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Abstract Many application domains require search and
retrieval, which is also known in the robotic domain as
foraging. For example, in a search and rescue domain, a
disaster area needs to be explored and transportation of sur-
vivors to a safe area needs to be arranged. Performing such
a search and retrieval task by more than one robot increases
performance if they are able to distribute their workload
efficiently and evenly. In this work, we study the Multi-
Robot Task Allocation (MRTA) problem in the search and
retrieval domain, where a team of robots is required to coop-
eratively search for targets of interest in an environment and
also retrieve them back to a home base. In comparison with
typical foraging tasks, we look at a more general search
and retrieval task in which the targets are distinguished with
various types, and task allocation also requires taking into
account temporal constraints on the team goal. As usual,
robots have no prior knowledge about the location of tar-
gets in the environment but in addition they need to deliver
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targets to the home base in a specific order according to
their types, which significantly increases the complexity of a
foraging problem. We first use a graph-based model to anal-
yse the search and retrieval problem and the dynamics of
exploration and retrieval within a cooperative team. We then
proceed to present an extended auction-based approach,
as well as a prediction approach. The essential difference
between these two approaches is that the task allocation
and execution procedures in the auction approach are run-
ning in parallel, whereas a robot in the prediction approach
only needs to choose a task to perform when it has no
thing to do. The auction approach uses a winner determi-
nation mechanism to allocate tasks to each robot, whereas
the robots in the prediction approach implicitly coordinate
their activities by team reasoning that leads to consensuses
about task allocation. We use the Blocks World for Teams
(BW4T) simulator to evaluate the two approaches in our
experimental study.

Keywords Multi-robot teamwork · Search and retrieval ·
Task allocation · Coordination

1 Introduction

Robot teams are expected to perform more complicated
tasks that consist of multiple subtasks, and the subtasks
may need to be completed concurrently or in sequence
[15]. In this paper, we study the Multi-Robot Task Allo-
cation (MRTA) problem in the search and retrieval (also
called foraging) domain. Foraging is a canonical task for
studying multi-robot teamwork [4, 5, 19, 30] in which a
team of robots needs to search an environment for targets
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of interest which need to be retrieved and brought back to
a home base. The search and retrieval tasks can be moti-
vated by many practical applications such as large-scale
urban search and rescue robots [8], deep-sea mineral min-
ing robots [31] and order picking robots for autonomous
warehouses management [13].

Foraging has in particular been studied in various bio-
inspired, swarm-based approaches in the literature [4, 19],
where, typically, robots minimally interact with one another
as in [4]. If they communicate explicitly, only basic infor-
mation such as the locations of targets or their own locations
are exchanged [25]. Most of the work has studied a basic
foraging task where the targets to be collected are not dis-
tinguished, which reduces the need for cooperation and
coordination. In contrast, we study a more general forag-
ing problem where the targets are distinguished by various
types. Moreover, we also assume that temporal constraints
(also called ordering constraints throughout this work) may
be present that require targets to be delivered to the home
base in a specific order. Ordering constraints on the type
of targets are useful for modelling practical applications,
for example, how urgently a victim needs assistance, how
valuable a mining resource is, or how urgently a package is
needed.

The use of multiple robots may yield significant perfor-
mance gains compared to the performance of a single robot
[5, 10]. Realising such performance gains, however, poses
a serious challenge for a robot team and requires effective
coordination strategies for task allocation. Task allocation
has been extensively addressed in various multi-agent/robot
systems over the past few years, with the aim of finding an
allocation of tasks to the robots so as to minimise the overall
team cost. In general, however, even when the locations of
targets are initially known and only an optimal solution for a
multi-robot routing problem [16, 21, 32] needs to be found,
the problem is NP-hard [7, 16, 21, 34]. The task allocation
problem that we study here, moreover, is also harder than
the multi-robot exploration problem studied in [3, 7, 27], in
which the robots only need to search and locate the targets
but do not need to deliver them back to a home base. In
other words, multi-robot exploration is often studied with-
out handing objects, i.e., the retrieval of an object from a
location to a destination is not considered.

Many approaches to MRTA problems are based on
market-based solutions that use auctions as such solutions
are robust and can be performed in real-time [2, 33], but
fully decentralized auction-based approaches can be very
complex in design and implementation and have a high
communication overhead [9, 16]. The first contribution of
this work is that we present an auction-inspired approach
extended from standard Sequential-Single-Item (SSI) auc-
tions. In comparison with other auctions, the work [16, 21]
has shown that the standard SSI auctions can provide a

good compromise between computational complexity and
solution quality if the set of tasks is initially known. The
standard SSI auctions have been used to solve the static task
allocation problem in the multi-robot routing domain as in
[16, 21].

The second contribution of this work is that we in addi-
tion propose a prediction approach, in which the robots can
predict what the others will do to reach the consensuses
about task allocation, without using auctions or negotia-
tions. More specifically, the robots have a tacit understand-
ing of which task should be performed by which robot by
team reasoning. The idea is that the most cost-effective
robot is delegated to complete each task in a team. In com-
parison with the extended auction approach, this approach,
in particular, allows the robots to employ a non-greedy strat-
egy to explore the environment in a way that a robot has
lower likelihood to explore faraway locations and higher
likelihood to explore nearby ones.

We carry out an experimental study in a simulator to
evaluate the two proposed approaches discussed above.

This paper is organised as follows. We discuss the state-
of-the-art literatures in Section 2, and present a formal
model of the search and retrieval problem that we deal with
in this paper in Section 3. The auction-inspired approach is
discussed in Section 4, and the prediction approach is pre-
sented in Section 5. In Section 6, we discuss the experiments
in a simulated environment and analyse the results. Finally,
we conclude this work in Section 7.

2 Related work

2.1 Multi-robot search and retrieval

Multi-robot search and retrieval tasks are more complex
than multi-robot routing and pure exploration tasks. As the
locations of targets in routing problems are given [16], it
can be considered a variant of the multiple traveling sales-
man problem [1]. This is why offline planning methods
can be used to find a reasonable approximation, though
the computation still might be inefficient [1]. In contrast,
the targets to be collected in search and retrieval impose
spatial constraints, i.e., the robots do not have prior knowl-
edge about the distribution of the targets in an environment.
The information needed for offline planning is not initially
available.

The solutions to typical exploration problems cannot be
directly applied to search and retrieval problems, though
the robots need to explore the environment. This is because
typical exploration problems are studied without handing
objects, i.e., the retrieval of an object from a source to a
destination is not considered. The objective of task allo-
cation for exploration problems is to assign a subset of
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locations to each robot that they need to visit in a way that
minimises the total travel cost. Thus, similar to routing prob-
lems, offline planning methods can also be used to find a
possible solution. In contrast, search and retrieval robots
have to consider not only where to explore but also when to
explore because the robots may need to switch their work-
ing mode between exploring targets and retrieving targets. It
means that exploration and retrieval need to be interleaved
somehow in search and retrieval, e.g., after checking a loca-
tion, a robot does not know whether it should go to explore
another location or deliver an object found at the location.
Thus, the task allocation for search and retrieval is dynamic,
and the robots cannot complete the assignment of all the
tasks before exploring the environment.

2.2 Task allocation

Auction-based approaches have been proposed to solve the
MRTA problem in [16, 17, 21, 26, 27, 32]. In general,
these auction approaches can be categorised into parallel,
combinatorial and sequential auctions [16, 17, 26]. In com-
binatorial auctions, each robot bids on a subset of targets
with the objective of minimising the path cost from its cur-
rent location [17]. Often, a central auctioneer is used to
determine the winner of auctions. Theoretically, as each
robot can enumerate all possible combinations1 of the sub-
sets of tasks to bid on, the combinational auctions could
provide optimal solutions to static task allocation problems
where the tasks are known at the beginning of auctions. In
practice, it is impossible to do so because the combinations
of possible subsets of tasks can be exponential in the number
of tasks.

In parallel auctions, every robot needs to bid for each
available task in an auction round in parallel, and the
auctioneer allocates each task to the robot who has submit-
ted the smallest bid. Thus, all the available tasks can be
allocated immediately in a round. In comparison with com-
binatorial auctions, the computation and implementation of
such auctions would be efficient, but the problem is that the
performance of robots is likely to be suboptimal because
such an auction does not consider any synergies between
targets [17, 26]. In other words, it does not take account of
the topological distribution between two targets, which has
a big influence on the actual travel cost of a robot. In addi-
tion, it should be noted that parallel auctions can only be
applied in static problems in which the tasks are known in
advance.

1As described in [16, 17], each robot can consider all positive and
negative synergies, in which two targets have positive (negative) syn-
ergy for a robot if the minimum travel cost for visiting them is smaller
(larger) than the simple sum of distances from the robot’s current
location to each target.

The Sequential-Single-Item (SSI) auctions provide a
good compromise between computational complexity and
solution quality for the problems where the set of tasks is
initial known [16, 21]. In SSI auctions, the tasks are allo-
cated through a multi-round auction, in which each robot
bids on only one task in each round. In this work, we extend
the existing SSI auction approach, discussed in [16, 21] for
the routing problems. In order to adapt to dynamic task allo-
cation for search and retrieval, the extended SSI auction
approach also adopts some strategies from the work [26].

In SSI auction approaches, whenever the auctioneer ini-
tiates a new round of auctions, each robot can bid for one of
available tasks. It means that each robot may have multiple
allocated tasks at a moment, and in order to distribute the
workload more evenly in a team, each robot can consider
previously allocated tasks when bidding a new one.

In SSI auctions, a robot always needs to bid for the task
with the smallest cost. Otherwise, it is hard for the robot
to win a task in an auction round because the auctioneer
allocates a task to the robot who made the lowest bid in an
auction round [16]. Thus, the robots may put more effort
into local minima to explore targets in nearby locations, due
to the hill-climbing nature of greedy bidding strategies. This
is why we propose the prediction approach, in which we do
not clearly separate task execution from task allocation, and
each robot selects a task to execute only when it has nothing
to do. The approach aims at providing the robots with the
possibility to explore faraway locations, but they more likely
will choose nearby ones to explore.

The task allocation problem has also been addressed in
literature by utility-based approaches for both cooperative
robot teams and robot swarms. For example, each task is
assigned to a robot based on various utility estimates, such
as acquiescence and impatience [24], sensor relevance [35],
net energy [22], positive and negative feedback assigned to
the robot based on historical performance [20], coalition
values [6], belief on the ability of the robot to perform a task
[11], and costs [28]. Research in swarm robots for forag-
ing focuses mostly on how the robots interact and cooperate
to perform tasks, without handing objects: the retrieval of
objects from a source to a destination is not considered,
or simply abstracted into a trip between the two locations.
Thus, typical task allocation approaches cannot be used to
solve the search and retrieval problem that we study in this
paper.

3 Multi-robot task allocation for search
and retrieval

In this section, we first present a formal model of the search
and retrieval problem that we study here, and then use it to
precisely formulate the problem.
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Fig. 1 Graph models of search and retrieval tasks and the estimated costs

3.1 Model

Our model of the task allocation for multi-robot search and
retrieval is based on and extends [18, 21, 23] where a model
of the task allocation for multi-robot routing is presented
that requires robots to only visit target locations. We extend
this model by adding retrieval and delivery tasks for target
items. We use Agt = {1, 2, . . . , k} to denote the k robotic
agents that are available for search and retrieval. We use an
undirected graph G (V , E ) with a non-empty set of vertices
V = {v1, v2, . . . , vp} and a set of edges E connecting ver-
tices for representing the robots’ environment, see Fig. 1a.
Edges are assumed to have unit length.

In the environment a non-empty set of objects O =
{o1, o2, . . . , on} is distributed. In different application con-
texts an object could be, for example, a victim in a search
and rescue context, a resource to be mined in a mining
context, or a package to be picked up in a warehouse con-
text. These objects are located on a subset of vertices L =
{l1, l2, . . . , lq} ⊆ V called target locations. We allow that
no, one, or multiple objects are located at a target location,
i.e., a vertex in L. We use loc(o) to denote the location of
an object o. Because objects initially can only be located at
target locations, we have that

⋃

o∈O

loc(o) ⊆ L in the begin-

ning. For reasons of simplicity, we assume that robots need
to deliver objects to a single home base.

An important difference which sets our work apart from
that of others is that we explicitly model object types. As
mentioned above, object types are useful for modelling the
application context. In our model we abstract from the spe-
cific features of a domain and assume that objects can be
differentiated by means of their color. Object types allow
us to model ordering constraints on objects that need to be
retrieved from the environment. We can say, for example,

that a red object needs to be retrieved before a blue one. We
thus study a more general search and retrieval problem here
where types of objects that need to be retrieved can be dis-
tinguished from those that do not need to be retrieved, and
types can be used to introduce ordering constraints. We use
type(o) to denote the type of object o.

The goal of the search and retrieval problem that we
study here can be specified as a finite sequence of types
〈τ1, τ2, . . . , τm〉, i.e., colors of target objects that need to
be retrieved. For example, 〈red, blue, red, red, yellow, blue〉
could be a goal. The idea is that the robots should search
for objects in the environment of the right type and deliver
them back to the home base in order. That is, the robots
need to retrieve a sequence of m objects 〈X1, X2, . . . , Xm〉
that match the sequence of types of the main goal, where X

refers to an arbitrary object. In other words, we must have
that for all 1 ≤ i ≤ m:

type(Xi) = τi . (1)

It should be noted that in order for the robots to be able to
successfully complete a search and retrieval task there must
be enough objects in the environment of the right type to
match the types needed to achieve the main goal. Over time,
the sequence of types that needs to be delivered reduces if
an object of the next matching type is delivered to the home
base. We distinguish between three kinds of goals: (i) a goal
such as 〈red, red, red, red〉 that requires all objects to be
of the same type, i.e., τi = τj for all i, j ; (ii) a goal such
as 〈red, blue, yellow, white〉 that requires objects to all have
a different type, i.e., τi �= τj for any pair of indexes i �= j ,
and (iii) a mixed type goal such as 〈red, blue, red, yellow〉
that requires some but not all objects to have different types,
i.e., τi �= τj for some i, j . Note that a goal that has at least
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one pair of indexes i �= j that τi = τj must be a goal of
type (i) or (iii).

Robots initially have no knowledge about the location
of objects, and also do not know how many objects there
are in total. They initially are assumed to know which loca-
tions are possible target locations where objects can be
found. In order to locate objects, robots thus only need to
explore these target locations.2 Visiting a location to find out
which objects are present at that location is called an explo-
ration task. Exploration tasks can be identified with target
locations.

Definition 1 An exploration task is a target location l ∈ L.

Exploration tasks need to be allocated to robots to exe-
cute, so the team will be able to find objects that are needed
to achieve the team goal. The set of exploration tasks that
have not been completed, i.e., have not been visited by any
robot, is denoted by E. This set changes over time as fol-
lows. Initially, we have E = L because none of the target
locations have been visited. If a location l has been visited,
that location is removed from E. The set E over time thus
gets smaller but does not need to become empty before the
team goal has been achieved; it may not be necessary to visit
all target locations in order to find and deliver all the needed
objects.

If an approach to the search and retrieval problem has a
mechanism to confirm the allocation of exploration tasks,
we use T i

E to denote the exploration tasks that are allocated
to robot i and use TE = ⋃

i∈Agt

T i
E to represent the set of

all allocated exploration tasks. Consequently, the robots can
also know the currently available unallocated exploration
tasks, denoted by UE :

UE = E\TE. (2)

Once an allocated exploration task is completed, it will be
removed from TE .

To complete a search and retrieval task, the robots need to
know what their team goal looks like. We assume that they
know the goal sequence of types and understand what types
of objects they need to retrieve from the environment and
in which order these objects need to be retrieved. For both
different and mixed type goals, it is important to understand
the order in which objects need to be delivered, so we define

2Note that only a subset of vertices in G indicates the possible loca-
tions of objects, which can be motivated by urban search and rescue
applications. For instance, even though robots can have a map of a vil-
lage, they may not know the precise locations of the survivors after an
earthquake.

retrieval tasks as pairs of objects o and indexes i into a goal
sequence.

Definition 2 A retrieval task is a pair 〈o, i〉 where o is an
object and i is an index into the goal sequence of types.

For each retrieval task we assume that type(o) = τi

because it does not make sense to retrieve an object to match
the i-th type in the main goal if the object type is different
from τi . In other words, we assume that robots only perform
retrieval tasks that at least potentially contribute to the over-
all goal. For instance, if the required target is a red box, the
object that a robot should retrieve must also be a box of red
color.

We use R to denote the set of all possible retrieval tasks
that can be allocated at a particular time to a robot. This
set changes over time as follows. Initially, we have R = ∅
because the robots initially do not know the location of any
of the objects. If an object o is found and 〈τj , . . . , τm〉 is
the remaining goal sequence of types that still need to be
delivered, all retrieval tasks 〈o, i〉 such that type(o) = τi

for j ≤ i ≤ m are added to R. An object thus is associated
with all indexes of the same type and R can include multi-
ple retrieval tasks for a single object. Because we can have
multiple objects of the same type, it also can be the case
that R includes more than one retrieval task for a particular
index. If an object has been delivered to a home base that
matches the type needed for the first index j that needs to be
matched next, all retrieval tasks for that index are removed
again from R. The set R thus includes all retrieval tasks that
still might contribute to achieving the team goal. For exam-
ple, if the team goal is 〈red, blue, red〉 and two red objects
o4 and o5 are found at a moment, then the retrieval tasks
will be R = {〈o4, 1〉, 〈o4, 3〉, 〈o5, 1〉, 〈o5, 3〉}. If o4 is deliv-
ered to the home base first, R is updated to R = {〈o5, 3〉}
because o4 is not available any more and the first red object
type in the goal has been matched.

We use T i
R to denote the retrieval tasks allocated to robot

i, and TR = ⋃

i∈Agt

T i
R for the set of all allocated retrieval

tasks. The allocated retrieval tasks that have been completed
will be removed again from TR . We can also get the cur-
rently available unallocated retrieval tasks denoted by UR:

UR = R\TR. (3)

Depending on the solutions, a robot may have multiple
allocated retrieval tasks at a moment, and if so, it should
consider which object it should go to retrieve to fulfil the
corresponding required target type. We also use T i =
T i

E

⋃
T i

R to denote the set of exploration and retrieval tasks
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that have been allocated to robot i but still need to be
completed.

3.1.1 Cost estimate for exploration tasks

We use loc(i) to denote the current location of robot i.
A robot is assumed to deliver objects to its home base
home(i). The cost function costE(i, l) is used to indicate the
travel costs for robot i to go to and explore a target location
l ∈ L:

costE(i, l) = d(loc(i), l), (4)

where d denotes the shortest cost for a robot to travel from
one location to the other one.

Given a robot’s location and the location that the robot
wants to explore in the graph, we can calculate the shortest
travel cost in (4) by performing a graph search, for example,
using A∗ algorithm. As shown in Fig. 1b, the estimated cost
for robot 2 to explore l1 takes 4 steps.

3.1.2 Cost estimate for retrieval tasks

We use the cost function costR(i, r) to represent the shortest
travel cost for robot i to complete a retrieval task r = 〈o, j 〉
for a specific object o with type(o) = τj :

costR(i, r) = d(loc(i), loc(o)) + d(loc(o), home(i)), (5)

For instance, as shown in Fig. 1b, the estimated cost for
robot 1 to collect object o1 takes 10 steps. Note that the esti-
mated cost using (4) or (5) is calculated according to the fact
that robot i only has one exploration task or one retrieval
task to execute from its current location. If a robot has mul-
tiple allocated tasks to perform, the estimated cost for a
particular task may be affected by the other tasks, depend-
ing on the approaches used for dealing with the search and
retrieval task allocation.

3.2 Problem formulation

Thesearch and retrieval problem that we study here is to
find the most efficient solution to how a cooperative team
of robots Agt can most efficiently locate and deliver objects
needed to achieve a goal sequence 〈τ1, . . . , τm〉, where the
τi refer to object types.

4 An auction-inspired task allocation approach

An auction-inspired coordination framework for multi-robot
task allocation in the routing domain has been introduced in
[16, 21, 32]. In these works, it is assumed that the robots
already know the locations of the targets, and only need to
visit these targets, but do not need to deliver them back to

a home base. In this section, we extend the standard SSI
auctions to an auction-inspired approach that is also able to
handle dynamic task allocation for the search and retrieval
problem with ordering constraints. We first briefly discuss
the standard SSI auctions and then introduce our proposed
extension.

4.1 Standard sequential-single-item auctions

Standard SSI auctions are designed for static task alloca-
tion problems, for example, in the context of multi-robot
routing [16–18, 21], where all the tasks are known at the
beginning of auctions. The tasks are allocated by a multi-
round auction, in which each robot bids on only one task in
each round, and a simple winner determination mechanism
is used to allocate a task to the robot who made the lowest
bid. The winner is typically determined by a central auction-
eer, but a decentralized approach for winner determination
is also possible [26]. SSI auctions can iteratively provide
a complete solution to a problem, starting from a partial
solution, though it is not guaranteed to find the optimal one.

When determining which task to bid on in a new round
of auctions, each robot takes account of the tasks that have
already been allocated to it in previous rounds because the
cost for the robot to complete the new task depends on the
tasks that it has already committed to. To determine which
task to bid on, the MINMAX team objective [18, 27] can be
used to minimize the maximum travel cost of the individual
robots. With the MINMAX team objective, each robot bids
the total travel cost for visiting both the targets allocated to
it in previous rounds and the new target.

Figure 2 illustrates how a robot team uses the MIN-
MAX heuristic to bid for and allocate tasks by means of an
example. We use a subgraph in Fig. 1a as the map of the
environment to illustrate the details. In this example, robot 1
and 2 need to allocate locations l1, l5 and l7 for exploration.
The robots can obtain the estimated costs for each task using
the map information.

In the first round, none of the locations have been allo-
cated, so both robots can bid on all of these. Robot 2 will
take 1, 4 or 2 steps to arrive at l7, l1 or l5, respectively.
As the robots bid for the task with the lowest cost, robot 2
will bid 1 for l7. Likewise, robot 1 will bid 2 for l7 because
it takes 7 or 3 steps to go to l1 or l5. As a result, robot 2
wins the task in this round, i.e., l7, as its bidding cost is
the lowest.

In the second round, since l7 has been allocated, the
robots can only bid on l1 or l5. In this round robot 2 has to
take into account its previous allocated tasks, i.e., l7, when
bidding on a new task. Consequently, its costs for l1 will be
1 + 5 = 6 (first move to l7 then to l1) and for l5 will be
1 + 3 = 4, and the robot will bid 4 for l5. Robot 1 simply
bids 3 for l5, so it will win l5 in this round. In the third round,
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Fig. 2 With the MINMAX team objective, robots aim at minimizing the maximum cost that any of the individual robots will make

only l1 still needs to be allocated and both robots have previ-
ously allocated tasks. As a result, robot 2 will bid 1+ 5 = 6
for l1, while robot 1 will bid 3 + 6 = 9 for l1, and robot 2
gets task l1 assigned in this round. Finally, all the tasks are
allocated.

To execute the allocated tasks, a robot is free to reorder
tasks in any way that it wants to perform them, which
is called plan modification [26]. Searching for an optimal
execution order, however, is computationally prohibitive.
Typically, a heuristic is used to determine where to insert a
new task into the sequence of tasks that the robot is already
committed to. Such a heuristic would determine the loca-
tion where the robot should start performing a new task, if
it would be allocated the task.

4.2 Extended SSI auctions for multi-robot search and
retrieval

In standard sequential auctions, the tasks are known at the
beginning of auctions, and, hence, such an approach can-
not be directly applied to the search and retrieval problem
in which retrieval tasks appear dynamically when target
objects are located. The work [23] proposes a dynamic
SSI auction approach to navigation tasks, focusing on the
robustness of accomplishing the tasks. The robots thus are

not expected to minimize the completion time in the sense
that they only use current positions to bid on new tasks
in each round, and the impact of the execution order of
these tasks is not considered when choosing which allocated
tasks to execute. In contrast, we in particular put effort into
enhancing team performance, which means that we are con-
cerned with optimizing the allocation and execution of the
tasks. In addition, since the search and retrieval problem
involves two types of tasks, in order to minimise the com-
pletion time, each robot needs to consider when and which
task to be allocated and executed in this approach.

4.2.1 How to interleave exploring and retrieving?

In the search and retrieval problem, it is clear that initially
the robots need to explore. Once they find objects that are
needed, they can also start to deliver these objects. In other
words, the robots need to consider how to interleave explo-
ration and retrieval tasks. For example, suppose that robot
1 in Fig. 3 (a sub-graph of Fig. 1b) knows that object o1
matches type τ1 that needs to be matched next to achieve the
goal sequence. It can then directly choose to go to collect
object o1 which will take 5 steps to collect, or it can choose
to first explore locations l9, l3 or l5, which are closer to its
current position. Of course, the robot cannot be sure that it

Fig. 3 First retrieve object o1 or
first explore locations close to
the robot?
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will find another object that matches τ1 in these locations,
but it may still be worthwhile because it may find other
objects that it needs to achieve the main goal.

It is not a trivial problem to determine whether retrieval
tasks should be performed first, even in a very simple
instance where the number of objects n distributed in the
environment is equal to the length m of the goal sequence,
i.e., n = m, and all the objects have the same color. For
instance, in Fig. 3, suppose that the main goal consists of
two red boxes, and a red box o1 has been found. Given
n = m, o1 must be retrieved from loc(o1) anyway, and the
locations l9, l5 or l3 need to be explored to find the other
red box. The problem can be simplified as what is the best
executing path. For instance, l9 → loc(o1) → l5 → l3 can
be considered as a path, and total 4! = 24 paths need to
be evaluated in this case. The position of loc(o1) is impor-
tant in such a path because the robot may first need to bring
the collected the box back to the home base, and then start
exploring another target location. To calculate the cost of a
path is thus not simple, we also need to consider the prob-
ability of finding the other red box, which increases the
computational complexity.

As mentioned earlier, robots do not have the informa-
tion, n = m, in the search and retrieval problem that we
study here, so they cannot use offline planning methods to
evaluate and consequently find an optimal path.

Since the robots cannot use offline planning to allocate
all tasks upfront and then start executing them, task allo-
cation and execution take place in parallel in the auction
approach. This means that once a robot has been allocated
a task, it can start executing the task, and while performing
one task, it still can bid for another available task.

Allocation In the search and retrieval problem, since the
robots do not initially know the locations of objects, they
have to begin by bidding on exploration tasks. This means
that only exploration tasks are available in the early stage
of auctions, and one robot may be allocated multiple explo-
ration tasks. Retrieval tasks appear dynamically when the
robots are executing their allocated exploration tasks and
target objects are found. As the indexed types in the goal
sequence should be retrieved in the right order, we assume
that the robots only bid on a discovered object to satisfy an
indexed type when other objects have already been located
to satisfy the preceding indexed types in the goal sequence.

In order to distribute the workload more evenly in the
auction approach, when determining the bidding cost for
a new task, each robot bids the total travel cost of com-
pleting all the previously allocated tasks as well as the
new task. This means that when bidding on a retrieval (or

exploration) task, each robot should also take account of
the costs for completing all the exploration and retrieval
tasks allocated to it in previous rounds. Note that it is pos-
sible that a robot has both exploration and retrieval tasks
to bid on when an object has already been found, but
not all the exploration tasks have been allocated. Robots
in this case still use the MINMAX criterion to determine
which task to bid on. According to the MINMAX cri-
terion, a robot may still choose an exploration task to
bid on even if there is a retrieval task available, imply-
ing that the robot would rather choose a nearby loca-
tion to explore than directly go to retrieve a faraway
object.

In the auction-based approach, once a task is allocated
to a robot, the robot is committed to achieve it, and we
do not consider re-allocating these tasks. Since only one
task is allocated to the robot who made the lowest bid in
each round, if there are q target locations and the team goal
requires t types of objects, all the tasks can be allocated in
q + t rounds of auctions.

Execution Since a robot may have multiple allocated tasks
to execute at any moment, we need to further consider the
execution of allocated tasks. We give higher priority to the
retrieval tasks because they directly contribute to achiev-
ing the team goal, and the robots do not have to explore
all the locations in order to complete the team goal. Nev-
ertheless, we still need to consider the execution order of
each set of allocated tasks. For the retrieval tasks, since all
the indexed types must be satisfied in the right order, the
order of performing retrieval tasks should match the order of
types in the goal sequence. The robots do not need to change
the execution order of retrieval tasks because this type of
tasks are allocated in accordance with the sequence of the
team goal. But for the exploration tasks, when winning an
exploration task, a robot may need to consider re-ordering
these tasks because its current location might have changed.
As each robot only bids on one task in each round, the
cheapest insertion heuristic can be used to find the optimal
position to insert the new winning task into the list of pre-
viously allocated ones, as in [16, 26]. In such a way, when
a robot has completed one task, it can pick up another allo-
cated task from the list to perform until the team goal is
accomplished.

In summary, each robot only performs the tasks that are
allocated to it in the auction approach. In order to satisfy the
team goal, all allocated retrieval tasks must be completed,
but all allocated exploration tasks do not have to accom-
plished if the team goal can be achieved by already located
objects.
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4.2.2 Algorithm

We formalize our extended SSI auction approach for the
search and retrieval problem in Algorithm 1. It shows how
an individual robot (e.g., robot i) performs a search and
retrieval task, mainly consisting of bidding, re-ordering and
executing procedures.

In order to decide which task to bid on, a robot first has
to estimate the total cost of performing each available task,
taking into account the previously allocated but uncom-
pleted ones (line 10). Note that since the retrieval tasks have

ordering constraints, the robot will only bid on a discov-
ered object to satisfy an indexed type when other objects
have also been located to satisfy the preceding indexed types
in the goal sequence. Thus, the ordering constraints must
be taken into consideration when calculating the currently
available unallocated retrieval tasks UR in line 6.

With the MINMAX team objective, the robot will choose
the task that minimizes the overall cost (line 12).

The re-ordering procedure is used to insert a winning task
announced by the auctioneer into the list of allocated but
uncompleted tasks (line 15–19). As mentioned above, we
only need to re-order the exploration tasks by means of the
cheapest insertion heuristic.

In the executing procedure, the robot decides which task
to execute and when to stop. In this approach, each robot
gives top priority to executing the retrieval tasks as deliv-
ering objects can directly contribute the team goal. For an
individual robot, it has to complete all its allocated retrieval
tasks (line 21), but it does not need to finish all the allocated
exploration tasks if there are enough objects that have been
located and found to satisfy the team goal (line 23). Accord-
ing to the algorithm, if the robot is not allocated an object
that it just found, it will not pick it up for delivering. This
case happens when the robot has already been allocated too
many tasks to complete, so it cannot offer the smallest bid
to win this object.

5 A prediction task allocation approach

In this section, we will discuss a prediction approach to
the search and retrieval problem, an implicit coordina-
tion framework by means of team reasoning without auc-
tions and negotiations. Implicit coordination means that the
robots do not explicitly reach an agreement on the alloca-
tion of tasks. In this approach, we are interested in fully
decentralized robot teams, though it is still called task allo-
cation, no coordinator or determiner is used to confirm the
allocation of tasks throughout this proposed approach.

With regard to task allocation, the major differences
between the extended auction-based approach and this pre-
diction approach are described as follows:

– In the auction approach, the robots can directly access
the information about allocated tasks by means of, for
example, the auctioneer; in the prediction approach, the
robots need a method for agreeing on the allocation of
tasks.

– In the auction approach, a robot may have multiple allo-
cated tasks to perform; in the prediction approach, a
robot only has at most one allocated task to perform.
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Fig. 4 The understanding of the progress of teamwork

– In the auction approach, a robot only performs a task
that is allocated to it; in the prediction approach, a robot
chooses a task to perform when it has noting to do.

– In the auction approach, once a task is allocated to
one robot, it will not be re-allocated to other robots;
In the prediction approach, task allocations can be
reconsidered (using the prediction mechanism again).

5.1 Implicit coordination framework

Figure 4 shows the basic idea of our prediction approach
as to how robots in a team understand the progress of their
teamwork. All the tasks can be divided into either accom-
plished or unaccomplished ones, some of which have been
allocated, while some of which have not yet been allocated.
In order to achieve good team performance, the idea is to
identify the robot that is most cost-effective to accomplish
each unallocated task.

5.1.1 Allocation criterion

To this end, the robots first need to figure out which tasks
can be treated as allocated ones, and they need a method for
agreeing on the allocation of tasks. In this implicit coordina-
tion framework, a robot will consider a task as allocated only
if it cannot do better than its teammates. For an individual
robot, an allocated task means that it has not been accom-
plished yet, but one of its teammates has planned to achieve
it, and, most importantly, the robot itself cannot achieve it at
a lower cost than a teammate.

In order to achieve good team performance, each robot,
moreover, should realise that some of the unallocated tasks
are better to be performed by its teammates, while some of
them are better to be achieved by the robot itself.

5.1.2 Commitment strategy

In order for most cost-effective robots to achieve the tasks
in the search and retrieval problem, we introduce a commit-
ment strategy. This strategy is employed to define when a
robot is committed to perform a task and when it should
drop its commitment. For the former, each robot needs to
make a plan of achieving a task when it has nothing to do.
For the later, each robot should have the willingness to give
up a planned task if its teammate can do better than itself.
More specifically, if a robot realizes that a teammate has
the same plan of achieving a task, and that it cannot do bet-
ter then the teammate, the robot will drop its original plan.
Likewise, each robot should believe that its teammates also
have the willingness to give up planned tasks if it can do
better than them in the same circumstances.

The commitment strategy is thus used to deal with con-
flicting plans without extra communication or negotiation.
With regard to the cooperative character as a team, the
robots with conflicting plans for achieving a task can finally
commit the most cost-effective robot to accomplish it.

5.2 Communication for team awareness and intentions

The notion of team awareness is understood here as the
state of a robot’s beliefs about itself, about other robots
and about the environment, while team intentions refer to
what the robots are planning to do. Team awareness and
intentions can be built on various forms of observation,
communication and reasoning. Keeping consistent informa-
tion in decentralized teams is still a challenging issue [34].
Although the robots can directly communicate with each
other, there exists a time lag between the time a robot sends a
message and the time the other robots receive it in decentral-
ized systems, even if the time lag is very short. For example,
when robot 1 decides to explore location A, it may not
know that its teammate, robot 2, is also planning to explore
the same location at the moment. Even if robot 2 can send
a message to inform robot 1 of its plan, it still might be
too late for robot 1 to receive the message so as to avoid
making a conflicting plan. In the prediction approach, since
the commitment strategy can handle conflicting plans, we
do not need to worry about communication delay in usual
decentralized systems .

With regard to communication content, as in our previous
work [29], the robots can share their beliefs, i.e., what they
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have observed in the environment and where they are, and
their intentions, i.e., what they are planning to do. Specif-
ically, each robot will exchange the following messages in
the prediction approach:

1. its current location,
2. an object (or objects) found by itself when checking a

target location,
3. an object collected by itself,
4. a target location that it wants to explore, and
5. an object that it wants to collect.

In comparison with the extended auction-based approach
discussed in Section 4, here the robots do not need to com-
municate their estimated costs for accomplishing specific
tasks. This is because each robot can calculate the cost infor-
mation of its teammates if it knows the current locations of
them.

As working in a team, the robots will inform each other
of found or removed objects. The robots need the fourth and
fifth types of information to predict the unallocated tasks,
which will be discussed in the following subsection.

5.3 Predicting unallocated tasks

Though the robots will inform each other about their plans,
(i.e., the fourth and fifth types of messages discussed
above), they still cannot simply confirm which tasks are sure
to be allocated to which robots, and what still needs to be
done in order to complete the team goal. This is because
when a robot has made a plan to accomplish a task, it does
not mean that all the others will agree that the robot is
delegated to finish the task. According to the allocation cri-
terion, if a teammate can achieve the task at a lower cost,
the robot should allow the teammate to complete the task.
Thus, in the prediction approach the robots do not directly
have access to the information about the set of unallocated
task by means of (2) and (3). They can, however, use the
exchanged messages to infer this information as follows.

5.3.1 Predicting unallocated exploration tasks

It is not difficult for the robots to keep track of explored
locations because they broadcast their real-time locations.
Once a robot arrives at a target location, all the others can
conclude it as an explored one. However, all the unexplored
locations usually cannot be regarded as unallocated ones
because some of them might have been planned to be vis-
ited. Although each robot can know the plans of teammates,
but when a robot has decided to explore a location, it does
not mean that this robot is the most cost-effective one to
explore it. It is reasonable to accept that if there is a team-

mate which also has decided to explore the location with
less cost, it is better to let the teammate explore the loca-
tion. From another point of view, if a robot realises that it
can explore a target location at a lower cost than a teammate
that has decided to explore the location, the robot still can
make a plan to explore the location.

In this approach, each robot can use (6) to predict which
locations still can be planned to explore:

UE = E\Lexploring, (6)

where E refers to the set of locations that has not been
explored, Lexploring is introduced here to indicate the set of
locations that its teammates have planned to explore, and
that the robot itself cannot explore faster than those team-
mates. In order to obtain Lexploring, a robot first needs to
select the set of the target locations that its teammates want
to explore, using the fourth type of information. Then, it
needs to (use (4) to) compute whether it can explore each of
those locations faster than respective teammates. The infor-
mation of current locations of the teammates is needed to
make this calculation. If the robot cannot explore a target
location of the set more quickly, then the target location will
be put into Lexploring .

5.3.2 Predicting unallocated retrieval tasks

Although the retrieval tasks appear dynamically when a dis-
covered object can be retrieved to satisfy an indexed type of
the team goal sequence, a robot cannot treat all the newly
appearing retrieval tasks as unallocated ones. The set of
unallocated retrieval tasks is often a subset of the overall
available retrieval tasks, UR ⊆ R. Robots need to know
UR because they need to understand what still needs to be
done in order to complete the entire team goal. A robot
can be informed of what objects have been retrieved by its
teammates and what objects its teammates have planned to
retrieve. But it does not mean that the robot would accept
that the objects that its teammates have planned to retrieve
are the best choices to satisfy the corresponding types in the
goal sequence.

For better teamwork, according to (5), if a robot can-
not do better to retrieve an object than a teammate that has
planned to retrieve the same object, it should acknowledge
that the object has been allocated to the teammate.

For example, if there are two discovered objects o1 and
o2, and both of them can be retrieved to satisfy τ3, then we
have that R = {〈o1, 3〉, 〈o2, 3〉}. Let robot 1 and 2 work as a
team to fulfill τ3. If robot 1 has made a plan to retrieve o1,
what should robot 2 do? Can it consider that the retrieval
tasks 〈o1, 3〉 and 〈o2, 3〉 are still available?
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Fig. 5 Greedy & non-greedy
strategies for exploration
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In order for the most cost-effective robot to achieve each
retrieval task in this approach, the idea is that if robot
2 can beat robot 1 to retrieve any object to satisfy the
required type, then robot 2 would believe that UR = R =
{〈o1, 3〉, 〈o2, 3〉}; otherwise, robot 2 will acknowledge that
the required type has been allocated to robot 1 to fulfill,
and, hence, it believes that no retrieval task is available (i.e.,
UR = ∅) right now.

In this approach, each robot can use (7) to predict the
currently available unallocated retrieval tasks:

UR = R\Rretrieving, (7)

where R refers to the set of retrieval tasks that has not been
retrieved, Rretrieving is introduced here to indicate the set of
retrieval tasks that its teammates have planned to retrieve,
and that the robot itself cannot beat the teammates at retriev-
ing. In order to obtain Rretrieving, a robot first needs to select
the set of objects that its teammates want to collect, using
the fifth type of information. Then, it needs to (use (5)
to) computer whether it can collect each of those objects
faster than respective teammates. Similarly, the information
of current locations of the teammates is needed to make this
calculation. If the robot cannot go to collect an object of the
set more quickly, then the object will be put into Rretrieving .
For the final set ofUR , the robot will eliminate each element
of Rretrieving from R sequentially.

5.4 Plan generation

Since the robots can predict the set of unallocated tasks,
they can choose tasks to accomplish when they have noth-
ing to do. As in the extended auction-based approach,
robots prefer to execute retrieval tasks first because this
type of task directly contributes to the team goal. In the
prediction approach, a robot will also first consider choos-
ing an unallocated retrieval task to perform. If no retrieval

task is available, the robot will explore the environment
by choosing an unallocated exploration task to visit. In
this section, we will first discuss how to select a tar-
get location to explore and then how to choose an object
to collect.

5.4.1 Non-greedy strategy for selecting exploration tasks

Auction-based approaches often suffer from greedy solu-
tions [16], making use of hill-climbing principle to bid
for the task with the smallest cost. A robot cannot win
the tasks with larger costs because the winner determina-
tion mechanism allocates a task to the robot who made the
lowest bid in each auction round [16]. Greedy exploration
means that the robots often put more effort into local min-
ima if needed objects are actually distributed in faraway
locations. For example, as shown in Fig. 5 (a sub-graph of
Fig. 1b), robot 1 needs to search and retrieve an object to
satisfy τ1, and such an object can be found in location l1. If
the robot uses the greedy strategy, it will follow the explo-
ration path: l7 → l3 → l2 → l8 → l1, with the total cost of
21 to find the object. Actually, if the robot is able to directly
choose l1, it only takes 7 steps to find the object.

The robots in the proposed prediction approach can also
apply a greedy strategy to choose the nearest one from the
set of the unallocated exploration tasks to explore. More-
over, it can produce a non-greedy strategy, in which each
robot has higher likelihood to choose a nearby location than
a faraway one, but it at least has a chance to choose a
faraway location to explore.

In the prediction approach, we employ the fitness func-
tion used in genetic algorithms to calculate the likelihood for
a robot to choose an unallocated exploration task. Table 1
is an example that shows the detailed steps of how a robot
calculates the likelihood for choosing the exploration tasks
depicted in Fig. 5:
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Table 1 Calculate the likelihood for choosing exploration tasks depicted in Fig. 5

Exploration tasks: E l7 l3 l2 l8 l1

cost to each location: costE(1, li ) 2 3 5 5 7

reverse cost (fitness): f (xi) = 1
costE(1,li )

0.5 0.3333 0.2 0.2 0.1429

likelihood (fitness ratio): pi = f (xi )∑
i f (xi )

36.33 % 24.22 % 14.53 % 14.53 % 10.38 %

1. enumerate all the available exploration tasks;
2. for each exploration task li ∈ E, calculate its costs:

costE(1, li) using (4);
3. reverse the cost and get the fitness of each exploration

task: f (xi) = 1
costE(1,li )

;
4. calculate the likelihood of each exploration task: pi =

f (xi )∑
i f (xi )

.

The probability of selecting an exploration task depends on
the distance to reach it. Using the non-greedy strategy, we
can see that a robot has greater likelihood to choose a nearby
location, but still has a possibility to explore a faraway one.

If several robots plan to explore the same whatever
nearby or faraway location, according to the commitment
strategy, the location will be finally explored by the robot
who has the lowest cost.

5.4.2 Individual optimal strategy for selecting retrieval
tasks

Since the team goal may have ordering constraints that
require targets to be delivered to the home base in a specific
order, the unallocated retrieval tasks should be completed
according to the indexed types of the goal sequence. In
this approach, a robot will choose an unallocated retrieval
task to perform, which satisfies the next indexed type. It
will also inform its teammates of its plan. In a search and
retrieval environment, the robot may have multiple choices
to do so, i.e., there might be multiple located objects that
can be retrieved to satisfy the same indexed type. To fulfill
an indexed type at a lower cost, each robot will choose the
nearest object to retrieve.

It happens that several robots may plan to retrieve
the same object (or another object with the same type)
at the same time. From the perspective of an individ-
ual robot, if a robot realizes that it has the exact same
plan with a teammate and that it cannot beat the team-
mate, it will give up its original plan, drop the commitment
and also inform the team. At the same time, the robot
will treat the object as an allocated one and update the

information about the set of the unallocated retrieval tasks,
using (7).

If a robot realizes that a teammate wants to retrieve a dif-
ferent object with the same type, and that robot cannot beat
the teammate to satisfy the same type, the robot may not
have to drop its commitment. This is because its intended
object may be useful for satisfying the next indexed type in
the goal sequence. To further check whether it should drop
the commitment or not, the robot needs to update the set of
the unallocated retrieval tasks, using (7).

On the contrary, if a robot realizes that it beats a team-
mate, it can continue with its original plan. The robot,
moveover, believes that the teammate will drop the com-
mitment. In such a way, each retrieval task will be finally
allocated and completed by the most cost-effective robot.

5.5 Algorithm of the prediction approach

We use Algorithm 2 to describe the proposed prediction
approach in detail. In comparison with the extended auction-
based approach, the important feature is that each robot
only has one allocated task at any moment. In general,
the algorithm consists of plan generation (line 5–16) and
the commitment strategy (line 17–24). The robot needs to
predict the set of unallocated tasks first when determin-
ing which task to choose (line 6 and 7). And because
the retrieval tasks can directly contribute to the team goal,
we prioritise the retrieval tasks over the exploration tasks,
which is the same as in the auction approach. It means that
in order to fulfill an indexed type in the goal sequence, a
robot will first retrieve an found object if it knows such
information (line 8–12); otherwise, it will choose a target
location to explore (13–15). It should be noted that since the
team goal may have ordering constraints, for the retrieval
tasks, a robot needs to first consider achieving the type
with the smallest index in the remaining goal sequence (line
9). Choosing the exploration tasks, robots can apply the
non-greedy strategy, see Section 5.4.1, to make decisions
(line 14).
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If a robot has conflicting plans with its a teammate which
can do better than itself, then the robot will drop its com-
mitment (line 18). Without conflicting plans, in the case of
having a plan of retrieving an object, a robot still needs to
further check whether a teammate has a plan of retrieving
another object with the same type, and if so, whether it can
be faster than itself (line 20). Such a case occurs when two
robots want to fulfill a same indexed type by retrieving two
objects at the same time. Even if a robot may not do it faster

the sequence list of required blocks (team goal)

robot teams

coloured blocks dispersed in a room

drop-zone

(home base)

door

collected blocks

Fig. 6 The Blocks World for Teams simulator for multi-robot search
and retrieval

than the teammate, its current plan still can satisfy the next
indexed type. Hence, it needs to inspect such a possibility
before thoroughly giving up the plan (line 21). Otherwise,
the robot can execute its plan to complete the task (line 23).

6 Experiments

6.1 Simulator: the blocks world for teams

For the sake of repeatability and accessibility, we use a
simulator, called the Blocks World for Teams (BW4T)3, to
study a search and rescue task in this work. The BW4T
has office-like environments consisting of rooms in which
colored blocks are randomly distributed for each simula-
tion (see Fig. 6). The colored blocks represent survivors that

3The BW4T introduced in [14] has been integrated into the agent envi-
ronments in GOAL [12], and more information of it can be found from
https://github.com/eishub/BW4T.

https://github.com/eishub/BW4T
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can be humans, various animals, etc., in a village after an
earthquake. We use different colors to distinguish survivors
so that they can be taken care of with different priorities
(e.g., it is reasonable to give a high priority to humans).
The rooms are considered as the rough areas where the sur-
vivors might be located. We assumed that in the simulator
the robots have the information about the locations of the
rooms in advance, but they do not know what kinds of block
is in a room before checking it. In real conditions, even
though the robots may have the map information of the vil-
lage, they are not likely to know the precise locations of
the survivors before searching them. Robots are supposed to
search, locate, and collect found blocks from the rooms and
return them back to a so-called drop-zone. The drop-zone is
treated as a hospital, where the survivors need to be trans-
ported to. Moreover, due to the limited carrying capability
of real robots, we also assume that a robot can only transport
one survivor at one time. Correspondingly, in the simula-
tor the robots are able to carry at most one block at a time
in this work.

As indicated at the bottom of the simulator in Fig. 6, the
team goal of a search and rescue mission is indicated by a
sequence of required blocks. The required blocks need to be
delivered to the drop-zone in the specific order as displayed.
Access to the rooms is limited in the BW4T. At any time at
most one robot can be present in a room or the drop-zone,
and the robots have to go through a door to enter a room.
For example, we can imagine that the treatment to survivors
in the hospital should be well-organised according to their
priorities. When a robot arrives at a target location, it usually
needs to employ its manipulators to rescue a survivor, which

requires that each robot must have a safety region for using
its actuators.

To complete a search and retrieval mission, each robot is
informed of the team goal, i.e., the sequence of the required
blocks, at the start of a simulation. The robots have the
information about the locations of the rooms, but they do
not initially know which blocks are located in which rooms.
This knowledge is obtained for a particular room by a robot
when it visits that room. While interacting with the BW4T
environment, each robot gets various percepts that allow it
to keep track of the current environment state. Each robot
has its own localization function, which allows it to update
its current location. Due to the limited perception, a robot in
the BW4T can only perceive a colored block when entering
a room where the block is located. Blocks are identified by a
unique ID and a robot in a room can perceive which blocks
of what color are in that room.

In order to implement and evaluate the task allocation
solutions discussed in this paper, we believe that cognitive
agents are particularly suitable for controlling the robots in
the BW4T, and the GOAL [12] language allows program-
ming agents that reason, communicate, and can interact with
the BW4T environment.

6.2 Experimental design

In the experimental study, we evaluate the extended SSI
auction approach and the novel prediction approach. In our
study, we have taken the following factors into account: the
environmental size, the team size, and the deployment (i.e.,
the initial starting location) of the robots.

(a) the small map (b) the large map

Fig. 7 The maps and the deployment of robots
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Table 2 The experimental setups for the search and retrieval problem

Approach Map Deployment Robots

[auction, novel] [small, large] [close, dispersal] [1, 5, 10]

We design two maps with a more general layout of rooms
and doors (see Fig. 7), a small one with 12 rooms (see
Fig. 7a) and a large one with 30 rooms (see Fig. 7b). Both
approaches are examined by a single, five and ten robots.
For the deployment of robots, we test two proposals: the
robots will start from more or less the same location (i.e.,
the shaded areas in Fig. 7a, b), and they are initially dis-
tributed over the environment and start in different locations
as shown in Fig. 7a, b.

Table 2 shows the experimental setups. For a single robot,
it starts from the shaded areas in Fig. 7 for both the small
and large map.

The team goal of the robots is to collect 15 colored blocks
from the environment, and the set of required blocks is set
randomly in each simulation. The environment of the BW4T
will randomly generate 30 blocks in total in each simulation.
Initially, the robots have no knowledge about this distribu-
tion. In our experiments, we measure the completion time
and the steps indicating the level of consumed energy. Each
condition has been run for 50 times to reduce variance and
filter out random effects in our experiments. The experi-
ments run on an Intel i7-3720QM at 2.6 GHz with 8 GB of
RAM, using GOAL version 8024.4

6.3 Results

Figure 8 shows the results of the experimental study,
in which we have evaluated the extended auction-based
approach for the search and retrieval problem, labelled as
“auction”, and the novel prediction approach, labelled as
“prediction”.

6.3.1 Completion time

In order to compare the two approaches, we use the sin-
gle robot case as a baseline because no workload needs
to be shared. We would expect no difference between the
two approaches, but with respect to the completion time,
the running time of agent programs can have an influ-
ence. As shown in Fig. 8a, the auction approach runs
faster in both the small and large maps than the prediction

4GOAL version 8024 can be downloaded from http://ii.tudelft.nl/trac/
goal/wiki/Releases.

approach. For example, a single robot that applies the auc-
tion approach takes 89.54 seconds on average to accomplish
all the required blocks in the small map, and 162.50 sec-
onds in the large map. In contrast, if the robot applies the
prediction approach, it takes 101.27 and 173.23 seconds,
respectively.

When more robots engage in the teamwork, the predic-
tion approach performs better than the auction approach.
In particular, the prediction approach significantly reduces
completion time when the robots are working in a large map.
As shown in Fig. 8a, when the team has five robots, the com-
pletion time of the auction approach is almost two times as
much as the prediction approach needs. This trend becomes
more clear with increasing numbers of robots. For instance,
when ten robots start from more or less the same location
(i.e., close depots) to execute the search and retrieval prob-
lem in the large map, they only need 50.93 seconds to finish
the task when they use the prediction approach, compared
to 150.57 seconds for the auction approach.

We believe there are two reasons that can explain why the
prediction approach performs better with increasing number
of robots. First, the auctioneer needs to wait for all the robots
to submit their bids in a round before determining a winner,
which increases the time for allocating tasks. Therefore, the
time needed to complete an auction round increases with the
number of robots and introduces real time delay.

Second, we have noticed that in the auction approach
when a robot explores a room and finds the next block that
is needed, the associated retrieval task for this block may be
allocated to another robot because the robot already has a
heavy workload. It happens, for example, when a robot has
already been allocated many rooms to explore, which causes
its bid (based on total estimated costs) to be rather high for
a newly found block. This is because the auction approach
allows a robot to bid on a new task when executing one, and
each robot may have multiple allocated tasks when bidding
on a new task. In contrast, a robot that applies the predic-
tion approach only determines which task to perform when
it has nothing to do. Thus, once a robot enters a room and
finds the next needed block, the robot itself must be the most
cost-effective one to collect the block.

With regard to the influence of the initial deployment
of the robots, we can see in Fig. 8a that it also relates to
the map size and team size. In a large environment, the
robots starting from the different locations save the com-
pletion time. For instance, in the auction approach, if five
robots start from the same location (i.e., close depots) in
the large map, they need 108.61 seconds to finish the task,
compared to 100.29 seconds if they start from different
location (i.e., dispersal depots). If we put ten robots in
the small map, their starting locations do not significantly
differ from each other. We can conclude that the initial

http://ii.tudelft.nl/trac/goal/wiki/Releases
http://ii.tudelft.nl/trac/goal/wiki/Releases
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Fig. 8 Experimental results

(a)

(b)

deployment of the robots is important for large-scale search
and retrieval.

6.3.2 Steps

From Fig. 8b, we conclude that the robots need fewer steps
if they use the auction approach to perform the search and
retrieval task. The main reason is that using the auction
approach, a robot does not move unless a task is allocated
to itself, whereas using the prediction approach, a robot first
makes quick decisionsto perform a task, and then checks its
commitment while executing the task. Thus, the robot may
drop an original plan if it finds that it cannot do better than a

teammate for a specific task, which can result in more steps
than the auction approach.

Therefore,deciding which approach should be applied to
deal with the dynamic search and retrieval problem involves
making a decision on the trade-off to minimize the com-
pletion time versus minimizing the total fuel consumption.
In different application domains, the search and retrieval
robots may focus on different team objectives. For instance,
in the search and rescue domain, the completion time may
be the major team objective because the survivors need
urgent assistance. However, in the deep-sea mining domain,
the fuel consumption may be the major concern for huge
mining robots.
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7 Conclusions

In this work, we investigated the dynamic task allocation
for a more general search and retrieval problem and pre-
sented an auction-based approach and a novel prediction
approach to deal with the problem. The two approaches
are evaluated in a simulated environment, called the BW4T,
and the experimental results show that both of them pro-
vide an efficient solution to the problem. The predic-
tion approach performs better with respect to completion
time, while the auction-based approach performs better
with respect to moving steps. Thus, there is a trade-off
between minimizing the completion time and minimizing
the fuel consumption for different application domains. In
the future, we would like to use real robots to evaluate the
proposed approaches.
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