
Appl Intell (2016) 45:598–621
DOI 10.1007/s10489-016-0776-0

Fuzzy particle swarm optimization algorithms for the open
shortest path first weight setting problem

Mohammad Aijaz Mohiuddin1 · Salman A. Khan1,2 ·Andries P. Engelbrecht1

Published online: 6 April 2016
© Springer Science+Business Media New York 2016

Abstract The open shortest path first (OSPF) routing pro-
tocol is a well-known approach for routing packets from
a source node to a destination node. The protocol assigns
weights (or costs) to the links of a network. These weights
are used to determine the shortest paths between all sources
to all destination nodes. Assignment of these weights to
the links is classified as an NP-hard problem. The aim
behind the solution to the OSPF weight setting problem is
to obtain optimized routing paths to enhance the utilization
of the network. This paper formulates the above problem
as a multi-objective optimization problem. The optimiza-
tion metrics are maximum utilization, number of congested
links, and number of unused links. These metrics are con-
flicting in nature, which motivates the use of fuzzy logic
to be employed as a tool to aggregate these metrics into a
scalar cost function. This scalar cost function is then opti-
mized using a fuzzy particle swarm optimization (FPSO)
algorithm developed in this paper. A modified variant of the
proposed PSO, namely, fuzzy evolutionary PSO (FEPSO),
is also developed. FEPSO incorporates the characteristics of

� Mohammad Aijaz Mohiuddin
waseem aijaz@yahoo.com

Salman A. Khan
sakhan@uob.edu.bh;
skhan@cs.up.ac.za

Andries P. Engelbrecht
engel@cs.up.ac.za

1 Department of Computer Science, University of Pretoria,
Pretoria 0002, South Africa

2 Department of Computer Engineering, College of IT,
University of Bahrain, Sakhir, Bahrain

the simulated evolution heuristic into FPSO. Experimenta-
tion is done using 12 test cases reported in literature. These
test cases consist of 50 and 100 nodes, with the number of
arcs ranging from 148 to 503. Empirical results have been
obtained and analyzed for different values of FPSO param-
eters. Results also suggest that FEPSO outperformed FPSO
in terms of quality of solution by achieving improvements
between 7 and 31 %. Furthermore, comparison of FEPSO
with various other algorithms such as Pareto-dominance
PSO, weighted aggregation PSO, NSGA-II, simulated evo-
lution, and simulated annealing algorithms revealed that
FEPSO performed better than all of them by achieving best
results for two or all three objectives.

Keywords Open shortest path first routing algorithm ·
Particle swarm optimization · Swarm intelligence ·
Multi-objective optimization · Fuzzy logic

1 Introduction

The use of web based applications has resulted in rapid
increase of internet traffic [1]. Efficient utilization of net-
work resources, such as network bandwidth, is essential to
deal with this high volume of traffic. The main objective of
network traffic engineering is efficient mapping of traffic on
the available network resources to prevent traffic imbalance,
if it exists [2].

Routers serve as the main interconnection points of the
internet and forward data packets between source and desti-
nation nodes via multiple paths. These paths exist between
a given source and destination pair. The internet is huge
and very complex and is divided into autonomous systems
(AS) for managing its complexity. An AS represents a col-
lection of networks under the control of one single entity

http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s10489-016-0776-0-x&domain=pdf
mailto:waseem_aijaz@yahoo.com
mailto:skhan@cs.up.ac.za
mailto:engel@cs.up.ac.za

Fuzzy particle swarm optimization algorithms for the open shortest path first weight setting problem 599

or organization with a specific routing policy. These poli-
cies are determined by a class of routing protocols, namely,
interior gateway protocols (IGPs) [3]. Routing across ASs
is performed by another class of protocols, namely, exterior
gateway protocols (EGPs) [3].

Open shortest path first (OSPF) [3] is an IGP and has
received notable attention by researchers for efficient traf-
fic engineering since OSPF is considered the best backbone
routing protocol used in the internet [4, 5]. The protocol has
shown remarkable performance through significant reduc-
tion in maximum utilization over pure shortest path routing
[6]. OSPF is based on Dijkstra’s algorithm [7], which deter-
mines a shortest path between a source and destination pair.
Each link in the network is given a measurable entity called
a link weight or OSPF weight. The cost of a path between a
given source and destination pair is found by the summation
of OSPF weights on the links in that path. The path with
minimal cost is labelled as the shortest path.

This paper considers the open shortest path first weight
setting (OSPFWS) problem, classified as an NP-hard prob-
lem [8]. The OSPFWS problem requires a set of weights to
be determined, so as to efficiently utilize network resources.
The objectives of this problem are to minimize maximum
utilization, minimize the number of congested links, and to
minimize the number of unused links. These objectives con-
flict with each other, i.e. if one objective is improved, at least
one of the other objectives may deteriorate. To address this
NP-hard problemwith conflicting objectives, this paper pro-
poses to apply a fuzzy particle swarm optimization (FPSO)
algorithm. The paper also proposes a hybrid PSO, namely,
fuzzy evolutionary PSO, where characteristics of simu-
lated evolution algorithm [9] are combined with the fuzzy
PSO. The performance of these two variants is empirically
assessed and compared.

The rest of the paper is organized as follows: Section 2
provides the necessary background and related work on the
OSPFWS problem. Section 3 provides the formal defini-
tion of the OSPFWS problem. A brief discussion on fuzzy
logic and the Unified And-OR operator is given in Section 4.
Section 5 describes the formulation of a fuzzy logic based
objective function for the OSPFWS problem. Section 6
presents the proposed fuzzy PSO algorithm, and a variant
of the fuzzy PSO, the fuzzy evolutionary PSO, is proposed
and discussed in Section 7. The experimental methodology
is described in Section 8. Results are provided and discussed
in Section 9. A comparative analysis of the fuzzy evolution-
ary PSO with other algorithms, namely, Pareto-dominance
PSO, weighted aggregation PSO, NSGA-II, simulated evo-
lution, and simulated annealing is provided in Section 10.
The paper is concluded in Section 11. Finally, the symbols
and terminology used in this paper are given in Appendix
A. Some additional results related to the analysis of swarm
size (discussed in Section 9) are provided in Appendix B.

2 Literature review

Notable research in optimizing OSPF weights has been
reported in the literature [2, 4, 6, 10–28]. The pioneering
work on the OPSF weight setting problem was done by
Fortz and Thorup [8, 10, 29] who used maximum utilization
as the optimization objective. The term “maximum utiliza-
tion” refers to the maximum of all utilization values over
all the links in the network. A cost function based on uti-
lization ranges was first formulated by Fortz and Thorup
[2], who applied tabu search [30] to minimize “maximum
utilization”.

The cost function of Fortz and Thorup was formally
defined as

minimize � =
∑

a∈A

�a(la) (1)

subject to the constraints:

la =
∑

(s,t)∈N×N

f (s,t)
a a ∈ A, (2)

f (s,t)
a ≥ 0 (3)

where � is the cost function, �a is the cost associated with
arc a, la is the total traffic load on arc a, f

(s,t)
a represents

traffic flow from node s to t over arc a, N defines the set of
nodes, and A represents the set of arcs. Equation (2) indi-
cates that the total load (traffic) on arc a is equal to the sum
of the traffic load on arc a and the traffic load on all incom-
ing arcs to arc a. The constraint in (3) implies that the traffic
flow from node s to t over arc a can be greater than or equal
to zero.

In (1), �a represents piecewise linear functions, with
�a(0) = 0 and a derivative, �′

a(la) given by

�′
a(l) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 for 0 ≤ l/ca < 1/3,
3 for 1/3 ≤ l/ca < 2/3,
10 for 2/3 ≤ l/ca < 9/10,
70 for 9/10 ≤ l/ca < 1,
500 for 1 ≤ l/ca < 11/10,
5000 for 11/10 ≤ l/ca < inf inity

(4)

The above function indicates that the utilization (which
represents the load to capacity ratio) of a link is acceptable
within 100 % of the link’s capacity. According to the func-
tion in (4), links with utilization levels less than or equal to
1 (or 100 %) have a low cost, proportional to the level of uti-
lization. These values are 1, 3, 10, or 70. Furthermore, links
exceeding 100 % utilization are assigned high costs of 500
and 5000. For example, if utilization is less than one third
of a link’s capacity, then a cost of 1 is assigned. For utiliza-
tion between 1/3 and 2/3 of a link’s capacity, a cost of 3
is assigned, and so on. On the other hand, if the utilization
of a link is beyond 1 (which indicates that the number of
incoming packets to a link exceed the maximum capacity of

600 M. A. Mohiuddin et al.

the link) then such an over-utilization is not desirable, since
it will result in packet loss. Therefore, the cost assigned to
the links beyond 100 % utilization is much higher (i.e. 500
for utilization of equal to or more than 100 % but less than
110 %, and 5000 for more than 110 %). Note that as per
(4), a link with utilization greater than 100 % and less than
110 % is still preferable compared to a link with utilization
greater than 110 %. Fortz and Thorup employed a dynamic
shortest path algorithm [31–33] to obtain multiple equidis-
tant shortest paths between a source-destination pair. By this
mechanism, traffic load was distributed equally across the
links.

Subsequent to the work of Fortz and Thorup, many other
researchers attempted to solve the OSPF weight setting
problem with different algorithms and different objective
functions. Ramakrishnan and Rodrigues [12] proposed a
local search procedure using the same cost function as that
of Fortz and Thorup. The main difference between the two
approaches was that for a heavily used link, Rodrigues and
Ramakrishnan’s technique increases the link metric (i.e. the
OSPF weight assigned to a link). Ericsson et al. [13] devel-
oped a genetic algorithm [34] to solve the OSPFWS prob-
lem also using the cost function by Fortz and Thorup.
Kandula et al. [6] compared the performance of three OSPF
weight optimizers while considering maximum link utiliza-
tion as the optimization objective. Bhagat [4] also assumed
link utilization as weights and used a genetic algorithm for
OSPF weight setting while using the cost model of Fortz
and Thorup with a minor modification. Abo Ghazala et al.
[35] performed a survey of various algorithms applied
to the OSPFWS problem, and also proposed a technique
based on iterative local search, while considering link uti-
lization as the optimization objective. The underlying cost
function was the same as proposed by Fortz and Thorup.
In a subsequent research article, Aboghazala et al. [15]
assumed maximization of unused bandwidth as the opti-
mization objective and employed simulated annealing and
hybrid genetic algorithms for weight optimization. Parmar
et al. [16] formulated the OSPF weight setting problem as
mixed-integer linear programming problem and developed
a branch-and-cut algorithm while assuming minimization
of network congestion as the optimization objective. Pioro
et al. [22] considered the maximum load on any link in
the network as the measure of congestion and proposed
two heuristic approaches for weight setting. Srivastava et al.
[17] also considered minimization of maximum load on any
link and proposed heuristic algorithms based on Lagrangian
relaxation to determine feasible solutions for the weight
setting problem. Buriol et al. [18] extended the genetic algo-
rithm proposed in [13] to a memetic algorithm by adding a
local search procedure while using the same cost function
as that of Fortz and Thorup. Bley [19, 20] proposed unsplit-
table shortest path routing (UPSR) and claimed that the

proposed approach can be applied to other routing schemes
such as OSPF, while considering minimization of maximum
congestion over all arcs. Zagozdzon et al. [14] proposed
a two-phase algorithm for resolving the OSPF weight set-
ting problem while considering the residual capacity as the
optimization objective. This residual capacity resulted from
setting the link weights proportional to the inverse of their
capacity. Reis et al. [36] proposed a memetic algorithm for
weight setting in OSPF and DEFT algorithms while con-
sidering minimization of total link utilization. Lin and Gen
[21] proposed a priority-based genetic algorithm for short-
est path routing in OSPF. Their results indicated that the
proposed GA could be used for weight setting in OSPF
and other routing algorithms. Retvari et al. [23, 24] studied
the OSPF weight setting problem considering maximization
of network throughput and proposed some algorithms that
could efficiently optimize the link weights. Nucci et al. [25]
proposed a Tabu-search heuristic for choosing link weights
that takes into account both service level agreement (SLA)
requirements and link failures with the objective of opti-
mization link utilizations. Shirmali et al. [26] devised an
approach based on Nash bargaining and decomposition.
It was claimed that the proposed approach could be eas-
ily modified to yield a mechanism for setting link weights
for ISPs using OSPF in a way similar to that of Fortz
and Thorup. Riedl [27] presented an algorithm based on
simulated annealing to optimize link metrics in OSPF net-
works. The algorithm took into account the original routing
configuration and allowed tradeoff considerations between
routing optimality and adaptation impact. Lee et al. [28]
modelled the optimal link weight assignment problem as
an integer linear programming problem while considering
minimization of sum of energy consumption of all links.

It is noteworthy of mentioning that, generally, the afore-
mentioned approaches considered a single objective in the
optimization process. For example, the cost function pro-
posed by Fortz and Thorup (1) on which many subsequent
attempts were based [4, 12, 13, 18, 26, 35, 37] con-
sidered minimization of maximum link utilization. Other
researchers [6, 17, 22] also assumed minimization of max-
imum link utilization. Other objectives considered in the
optimization process were maximization of unused link
bandwidth [15], minimization of network congestion [16,
19, 20], residual capacity of link [14], minimization of total
link utilization [36], maximization of network throughput
[23, 24], and minimization of sum of energy consumption
of all links [28]. Exceptions from these single-objectives
optimization approaches were Nucci et al. [25] where link
failure and link no-failure states were used as the opti-
mization objectives, and Sqalli et al. [11, 38] who used
minimization of maximum link utilization as well as min-
imization of congested links as the optimization objectives
while using a simulated annealing (SA) algorithm [39].

Fuzzy particle swarm optimization algorithms for the open shortest path first weight setting problem 601

A cost function developed by Sqalli et al. [11, 38]
evolved from the earlier work by Fortz and Thorup. The rea-
son for using the cost function of Fortz and Thorup was that
the function was employed in many studies as mentioned
above. One novel aspect of the work of Sqalli et al. was the
addition of another optimization objective (i.e. minimiza-
tion of congested link) on top of minimization of maximum
link utilization. This resulted in better distribution of traf-
fic in the network since this is one fundamental requirement
of network traffic engineering. The function employed by
Sqalli et al. is defined as

� = MU +
∑

a∈SetCA (la − ca)

E
(5)

where MU is the maximum utilization of the network.
SetCA defines the set of congested links, E represents the
total number of links in the network, ca refers to the capacity
of link a, and la is the total traffic on link a.

The second term of (5) after the plus sign defines the
extra load on the network. This extra load is found by tak-
ing all the congested links, divided by the total number of
links present in the network to normalize the entire func-
tion. For an uncongested network, the term after the plus
sign results in a zero. Thus, (5) results in minimization
of maximum utilization provided that there is no conges-
tion in the network. If congestion exists, then the function
results in the minimization of maximum utilization as well
as the minimization of the number of congested links. Sqalli
et al. concluded that the cost function in (5) results in more
efficient minimization of the number of congested links
compared to the cost function of Fortz and Thorup [2].
Furthermore, Sqalli et al. discovered that the results for
maximum utilization with their method were comparable to
those obtained by the approach of Fortz and Thorup. Using
the cost function of (5), Sqalli et al. applied the simulated
evolution (SimE) algorithm [40] to the OSPFWS problem
and compared the results with the results of SA [38]. Tabu
search using the cost function of Sqalli et al. [11] has also
been applied to the OSPFWS problem [41].

A limitation of the cost function of Fortz and Thorup
is that it minimizes “maximum utilization” only. This may
lead to the existence of links which are either congested or
unused. The cost function proposed by Sqalli et al. (5) was
aimed at simultaneous optimization of maximum utilization
and the number of congested links, without any consider-
ation of unused links. It is, therefore, not guaranteed that
optimizing maximum utilization and number of congested
links would implicitly optimize the number of unused links
as well. This observation points to the fact that to have a
more stable traffic flow, traffic from congested links should
be shifted to unused links. Therefore, in order to over-
come this issue, Mohiuddin et al. [42] proposed a fuzzy
logic based cost function that addresses the simultaneous

optimization of maximum utilization, number of congested
links, and number of unused links through fuzzy logic based
aggregation. Mohiuddin et al. used their fuzzy cost function
with three iterative heuristics, namely, simulated evolution,
simulated annealing, and NGSA-II, and performed a mutual
comparison of the three algorithms.

3 Open shortest part first weight setting problem
definition

This section provides the details of the OSPFWS problem.
More specifically, the section provides a formal definition
of the OSPFWS problem, followed by a discussion of the
calculation of traffic load on links.

3.1 Open shortest path first weight setting problem

The OSPFWS problem is formulated as follows. Given a
network topology and predicted traffic demands, find a set
of OSPF weights that optimizes network performance. More
precisely, given a directed network G = (N, A), a demand
matrix D, and capacity Ca for each arc a ∈ A, deter-
mine a positive integer weight qa ∈ [1, qmax] for each arc
a ∈ A such that the objective function or cost function �

is minimized. The maximum value of this weight, qmax , is
a user-defined upper limit. Fortz and Thorup [29] discov-
ered that a small set of weight values significantly reduces
the overhead of the algorithm. By experimentation, they
set wmax to 20. The chosen weights on arcs determine the
shortest paths, which in turn completely determine the rout-
ing of traffic flow, the loads on the arcs, and the value of
the cost function. The quality of OSPF routing is highly
dependent on the selection of weights. Figure 1 shows a
topology with weights assigned to each arc. These weights
are in the range [1, 20]. A solution for this topology can be
(18, 1, 7, 15, 3, 17, 14, 19, 13, 18, 4, 16, 16). The weights
are arranged through a breadth-first traversal of the graph.
For example, for node A, the weights on the outgoing links
are 18 and 1. For node B, the weights on outgoing links are
7 and 15, and so on.

For the purposes of this paper, three objectives are con-
sidered. These objectives are maximum utilization, number
of congested links, and number of unused links, all of
which need to be minimized simultaneously. Minimizing
maximum utilization will lead to better distribution of net-
work traffic across all the links such that congestion can
be avoided and the network can be utilized well as per its
capacity [8]. Network administrators desire less congested
links. However, if a network is highly congested, then the
preference is to reduce the congestion by at least minimizing
the total number of congested links. For example, assume
a network with 50 congested links and 20 unused links. It

602 M. A. Mohiuddin et al.

A

F

B

C E

G

D

5

3

1914

17

16

16

4

15

13

1

18

18

7

Fig. 1 Representation of a topology with assigned weights

would be preferred to accommodate the traffic of the 50
congested links additionally on the 20 unused links. This
indicates that minimizing the number of unused links also
affects the performance of the network. This positive effect
on the performance is due to traffic distribution across the
links of the networks which depends on the routing paths
established [42]. Therefore, a new solution might create new
routing paths such that traffic on congested links may be
distributed on unused links.

3.2 Traffic load calculation

This section provides details of the steps to calculate arc (or
link) loads. Given a weight setting {wa}a∈A, the arc loads la
are calculated in five steps. For all demand pairs dst ∈ D,
consider one destination t at a time and compute partial arc
loads lta ∀ t ∈ N̄ ⊆ N , where N̄ is the set of destination
nodes. The steps are as follows:

1. Compute the shortest distances dt
u from each node

u ∈ N to t , using Dijkstra’s shortest path algorithm
[7]. Dijkstra’s algorithm usually computes the distances
away from source s, but since it is required to compute
the distance to the sink node t , the algorithm is applied
on the graph obtained by reversing all arcs in G.

2. Compute the set At of arcs on shortest paths to t as,

At = {(u, v) ∈ A : dt
u − dt

v = w(u,v)}
3. For each node u, let δt

u denote its outdegree in Gt =
(N, At), i.e.,

δt
u =| {v ∈ N : (u, v) ∈ At } |
If δt

u > 1, then traffic flow is split at node u to balance
the load.

4. The partial loads lta are computed as follows:

(a) Nodes v ∈ N are visited in order of decreasing
distance dt

v to t .

(b) When visiting a node v, for all (v, w) ∈ At , set

lt(v,w) = 1/[δt
v(dvt +

∑
(u,v)∈At

lt(u,v))]
5. The arc load la is now summed from the partial loads

as:

la =
∑

t∈N̄
lta

4 Fuzzy logic and aggregation operators

In general terms, a crisp set X is defined as a collection of
objects x ∈ X, where each object can either belong to the set
or not. However, in many practical situations, certain objects
do not fulfil this “crisp” membership requirement. In such
situations, a need arises for another set theory which could
deal with uncertain data. One possible approach is fuzzy set
theory (FST), which aims to represent vague information.

The basis of the theory of fuzzy sets [43, 44] is multi-
valued logic wherein a statement can be partly false and
partly true at the same time. Formally, a fuzzy set is charac-
terized by a membership function, μ, in the range [0,1]. The
membership function provides a measure of the degree of
presence for every element in the set [45]. A value of μ = 1
indicates that the statement is true, while μ = 0 indicates
that the statement is false.

Similar to crisp sets, set operations such as union, inter-
section, and complement are also defined on fuzzy sets.
A number of operators exist for fuzzy union and fuzzy
intersection. Fuzzy intersection operators are referred to as
t-norm operators while fuzzy union operators are known
as s-norm operators. Generally, the t-norm is implemented
using “min” and the s-norm using “max”. However, in the
formulation of multi-criteria decision functions, the simple
AND (pure “min” function) and simple OR (pure “max”
function) does not work well, due to the fact that the sim-
ple AND or OR operations consider the effect of only one
objective while neglecting the effects of other objectives.
This deficiency of the simple AND and simple OR opera-
tors resulted in the development of a number of “soft-AND”
and “soft-OR” operators, such as the Werners operator [46],
Einstein’s operator [46], Hamacher’s operator [47], Frank’s
operator [48], Weber’s operator [49], Dubois and Prade’s
operator [50], and the Unified And-Or operator [51], among
others. These operators allow easy adjustment of the degree
of “anding” and “oring” embedded in the aggregation.

Khan and Engelbrecht showed that the Unified And-Or
(UAO) operator [51] satisfies the monotonicity, symmetry,
and idempotency conditions. One important characteristic
of the UAO operator is that a single equation is used to
adjust the degree of “anding” and “oring”. Yet, the operator
is capable of behaving either as the soft-AND or the soft-OR
operator. This is in contrast to other aggregation operators

Fuzzy particle swarm optimization algorithms for the open shortest path first weight setting problem 603

listed above, which use separate equations for AND and
OR functions. The behavior of ANDing and ORing of UAO
is controlled by a variable, ν ≥ 0, whose value decides
whether the function behaves as AND or OR. The operator
is defined as:

f (a, b) = ab + ν max{a, b}
ν + max{a, b} =

{
I� = μA∪B(x) if ν > 1
I ∗ = μA∩B(x) if 0 ≤ ν ≤ 1

(6)

where a represents the membership value of μA (i.e. a =
μA), b represents the membership value of μB (i.e. b =
μB), and f (a, b) represents the value of the overall objec-
tive function (i.e. f (a, b) = μAB). I ∗ represents the AND
operation using the UAO operator, and I� denotes the OR
operation using the UAO operator. For more details of the
UAO operator, the interested reader is referred to Khan and
Engelbrecht [51].

5 Fuzzy logic approach for the open shortest path
first weight setting problem

Although the approach has been previously proposed and
explained in Mohiuddin et al. [42], it is again summarized
below for the sake of completeness. Details can be found in
Mohiuddin et al. [42].

The solution to the OSPFWS problem is to assign a
set of weights to network links. The best solution is one
which optimizes the network resources efficiently. The
design objectives of the OSPFWS problem include maxi-
mum utilization (MU), number of congested links (NOC)
and number of unused links (NUL). These objectives indi-
vidually on their own do not provide adequate information
for deciding the quality of a solution. The conflicting nature
of these objectives further amplifies the complexity of the
problem. With this complexity, a mechanism is required to
find a solution that provides the best tradeoff covering all
the objectives. Fuzzy logic is one approach that can con-
veniently and efficiently handle the tradeoff issues between
multiple objectives.

The rest of this section details the employment of fuzzy
logic for combining the three conflicting objectives into a
single overall objective. This overall objective assesses the
quality of a solution in terms of membership of a given set
of weights. A set of weights providing efficient utilization
of network resources consists of lowMU, low NOC and low
NUL.

To formulate the overall objective function, the values of
individual objectives need to be determined first, through

membership functions. This needs the formulation of mem-
bership functions for each individual objective. This process
is described below.

To define the membership function of maximum utiliza-
tion, two extreme values, the minimum and maximum, are
determined first. These values could be found mathemati-
cally or from prior knowledge. Figure 2 shows the member-
ship function of the objective to be optimized (maximum
utilization in this case). Point ‘A’ refers to minimum MU
(MinMU) and point ‘B’ refers to maximum MU (MaxMU).
The membership value for MU, μMU , is determined as
follows:

μMU(x) =
⎧
⎨

⎩

1 if MU ≤ MinMU
MaxMU−MU

MaxMU−MinMU
if MinMU < MU ≤ MaxMU

0 if MU > MaxMU

(7)

The membership function for NOC, μNOC , is defined
in a similar way. In Fig. 2, point ‘A’ then refers to min-
imum NOC (MinNOC) and ‘B’ refers to maximum NOC
(MaxNOC). The membership function of NOC is defined as
follows:

μNOC(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if NOC ≤ MinNOC
MaxNOC−NOC

MaxNOC−MinNOC
if MinNOC < NOC

≤ MaxNOC

0 if NOC > MaxNOC

(8)

Finally, the membership function for NUL, μNUL, is
defined as

μNUL(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if NUL ≤ MinNUL
MaxNUL−NUL

MaxNUL−MinNUL
if MinNUL < NUL

≤ MaxNUL

0 if NUL > MaxNUL

(9)

1.0

0.8

0.6

0.4

0.2

0

µ

A B

Fig. 2 Membership function of the objective to be optimized

604 M. A. Mohiuddin et al.

where minimum (MinNUL) and maximum (MaxNUL) val-
ues correspond to ‘A’ and ‘B’, respectively in Fig. 2.

A good solution to the OSPFWS problem is one that is
characterized by a low MU, low NOC, and low NUL. In
fuzzy logic, this can be stated by the following fuzzy rule:

Rule 1: IF a solution X has lowMU AND low NOC AND
low NUL THEN it is a good solution.

The words ‘low MU’, ‘low NOC’ and ‘low NUL’ are
linguistic values, each defining a fuzzy subset of solutions.
Using the UAO operator [51], the above fuzzy rule reduces
to the following equation.

μ(x) = μ1(x)μ2(x)μ3(x) + ν × max{μ1(x), μ2(x), μ3(x)}
ν + max{μ1(x), μ2(x), μ3(x)}

(10)

where μ(x) is the membership value for solution x in the
fuzzy set “good OSPF Weight set” and ν is a constant in the
range [0,1]. Moreover, μi for i = {1, 2, 3} represents the
membership values of solution x in the fuzzy sets low MU,
low NOC, and low NUL respectively. The solution which
results in the maximum value for (10) is reported as the best
solution.

As an example, consider an arbitrary solution S1, hav-
ing μMU = 0.19, μNOC = 0.2, and μNUL = 0.17.
Also assume that ν = 0.5. Then, (10) results in a value of
0.152. Similarly, consider μMU = 0.22, μNOC = 0.23,
and μNUL = 0.009 associated with another arbitrary solu-
tion S2. Again assume that ν = 0.5. Then, (10) evaluates to
0.164. Thus, solution S2 is better than solution S1 in terms
of quality. Equation (10) is employed as a fuzzy cost func-
tion for solving the OSPFWS problem using the fuzzy PSO
and the fuzzy PSO with simulated evolution algorithms. In
this paper, the fuzzy cost function is denoted as FuzzyCF.

6 Fuzzy particle swarm optimization for the open
shortest path first weight setting problem

The fuzzy PSO (FPSO) algorithm navigates the search
space by maintaining a swarm of candidate solutions, with
each candidate solution referred to as a particle. Each par-
ticle explores new positions in the search space through its
own history, and from the experience of other particles. With
respect to the OSPFWS problem, each particle reaches a
new candidate solution by changing a few weights on the
links of the network. As with the basic PSO [52], the guid-
ance in changing these weights is provided by the particle‘s
current position, its own best position so far, and the global
best position obtained so far by the entire algorithm. Each

step of the proposed FPSO algorithm is discussed in the
following subsections in detail.

6.1 Particle position and velocity representation

The standard PSO uses floating-point vectors to represent
positions and velocities. For the OSPFWS problem, this
study uses a set representation for particles. Therefore, for
an arbitrary network with nodes from a to q, each particle
position is defined as a set,

Xi (t) = {wab, wac, ..., waq, wbc..., wpq}
where wab is the weight assigned to the link between any
two nodes a and b in the network. A constant, W , is also
defined as the number of weights in the solution, i.e. |Xi (t)|
= W . The velocity of particle i is represented as

Vi (t) = wab ⇔ w′
ab

which represents a sequence of replacement operators
where the weight of link (a, b) is replaced with a new
value, w′

ab, and |Vi (t)| gives the total number of changes to
particle i.

Example 1 Consider the topology given in Fig. 1. Note
that the total number of links is 14. The assigned
weights in this figure represent a possible configura-
tion at time t , whereas the configuration represents a
solution (i.e. a particle). A solution for this topology
can be (18, 1, 7, 15, 3, 17, 5, 14, 19, 13, 18, 4, 16, 16). This
current solution is represented as

Xi(t) = {18AB, 1AF , 7BC, 15BD, 3CE, 17CF ,

5DA, 14EA, 19EG, 13FB, 18FD, 4FG, 16GB, 16GD}.
Also assume that at time t , Vi (t) = {(19 ⇔ 18)AB, (2 ⇔
1)AF , (4 ⇔ 7)BC, (12 ⇔ 15)BD, (4 ⇔ 3)CE, (15 ⇔
17)CF , (6 ⇔ 5)DA, (12 ⇔ 14)EA, (13 ⇔ 19)EG, (10 ⇔
13)FB, (11 ⇔ 18)FD, (9 ⇔ 4)FG, (17 ⇔ 16)GB, (17 ⇔
16)GD} where the symbol “⇔” represents a replacement
of weights on the links. That is, the above solution, Xi (t),
was obtained when weight 19 on link AB was replaced with
a weight of 18, weight 2 on link AF was replaced with a
weight of 1, and so on. The solution Xi (t) is then updated in
subsequent steps as discussed in the following subsections.

6.2 Velocity update

The velocity of particle i is updated using

Vi (t + 1) = w ⊗ Vi (t) ⊕ c1r1(t) ⊗ [Pi (t) � Xi (t)]
⊕c2r2(t) ⊗ [Pg(t) � Xi (t)] (11)

where Pi (t) represents the particle’s own best position, and
Pg(t) represents the global best position.

Fuzzy particle swarm optimization algorithms for the open shortest path first weight setting problem 605

In (11), the operator ⊗ is implemented as follows: The
number of elements to be selected is determined as �w ×
|Vi (t)| �, where 0 < w < 1. Then, the result is the
above number of elements randomly selected from Vi (t).
The same approach is applicable to other terms where the
operator ⊗ is used.

The operator � is implemented as a ‘replacement’ oper-
ator. For example, the weights in Xi (t) are replaced with the
weights in Pi (t).

The term c1r1(t) ⊗ [Pi (t) � Xi (t)] is implemented by
randomly sampling �c1r1(t) × |Pi (t) � Xi (t)| � elements
from the set Pi (t) � Xi (t), as follows:

c1r1(t)⊗[Pi (t)�Xi (t)] = �c1r1(t)×|Pi (t)�Xi (t)| � (12)

where |Pi (t) � Xi (t)| represents the cardinality of the set.
The result of (12) indicates the number of elements that are
randomly selected from the set Pi (t) � Xi (t); c2r2(t) ⊗
[Pg(t) � Xi (t)] has the same meaning.

The operator ⊕ implements the set addition (union) oper-
ator. Vmax is used to limit the number of elements selected
from a set.

Example 2 Continuing with Example 1, assume the follow-
ing parameter values:

w = 0.5, Vmax = 2, c1 = c2 = 0.5, r1 = 0.52 (ran-
domly generated), r2 = 0.75 (randomly generated). Further
assume that the best goodness so far for particle i was
generated by the following position as

Pi (t) = {18AB, 12AF , 7BC, 15BD, 3CE, 16CF ,

5DA, 13EA, 19EG, 13FB, 8FD, 4FG, 12GB, 16GD}.
Also assume that the best solution so far generated by the

entire swarm was achieved by:

Pg(t) = {18AB, 2AF , 7BC, 15BD, 3CE, 15CF ,

5DA, 13EA, 19EG, 13FB, 9FD, 4FG, 1GB, 16GD}.
The inertia weight, w, determines the number of replace-

ments that will be randomly selected fromVi (t) (mentioned
in Example 1 above). Since w = 0.5, and |Vi (t)| = 14, the
number of randomly selected replacements is 0.5 × |Vi (t)|
= 7. Thus, any seven replacements from the set Vi (t) can
be taken randomly. Consider that those replacements are
{(2 ⇔ 1)AF , (4 ⇔ 7)BC, (4 ⇔ 3)CE, (6 ⇔ 5)DA, (12 ⇔
14)EA, (13 ⇔ 19)EG, (10 ⇔ 13)FB}.

The difference between the particle’s current position and
its own best position, Pi (t) �Xi (t), is calculated by replac-
ing each link in Xi (t) with the link in the corresponding
position in Pi (t) as:

Pi (t) � Xi (t) = {(18 ⇔ 18)AB, (1 ⇔ 12)AF , (7 ⇔
7)BC, (15 ⇔ 15)BD, (3 ⇔ 3)CE, (17 ⇔ 16)CF , (5 ⇔
5)DA, (14 ⇔ 13)EA, (19 ⇔ 19)EG, (13 ⇔ 13)FB, (18 ⇔
8)FD, (4 ⇔ 4)FG, (16 ⇔ 12)GB, (16 ⇔ 16)GD}.

Therefore, c1 × r1 ⊗ (Pi (t) � Xi (t)) = 0.5 × 0.52 ×
|Pi (t) � Xi (t)|. Since the cardinality of Pi (t) � Xi (t) is 5,
this implies that 0.5×0.52⊗|Pi (t)�Xi (t)| = 1.3 = 1. This
means that any one of the five elements in Pi (t) � Xi (t) is
randomly chosen. Assume that c1 × r1 ⊗ (Pi (t) � Xi (t)) =
{(18 ⇔ 8)FD}.

Similarly,
Pg(t) � Xi (t) = {(18 ⇔ 18)AB, (1 ⇔ 2)AF , (7 ⇔

7)BC, (15 ⇔ 15)BD, (3 ⇔ 3)CE, (17 ⇔ 15)CF , (5 ⇔
5)DA, (14 ⇔ 13)EA, (19 ⇔ 19)EG, (13 ⇔ 13)FB, (18 ⇔
9)FD, (4 ⇔ 4)FG, (16 ⇔ 1)GB, (16 ⇔ 16)GD}.

The cardinality of the above set is 5, since replacements
involving new and old weights having the same value are
ignored. Therefore, 0.5 × 0.75 ⊗ (Pg(t) � Xi (t)) = 0.5 ×
0.75 × 5 = 1.3 = 1 replacement. Assume {(17 ⇔ 15)CF } is
randomly chosen.

Substituting the above calculations in (11) givesVi (t+1)
containing three elements, i.e.

Vi (t + 1) = {(2 ⇔ 1)AF , (4 ⇔ 7)BC, (4 ⇔ 3)CE, (6 ⇔
5)DA, (12 ⇔ 14)EA, (13 ⇔ 19)EG, (10 ⇔ 13)FB, (18 ⇔
8)FD, (17 ⇔ 15)CF }

Since Vmax = 2, only two replacements from Vi (t + 1)
are randomly chosen. Assume that ((18 ⇔ 8)FD and (17 ⇔
15)CF are chosen. Then,

Vi (t + 1) = {(18 ⇔ 8)FD, (17 ⇔ 15)CF }

6.3 Particle position update

The position Xi (t) of a particle i is updated using

Xi (t + 1) = Xi (t)
⊎

Vi (t + 1) (13)

where
⊎

is a special operator that updates the links in Xi (t)

on the basis of weight replacements in Vi (t + 1), to get the
new position Xi (t + 1).

Example 3 Consider Example 2, for which

Xi (t + 1) = Xi (t)
⊎

Vi (t + 1) = {18AB, 1AF , 7BC,

15BD, 3CE, 17CF , 5DA, 14EA, 19EG, 13FB, 18FD, 4FG,

16GB, 16GD}
⊎

{(18 ⇔ 8)FD, (17 ⇔ 15)CF } = {18AB,

1AF , 7BC, 15BD, 3CE, 15CF , 5DA, 14EA, 19EG, 13FB,

8FD, 4FG, 16GB, 16GD}
Thus, in the new solution, weight 18 on link FD is

replaced by 8 and weight 17 on link CF is replaced by 15.

6.4 Fitness evaluation

Each iteration performs a few weight replacements. Because
of weight changes, the routes within the network will
change. The next step is to calculate the traffic on each link
as a result of the new routes. Finally, the cost of the new
solution is computed using (10) as discussed in Section 5.

606 M. A. Mohiuddin et al.

7 Fuzzy evolutionary particle swarm optimization
algorithm for open shortest path first weight
setting problem

In addition to the fuzzy PSO algorithm for OSPFWS
(described in Section 6), a hybrid variant of the fuzzy PSO
using the simulated evolution (SimE) algorithm is presented
in this section. This hybrid variant is referred to as fuzzy
evolutionary PSO (FEPSO). Section 7.1 presents a brief
discussion on SimE. This is followed by a discussion on
FEPSO in Section 7.2.

7.1 Simulated evolution algorithm

Simulated evolution (SimE) is a search strategy proposed
by Kling and Banerjee [9, 53, 54]. Throughout the search,
SimE maintains a single solution which is perturbed to gen-
erate a new solution. Each solution is comprised of a set of
individuals, known as elements. SimE iteratively executes
three steps:

– The evaluation step, which calculates the goodness of
each element of the solution. The goodness of an ele-
ment quantifies the nearness of the element with respect
to its optimal value, and is a value in the range [0, 1].
The optimal value is problem specific and is deter-
mined theoretically or through some empirical analysis.
A higher value of goodness indicates that the element is
near to its optimal value.

– The selection step, in which a subset of elements are
selected based on their goodness and removed from
the current solution. The lower the goodness of a par-
ticular element, the higher its selection probability. A
bias parameter B in the range [-1, 1] is used to con-
trol the number of elements selected. A negative value
of B increases the number of elements selected in each
iteration, thus favoring exploration. This may result in
a high quality solution but at the expense of higher
computational time. A positive value of B inflates the
goodness of an element, thus reducing the number
of elements being selected for reallocation. This may
result in reduced execution time, but at the risk of pre-
mature convergence to sub-optimal (or local optimal)
solution.

– The allocation step, in which the selected elements are
allocated to new positions, with the intention of improv-
ing the existing solution. Each element selected in the
selection step is removed from the solution and trial
allocations are performed. The goodness of the solu-
tion resulting from each trial allocation is calculated,
and the allocation which results in the highest goodness
of the solution is accepted. This process of allocation
and goodness calculations is repeated for each selected

element. At the end of the allocation step, a new solu-
tion is obtained.

Further details about the SimE algorithm can be found in
[9, 53, 54].

7.2 Fuzzy evolutionary particle swarm optimization

Particles of the fuzzy PSO algorithm proposed in Section 6
perform weight replacements. These replacements involve
replacing an old weights with a new weights on the links.
Furthermore, the total number of performed replacements is
limited by the parameter Vmax . It is possible that, for a link
i, a replacement may remove a weight (to be replaced with
another weight) which might already be the optimum (or
near-optimum) weight for that link. Note that this replace-
ment is done ‘blindly’. That is, the value of the new weight
is chosen randomly. If these blind replacements continue
for other links having optimum weights, then it will take
a significant amount of time for the algorithm to converge.
Rather than having a blind replacement, it would be more
appropriate to replace a weight based on its quality. A
weight with low quality will have a high probability of being
removed from its current position, and vice versa. The ques-
tion is how to measure the quality of a weight. This can
be answered by incorporating the evaluation and selection
phases of the SimE algorithm into the FPSO algorithm, as
discussed below.

Recall from Section 7.1 that a solution in SimE is com-
prised of elements. For the OSPFWS problem, elements
are the link weights, whose goodness need to be evaluated.
In this paper, the function defined by Sqalli et al. [38] is
employed to evaluate the goodness of a weight, as given
below:

gij =
{
1 − uij if MU ≤ 1
1 − uij /MU + uij /MU2 if MU > 1

(14)

where uij represents the utilization on link connecting nodes
i and j , and MU refers to the maximum utilization. The
evaluation is performed for all current weights which are
part of the set Vi (t + 1) as defined by (11).

Once the goodness of each existing weight in Vi (t + 1)
is evaluated, the selection phase chooses the weights that
would be replaced with new weights. This selection is done
probabilistically based on the quality of existing weights in
Vi (t + 1). A random number Random in the range [0,1] is
generated. If Random ≤ 1 − gij + B, then the existing
weight is selected for replacement, otherwise no replace-
ment is done. In the above expression, gij refers to the
goodness of current weight on the link connecting nodes
i and j , and B is the selection bias. Figure 3 provides
the pseudo-code of the selection function for FEPSO. The
selection process is illustrated by the following example.

Fuzzy particle swarm optimization algorithms for the open shortest path first weight setting problem 607

Fig. 3 Weight replacement function of FEPSO

Example 4 In Example 2, Vi (t + 1) was found as follows:
Vi (t + 1) = {(2 ⇔ 1)AF , (4 ⇔ 7)BC, (4 ⇔ 3)CE, (6 ⇔

5)DA, (12 ⇔ 14)EA, (13 ⇔ 19)EG, (10 ⇔ 13)FB, (18 ⇔
8)FD, (17 ⇔ 15)CF }

Since Vmax = 2, only two replacements from Vi (t +
1) were randomly chosen in FPSO. However, in FEPSO,
the replacements will be done based on the goodness of
weights. Assume that (4 ⇔ 3)CE , (10 ⇔ 13)FB and
(17 ⇔ 15)CF were selected based on the selection proce-
dure. However, since Vmax = 2, only two replacements will
be selected randomly out of the three. So, a possible result
could be

Vi (t + 1) = {(10 ⇔ 13)FB and (17 ⇔ 15)CF }
Although the proposed hybridization between PSO and

SimE seems promising in generating high quality results,
the approach also has some negative aspects. One major
complexity is associated with tuning of another parameter,
namely, bias B, on top of tuning of various parameters asso-
ciated with the PSO algorithm. This adds extra effort and
time to find the best combination out of many possible com-
binations of all design parameters. Another issue is that the
complexity of the code increases, thus increasing the execu-
tion time. A single iteration of FEPSO will take more time
than a single iteration of FPSO. In a broader perspective and
with consideration of applying the proposed hybrid algo-
rithm to other optimization problems, it can be argued that
the proposed hybridization will allow faster convergence
of FEPSO to an optimal or sub-optimal solution as com-
pared to FPSO. However, this is not always guaranteed and
can only be established after thorough experimentation and
analysis.

8 Experimental methodology

This paper uses test cases from [2] which have been used by
many other researchers as discussed in Section 2. Table 1
summarizes the characteristics of the test cases. For each

test case, the table lists its network type, the number of
nodes (N), and the number of arcs or edges (a). The 2-level
hierarchical networks are generated using the GT-ITM gen-
erator [55], based on the model of Calvert [56] and Zegura
[57]. In hierarchical networks, local access arcs have capac-
ities equal to 200, while long distance arcs have capacities
equal to 1000. In Random networks and Waxman networks,
capacities are set at 1000 for all arcs. Fortz and Thorup gen-
erated the demands to force some nodes to be more active
senders or receivers than others, thus modelling hot spots
on the network. More specifically, higher demands were
assigned to closely located node pairs. Further details can
be found in [8].

Experiments were done with different combinations of
PSO parameters for each test case. Thirty independent runs
were executed for each parameter setup, and the average
of the best solutions found in each run was reported, with
the associated standard deviation. Furthermore, results were
validated for statistical significance through non-parametric
testing. For this purpose, the Wilcoxon’s rank-sum test was
used with confidence level set at 95 %. After experimenting
with different values, it was found that 100 iterations were
reasonable to observe the trends. Therefore, each run was
executed for 100 iterations.

9 Results and discussion

The proposed PSO algorithm was evaluated with respect to
all the PSO parameters. These parameters are the swarm
size, acceleration coefficients c1 and c2, inertia weight w,
and velocity clamping Vmax . Table 2 lists all the parameter
combinations used. The following parameters were used as
default: swarm size = 40, Vmax = 15, w = 0.72, and c1 =
c2 = 1.49. The values c1 = c2 = 1.49 (along with w = 0.72)

Table 1 Test cases for the OSPFWS problem. N = number of nodes,
a = number of arcs

Test Code Network type N a

h100N280a 2-level hierarchical graph 100 280

h100N360a 2-level hierarchical graph 100 360

h50N148a 2-level hierarchical graph 50 148

h50N212a 2-level hierarchical graph 50 212

r100N403a Random graph 100 403

r100N503a Random graph 100 503

r50N228a Random graph 50 228

r50N245a Random graph 50 245

w100N391a Waxman graph 100 391

w100N476a Waxman graph 100 476

w50N169a Waxman graph 50 169

w50N230a Waxman graph 50 230

608 M. A. Mohiuddin et al.

Table 2 PSO parameter
settings used in the experiments Parameter Name Parameter Values

swarm size 20, 40, 60, 80, 100

Vmax 5, 10, 15, 20

w 0.3, 0.5, 0.72, 0.85, 0.99

c1, c2 0.7 and 1.4, 1.4 and 0.7, 1.49 and 1.49, 2 and 2. 0.5 and 3, 3 and 0.5

were specifically selected, since they are frequently used in
the literature due to the fact that they enhance the probability
of convergence [58].

9.1 Effect of Swarm Size

The effect of swarm size was investigated with 20, 40, 60,
80, and 100 particles, as listed in Table 2. Other parameter
values were kept at the defaults. Figures 4 and 5 pro-
vide a graphical representation of the effect of varying the
swarm size on the quality of solutions obtained for test

cases with 50 nodes and 100 nodes, respectively (detailed
results are presented in Appendix B). It is observed from the
figures that for all test cases, increasing the number of par-
ticles enhanced the quality of solution. More specifically,
the highest average overall goodness was obtained with the
highest swarm size consisting of 100 particles, while the
lowest average overall goodness was obtained with the mini-
mum value of swarm size, i.e. 20 particles. Furthermore, the
figures show a logarithmic decrease in the gains in quality
with increase in swarm size. A validation with Wilcoxon’s
test with 95 % significance level for the average overall

Fig. 4 Effect of swarm size on
overall goodness for test cases
with 50 nodes: (a) h50N148a
(b) h50N212a (c) r50N228a (d)
r50N245a (e) w50N169a (f)
w50N230a

(a) (b)

(c) (d)

(e) (f)

Fuzzy particle swarm optimization algorithms for the open shortest path first weight setting problem 609

Fig. 5 Effect of swarm size on
overall goodness for test cases
with 100 nodes: (a) h100N280a
(b) h100N360a (c) r100N503a
(d) r100N403a (e) w100N391a
(f) w100N476a

(a) (b)

(c) (d)

(e) (f)

goodness obtained with different swarm sizes was also per-
formed for the results reported in Tables 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24 and 25 (refer to Appendix B). The
hypothesis testing was done to check whether the average
goodness value obtained with 100 particles was statistically
significantly better than those obtained with other swarm
sizes. The results confirmed that a swarm size of 100 gave
the best results for all test cases.

Another important observation from Tables 14 to 25 is
that, for most test cases, swarms of 80 and 100 particles
resulted in no significant difference with respect to solu-
tion quality. This happened for the test cases h100N280a,
h100N360a, h50N212a, r100N503a, r50N228a, r50N245a,
w50N169a, and w50N230a. The test case w50N169a was
an exception, where swarm sizes 60, 80, and 100 parti-
cles resulted in the same quality of solutions. Therefore, the
smaller swarm size was preferred over larger swarm size due
to lower computational cost.

Diversity is defined as a measure of the average distance
of each particle from the center of the mass. Diversity is
calculated at each iteration during the execution of the algo-
rithm [59]. The effect of increase in swarm size on diversity
was also studied. The purpose was to observe whether big-
ger swarm sizes reduced the possibility of getting trapped
in local minima (preventing premature convergence), thus
resulting in solutions of higher quality. As an example,
Fig. 6 shows the diversity plots for different number of par-
ticles for the test case w100N476a. The figure suggests that
the algorithm did not converge immediately after initial-
ization for all the swarms. Diversity increased until around
iteration number 50. The reduction in diversity is seen when
the algorithm started converging. Swarms with 20 parti-
cles maintained diversity at a higher level compared to
other swarm sizes, and quickly converged at around iteration
225. This is followed by swarms with 40 and 60 particles,
which converged nearly at the same time, at around iteration

610 M. A. Mohiuddin et al.

Fig. 6 Diversity plots for
w100N476a using (a) 100
particles (b) 80 particles (c) 60
particles (d) 40 particles and (e)
20 particles

(a) (b)

(c) (d)

(e)

number 326. Followed by this, swarm with 80 particles con-
verged at iteration 380. Finally, the swarmwith 100 particles
converged last, after 400 iterations.

9.2 Effect of acceleration coefficients

The impact of the acceleration coefficients on the algo-
rithm’s performance was also evaluated. Table 3 gives
the average overall goodness for different combinations
of acceleration coefficients, as given in Table 2. Other
algorithm parameters were kept as their defaults.

As observed in Table 3, a dominant trend was that the
best results were obtained when the value of c1 was much
higher than that of c2. That is, for seven out of twelve test
cases, the best overall goodness was obtained when c1 =
3.0 and c2 = 0.5. Furthermore, there were two other test
cases (r100N403a and w100N391a) where the best overall
goodness was obtained with c1 = 1.4 and c2 = 0.7. These
results indicate that in general, the algorithm resulted in

highest overall goodness values when the cognitive compo-
nent dominated the social component. There were only three
test cases (h100N280a, h100N360a and w50N169a) which
deviated from the above trend.

The above observations are further supported by the
results given in Table 4 which gives the percentage improve-
ments in terms of the best and worst overall goodness
values. The results show that the level of improvements
achieved ranged between 2.61% and 11.74%. In most
instances, the average overall goodness was around 4% or
above. Statistical validation with the Wilcoxon’s test proved
that in a majority of the cases, the improvements were statis-
tically significant (highlighted in boldface). It is clear from
these results that for eight test cases, best overall good-
ness values were obtained when the value of c1 was greater
than c2. There were three exceptions, namely, h100N280a,
w50N169a, and h100N360 (highlighted in asterisk) which
deviated from the above trend. Furthermore, improvements
in one test case (r50N245a) turned out to be statistically

Fuzzy particle swarm optimization algorithms for the open shortest path first weight setting problem 611

Table 3 Effect of different acceleration coefficients combinations on overall goodness for different test cases. Best overall goodness for each test
case is in boldface

Test Case c1 = 1.49 c1 = 0.7 c1 = 1.4 c1 = 2.0 c1 = 0.5 c1 = 3.0

c2 = 1.49 c2 = 1.4 c2 = 0.7 c2 = 2.0 c2 = 3.0 c2 = 0.5

(Set 1) (Set 2) (Set 3) (Set 4) (Set 5) (Set 6)

h100N280a 0.471±0.018 0.494±0.029 0.473±0.027 0.486±0.023 0.464±0.022 0.468±0.031

h100N360a 0.480±0.034 0.470±0.052 0.478±0.029 0.480±0.032 0.493±0.044 0.484±0.021

h50N148a 0.400±0.019 0.401±0.019 0.409±0.023 0.404±0.017 0.403±0.033 0.427±0.022

h50N212a 0.469±0.022 0.445±0.038 0.460±0.051 0.450±0.052 0.484±0.011 0.494±0.021

r100N403a 0.425±0.031 0.432±0.02 0.437±0.016 0.430±0.019 0.410±0.017 0.418±0.052

r100N503a 0.474±0.029 0.467±0.024 0.474±0.021 0.473±0.021 0.485±0.019 0.486±0.027

r50N228a 0.487±0.022 0.485±0.02 0.490±0.023 0.492±0.026 0.488±0.012 0.504±0.035

r50N245a 0.499±0.03 0.509±0.023 0.507±0.022 0.501±0.026 0.500±0.022 0.512±0.022

w100N391a 0.490±0.063 0.512±0.048 0.514±0.07 0.507±0.086 0.500±0.044 0.482±0.118

w100N476a 0.578±0.026 0.572±0.03 0.568±0.025 0.570±0.022 0.567±0.025 0.595±0.010

w50N169a 0.541±0.019 0.551±0.03 0.536±0.029 0.552±0.028 0.523±0.028 0.530±0.010

w50N230a 0.504±0.038 0.501±0.043 0.477±0.079 0.513±0.042 0.460±0.087 0.514±0.049

insignificant. In view of the above results and discussion, it
can be fairly concluded that higher quality results produced
by PSO were governed by the cognitive component.

9.3 Effect of inertia weight

The effect of the inertia weight was assessed with respect
to the five values listed in Table 2. Other algorithm param-
eters were kept at their defaults. Table 5 gives the average
overall goodness for the different values of the inertia
weight. It is observed from this table that, in general,
higher values of the inertia weight (w = 0.85 and w =

0.99) tend to show better results than the tried smaller
values.

In order to validate the above observations, statistical
testing was done and results are shown in Table 6. This table
shows the percentage improvements obtained when results
with two different inertia weights were compared. Although
the results show improvements in terms of percentages, sta-
tistical testing revealed that in general, improvements were
statistically insignificant. Only few improvements were sig-
nificant which are highlighted in boldface. Based on these
observations, it can be confidently claimed that with respect
to the five values tried, the inertia weight did not have

Table 4 Results for best and worst overall goodness and their corresponding values of c1 and c2. Statistically significant improvements are given
in boldface

Test case Best c1, c2 Worst c1, c2 % difference

overall overall

goodness goodness

h100N280a 0.494 0.7, 1.4 0.464 0.5, 3 6.47 *

h100N360a 0.493 0.5, 3 0.480 0.7, 1.4 4.89 *

h50N148a 0.427 3, 0.5 0.400 1.49, 1.49 6.75

h50N212a 0.494 3, 0.5 0.445 0.7, 1.4 11.01

r100N403a 0.437 1.4, 0.7 0.410 0.5, 3 6.59

r100N503a 0.486 3, 0.5 0.467 0.7, 1.4 4.07

r50N228a 0.504 3, 0.5 0.485 0.7, 1.4 3.92

r50N245a 0.512 3, 0.5 0.499 1.49, 1.49 2.61

w100N391a 0.514 1.4, 0.7 0.482 3, 0.5 6.64

w100N476a 0.595 3, 0.5 0.567 0.5, 3 4.94

w50N169a 0.552 2, 2 0.523 0.5, 3 5.54 *

w50N230a 0.514 3, 0.5 0.460 0.5, 3 11.74

612 M. A. Mohiuddin et al.

Table 5 Average overall goodness values achieved with different inertia weights. Best overall goodness values are given in boldface

Test Case w = 0.3 w = 0.5 w = 0.72 w = 0.85 w = 0.99

h100N280a 0.469±0.025 0.469±0.029 0.471±0.018 0.477±0.013 0.479 ±0.024

h100N360a 0.467±0.051 0.468±0.041 0.48±0.034 0.495±0.026 0.462±0.019

h50N148a 0.406±0.027 0.391±0.025 0.400±0.019 0.373±0.027 0.396±0.035

h50N212a 0.466±0.028 0.447±0.03 0.469±0.022 0.483±0.014 0.461±0.014

r100N403a 0.431±0.025 0.421±0.028 0.425±0.031 0.423±0.008 0.409±0.025

r100N503a 0.465±0.026 0.465±0.021 0.474±0.029 0.473±0.011 0.462±0.041

r50N228a 0.495±0.021 0.491±0.022 0.487±0.022 0.495±0.034 0.502±0.023

r50N245a 0.500±0.02 0.509±0.022 0.499±0.03 0.524±0.027 0.504±0.026

w100N391a 0.474±0.071 0.509±0.052 0.490±0.063 0.513±0.023 0.417±0.137

w100N476a 0.586±0.027 0.57±0.023 0.578±0.026 0.572±0.055 0.584±0.048

w50N169a 0.542±0.027 0.550±0.023 0.541±0.019 0.552±0.033 0.559±0.023

w50N230a 0.501±0.033 0.501±0.043 0.504±0.038 0.518±0.046 0.526±0.024

a notable impact on the output results produced by the
algorithm.

9.4 Effect of velocity clamping

The effect of velocity clamping was also investigated. Apart
from the default value of Vmax = 15, other values of veloc-
ity clamping 5, 10, and 20, were tried as listed in Table 2.
Other algorithm parameters were kept as defaults. The inspi-
ration for taking the aforementioned values of Vmax comes
from the concept of mutation rates in genetic algorithms.
Note that the function of Vmax in PSO and mutation in GA
is somewhat similar; both parameters control the level of
perturbation in the solution. Although the mutation rate is
problem specific, a number of studies [59–63] have used the
mutation rate of up to 20 %. Therefore, the motivation for
choosing the given range of Vmax is the above observation.

For the problem in hand, since the size of the solution string
varies between 148 and 503 (corresponding to the number of
edges on which the weights are varied), the values of Vmax

ranging from 5 to 20 correspond to perturbation rates of 1 %
to around 12 %.

Table 7 shows the average overall goodness for the four
values of Vmax investigated. It is observed from the table
that Vmax = 5 produced the highest values of average over-
all goodness for almost all test cases, with the exception of
r100N403a, where Vmax = 10 produced the highest value
of average overall goodness. Another deviation from the
trend was the case w100N391a where both Vmax = 5 and
Vmax = 10 produced the same level of average overall
goodness.

The best performance of Vmax = 5 was further confirmed
by statistical testing which showed that the results produced
by Vmax = 5 were indeed significant for all test cases when

Table 6 Comparison of different inertia weights given in Table 5 in terms of percentage differences. Statistically significant differences are
highlighted in boldface

Test Case 0.3 0.3 0.3 0.3 0.5 0.5 0.5 0.72 0.72 0.85

vs 0.5 vs 0.72 vs 0.85 vs 0.99 vs 0.72 vs 0.85 vs 0.99 vs 0.85 vs 0.99 vs 0.99

h100N280a 0.00 0.43 1.71 2.13 0.43 1.71 2.13 1.27 1.70 0.42

h100N360a -0.21 2.78 6.00 -1.07 2.56 5.77 -1.28 3.13 -3.75 -6.67

h50N148a 3.69 -1.48 -8.13 -2.46 2.30 -4.60 1.28 -6.75 -1.00 6.17

h50N212a 4.08 0.64 3.65 -1.07 4.92 8.05 3.13 2.99 -1.71 -4.55

r100N403a 2.32 -1.39 -1.86 -5.10 0.95 0.48 -2.85 -0.47 -3.76 -3.31

r100N503a 0.00 1.94 1.72 -0.65 1.94 1.72 -0.65 -0.21 -2.53 -2.33

r50N228a 0.81 -1.62 0.00 1.41 -0.81 0.81 2.24 1.64 3.08 1.41

r50N245a -1.80 -0.20 4.80 0.80 -1.96 2.95 -0.98 5.01 1.00 -3.82

w100N391a -7.38 3.38 8.23 -12.03 -3.73 0.79 -18.07 4.69 -14.90 -18.71

w100N476a 2.73 -1.37 -2.39 -0.34 1.40 0.35 2.46 -1.04 1.04 2.10

w50N169a -1.48 -0.18 1.85 3.14 -1.64 0.36 1.64 2.03 3.33 1.27

w50N230a 0.00 0.60 3.39 4.99 0.60 3.39 4.99 2.78 4.37 1.54

Fuzzy particle swarm optimization algorithms for the open shortest path first weight setting problem 613

Table 7 Analysis of velocity clamping. Best overall goodness is in boldface

Test Case Vmax=15 Vmax=5 Vmax=10 Vmax=20

Set (1) Set (2) Set (3) Set (4)

h100N280a 0.471±0.018 0.531±0.018 0.489±0.028 0.454±0.021

h100N360a 0.48±0.034 0.539±0.025 0.482±0.051 0.45±0.039

h50N148a 0.4±0.019 0.437±0.021 0.414±0.022 0.387±0.023

h50N212a 0.469±0.022 0.502±0.02 0.489±0.019 0.436±0.038

r100N403a 0.425±0.031 0.447±0.025 0.45±0.014 0.415±0.017

r100N503a 0.474±0.029 0.535±0.023 0.51±0.023 0.462±0.02

r50N228a 0.487±0.022 0.543±0.019 0.517±0.021 0.473±0.023

r50N245a 0.499±0.03 0.557±0.019 0.53±0.024 0.485±0.023

w100N391a 0.49±0.063 0.538±0.103 0.538±0.05 0.456±0.083

w100N476a 0.578±0.026 0.641±0.023 0.615±0.03 0.544±0.053

w50N169a 0.541±0.019 0.595±0.021 0.57±0.033 0.519±0.026

w50N230a 0.504±0.038 0.591±0.029 0.557±0.028 0.478±0.041

compared with Vmax = 15 and Vmax = 20, as depicted in
Table 8. Furthermore, when compared with Vmax = 10, the
results produced by Vmax = 5 were statistically significant
for 9 out of the 12 test cases. The above observations and
analysis clearly indicate that Vmax = 5 resulted in the highest
quality of solutions compared to the other values of Vmax

tested.
It is obvious from the above discussion and analysis

that Vmax had a significant impact on the quality of final
solutions produced by the proposed PSO algorithm. The
results also indicate that better overall goodness values
were obtained when velocity clamping was kept low. This
can be attributed to the fact that, with larger values of
Vmax , the algorithm was biased towards exploration which
rather resulted in more randomized search. A lower value of
Vmax was therefore able to better balance exploration and
exploitation.

9.5 Comparison of Fuzzy Particle Swarm Optimization
and Fuzzy Evolutionary Particle Swarm Optimization

Table 9 summarizes the comparison of the proposed fuzzy
PSO and the fuzzy evolutionary PSO. The table shows the
results of the best parameter combination for FPSO and the
corresponding results for FEPSO for the same parameter
combination. Thirty runs were executed for each test case
and results were statistically validated through Wilcoxon’s
rank-sum test. The execution time (not the number of itera-
tions) for both versions was also kept the same. It is clearly
observed from the table that the improvements achieved
by FESPO were statistically significant for all test cases,
with the exception of h100N280a (for which FEPSO had a
slightly inferior performance with degradation of 0.91% in
the average overall goodness). However, statistical analysis
suggested that this deteriorated result was not significant.

Table 8 Comparison of different values of velocity clamping. Significant differences are highlighted in boldface

Test Case Vmax=15 vs Vmax=15 vs Vmax=15 vs Vmax=5 vs Vmax=5 vs Vmax=10 vs

Vmax=5 Vmax=10 Vmax=20 Vmax=10 Vmax=20 Vmax=20

h100N280a -11.3 -3.68 3.74 8.59 16.96 7.71

h100N360a -10.95 -0.41 6.67 11.83 19.78 7.11

h50N148a -8.47 -3.38 3.36 5.56 12.92 6.98

h50N212a -6.57 -4.09 7.57 2.66 15.14 12.16

r100N403a -4.92 -5.56 2.41 -0.67 7.71 8.43

r100N503a -11.4 -7.06 2.6 4.9 15.8 10.39

r50N228a -10.31 -5.8 2.96 5.03 14.8 9.3

r50N245a -10.41 -5.85 2.89 5.09 14.85 9.28

w100N391a -8.92 -8.92 7.46 0 17.98 17.98

w100N476a -9.83 -6.02 6.25 4.23 17.83 13.05

w50N169a -9.08 -5.09 4.24 4.39 14.64 9.83

w50N230a -14.72 -9.52 5.44 6.1 23.64 16.53

614 M. A. Mohiuddin et al.

Table 9 Comparison of fuzzy PSO and fuzzy evolutionary PSO. Significant differences are highlighted in bold. NoP = number of particles, %
Imp = percentage improvement. Runtime is in seconds

Test Case NoP C1 C2 W Vmax Run FPSO FEPSO %

Time Imp

h100N280a 40 1.49 1.49 0.72 5 12460.7 0.531 ± 0.018 0.526 ± 0.015 -0.91

h100N360a 100 1.49 1.49 0.72 15 30679.8 0.543 ± 0.036 0.605 ± 0.012 11.40

h50N148a 40 1.49 1.49 0.72 5 808.9 0.437 ± 0.021 0.469 ± 0.019 7.22

h50N212a 100 1.49 1.49 0.72 15 2291.2 0.504 ± 0.015 0.528 ± 0.013 4.94

r100N403a 100 1.49 1.49 0.72 15 62095.1 0.481 ± 0.017 0.595 ± 0.011 23.73

r100N503a 100 1.49 1.49 0.72 15 78408.6 0.543 ± 0.013 0.710 ± 0.012 30.83

r50N228a 100 1.49 1.49 0.72 15 3112.4 0.543 ± 0.019 0.610 ± 0.016 12.27

r50N245a 40 1.49 1.49 0.72 5 1586.8 0.557 ± 0.019 0.644 ± 0.014 15.67

w100N391a 100 1.49 1.49 0.72 15 48083.9 0.609 ± 0.029 0.725 ± 0.010 18.94

w100N476a 100 1.49 1.49 0.72 15 71213.2 0.657 ± 0.025 0.757 ± 0.011 15.24

w50N169a 40 1.49 1.49 0.72 5 1084.5 0.595 ± 0.021 0.640 ± 0.012 7.47

w50N230a 40 1.49 1.49 0.72 5 1653.0 0.591 ± 0.029 0.711 ± 0.022 20.48

Therefore, it can be confidently claimed that FEPSO out-
performed FPSO in terms of quality of the average overall
goodness.

The superior performance of FEPSO can be attributed
to its design. Recall from Section 7.2 that an existing solu-
tion is perturbed by performing moves as governed by (11).
These moves result in randomly replacing existing weights
on links with new weights. It is quite possible that some
of these moves may result in removing a near-optimum (or
even optimum) weight from a certain link and introducing
an unsuitable weight. In order to avoid this from happening,
the concept of “intelligent” move was introduced in FEPSO,
which allows the algorithm to converge in less amount of
time, or alternatively speaking, producing higher quality
results when executed for the same amount of time as that
of FPSO.

10 Comparison of fuzzy evolutionary particle
swarm optimization with other algorithms

Since fuzzy evolutionary PSO algorithm (FEPSO) per-
formed better than fuzzy PSO (FPSO) algorithm, it was
compared with other iterative heuristics, namely, Pareto-
dominance PSO (PDPSO) [64], PSO with weighted aggre-
gation (WAPSO) [65], non-dominated sorting genetic algo-
rithm II (NSGA-II)[42, 66], simulated evolution (SimE)[40,
42], and simulated annealing (SA) [39, 42]. PDPSO and
WAPSO were adapted for the underlying problem, whereas
NSGA-II, SimE, and SA have already been applied to the
same problem by Mohiuddin et al. [42]. Details of imple-
mentation and comparative analysis of NSGA-II, SimE, and
SA can be found in Mohiuddin et al. [42]. Thirty runs
were made for each test cases for each algorithm, and

Table 10 Comparison of Maximum Utilization (MU) achieved by FEPSO, PDPSO, WAPSO, NSGA-II, SimE, and SA. Best (minimum) values
are shown in bold

Test Case FEPSO PDPSO WAPSO NSGA-II SimE SA

h100N280a 1.44±0.06 1.42±0.07 1.44±0.10 1.42±0.07 1.41±0.06 1.50±0.35

h100N360a 1.69±0.08 1.86±0.07 1.82±0.12 1.84±0.08 1.72±0.09 2.01±0.53

h50N148a 1.54±0.09 1.71±0.09 1.67±0.13 2.90±1.12 1.62±0.12 1.51±0.1

h50N212a 1.71±0.05 1.76±0.05 1.80±0.05 1.71±0.08 1.67±0.1 1.68±0.08

r100N403a 1.86±0.07 2.35±0.18 2.32±0.12 4.13±1.93 1.86±0.07 2.72±0.58

r100N503a 1.95±0.08 3.40±0.24 2.85±0.25 3.48±0.21 2.19±0.17 3.58±0.42

r50N228a 1.80±0.11 2.09±0.14 2.04±0.21 2.05±0.16 1.80±0.12 2.02±0.13

r50N245a 2.44±0.19 2.99±0.28 2.66±0.21 2.90±0.29 2.60±0.19 2.83±0.24

w100N391a 1.49±0.02 1.68±0.13 1.69±0.13 1.65±0.11 1.42±0.03 1.75±0.71

w100N476a 1.54±0.07 1.95±0.14 1.94±0.15 2.17±0.2 1.46±0.07 2.24±0.22

w50N169a 1.44±0.08 1.60±0.11 1.67±0.06 1.43±0.07 1.44±0.08 1.41±0.09

w50N230a 1.36±0.09 1.71±0.16 1.61±0.12 1.65±0.10 1.44±0.09 1.55±0.15

Fuzzy particle swarm optimization algorithms for the open shortest path first weight setting problem 615

Table 11 Comparison of Number of Congested Links (NOC) achieved by FEPSO, PDPSO, WAPSO, NSGA-II, SimE, and SA. Best (minimum)
values are shown in bold

Test Case FEPSO PDPSO WAPSO NSGA-II SimE SA

h100N280a 9.00±1.26 9.00±1.20 9.00±1.49 8.65±1.04 8.50±1.43 8.93±1.39

h100N360a 12.80±1.99 16.60±3.27 15.90±2.38 16.80±2.35 16.13±2.24 21.03±6.30

h50N148a 9.80±1.15 11.10±2.08 9.20±2.20 16.45±3.99 10.37±2.03 8.4±1.67

h50N212a 4.70±0.66 5.20±0.79 4.80±0.42 5.80±0.83 4.93±0.74 5.17±0.79

r100N403a 32.95±2.76 54.50±5.82 58.80±3.16 72.25±19.06 44.73±2.49 62.6±6.58

r100N503a 31.45±2.95 73.80±5.05 69.40±4.74 73.75±3.18 52.80±2.81 82.33±26.21

r50N228a 16.65±1.57 22.10±2.08 24.60±2.37 19.95±2.11 19.77±1.30 22.03±2.25

r50N245a 20.25±1.48 27.50±2.32 28.30±2.00 26.05±2.54 26.20±1.97 28.77±2.62

w100N391a 3.25±1.12 16.50±3.60 12.50±4.62 14.15±3.72 7.17±2.69 42.1±19.92

w100N476a 11.25±1.89 23.30±3.13 24.30±3.06 30.00±4.12 17.07±2.36 41.7±15.65

w50N169a 7.70±0.92 9.70±1.16 8.80±2.04 7.65±1.35 8.37±1.19 8.8±1.81

w50N230a 6.00±1.21 13.40±3.66 11.70±2.06 11.25±2.10 9.13±1.50 14.4±9.08

average results and standard deviations were reported. All
algorithms were run for the same amount of time for fair
comparisons.

Tables 10, 11, and 12 present the results obtained for
FEPSO, PDPSO, WAPSO, NSGA-II, SimE, and SA for
the three objectives, respectively. Since the multi-objective
assessment approach for the algorithms is not the same, the
overall objective function that shows the combined effect
of all three objectives cannot be directly used for compar-
ison. Therefore, each objective was evaluated individually.
Table 10 indicates that for the maximum utilization objec-
tive, FEPSO obtained the best results for four test cases
(h100N360a, r100N503a, r50N245a, w50N230a). For two
test cases (r100N403a and r50N228a), both FEPSO and
SimE produced the best results. For four cases (h100N280a,
h40N212a, w100N391a, and w100N476a), SimE generated
the best (minimum) values. For two test cases (h50N148a
and w50N169a), SA obtained the best results. As for the

objective of number of congested links, the results in
Table 11 indicate that FEPSO obtained the best results
for nine test cases. The exception was three test cases of
h100N280a, h50N148a, and w50N169a where SimE, SA,
and NSGA-II were able to achieve the best values, respec-
tively. Finally for the objective of number of unused links,
the results in Table 12 indicate that FEPSO was able to
achieve optimum values (i.e., no link was left unused) in
all test cases, with the exception of r50N245a. However, it
should also be noted that there are many instances where
other algorithms also achieved the optimum levels.

Although the discussion above provides a fair picture of
the performance of FEPSO with respect to individual objec-
tives, an overall view of FEPSO‘s performance is desired.
Table 13 accumulates the results with regard to the three
objectives and displays the best and worst achievers for each
objective. The results given in Table 13 are based on results
of Tables 10, 11, and 12. The table signifies that in five

Table 12 Comparison of Number of Unused Links (NUL) achieved by FEPSO, PDPSO, WAPSO, NSGA-II, SimE, and SA

Test Case FEPSO PDPSO WAPSO NSGA-II SimE SA

h100N280a 0.00±0.00 0.00±0.00 0.10±0.32 0.00±0.00 1.23±0.90 0.7±3.31

h100N360a 0.00±0.00 0.10±0.32 0.00±0.00 0.20±0.52 0.93±1.01 0.2±0.48

h50N148a 0.00±0.00 0.00 ±0.00 0.00±0.00 0.30±0.66 0.07±0.25 0.00±0.00

h50N212a 0.00±0.00 1.90±1.91 2.60±2.55 0.05±0.22 2.77±1.92 0.07±0.25

r100N403a 0.00±0.00 0.00±0.00 0.00±0.00 0.60±0.60 0.13±0.35 0.03±0.18

r100N503a 0.00±0.00 0.50 ±0.71 0.00±0.00 0.85±0.67 0.17±0.38 6.57±16.08

r50N228a 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.10±0.31 0.03±0.18

r50N245a 0.05±0.22 0.30±0.48 0.00±0.00 0.35±0.49 0.80±0.89 0.23±0.50

w100N391a 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.03±0.18 7.23±6.18

w100N476a 0.00±0.00 0.00±0.00 0.00±0.00 0.45±0.69 0.60±0.81 4.73±11.69

w50N169a 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.03±0.18 0.00±0.00

w50N230a 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.27±0.49 1.37±4.54

616 M. A. Mohiuddin et al.

Table 13 Summary of test cases where different algorithms achieved best and worst results for the three objectives

Test Case MU NOC NUL

Best Worst Best Worst Best Worst

h100N280a SimE SA SimE FEPSO FEPSO, PDPSO, NSGA-II SimE

h100N360a FEPSO SA FEPSO SA FEPSO, WAPSO SimE

h50N148a SA NSGA-II SA NSGA-II FEPSO, PDPSO, WAPSO,SA NSGA-II

h50N212a SimE WAPSO FEPSO NSGA-II FEPSO SimE

r100N403a FEPSO, SimE NSGA-II FEPSO NSGA-II FEPSO, PDPSO, WAPSO NSGA-II

r100N503a FEPSO SA FEPSO SA FEPSO, WAPSO SA

r50N228a FEPSO, SimE PDPSO FEPSO WAPSO FEPSO, PDPSO, WAPSO, NSGA-II SimE

r50N245a FEPSO PDPSO FEPSO SA WAPSO SimE

w100N391a SimE SA FEPSO SA FEPSO, PDPSO, WAPSO, NSGA-II SA

w100N476a SimE SA FEPSO SA FEPSO, PDPSO, WAPSO SA

w50N169a SA WAPSO NSGA-II PDPSO FEPSO, PDPSO, WAPSO, NSGA-II, SA SimE

w50N230a FEPSO PDPSO FEPSO SA FEPSO, PDPSO, WAPSO, NSGA-II SA

Test cases where FEPSO achieved best results for two or all three objectives are highlighted in bold.

cases (h100N360a, r100N403a, r100N503a, r50N228a, and
w50N230a), FEPSO achieved the best results for all three
objectives, while there are four cases (h50N212a, r50N245a,
w100N391a, and w100N476a) where FEPSO was domi-
nant through achievement of best results in two objectives.
In contrast, algorithms used for comparison with FEPSO
achieved best results mostly in only one objective. There
are some exceptions where other algorithms achieved best
results in two objectives, but achieved worst results in the
third objective, which, to some extent, negatively affects
their best achievement in two objectives. Such instances
are h100N280a, where SimE gets best results for MU and
NOC objectives, but shows worst results for the NUL objec-
tive. Another example is h50N148a where NSGA-II shows
the same trends as that of SimE. There is only one test
case of w50N169a where NSGA-II achieved the best results
for two objectives (NOC and NUL) but did not achieve
worst results for the MU objective. Note that in all results,
there is only one instance where FEPSO showed the worst
performance (NOC for h100N280a). Based on the above
discussion and observations, it can be fairly claimed that,
overall, FEPSO showed the best performance compared to
all other algorithms considered.

The overall better performance of FEPSO lies in its
design, which combines the strong searching capabilities
of PSO, augmented by the simulated evolution algorithm
which allows a more intelligent local search capability. In
contrast to this hybrid design of FEPSO, both SimE and
SA lack efficient traversing of the whole search space,
since both of them are local search algorithms after all.
Furthermore, when compared with NSGA-II, PDPSO, and
WAPSO, again the intelligent local search capability of
FEPSO allowed it to outperform the three algorithms.

11 Conclusion

This paper proposed and investigated a multi-objective par-
ticle swarm optimization algorithm to efficiently solve the
open shortest path first weight setting problem. Three opti-
mization objectives, namely, maximum utilization, number
of congested links, and number of unused links were con-
sidered in the optimization process. These conflicting objec-
tives were aggregated into a scalar optimization function
using the unified and-or fuzzy aggregation operator. The
performance of the proposed algorithm was analyzed with
regard to different algorithm parameters including swarm
size, acceleration coefficients, inertia weight, and velocity
clamping. Results revealed that swarm size, acceleration
coefficients, and velocity clamping have a significant effect
on the quality of results, but the algorithm was insensitive
to variation in the inertia weight. Furthermore, a modi-
fied version of the fuzzy PSO, namely, fuzzy evolutionary
PSO, was also proposed which incorporated characteristics
of the simulated evolution algorithm. A comparison among
the basic and modified versions of the PSO revealed that
the fuzzy evolutionary PSO was able to produce results
of higher quality compared to its basic counterpart. Fur-
thermore, a comparison of fuzzy evolutionary PSO with
Pareto-dominance PSO, weighted aggregation PSO, NSGA-
II, simulated evolution, and simulated annealing algorithms
revealed that the fuzzy evolutionary PSO outperformed the
other five algorithms.

Compliance with Ethical Standards The authors declare that they
have no conflict of interest. This article does not contain any stud-
ies with human participants or animals performed by any of the
authors. Informed consent was obtained from all individual partici-
pants included in the study.

Fuzzy particle swarm optimization algorithms for the open shortest path first weight setting problem 617

Appendix A

Nomenclature

G Graph
N Set of nodes
n A single element in set N
A Set of arcs
At Set of arcs representing shortest paths from all

sources to destination node t

a A single element in set A. It can also be
represented as (i, j)

s Source node
v Intermediate node
t Destination node
D Demand matrix
D [s, t] An element in the demand matrix that

specifies the demand from source node s

to destination node t ; It can also be specified
as dst

wij Weight on arc (i, j); if a = (i, j), then it can
also be represented as wa

cij Capacity on arc (i, j); if a = (i, j), then it can
also be represented as ca

� Cost function
�i,j Cost associated with arc (i, j); if a = (i, j), then

it can also be represented as �a

δt
u Outdegree of node u when destination node is t

δ+(u) Outdegree of node u

δ−(u) Indegree of node u

lta Load on arc a when destination node is t

la Total traffic load on arc a

f
(s,t)
a Traffic flow from node s to t over arc a

SetCA Set of congested arcs

Terminology

1. A single element in the set N is called a “Node”. It is
represented as n.

2. A single element in the set A is called an “Arc” or
“Link”. It is represented as a.

3. A set G = (N, A) is a graph defined as a finite
nonempty set N of nodes and a collection A of pairs
of distinct nodes from N .

4. A “directed graph” or “digraph”G = (N, A) is a finite
nonempty setN of nodes and a collectionA of ordered
pairs of distinct nodes from N ; each ordered pair of
nodes in A is called a “directed arc”.

5. A digraph is “strongly connected” if for each pair
of nodes i and j there is a directed path (i =

n1, n2, ..., nl = j) from i to j . A given graph G must
be strongly connected for this problem.

6. A “demand matrix” is a matrix that specifies the traffic
flow between s and t , for each pair (s, t) ∈ N × N .

7. (n1, n2, ..., nl) is a “directed walk” in a digraph G if
(ni, ni+1) is a directed arc in G for 1 ≤ i ≤ l − 1.

8. A “directed path” is a directed walk with no repeated
nodes.

9. Given any directed path p = (i, j, k, ..., l, m), the
“length” of p is defined as wij + wjk + ... + wlm.

10. The “outdegree” of a node u is a set of arcs leaving
node u i.e., {(u, v) : (u, v) ∈ A}.

11. The “indegree” of a node u is a set of arcs entering
node u i.e., {(v, u) : (v, u) ∈ A}.

12. The input to the problem will be a graph G, a demand
matrix D, and capacities of each arc.

13. The term MU refers to the maximum utilization. It is
the highest load/capacity ratio of the network.

14. The term NOC refers to the number of congested links.
15. The term NUL refers to the number of unused links.
16. The term E refers to the total number of links in the

network.

Appendix B

Tables 14 to 25 provide the quality of solutions obtained
with respect to the associated swarm size for all test cases.
Column 1 represents the number of particles in the swarm.
Column 2 represents the average overall goodness using
the UAO operator. Column 3 represents the percentage
difference between the average overall goodness of the cor-
responding number of particles and the highest average
overall goodness (given in asterisk) of the solutions. Note
that the swarm size resulting in the highest average overall
goodness is taken as the reference, and the difference for
other swarm sizes is calculated with respect to the reference
value. The differences were also statistically tested using
Wilcoxon’s rank sum test.

Table 14 Effect of swarm size on overall cost for h100N280a with
UAO

No. of particles Fuzzy Cost (UAO) % Difference

20 0.433±0.037 16.41∗

40 0.471±0.018 9.07∗

60 0.493±0.029 4.83∗

80 0.504±0.019 2.7

100 0.518±0.025 NA

618 M. A. Mohiuddin et al.

Table 15 Effect of swarm size on overall cost for h100N360a with
UAO

No. of particles Fuzzy Cost (UAO) % Difference

20 0.424±0.037 21.92∗

40 0.48±0.034 11.6∗

60 0.514±0.028 5.34∗

80 0.529±0.027 2.58

100 0.543±0.036 NA

Table 16 Effect of swarm size on overall cost for h50N148a with
UAO

No. of particles Fuzzy Cost (UAO) % Difference

20 0.381±0.019 12.81∗

40 0.4±0.019 8.47∗

60 0.416±0.022 4.81∗

80 0.422±0.019 3.43∗

100 0.437±0.022 NA

Table 17 Effect of swarm size on overall cost for h50N212a with
UAO

No. of particles Fuzzy Cost (UAO) % Difference

20 0.399±0.06 20.83∗

40 0.469±0.022 6.94∗

60 0.483±0.026 4.17∗

80 0.5±0.018 0.79

100 0.504±0.015 NA

Table 18 Effect of swarm size on overall cost for r100N403a with
UAO

No. of particles Fuzzy Cost (UAO) % Difference

20 0.385±0.019 19.96∗

40 0.425±0.031 11.64∗

60 0.448±0.022 6.86∗

80 0.47±0.014 2.29∗

100 0.481±0.017 NA

Table 19 Effect of swarm size on overall cost for r100N503a with
UAO

No. of particles Fuzzy Cost (UAO) % Difference

20 0.41±0.014 24.49∗

40 0.474±0.029 12.71∗

60 0.506±0.022 6.81∗

80 0.53±0.02 2.39

100 0.543±0.013 NA

Table 20 Effect of swarm size on overall cost for r50N228a with
UAO

No. of particles Fuzzy Cost (UAO) % Difference

20 0.444±0.018 18.23∗

40 0.487±0.022 10.31∗

60 0.512±0.023 5.71∗

80 0.532±0.02 2.03

100 0.543±0.019 NA

Table 21 Effect of swarm size on overall cost for r50N245a with
UAO

No. of particles Fuzzy Cost (UAO) % Difference

20 0.444±0.025 19.86∗

40 0.499±0.03 9.93∗

60 0.54±0.021 2.53∗

80 0.55±0.025 0.72

100 0.554±0.021 NA

Table 22 Effect of swarm size on overall cost for w100N391a with
UAO

No. of particles Fuzzy Cost (UAO) % Difference

20 0.409±0.071 32.84∗

40 0.49±0.063 19.54∗

60 0.566±0.038 7.06∗

80 0.582±0.044 4.43∗

100 0.609±0.029 NA

Table 23 Effect of swarm size on overall cost for w100N476a with
UAO

No. of particles Fuzzy Cost (UAO) % Difference

20 0.489±0.025 25.57∗

40 0.578±0.026 12.02∗

60 0.618±0.032 5.94∗

80 0.638±0.022 2.89∗

100 0.657±0.025 NA

Table 24 Effect of swarm size on overall cost for w50N169a with
UAO

No. of particles Fuzzy Cost (UAO) % Difference

20 0.508±0.03 13.31∗

40 0.541±0.019 7.68∗

60 0.573±0.02 2.22

80 0.582±0.022 0.68

100 0.586±0.027 NA

Fuzzy particle swarm optimization algorithms for the open shortest path first weight setting problem 619

Table 25 Effect of swarm size on overall cost for w50N230a with
UAO

No. of particles Fuzzy Cost (UAO) % Difference

20 0.4±0.084 31.51∗

40 0.504±0.038 13.7∗

60 0.538±0.044 7.88∗

80 0.564±0.036 3.42

100 0.584±0.043 NA

References

1. Coffman KG, Odlyzko AM (2001) Internet Growth: Is there a
Moore’s Law for data Traffic? Handbook of Massive Data Sets,
pp 47–93

2. Fortz B, Thorup M (2000) Internet traffic engineering by optimiz-
ing OSPF weights. IEEE Conference on Computer Communica-
tions(INFOCOM), pp 519–528

3. Kurose JF, Ross KW (2002) Computer Networking: A top-down
approach featuring the internet prentice hall series

4. Bhagat NH (2013) A new hybrid approach to OSPF weight setting
problem. Int J Recent Innov Trends Comput Commun 1(5):443–
450

5. Bizri F, Sanso B (2008) Corouting: an IP hybrid routing approach.
In: Fourth international conference on networking and services,
pp 46–52

6. Kandula S, Katabi D, Davie B, Charny A (2005) Walking the
tightrope responsive yet stable traffic engineering. In: ACM 2005
Conference on applications, technologies, architectures, and pro-
tocols for computer communications, pp 253–264

7. Dijkstra EW (1959) A node on two problems in connection of
graphs. Numerical Mathematics

8. Fortz B, Thorup M (2000) Increasing internet capacity using local
search. Technical Report IS-MG

9. Kling R, Banerjee P (1990) Optimization by simulated evolution
with applications to standard cell placement. In: Proceedings of
27th Design Automation Conference, pp 20–25

10. Fortz B, Thorup M (2006) Optimizing OSPF/IS-IS weights in a
changing world. IEEE J Sel Areas Commun 20(4):756–767

11. Sqalli MH, Sait SM, Mohiuddin MA (2006) An enhanced esti-
mator to multi objective OSPF weight setting problem. Network
Operations and Management Symposium, NOMS

12. Rodrigues M, Ramakrishnan KG (2002) Optimal routing in data
networks. Bell Labs Tech J 6(1):117–138

13. Ericsson M, Resende MGC, Pardalos PM (2002) A Genetic
Algorithm for the Weight Setting Problem in OSPF Routing. J.
Combinatorial Optimisation conference

14. Zagozdzon M, Dzida M, Pioro M (2007) Traffic flow optimization
in networks with combined OSPF/MPLS routing. In: IEEE 15Th
international conference on advanced computing and communica-
tions, pp 131–137

15. Abo Ghazala A, El Sayed A (2009) Open Shortest Path First
Weight Setting (OSPFWS) solving algorithms comparison and
new method for updating weights. Int J Comput Sci Netw Secur
9(5):191–197

16. Parmar A, Ahmed S, Sokol J (2006) An integer programming
approach to the OSPF weight setting problem NSF Technical
Report no DMI-0457066

17. Srivastava S, Agarwal G, Medhi D, Pioro M (2005) Determining
feasible link weight systems under various objectives for OSPF
networks. IEEE Trans Netw Serv Manag 2(1)

18. Buriol L, Resende M, Rebeiro C, Thorup M (2002) TA Memetic
algorithm for OSPF routing. In: 6Th INFORMS telecom, pp 187–
188

19. Bley A (2005) On the approximability of the minimum congestion
unsplittable shortest path routing problem. In: Integer program-
ming and combinatorial optimization (IPCO 2005), lecture notes
in computer science LNCS, pp 97–210

20. Bley A (2009) Approximability of unsplittable shortest path rout-
ing problems. Networks 54(1):23–46

21. Lin L, Gen M (2009) Priority-Based Genetic Algorithm for Short-
est Path Routing Problem in OSPF. Intell Evol Syst, Stud in
Comput Intell 187:91–104

22. Pioro M, Szentsi A, Harmatos J, Juttner A, Gajownicczek P,
Kozdrowski S (2002) On open shortest path first related network
optimization problems. Perform Eval 48(4):201–223

23. Retvari G, Cinkler T (2004) Practical ospf traffic engineering.
IEEE Commun Lett 8:689–691

24. Retvari G, Biro J, Cinkler T (2006) On improving the
accuracy of OSPF traffic engineering. In: NETWORKING
2006, Lecture notes in computer science (LNCS), vol 3976,
pp 51–62

25. Nucci A, Bhattacharyya S, Taft N, Diot C (2007) Igp link weight
assignment for operational tier-1 backbones. IEEE/ACM Trans
Networking 15(4):789–802

26. Shrimali G, Akella A, Mutapcic A (2010) Cooperative interdo-
main traffic engineering using nash bargaining and decomposi-
tion. IEEE/ACM Trans Networking 18(2):341–352

27. Riedl A (2003) Optimized routing adaptation in IP networks uti-
lizing OSPF and MPLS. In: IEEE International conference on
communications, pp 1754–1758

28. Lee S, Po-Kai T, Chen A (2012) Link weight assignment and loop-
free routing table update for link state routing protocols in energy-
aware internet. Futur Gener Comput Syst 28:437–445

29. Fortz B, Rexford J, Thorup M (2002) Traffic engineering with
tradional IP routing protocols. IEEE Commun Mag:118–124

30. Glover F, Laguna M (1997) Tabu search. Kluwer Academic
Publishers

31. Frigioni D, loffreda M, Nanni U, Pasqualone G (1998)
Experimental analysis of dynamic algorithms for the single
source shortest paths problem. ACM journal of experimental
algorithms

32. Ramalingam G, Reps T (1996) An incremental algorithm for a
generalization of the shortest path problem. Journal of Algorithms,
267–305

33. Fortz B Combinatorial Optimization and Telecommunications.
http://www.poms.ucl.ac.be/staff/bf/en/COCom-5.pdf

34. Holland JH (1975) Adaptation in natural and artificial systems.
University of Michigan Press, Ann Arbor

35. Abo Ghazala A, El Sayed A, Mousa M (2008) A survey for open
shortest path first weight setting (OSPFWS) problem. The 2nd
International Conference on Information Security and Assurance
(ISA2008), pp 24–26

36. Reis R, Ritt M, Buriol L, Resende M (2007) A memetic algorithm
for the weight setting problem in DEFT. In: COMCEV 2007,
pp 1–6

http://www.poms.ucl.ac.be/staff/bf/en/COCom-5.pdf

620 M. A. Mohiuddin et al.

37. Abo Ghazala A, El Sayed A, Mousa M (2008) A new approach
for open shortest path weight setting (OSPFWS) problem. Con-
vergence and Hybrid Information Technology, pp 188–193

38. Sait SM, Sqalli MH, Mohiuddin MA (2006) Engineering evolu-
tionary algorithm to solve multi objective OSPF weight setting
problem. Australian Conference on Artificial Intelligence, pp
950–955

39. Laarhoven P, Aarts E (1987) Simulated Annealing: Theory and
applications. Kluwer, Norwell

40. Kling R, Banerjee P (1991) Empirical and theoretical studies of
the simulated evolution method applied to standard cell placement.
IEEE Trans Comput-Aided Design 10(10):1303–1315

41. Houssaini Sqalli M, Mohammed Sait S, Asadullah S (2008) Min-
imizing the number of congested links in OSPF routing. ATNAC

42. Mohiuddin M, Khan SA, Engelbrecht AP (2014) Simulated
evolution and simulated annealing algorithms for solving multi-
objective open shortest path first weight setting problem. Appl
Intell, Springer 40(3):1–20

43. Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353
44. Zadeh LA (1975) The Concept of a Linguistic Variable and its

Application to Approximate Reasoning. Inf Sci 8:199–249
45. Zadeh LA (1973) Outline of a new approach to the analysis of

complex systems and decision processes. IEEE Trans Syst Man
Cybern 3(1):28–44

46. Li H, Yen V (1995) Fuzzy sets and fuzzy decision-making. CRC
Press, USA

47. Hamacher H (1978) Ueber Logische Verknupfungen Unschalfer
Aussagen und deren Zugehoerige Bewertungs-funktione. Prog
Cybern Syst Res 3:276–288

48. Frank M (1979) On the simultaneous associativity of F(x, y) and
x + y − F(x, y). Aequationes Math 19:194–226

49. Weber S (1983) A general concept of fuzzy connectives, negations
and implications based on t-Norms and t-Conorms. Fuzzy Sets &
Systems 11:115–134

50. Dubois D, Prade H (1979) Operations in fuzzy-valued logic. Inf
Control 43:224–240

51. Khan SA, Engelbrecht AP (2007) A new fuzzy operator and its
application to topology design of distributed local area networks.
Inf Sci 177(12):2692–2711

52. Kennedy J, Eberhart RC (1995) Particle swarm optimization.
Proceedings of the IEEE International Conference on Neural
Networks, pp 1942–1948

53. Kling R, Banerjee P (1991) Empirical and theoretical studies of
the simulated evolution method applied to standard cell placement.
IEEE Transactions on Computer-Aided Design, pp 1303–1305

54. Kling R, ESP P. Banerjee. (1989) Placement by simulated evo-
lution. IEEE Transactions on Computer-Aided Design, pp 245–
255

55. Zegura EW (1996) GT-ITM: Georgia Tech Internetwork Topology
Models (software). http://www.cc.gatech.edu/faq/Ellen.Zegura/
gt-itm/gt-itm.tar.gz

56. Calvert K, Doar M, Zegura EW (1997) Modeling internet toplogy.
IEEE Commun Mag 35:160–163

57. Zegura EW, Calvert KL, bhattacharjee S (1996) How to model an
internetwork. 15th IEE Conference on Computer Communications
(INFOCOM), pp 594–602

58. van den Bergh F (2001) An analysis of particle swarm optimizers.
PhD Thesis, University of Pretoria

59. Khan SA, Engelbrecht AP (2012) A fuzzy particle swarm opti-
mization algorithm for computer communication network topol-
ogy design. Appl Intell 36:161–177

60. Cho H, Wang B, Roychowdhury S (1998) Automatic rule gen-
eration for fuzzy controllers using genetic algorithms a study on
representation scheme and mutation rate. In: IEEEWorld congress
on computational intelligence, pp 1290–1295

61. Haupt R (2000) Optimum population size and mutation rate for
a simple real genetic algorithm that optimizes array factors. In:
IEEE Antennas and propagation society international symposium,
pp 1034–1037

62. Lim M, Rahardja S, Gwee B (1996) A GA paradigm for learning
fuzzy rules. Fuzzy Sets Syst 82:177–186

63. Liska J, Melsheimer SS (1994) Complete design of fuzzy
login system using genetic algorithms. In: 3Rd IEEE
international conference on fuzzy systems, pp 1377–
1382

64. Alvarez-Benitez J, Everson R, Fieldsend J (2005) A MOPSO
Algorithm Based Exclusively on Pareto Dominance Concepts.
In: 3rd International Conference on Evolutionary Multi-criterion
Optimization, Lecture Notes in Computer Science (LNCS),
vol 3410, pp 459–473

65. Parsopoulos K, Vrahatis M (2002) Particle swarm optimization
method in multiobjective problems. In: ACM Symposium on
applied computing, pp 603–607

66. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and eli-
tist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol
Comput 6(2):182–197

Mohammed Aijaz Mohiuddin received the Masters in Computer
Engineering from the King Fahd University of Petroleum and Miner-
als, Kingdom of Saudi Arabia, in 2005. He is a Technical Specialist
at Saudi Telecom Company, Saudi Arabia. He is currently pursu-
ing his PhD at University of Pretoria, South Africa. His research
interests include swarm intelligence, evolutionary computation, and
hybridization of evolutionary algorithms.

http://www.cc.gatech.edu/faq/Ellen.Zegura/gt-itm/gt-itm.tar.gz
http://www.cc.gatech.edu/faq/Ellen.Zegura/gt-itm/gt-itm.tar.gz

Fuzzy particle swarm optimization algorithms for the open shortest path first weight setting problem 621

Salman A. Khan received
the Masters degree in Com-
puter Engineering from King
Fahd University of Petroleum
& Minerals, Saudi Arabia
in 2000 and the PhD degree
in Computer Science from
University of Pretoria, South
Africa in 2009. He is cur-
rently an Assistant Professor
in the Computer Engineering
Department at University
of Bahrain, and an Adjunct
Senior Researcher with
Computational Intelligence
Research Group, Computer

Science Department, University of Pretoria. He has published over
40 research articles in reputed journals and conferences. His research
interests include Evolutionary Computation, Swarm Intelligence,
Nature-inspired Algorithms, Fuzzy Logic, Single-objective and Multi-
objective optimization and decision-making, Computer Networks, and
Mobile Communication Systems. He serves as a reviewer for various
reputed journals and conferences annually.

Andries P. Engelbrecht
received the Masters and PhD
degrees in Computer Science
from the University of Stel-
lenbosch, South Africa, in
1994 and 1999 respectively.
He is a Professor in Computer
Science at the University of
Pretoria, and serves as Head of
the department. He also holds
the position of South African
Research Chair in Artificial
Intelligence, and leads the
Computational Intelligence
Research Group at the Univer-
sity of Pretoria, consisting of

40 Masters and PhD students. His research interests include swarm
intelligence, evolutionary computation, artificial neural networks,
artificial immune systems, and the application of these Computational
Intelligence paradigms to data mining, games, bioinformatics, finance,
and difficult optimization problems. He has published over 230 papers
in these fields in journals and international conference proceedings,
and is the author of two books, Computational Intelligence: An
Introduction and Fundamentals of Computational Swarm Intelligence.

Prof. Engelbrecht is a very active in the international community,
annually serving as reviewer for over 20 journals and 10 conferences.
He is an Associate Editor of the IEEE Transactions on Evolutionary
Computation, Journal of Swarm Intelligence, IEEE Transactions on
Computational intelligence and AI in Games, and Applied Soft Com-
puting. Additionally, he serves on the editorial board of three other
international journals, and was co-guest editor of special issues of
the IEEE Transactions on Evolutionary Computation and the Jour-
nal of Swarm Intelligence. He served on the international program
committee and organizing committee of a number of conferences,
organized special sessions, presented tutorials, and took part in panel
discussions. He was the founding chair of the South African chap-
ter of the IEEE Computational Intelligence Society. He is a member
of the Evolutionary Computation Technical Committee, Games Tech-
nical Committee, and the Evolutionary Computation in Dynamic and
Uncertain Environments Task Force.

	Fuzzy particle swarm optimization algorithms for the open shortest path first weight setting problem
	Abstract
	Introduction
	Literature review
	Open shortest part first weight setting problem definition
	Open shortest path first weight setting problem
	Traffic load calculation

	Fuzzy logic and aggregation operators
	Fuzzy logic approach for the open shortest path first weight setting problem
	Fuzzy particle swarm optimization for the open shortest path first weight setting problem
	Particle position and velocity representation
	Velocity update
	Particle position update
	Fitness evaluation

	Fuzzy evolutionary particle swarm optimization algorithm for open shortest path first weight setting problem
	Simulated evolution algorithm
	Fuzzy evolutionary particle swarm optimization

	Experimental methodology
	Results and discussion
	Effect of Swarm Size
	Effect of acceleration coefficients
	Effect of inertia weight
	Effect of velocity clamping
	Comparison of Fuzzy Particle Swarm Optimization and Fuzzy Evolutionary Particle Swarm Optimization

	Comparison of fuzzy evolutionary particle swarm optimization with other algorithms
	Conclusion
	Compliance with Ethical Standards
	Appendix A
	Appendix A
	 Nomenclature
	Terminology
	
	Appendix B
	Appendix B
	References

