are in the context of feature selection in
classification, sparse regressions or more especially for
sparse signal recovery: Successive Linear Approxima-
tion (SLA) algorithm [3], DCA (Difference of Con-
vex functions Algorithm) based algorithms [6, 7, 12,
15, 19, 21, 22, 26, 30–32], Local Linear Approxima-
tion (LLA) [47], Two-stage �1 [45], Adaptive Lasso
[46], reweighted-�1 algorithms [4]), reweighted- �2 algo-
rithms such as Focal Underdetermined System Solver
(FOCUSS) ([36, 37]), Iteratively reweighted least squares
(IRLS) and Local Quadratic Approximation (LQA)
algorithm [10, 47].

Very recently, in a more general framework, Le Thi et all
[24] offered a unifying nonconvex approximation approach,
with solid theoretical tools as well as efficient algorithms
based on DC programming and DCA, to tackle the zero-
norm and sparse optimization. A common DC approx-
imation of the zero-norm including all standard sparse
inducing penalty functions was proposed and four DCA
schemes were developed that cover all standard algorithms
in nonconvex sparse approximation approaches as special
versions.
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In the third category, called the exact reformulation
nonconvex approach, the �0-regularized problem is refor-
mulated as a continuous nonconvex program. The �0-
regularized problem is first equivalently formulated as a
combinatorial optimization problem by using the binary
variables ui = 0 if xi = 0 and ui = 1 if xi �= 0, and then the
last problem is reformulated as a DC program via an exact
penalty technique. Works in this direction were developed
in [19, 21, 40].

Convex regularization approaches involve convex opti-
mization problems for which several standards methods are
available. Nonconvex approaches can produce good spar-
sity, but the resulting optimization problems are still diffi-
cult since they are nonconvex and a local minimum may not
be a global one. The development of new models and algo-
rithms for minimizing the zero-norm is always a challenge
for researchers in optimization and machine learning.

Our contributions Our main contributions are threefold.
First, we investigate a new convex approach for solving the
�2-�0-regularized problem (4). We propose a tight convex
minorant function of Fλ,ρ by convexifying the nonconvex
term λ ‖.‖22 + ρ ‖.‖0 in Fλ,ρ with the help of biconjugate
function technique in nonconvex programming and explic-
itly computing the greatest convex minorant of this term.We
show that the proposed convex relaxation is a special hard-
thresholding operation. Secondly, to exploit simultaneously
the advantage of convex and nonconvex approximation
approaches, we propose a combined convex - nonconvex
regularization approach. In the first phase, the convex relax-
ation is used and in the second phase an efficient DCA
based algorithm is applied on DC approximate problems
from the solution given by Phase 1. Third, as an appli-
cation of our method, we implement it in the context of
feature selection in Support Vector Machine learning. In the
two-phase method, by the convex relaxation, the first phase
performs better than �2 − �1 regularization on classifica-
tion while, with a ”good” approximation of the �0 -norm,
the second phase can produce better sparsity. The proposed
methods are compared with two standard approaches for
(�2-�0-SVM): the convex regularization (�2-�1-SVM) and
the nonconvex approximation (�2-Exp-SVM) studied in
[31]. We also compare these methods with the classical �2-
regularized SVM (�2-SVM). Numerical results, on tested
datasets, show the efficiency of the proposed approaches
and their superiority over the competitive methods.

Besides the main contributions concerning solution
methods, we also study, in a natural way, the link between
optimal solutions of both the resulting convex relaxation
problem and the �2-�0 -regularized problem (4). More pre-
cisely we establish a sufficient condition so that an optimal
solution of the convex relaxation problem solves the orig-
inal problem (4). It turns out that this condition is quite

strong and it does not hold when ρ, the coefficient param-
eter of �0, is quite large (however ρ should not be small
when a sparse solution is desired !) This result motivates
us to investigate a combined convex relaxation - nonconvex
approximation approach. In fact, since the solution obtained
from the convex problem is just an approximate solution to
�2-�0 -regularized problem (4), further refinement for the
solution via DCA is strongly recommended to produce good
sparsity.

The paper is organized as follows. The convex relaxation
technique is developed in Section 2. In the first two subsec-
tions of this section, we introduce a convex lower bound of
the �2-�0 term and describe the resulting convex relaxation
problem of (4). In the next two subsections, we state the link
between this technique and hard-thresholding operation and
sufficient global optimality conditions for the nonconvex
problem (4) while in the last subsection we give a short dis-
cussion about numerical methods for the convex relaxation
problem. The two phase algorithm is discussed in Section 3
which is started by a short presentation of DC programming
and DCA. Section 4 deals with the application of the pro-
posed approaches on feature selection in SVM and, finally,
Section 5 concludes the paper.

Before beginning, let us introduce some notations that
will be used in the paper.

Notations: For a vector x ∈ R
n, its components are xi ,

i = 1, ..., n. The vector e stands for the vector of ones
and 〈x, y〉 := xT y is the standard Euclidean inner product
with the corresponding norm ‖.‖2, while ‖.‖1 the �1 norm.
For a scalar s ∈ R, |s| denotes the absolute value of s,
s+ := max(0, s), s− := max(0, −s). For a vector x ∈ R

n,
|x|, x+ and x− denote the previous operations component-
wise. In the sequel |.|0 is ‖.‖0 in the one-dimensional case.
In convex analysis, let 	0(R

n) be the convex cone of all
convex functions f : R

n → R ∪ {+∞} semicontinu-
ous and proper (i.e. dom f := {x ∈ R

n : f (x) <

+∞} is nonempty) on R
n. For a convex function h, the

subdifferential of h at x0, denoted by ∂h(x0), is defined by

∂h(x0) := {y ∈ R
n : h(x) ≥ h(x0)+ 〈x−x0, y〉, ∀x ∈ R

n}.

For a proper function g admitting an affine minorant on Rn,
its conjugate function g∗ is defined by

g∗(y) := sup
{〈y, x〉 − g(x) : x ∈ R

n
}
, (12)

and its biconjugate is the function g∗∗ := (g∗)∗. Recall
that g∗∗ is the greatest proper convex lower semicontinu-
ous minorant of g on R

n and f ∈ 	0(R
n) if and only if

f = f ∗∗.
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2 A Convex relaxation technique

Let τ :=
√

ρ
λ
and μ := 1

λ
. To simplify the presentation, in

what follows we consider the �2 -�0-regularized problem (4)
in the form

(P μ,τ ) ν := min
(x,y)∈Rn×R

p

{
Fμ,τ (x, y) :=μf (x, y) + ‖x‖22
+τ 2 ‖x‖0

}
. (13)

The �0 term ‖.‖0 in (13) makes the problem nonconvex,
discontinuous, NP-hard and intractable directly in general.
To circumvent these difficulties, we propose to replace the
nonconvex �2-�0 regularized term

‖.‖22 + τ 2 ‖.‖0 (14)

by its convex biconjugate function (its greatest convex lower
semicontinuous minorant on Rn)

(‖.‖22 + τ 2 ‖.‖0)∗∗, (15)

to build the following convex relaxation of (4)

(CR)

{
min Gμ,τ (x, y) :=μf (x, y)+(‖.‖22+τ 2 ‖.‖0)∗∗(x)

s.t. x ∈ R
n, y ∈ R

m.

(16)

As (‖.‖22 + τ 2 ‖.‖0)∗∗ ≤ (‖.‖22 + τ 2 ‖.‖0), we always have
Gμ,τ (x, y) ≤ Fμ,τ (x, y) and the optimal value of (CR) is a
lower bound of ν.

2.1 Computation of (‖.‖22 + τ 2 ‖.‖0)∗∗

Proposition 1 The biconjugate of the �2-�0 regularized
function is computed by

(‖.‖22+τ 2 ‖.‖0)∗∗(x) = ‖x‖22−
∥∥(τe − |x|)+∥∥2

2+τ 2n. (17)

Proof Let ϕ : R → R be the function defined by ϕ(r) :=
r2 + τ 2 |r|0. We have ‖x‖22 + τ 2 ‖x‖0 = ∑n

i=1 ϕ(xi) sepa-
rable and ϕ is nonnegative, finite and lower semicontinuous
on R. According to the well known result on the conjugate
and biconjugate of a separable function [38] we have

(‖.‖22 + τ 2 ‖.‖0)∗∗(x) =
n∑

i=1

ϕ∗∗(xi). (18)

ϕ∗∗ is the upper envelope of all affine minorants of ϕ on R,
i.e., for t ∈ R,

ϕ∗∗(t) = sup {at + b : a ∈ R, b ∈ R, az + b

≤ ϕ(z),∀z ∈ R}
= sup

{
at + b : a ∈ R, b ∈ R, az + b ≤ z2

+τ 2 |z|0 , ∀z ∈ R

}
.

The condition

az + b ≤ z2 + τ 2 |z|0 , ∀z ∈ R

is equivalent to

(b ≤ 0 and az + b ≤ z2 + τ 2, ∀z ∈ R, z �= 0)

which is also equivalent to

(b ≤ 0 and az + b ≤ z2 + τ 2, ∀z ∈ R).

Using the discriminant of the second degree polynomial
z2−az−b+τ 2, the condition az+b ≤ z2+τ 2, ∀z ∈ R can
be rewritten as � := a2 − 4(τ 2 − b) ≤ 0. Then we obtain

ϕ∗∗(r)=sup
{
at+ b : a ∈ R, b ≤ 0, a2− 4(τ 2 − b) ≤ 0

}

= sup
{
at + b : a ∈ R, b ≤ 0, b ≤ 4τ 2−a2

4

}

= sup
{
at + 1

4 min(4τ 2 − a2, 0) : a ∈ R

}

= sup
{
a |t | + 1

4 min(4τ 2 − a2, 0) : a ≥ 0
}

= sup
{
a |t | + 1

4 (4τ
2 − a2) : a ≥ 2τ

}

= sup
{
− 1

4a
2 + a |t | + τ 2 : a ≥ 2τ

}

=
{

t2 + τ if |r| ≥ τ

2τ |t | otherwise

= t2 − [
(τ − |t |)+]2 + τ 2.

Combining this and (18) we get (17).

On Fig. 1, we illustrate the functions ‖.‖22 + τ 2 ‖.‖0,
(‖.‖22 + τ 2 ‖.‖0)∗∗ and the convex approach �2-�1, ‖.‖22 +
τ 2 ‖.‖1, in the one-dimensional case (n = 1).

We are now in a position to give the explicit formulation
of the convex relaxation program (CR) of (13).

a b

c d

Fig. 1 Graph of ϕ in green, ϕ∗∗ in red and the �2-�1 approximation in
blue
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2.2 Convex relaxation formulation of (4)

From (17), the explicit formulation of (CR) can be written
as
{
min μf (x, y) + ‖x‖22 − ∥∥(τe − |x|)+∥∥2

2 + τ 2n

s.t. x ∈ R
n, y ∈ R

p.
(19)

The formulation of (19) can be refined according to the defi-
nition of the function f in order to get an efficient solver for
the resulting convex program. For example, we can express
the term ‖x‖22−∥∥(τe − |x|)+∥∥2

2 as a convex quadratic func-
tion and get another formulation of (19) as shown in (24)
below. This formulation is interesting when the function f

is quadratic or linear, because it becomes a convex quadratic
program for which several efficient solvers are available.

Let K be the closed convex cone Rn+, then its polar cone
Ko := {y ∈ R

n : 〈x, y〉 ≤ 0, ∀x ∈ K} is Rn− and there hold
the following well known properties:

i) For u ∈ R
n, u+ = max(0, u) is the projection of u on

K , i.e. the solution of

min{‖u − x‖2 : x ∈ K}
and −u− = −max(0, −u) is the projection of u on Ko, i.e.
the solution of

min{‖u − x‖2 : x ∈ Ko}

ii)u = u+ − u−, |u| = u+ + u−, 〈u+, u−〉 = 0, and

‖u‖22 = ‖u+‖22 + ‖u−‖22. (20)

Therefore, (19) can be rewritten as

min μf (x, y) +‖x‖22 −‖τe−|x|‖22 +‖(τe −|x|)+−(τe−|x|)‖22 (21)

s.t. x ∈ R
n, y ∈ R

p.

It follows from (20) that the problem (21) is equivalent to

min μf (x, y) + ‖x‖22− ‖τe − |x|‖22 + ‖u− (τe − |x|)‖22
s.t. x ∈ R

n, y ∈ R
p, u ∈ R

n+ (22)

in the sense that (x̄, ȳ) is an optimal solution of (21) iff
(x̄, ȳ, u = [τe − |x̄|]+) is an optimal solution of (22).

The last problem can be written in a simpler form
{
min μf (x, y) + ‖x‖22 + ‖u‖22 + 2 |x|T u − 2τeT u

s.t. (x, y, u) ∈ R
n × R

p × R
n+

which is equivalent to
{
min μf (x, y) + ‖ς‖22 + ‖u‖22 + 2ςT u − 2τeT u

s.t. |x| ≤ ς, (x, ς, y, u) ∈ R
n × R

n × R
p × R

n+
(23)

or again
{
min Gμ,τ (x, y, ς, ϑ) := μf (x, y) + q(ς, u)

s.t. |x| ≤ ς, (x, ς, y, u) ∈ C × R
p × R

n+,
(24)

where

q(ς, u) := ‖ς‖22 + ‖u‖22 + 2ςT u − 2τeT u;
C := {

(x, ς) ∈ R
n × R

n : |x| ≤ ς
}
.

2.3 Link with the hard-threshold operation

Let HTs(.) be defined by

HTs(|θ |) = s2 − (|θ | − s)2I (|θ | < s), (25)

with I (|θ | < s) := 1 if |θ | < s and 0 otherwise.
One can see (19) as an approximated problem of (13) in
which the term ‖x‖0 is replaced by

1

τ 2

n∑

i=1

HTτ (|xi |). (26)

Hence, this convex relaxation is a special hard-threshold
operation. In general, a hard-thresholding operation of �0-
norm involves a nonconvex program for which only local
solutions are guaranteed by iterative methods and there are
some difficulties for setting the threshold parameter s. The
nice effect of our approach (19) resides in the fact that
the resulting program is convex with its explicit threshold
parameter s = τ .

2.4 Optimality conditions: links between the convex
relation (19), the �2-regularized and �2- �0-regularized
problems

Consider the convex relaxation (19) of (P μ,τ ), its optimality
condition can be expressed as follows

(0, 0) ∈ ∂Gμ,τ (x∗, y∗) ⊂ R
n × R

p. (27)

This is equivalent to the following condition: there exists
u ∈ R

n such that

(u, 0)∈μ∂f (x∗, y∗) and
−u ∈ μ∂

[
‖.‖22−

∥∥(τe−|.|)+∥∥2
2

]
(x∗). (28)

Let (x∗, y∗) be an optimal solution of the convex relax-
ation problem (19). It is interesting to study when (x∗, y∗)
becomes an optimal solution to the original problem (P μ,τ ).
Since Gμ,τ (x∗, y∗) ≤ ν ≤ Fμ,τ (x, y) ∀(x, y) ∈ R

n × R
p,

it is clear that if Gμ,τ (x∗, y∗) = Fμ,τ (x∗, y∗), say (‖.‖22 +
τ 2 ‖.‖0)∗∗(x∗) = (‖.‖22 + τ 2 ‖.‖0)(x∗), then (x∗, y∗) is also
an optimal solution to (P μ,τ ). Hence the following useful
results are immediate .

Proposition 2 1) Let (x∗, y∗) be an optimal solution of
(19), i.e., (x∗, y∗) satisfying (28). If

min{∣∣x∗
i

∣∣ : i ∈ supp(x∗)} ≥ τ, (29)
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then (x∗, y∗) is an optimal solution of (P μ,τ ).
2) (0, y∗) is an optimal solution of (19) if and only if there
exists u ∈ [−2τ, 2τ ]n satisfying (u, 0) ∈ ∂f (0, y∗). In this
case, (0, y∗) is also an optimal solution of (P μ,τ ).

Proof 1) is straightforward because the condi-
tion

∣∣x∗
i

∣∣ ≥ τ for all i ∈ supp(x∗) implies that
(‖.‖22 + τ 2 ‖.‖0)∗∗(x∗) = (‖.‖22 + τ 2 ‖.‖0)(x∗) and then
Gμ,τ (x∗, y∗) = Fμ,τ (x∗, y∗) = ν.

2. It is clear that with x∗ = 0, the second condition in
(28) becomes u ∈ [−2τ, 2τ ]n. The proof of the first part
is then complete. The second part comes from the fact that
when x∗ = 0 one has Gμ,τ (x∗, y∗) = Fμ,τ (x∗, y∗).

Now let (xμ,0,∗, yμ,0,∗) be an optimal solution of the �2-
regularized problem (i.e. (13) without the �0 -term)

(P μ,0) min
{
μf (x, y) + ‖x‖22 : (x, y) ∈ R

n × R
p
}

.

The following proposition shows the link between the solu-
tions of �2 -regularized and �2 − �0-regularized problems
and gives another sufficient optimality condition for the
problem (P μ,τ ).

Proposition 3 (xμ,0,∗, yμ,0,∗) is an optimal solution to
(P μ,τ ) for all μ > 0, τ > 0 satisfying

min
{
|xμ,0,∗
i | : i ∈ supp(xμ,0,∗)

}
≥ τ . (30)

Proof Let 0 < τ ≤ min
{
|xμ,0,∗

i | : i ∈ supp(xμ,0,∗)
}
.

From 1) of Proposition 2, it suffices to show that
(xμ,0,∗, yμ,0,∗) is an optimal solution of (19). Clearly,
(xμ,0,∗, yμ,0,∗) is an optimal solution of the convex program
(P μ,0) iff

(0, 0) ∈ ∂f (xμ,0,∗, yμ,0,∗) + (2xμ,0,∗, 0).

It is clear that (xμ,0,∗, yμ,0,∗) and u∗ := −2xμ,0,∗ satisfy
the optimality condition (28) for (19). Thus (xμ,0,∗, yμ,0,∗)
is an optimal solution of (19).

Remark 1

i) Proposition 3 gives an interesting interpretation in the
use of the �2-regularized problem in practice. It shows
that, in some cases, the ridge regularization in learn-
ing methods affects not only on predictor but also on
sparsity.

ii) Meanwhile, we observe that the conditions (29) and
(30) are too strong, they hold only when τ = √

ρ/λ

is quite small, i.e., when the �0-regularized term does
not play an important role in the �2 − �0 regular-
ized problem. For example, in our first experiment we
check the condition (29) on the same dataset when

τ varies, (29) holds in 8/18 cases with τ 2 taking a
value in the set {0.1, 0.2, 0.5, 1, 2, 10}. In other words,
to produce sparse solutions τ should not be small,
in this case an optimal solution of the corresponding
convex program (19) is only an approximate solu-
tion to the original problem (P μ,τ ). Such a solution
could be refined by considering a better approximation
of the �2 − �0 term. This shoul be donne by
using a nonconvex approximation, since the bicon-
jugate of the �2-�0 regularized function is its tight-
eness convex lower bound. Hence we are moti-
vated to develop a two phase algorithm that com-
bines convex relaxation - nonconvex approximation
approaches.

2.5 On solution methods for the convex program (19 )

Since (19) is a convex program, one can use several stan-
dard algorithms and software in convex programming for
solving it. For machine learning applications where one is
often faced with large scale setting problems, it is important
to develop fast and scalable algorithms. Such approaches
should exploit the structure and properties of the convex
function f. Efficient specific numerical methods should be
developed for each problem when the function f is given.
Although convex programming has been studied for about
a century, much effort has been put recently into develop-
ing fast and scalable algorithms to deal with large scale
problems. While some convex regularizations involve con-
vex quadratic programs (QP) for which standard QP solvers
can be certainly used, many first-order methods have been
developed in the last years for large scale convex problems,
e.g. the coordinate gradient descent [42], the fast iterative
shrinkage-thresholding algorithms [1], smoothing proximal
gradient methods [5].

Since convex programs constitute a nice class of DC pro-
grams for which DCAs converge to optimal solutions, DCA
can be used to solve the convex program ( 19). Assume that
there exists a nonnegative number η such that the function
1
2η‖(x, y)‖2 − μf (x, y) is convex (in many practical prob-
lems such a η exists and can be easily computed; for exam-
ple, when f is a smooth function with Lipschitz continuous
gradient, we can take η := μL, where L is the Lipschitz
constant of ∇f ). Then we can derive a DCA scheme which
is the first order method based on the projection onto C and
onto Rn+.

In this paper, as we focus on the tightness of the proposed
convex regularization and its effect in the combined convex-
nonconvex approaches, we simply use, in our experiment on
feature selection in SVM, the CPLEX software to solve the
convex program (24). It is in fact a quadratic program (note
that this software uses efficient techniques for large scale
setting such as interior points methods).
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In the next section we will present DCA for solving a
nonconvex approximate problem of (4).

3 Nonconvex approximation approaches

As nonconvex approximation approaches produce, in gen-
eral, good sparsity, we can improve the convex regulariza-
tion approach by solving, in the second step, a resulting
nonconvex approximation problem from the solution given
by the convex approach.

Nonconvex approximation approaches for sparse opti-
mization involving a DC function and the �0 term have
been intensively studied in [24] in the unified DC program-
ming framework. Considering a class of DC approximation
functions of the zero-norm including all usual sparse induc-
ing approximation functions, the authors have proved sev-
eral novel and elegant results concerning the consistency
between global (resp. local) minimizers of the approximate
problem and the original problem, the equivalence between
these two problems in some cases, etc, and have developed
various DCA schemes that cover all standard nonconvex
approximation algorithms as special versions.

In this section, we adapt the first DCA scheme proposed
in [24] for solving the problem (4) where the function f is
convex (but not “real” DC as considered in [24]). For some
practical problems this DCA scheme enjoys interesting con-
vergence properties and it has been shown to be the most
efficient among DCA based algorithms proposed in [24])
for feature selection in SVM.

Before presenting this DCA based algorithm, let us
describe the philosophy of DCA.

3.1 Philosophy of DCA

DCA [20, 23, 34, 35] aims to solve a nonconvex program of
the form

inf{F(x) := G(x) − H(x) : x ∈ IRn} (Pdc)

where G, H ∈ 	0(IRn) (the convex cone of all lower semi-
continuous proper convex functions defined on IRn and
taking values in IR ∪ {+∞}.A convex constrained DC prob-
lem with the constraint x ∈ C can be rewritten in the form
(Pdc) by adding the indicator function of C, denoted by
χC, χC(x) = 0 if x ∈ C, and +∞ otherwise) into G:

inf{F(x) := G(x)− H(x) : x ∈ C} ⇔ inf{(χC(x) + G(x))

−H(x) : x ∈ IRn}
The main idea of DCA is simple: each iteration of DCA

approximates the concave part −H by its affine majoriza-
tion (that corresponds to taking yk ∈ ∂H(xk)) and solves
the resulting convex program:

DCA - general scheme initializations let x0 ∈ IRn be a
guess, set k := 0.
repeat
1. calculate yk ∈ ∂H(xk).
2. calculate xk+1 ∈ argmin{G(x) − 〈x, yk〉 : x ∈
IRn} (Pk).
3. k = k + 1.
until convergence of

{
xk

}
.

It has been proved in [23, 34, 35] that DCA is a descent
method without linesearch, and either the sequence xk con-
verges after a finitely number of iterations to a critical point
of G − H, or if the infinite sequence {xk} is bounded and
the optimal value of problem (Pdc) is finite then every limit
point x∗ of the sequence {xk} is a critical point of G − H.

The construction of DCA, and so its efficiency, depends
on the choice of the functions G and H and the so called
DC composition G − H . The flexibility of DCA accord-
ing to the choice of DC decomposition is a crucial point to
design efficient DCA based algorithms. It is worth noticing
that with suitable DC decomposition DCA recovers most of
standard methods in convex and nonconvex programming,
in particular the three popular methods in machine learn-
ing, namely the EM (Expectation-Maximization) ([9] ), the
SLA (Succesive Linear Approximation) ([3]) and the CCCP
(Convex-Concave Procedure) ([44]).

DCA has been successfully applied to many (smooth
or nonsmooth) large-scale nonconvex programs in vari-
ous domains of applied sciences, in particular in Machine
Learning (see e.g. [7, 12, 19, 21, 22, 25, 27–32, 48–
52]) for which they provided quite often global solutions
and proved to be more robust and efficient than standard
methods.

3.2 A DCA based algorithm for nonconvex
approximation problems

By the definition, the step function |.|0 : R → R is given
by |t |0 = 1 for t �= 0 and 0 otherwise. Then ‖x‖0 =∑n

i=1 |xi |0. The idea of approximation methods is to replace
the discontinuous step function by a continuous approxi-
mation function, denoted rθ , where θ > 0 is a parameter
controlling the tightness of approximation.

By the way, the original problem

min
(x,y)∈Rn×R

p

{
Fλ,ρ(x, y) := f (x, y) + λ‖x‖22 + ρ ‖x‖0

}
.

becomes

min

{

Fθ (x, y) =f (x, y)+λ‖x‖22+ ρ

n∑

i=1

rθ (xi) : (x, y)∈R
n×Rp

}

.

(31)



Efficient approaches for �2-�0 regularization 557

With the following DC decomposition of rθ :

rθ (t) = η|t | − (η|t | − rθ (t)) ∀t ∈ R, (32)

where η is a positive number such that ψ(t) = η|t | − rθ (t)

is convex (the existence of such a η has been proved in [24]
), a DC formulation of the problem (31) is given by

min
x,y

{Fθ(x, y) := G(x, y) − H(x, y)}, (33)

where

G(x, y) = f (x, y) + λ‖x‖22 + ρη‖x‖1,

H(x, y) = ρ

n∑

i=1

(η|xi | − rθ (xi)) ,

Note that the use of the DC approximation rθ of the form
(32) aims at introducing ρη‖.‖1 in the DC program (33) . It
has been stated in [24] a list of continuous such functions
rθ , which contains all standard DC approximations and the
explicit computation of their corresponding subdifferential
∂ψ . Following the generic DCA scheme described above,
DCA applied to (33) is given by Algorithm 1 below, for a
given sparse inducing function rθ .

3.3 The two-phase algorithm

As mentioned in the introduction, convex regularization
approaches involve convex optimization problems which
are so far “easy” to solve. However, even if our convex
relaxation is a special hard-threshold operation (hence it can
promote sparsity), nonconvex approaches are still needed to
produce better sparsity (see Remark 1). But the resulting
optimization problems are very hard. Several sparse induc-
ing nonconvex functions and corresponding algorithms are
proposed in the literature, they are all special versions of
DCA (see [24]). Due to its local character, finding a good
starting point is important for DCA to reach global solu-
tions. Using the solution of the convex relaxation problem
seems to be a good fit for that purpose. It is therefore sug-
gested to design a two-phase algorithm combining convex
and nonconvex approaches. In the first phase the convex
relaxation is performed and in the second phase an efficient

DCA based algorithm is used for the nonconvex approxi-
mation problem, starting from the solution given by Phase
1. One can see that the solution given by the convex relax-
ation is refined (to be sparser) via the second phase via
a closer (nonconvex) approximation of the �2-�0-term. So,
this method can exploit simultaneously the advantage of
both convex and nonconvex approximation approaches.

4 Application to feature selection in SVM

4.1 Convex relaxation formulation for feature selection
in SVM model (6)

As mentioned in Section 1, the (�2-�0-SVM) problem takes
the form (with the use of μ and τ instead to λ and ρ):

{
min μ

m

∑m
i=1 max(0, 1−bi(〈ai, w〉+γ))+‖w‖22+τ 2‖w‖0

s.t. (w, γ ) ∈ R
n × R

(34)

or again

(�2-�0-SVM)
⎧
⎨

⎩

min Fμ,τ (w, γ, ξ) := μ
m

eT ξ + ‖w‖22 + τ 2 ‖w‖0
s.t. bi(a

T
i w + γ ) ≥ 1 − ξi, i = 1, ..., m,

(w, γ, ξ) ∈ R
n × R × R

m+
(35)

Its convex relaxation formulation (24) becomes

(CR-SVM)
⎧
⎨

⎩

min Gμ,τ (w, γ, u, ς, ξ) := μ
m

eT ξ + q(ς, u)

s.t. bi(a
T
i w + γ ) ≥ 1 − ξi, i = 1, ..., m,

|w|≤ς, (w, γ, u, ς, ξ)∈R
n×R×R

n+×R
n × R

m+
(36)

which is a convex quadratic program.

4.2 A combined convex-nonconvex approximation
approach: the two-phase algorithm

For feature selection in classification, convex regularization
approaches perform better in classification while nonconvex
approximation approaches, with a ”good” approximation of
the �0-norm and based on an efficient algorithm for noncon-
vex resulting optimization problem, produce better sparsity.
In order to get both quality and sparsity of the classifier, we
use a two-phase algorithm.

A state-of-the-art algorithm for the problem (�2-�0-
SVM) is the DCA scheme developed in [31] with the
concave exponential approximation proposed in [3]:

rα(x) =
⎧
⎨

⎩

1 − ε−αx if x ≥ 0,
1 − εαx if x < 0, (37)
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In this approach, the resulting nonconvex problem takes the
form

(�2-Exp-SVM)
⎧
⎨

⎩

min μ
m

eT ξ + ‖w‖22 + τ 2eT (e − exp(−α |w|))
s.t. bi(a

T
i w + γ ) ≥ 1 − ξi, i = 1, ..., m,

(w, γ, ξ) ∈ R
n × R × R

m+,

and the DCA based algorithm requires solving one quadratic
program at each iteration (see [31] for more details).

It has been shown in [30] and [24] that, for the concave
exponential approximation [3], the DC decomposition (32)
is better than the one used in [31]. Therefore we employ
this DC decomposition and Algorithm 1 for solving the
approximate problem (�2-Exp-SVM). Algorithm 1 with the
function r defined in (37) is described as follows.

Note that DCA has been successfully applied in sev-
eral works on feature selection in classification [3, 4, 22,
30–32], and sparse signal recovery [12, 26], in particular
it furnished a good sparse solution. Here, we hope that
the two-phase algorithm performs classification like convex
relaxation approach and produces sparsity like DCA applied
on (�2-Exp-SVM).

Two-phase algorithm (for solving (�2-�0 -SVM))

Phase 1. Solve the convex program (CR-SVM) to get an
optimal solution

(wCR, γ CR, ϑCR, ςCR, ξCR).

Phase 2. Apply Algorithm (�2 − �0)-DCA1 from the
starting point (wCR, γ CR).

5 Numerical experiments

For evaluating the effectiveness of the proposed approaches
(the convex relaxation approach named CR-SVM and the
two-phase algorithm) we execute numerical experiments on
several datasets and compare them with two state-of-the-
art algorithms for the (�2-�0 regularized SVM: the convex
approach (�2-�1-SVM)

(�2-�1-SVM)

⎧
⎨

⎩

min μ
m

eT ξ + ‖w‖22 + τ 2 ‖w‖1
s.t. bi(a

T
i w + γ ) ≥ 1 − ξi, i = 1, ..., m

(w, γ, ξ) ∈ R
n × R × R

m+
and the nonconvex approach developed in [31]. We also
consider the (�2-SVM) approach which measures more or
less the difficulty degree of classification task in test prob-
lems. All algorithms are coded in C + + and tested on an
Intel CoreT M I7 (2 × 2.2 Ghz) processor of 4 Gb RAM.
The three convex approaches solve one convex quadratic
problem while the nonconvex approach requires solving one
convex quadratic program at each iteration. We use CPLEX
solver library 13.2 for solving convex quadratic programs.
The number of nonzero features in w are determined by
card{j : |wj | > 10−5}.

5.1 Data

We consider 8 datasets which can be found at the web-site
of UCI Machine Learning Repository, and 3 micro-array
datasets - Leukemia cancer [13], prostate cancer [39] and
Lung cancer [14]. They are described in detail in the
Tables 1 and 2.

We consider also a synthetic data in which six fea-
tures of 202 were relevant. The probability of y = 1
or −1 was equal. The first (resp. second) three features

Table 1 UCI datasets
Datasets Note #samples #features #class+/ #class-

ionosphere INO 351 34 225/126

cleveland CLE 297 13 160/137

pima PIM 768 8 500/268

breast cancer wisconsin BCW 683 9 444/239

sona SON 208 60 111/97

internet advertisements ADV 3279 1558 459/2820

spambase SPA 4601 57 1813/2788

gisette GIS 7000 5000 3500/3500
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Table 2 Micro-array datasets
Data sets no. of features no. of training samples no. of testing samples

Leukemia 7129 38 34

Prostate cancer 12600 102 34

Lung cancer 12533 32 149

x1, x2, x3 (resp. x4, x5, x6) were drawn as xi = yN (i, 1)
(resp. xi = N (0, 1)) with a probability of 0.7, other-
wise the first (resp. second) three as xi = N (0, 1) (resp.
xi = yN (i − 3, 1)). The remaining features are noise
xi = N (0, 20), i = 1, ..., 202.

5.2 Experiment 1: the tightness of the convex minorant

In the first experiment, our aim is to evaluate the tightness of
the proposed lower bound for solving the �2-�0-SVM prob-
lem ( 35). For this purpose, we measure the optimality gap
(in %) which is defined by

Gap := Ub − Lb

|Ub| × 100. (38)

Here Ub := Fμ,τ (wCR, γ CR) and Lb :=
Gμ,τ (wCR, γ CR) are, respectively, an upper bound and
a lower bound of the optimal value of (35) which are
given by (wCR, γ CR), an optimal solution of the problem
(CR-SVM).

We consider the Inosphere dataset and run CR-SVM on
various problems with different values of λ and ρ (the coef-
ficient of the �2 -term and �0-term). The results are reported
in Table 3.

The columns ”Gap” in Table 3 show that the lower bound
Gμ,τ (wCR, γ CR) obtained from CR-SVM is very close to
the upper bound Fμ,τ (wCR, γ CR) (and then close to the
optimal value): the mean of gap is only 0.24%. Moreover, in
8/18 cases this lower bound is exactly the optimal value of
the corresponding �2-�0-SVM problem., i.e. the sufficient
optimality condition ( 29) holds and CR-SVM gives an opti-
mal solution to �2-�0-SVM problem. This shows that our

convex approach CR-SVM is very promising for solving
this type of problem.

5.3 Experiment 2: comparison between the two convex
approaches on the synthetic data and the micro-array
data

First, we evaluate the performance of the CR-SVM and the
�2 − �1 approaches in terms of feature selection and clas-
sification on the synthetic data. The results are reported in
Table 4 for various training set sizes, taking the average test
error on 500 samples over 30 runs of each training set size.
The set of parameters

� := {0.0001; 0.0002; 0.0003; 0.0004; 0.0005} and

	 := {0.1; 0.2; 0.3; 0.4; 0.5}
has been used.

From Table 4, we observe that CR-SVM performs better,
both in feature selection and classification, than �2-�1-SVM
on this data set. Another important result is that CR-SVM
selects a number of features around 6 which represents the
number of relevant features on the synthetic data.

Second, we compare the two convex approaches on the
three micro-array datasets. Here the training and test sets
are explicitly given, and we perform the algorithms on the
set of parameters.

� := {0.0001; 0.0002; 0.0003; 0.0004; 0.0005} and
	 := {0.01; 0.02; 0.03; 0.04; 0.05} to get the best param-
eters for each algorithm. More precisely, for each θ ∈
� := � × 	, we apply the algorithm on the training set to
get classifier and selected features, and then take the best
parameter θ∗ = (λ∗, ρ∗) as the one corresponding to the

Table 3 CR-SVM: optimality
gap (”Gap”), for solving
�2-�0-SVM on inosphere data

λ ρ Gap(%) λ ρ Gap(%)

0.0001 0.0001 0.03 0.005 0.0005 0.00

0.0001 0.0005 0.33 0.005 0.01 0.00

0.0001 0.001 0.62 0.005 0.05 0.00

0.0005 0.0001 0.03 0.01 0.005 0.00

0.0005 0.0005 0.12 0.01 0.01 0.00

0.0005 0.001 0.42 0.01 0.05 0.00

0.001 0.0001 0.02 0.05 0.005 0.07

0.001 0.0005 0.09 0.05 0.01 0.00

0.001 0.01 2.58 0.05 0.05 0.00



560 LE THI Hoai An et al.

Table 4 Synthetic data:
number of selected feature
(num) and classification error
(ERR %)

CR-SVM �2-�1-SVM

Training set sizes Num ERR Num ERR

20 15.2 11.8 43.1 18.9

50 7.6 1.8 19.7 4.6

80 4.6 1.1 20.4 2.9

100 5.2 1.3 22.7 2.7

Table 5 Comparative results on micro-array datasets

Algorithm λ∗ ρ∗ Class. error Select. features CPU

Train Test Number %

CR-SVM 0.0005 0.05 0 2.94 28 0.39 365.12

�2 − �1-SVM 10 5 0 2.94 29 0.41 310.02

Leukemia dataset

CR-SVM 0.0005 0.05 0 0 45 0.36 624.12

�2 − �1-SVM 3 1 0 2.94 260 2.06 567.25

Prostate cancer

CR-SVM 0.0001 0.01 0 0.67 24 0.19 565.12

�2 − �1-SVM 10 5 0 2.01 24 0.19 510.02

Lung cancer

Table 6 Comparative results on PIM dataset

Algorithm λ∗ ρ∗ Class. error Select. features CPU

Train Test Number %

CR-SVM 0.011 0.015 23.75 21.93 4.00 50.00 0.057

�2 − �1-SVM 0.003 0.017 23.36 22.81 4.00 50.00 0.036

�2-SVM 0.001 - 22.19 22.37 8.00 100.0 0.042

�2-Exp-SVM 0.019 0.007 24.66 25.00 3.33 41.63 0.109

Two phase algorithm 0.019 0.007 23.17 24.12 3.67 45.88 0.131

Table 7 Comparative results on BCW dataset

Algorithm λ∗ ρ∗ Class. error Select. features CPU

Train Test Number %

CR-SVM 0.019 0.019 3.52 4.11 7.00 77.78 0.142

�2 − �1-SVM 0.001 0.009 2.71 3.23 8.00 88.89 0.172

�2-SVM 0.017 - 2.86 2.93 9.00 100 0.151

�2-Exp-SVM 0.001 0.017 4.56 5.33 2.33 25.89 0.057

Two phase algorithm 0.001 0.017 3.66 3.81 2.67 29.67 0.218
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Table 8 Comparative results on CLE dataset

Algorithm λ∗ ρ∗ Class. error Select. features CPU

Train Test Number %

CR-SVM 0.019 0.019 15.51 16.26 7.67 59.00 0.037

�2 − �1-SVM 0.003 0.019 14.16 15.91 9.33 71.77 0.042

�2-SVM 0.019 - 13.99 16.61 13.00 100.0 0.031

�2-Exp-SVM 0.005 0.019 23.59 23.65 1.00 7.69 0.023

Two phase algorithm 0.005 0.019 15.68 17.27 5.00 38.46 0.078

Table 9 Comparative results on INO dataset

Algorithm λ∗ ρ∗ Class. error Select. features CPU

Train Test Number %

CR-SVM 0.019 0.019 11.54 15.10 10.33 30.38 0.058

�2 − �1-SVM 0.001 0.019 9.69 13.96 15.00 44.12 0.067

�2-SVM 0.003 - 5.98 13.11 33.00 97.06 0.057

�2-Exp-SVM 0.011 0.019 13.15 14.06 3.22 9.47 0.075

Two phase algorithm 0.011 0.019 10.83 15.1 5.00 17.71 0.145

Table 10 Comparative results on SPA dataset

Algorithm λ∗ ρ∗ Class. error Select. features CPU

Train Test Number %

CR-SVM 0.005 0.019 23.21 23.97 4.33 7.60 32.182

�2 − �1-SVM 0.001 0.017 24.03 24.82 5.00 8.77 45.417

�2-SVM 0.001 - 10.71 12.82 57.00 100.0 20.63

�2-Exp-SVM 0.019 0.017 27.65 29.04 1.00 1.75 0.952

Two phase algorithm 0.019 0.017 17.66 18.67 3.33 5.84 29.38

Table 11 Comparative results on SON dataset

Algorithm λ∗ ρ∗ Class. error Select. features CPU

Train Test Number %

CR-SVM 0.005 0.019 16.35 39.87 9.00 15.00 0.045

�2 − �1-SVM 0.001 0.019 15.15 40.83 12.67 21.12 0.067

�2-SVM 0.003 - 11.55 44.69 60.00 100.0 0.031

�2-Exp-SVM 0.011 0.017 24.43 32.54 3.56 5.93 0.298

Two phase algorithm 0.011 0.017 14.91 47.59 6.00 10.00 0.203
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Table 12 Comparative results on ADV dataset

Algorithm λ∗ ρ∗ Class. error Select. features CPU

Train Test Number %

CR-SVM 0.001 0.019 3.98 4.57 7.33 0.47 207.437

�2 − �1-SVM 0.001 0.019 5.58 6.25 3.33 0.21 193.956

�2-SVM 0.001 - 1.11 4.33 835.00 53.59 90.579

�2-Exp-SVM 0.011 0.009 6.95 7.14 2.00 0.13 389.648

Two phase algorithm 0.011 0.009 3.96 4.85 5.33 0.34 588.262

best criterion on the test set. As we are interested on both
accuracy of classification and sparsity of classifier, the best
evaluated criterion used in our experiment is the smallest
value of (ERRt+FS)/ACC, where ERRt, FS, ACC denote,
respectively, the percentage of classification error on the
test set, the percentage of selected features and the percent-
age of classification accuracy on the test set (i.e., ACC =
100-ERRt). The results are reported in Table 5.

On the three micro-array data sets, we observe that
CR-SVM performs better feature selection than the the �2-
�1-SVM on the data sets Leukemia (28 features versus 29
features) and Prostate (45 versus 260 ) and performs equally
as well as �2-�1-SVM on the Lung Cancer. In term of gener-
alization error on the test sets, CR-SVM, �2 -�1-SVM give
equal generalization error on Leukemia (2.94%). On the
Prostate data, CR-SVM is more competitive with 0% of gen-
eralization versus 2.94% for the �2-�1-SVM. And finally,
CR-SVM∗ performs better than the others with only 0.67%
of generalization error. As for time consuming, �2-�1-SVM
is slightly better than CR-SVM.

5.4 Experiment 3: comparison of all approaches on UCI
datasets

In this experiment we compare the efficiency of the pro-
posed convex approach (CR-SVM) and the two-phase algo-
rithm with the convex approaches (�2 − �1-SVM and �2-
SVM), as well as the nonconvex approach [31] (denoted
�2-Exp-SVM).

We fix a finite set of parameters � := {λ, ρ} and use the
ten-fold cross-validation for the choice of the best param-
eters for each algorithm. More precisely, we divide the
dataset into 10 equal parts. For each fold, we set 9 parts as
the training set and one as the test set. By changing the test
set we get ten folds.

For each θ ∈ �, we apply the algorithm on each of 10
folds to determine, on each fold, the classifier and selected
features on the train set and compute the classification error
(ERR) on the test set as well as on the train set. Then the

average result on 10 folds is used for determining the best
parameters θ∗ ∈ �.

Here, we fix the parameter θ∗ = (λ∗, ρ∗) ∈ � that
gives the best average evaluated criterion which is, as in the
experiment on the micro-array datasets, (ERRt+FS)/ACC.

The set of parameters for the cross-validation procedure
is

� := {0.001; 0.003; 0.005; 0.007; 0.009};
	 := {0.01; 0.03; 0.05; 0.07; 0.09}.
For �2-Exp-SVM, the parameter α of concave approxi-
mation function is set to 5 as proposed in [3]. Since �2
-Exp-SVM is a local approach which depends on the choice
of initial point, for each run, we perform it 10 times from
random initial points and report the average results. The
other algorithms are performed one time, because they do
not depend on initial points.

In Tables 6, 7, 8, 9, 10, 11, 12 we report the best average
results on 10 folds (ERR on the train set (Train) and on the
test set (Test), the number (Number) and the corresponding
percent (%) of selected features (Select. features)). We also
indicate the values λ∗ and ρ∗ corresponding to these best
results.

We observe from the numerical results that

i) Among the convex approaches, CR-SVM is better
than �2 − �1 -SVM on both classification and feature
selection: in all datasets (except for ADV) CR-SVM
suppresses more features than �2 − �1-SVM while the
ERRt are smaller on 4/7 datasets and very slightly
(less than 1%) larger on 3/7 datasets. As for l2, it deals
more or less with sparsity on 2 out of 7 dataset (INO
and ADV) where it selects 97% and 53.9% features.

ii) Not surprisingly, nonconvex approach �2-Exp-SVM
is better than convex approaches on feature selection
while it is worse than convex approaches on classifica-
tion.

iii) The two-phase algorithm improves considerably the
accuracy of classification of �2-Exp-SVM while the
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number of selected features of the former is slightly
larger than the one of the later. We observe that
the two-phase algorithm performs classification like
CR-SVM while it selects features like �2-Exp-SVM.
Hence this algorithm realizes the trade-off between
accuracy and sparsity and it is the best approach
for simultaneously performing feature selection and
classification.

6 Conclusion

We have proposed a new convex relaxation technique for
minimizing a class of functions involving the zero norm that
includes several important problems in machine learning.
The approach is based on computing the biconjugate of the
nonconvex �2-�0 regularization function which is its tight-
est convex minorant. It is worth to note the nice effect of our
approach compared with hard-thresholding algorithms: with
an appropriate choice of threshold parameter our result-
ing program is convex while, in general, the hard-threshold
approximation of �0 involves a nonconvex program. This
new and efficient way to deal with the �0 norm constitutes
the most important contribution of the paper.

Secondly, the idea of combining the two convex - non-
convex approaches is interesting. The two-phase algorithm
is a promising approach that we suggest to use for fea-
ture selection and classification as well as for other sparse
optimization problems. The proposed approaches have been
successfully applied to the feature selection in SVM via
experiments on several datasets.

The new results developed in this paper open the door to
several research issues.
Firstly, the tightness of the proposed lower bound suggests
us to develop global algorithms based on this lower bound
for the nonconvex �2-�0 problem and/or for extension cases,
say nonconvex programs involving �0 norm.
Secondly, this convex relaxation can be useful for the
combined convex relaxation - nonconvex approximation
approaches. Thirdly, the global optimality condition should
be exploited in the above mentioned approaches to check
(and/or to get) the globality of solutions. Fourthly, numer-
ical methods for efficiently solving large scale convex
relaxation problems should be developed for practical appli-
cations, i.e. for various forms of the function f in the
considered �2-�0 problem.

Works on these issues are under progress.
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31. Neumann J, Schnörr C, Steidl G (2005) Combined svm-
based feature selection and classification. Mach Learn 61:129–
150

32. Ong CS, Le Thi HA Learning with sparsity by difference of
convex functions algorithm. J Optimization Methods Software.
doi:10.1080/10556788.2011.652630:14. Press 27 February 2012

33. Peleg D, Meir R (2008) A bilinear formulation for vector sparsity
optimization. Signal Processing 8(2):375–389

34. Pham Dinh T, Le Thi HA (1997) Convex analysis approaches
to dc programming: Theory, algorithms and applications. Acta
Mathematica Vietnamica 22(1):287–367

35. Pham Dinh T, Le Thi HA (1998) D.c. optimization
algorithms for solving the trust region subproblem. SIAM J
Optim:476–505

36. Rao BD, Engan K, Cotter SF, Palmer J, Kreutz-Delgado K (2003)
Subset selection in noise based on diversity measure minimization.
IEEE Trans Signal Process 51(3):760–770

37. Rao BD, Kreutz-Delgado K (1999) An affine scaling methodology
for best basis selection. IEEE Trans Signal Process 47:87–200

38. Rockafellar RT (1970) Convex analysis. Princeton University
Press

39. Singh D, Febbo PG, Ross K, Jackson DG, Manola J, Ladd C,
Tamayo P, Renshaw AA, D’Amico AV, Richie JP, Lander ES,
Loda M, Kantoff PW, Golub TR, Sellers WR (2002) Gene expres-
sion correlates of clinical prostate cancer behavior. Cancer Cell
1:203–209

40. Thiao M, Pham Dinh T, Le Thi HA (2008) Dc programming
approach for a class of nonconvex programs involving l0 norm.
In: Modelling Computation and Optimization in Information
Systems and Management Sciences, Communications in Com-
puter and Information Science CCIS, Springer, vol 14, pp 358–367

41. Tibshirani R (1996) Regression shrinkage selection via the lasso.
J Roy Stat Regression Soc 46:431–439

42. Tseng P, Yun S (2009) A coordinate gradient descent method for
nonsmooth separable minimization. Mathematical Programming
117(1):387–423

43. Weston J, Elisseeff A, Scholkopf B, Tipping M (2003) Use of the
zero-norm with linear models and kernel methods. J Mach Learn
Res 3:1439–1461

44. Yuille AL, Rangarajan A (2002) The Convex Concave Proce-
dure (Cccp) Advances in Neural Information Processing System,
vol 14. MIT Press, Cambrige MA

45. Zhang T (2009) Some sharp performance bounds for least squares
regression with l1 regularization. Ann Statist 37:2109–2144

46. Zou H (2006) The adaptive lasso and its oracle properties. J Amer
Stat Ass 101:1418–1429

47. Zou H, Li R (2008) One-step sparse estimates in noncon-
cave penalized likelihood models. Ann Statist 36(4):1509–
1533

48. Le Thi HA, Nguyen MC (2014) Self-organizing maps by differ-
ence of convex functions optimization. Data Min. Knowl. Disc.
28(5-6):1336–1365

49. Le Thi HA, Nguyen MC, Pham Dinh T (2014) ADCprogramming
approach for finding Communities in networks. Neural Comput.
26(12):2827–2854

50. Liu Y, Shen X, Doss H (2005) Multicategory ψ-learning and sup-
port vector machine: computational tools. J. Comput. Graph. Stat.
14:219–236

51. Liu Y, Shen X (2006) Multicategory ψ-Learning. J. Am. Stat.
Assoc. 101:500–509
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