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Abstract Bayesian Network (BN) is a probabilistic graph-
ical model which describes the joint probability distribution
over a set of random variables. One of the most impor-
tant challenges in the field of BNs is to find an optimal
network structure based on an available training dataset.
Since the problem of searching the optimal BN structure
belongs to the class of NP-hard problems, typically greedy
algorithms are used to solve it. In this paper a learning
automata-based algorithm has been proposed to solve the
BNs structure learning problem. There is a learning automa-
ton corresponding with each random variable and at each
stage of the proposed algorithm, named BNC-VLA, a set of
learning automata is randomly activated and determined the
graph edges that must be appeared in that stage. Finally, the
constructed network is evaluated using a scoring function.
As BNC-VLA algorithm proceeds, the learning process
focuses on the BN structure with higher scores. The con-
vergence of this algorithm is theoretically proved; and also
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some experiments are designed to evaluate the performance
of it. Experimental results show that BNC-VLA is capa-
ble of finding the optimal structure of BN in an acceptable
execution time; and comparing against other search-based
methods, it outperforms them.

Keywords Bayesian networks · Search and score
approach · Structure training · Variable-action set learning
automata

1 Introduction

Bayesian networks (BNs) are popular within the AI prob-
ability and uncertainty community as a method of rea-
soning under uncertainty. From an informal perspective,
BNs are directed acyclic graphs (DAGs), where nodes are
random variables and arcs specify independent assump-
tions between these variables. After construction, a BN
constitutes an efficient device for performing probabilistic
inference [1].

One of the most important challenges in this field is train-
ing the BN that best reflects the dependence relations in
a database of cases. Training an optimal structure for BNs
is difficult according to the large number of possible DAG
structures, given even a small number of nodes to connect. It
is proven that training BN from data is an NP-Hard problem
[2]. Different algorithms for training BNs from data have
been developed; generally, there are two main approaches:
constraint-based approach and search-and-score approach.
In algorithms, following the first approach [3–7], existence
of certain conditional dependencies is estimated from data.
This estimation is performed using statistical or information
theoretic measures. Constraints of conditional independence
are propagated throughout the graph and the networks
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that are inconsistent with them are eliminated from fur-
ther consideration. Finally only the statistically equivalent
networks consistent with conditional independence tests
remain.

On the other hand, algorithms which are following the
search and score approach [1], [8–15] attempt to identify
the network that maximizes a score function, indicating how
well the network fits the data. One such score metric is
Bayesian Information Criterion, which will be explained in
Section 2.1. Algorithms in this category search the space
of all possible structures for the one that maximizes the
score using greedy, local, or some other search algori-
thms.

In this paper, a new algorithm is proposed for structure
training in BNs. The proposed algorithm which is named
BNC-VLA, follows the search and score approach, and uses
learning automata to search the optimal structure among all
possible structures. Learning automata are chosen due to
their learning capability and negligible computation cost.
BNC-VLA is different from two prior learning automata-
base algorithms, which have been proposed in [10] and
[11]. Two main differences can be mentioned; firstly, in
[10] and [11], learning automata are assigned to possi-
ble edges; therefore, the number of learning automata for
a network with n random variables is, 1

2n × (n − 1) in
[10] or n × (n − 1) in [11] but in BNC-VLA learning
automata are assigned to random variables, and n learning
automata are used. Secondly, in [10] and [11] and also in
many other algorithms, cycle removing is done in a sepa-
rate phase which causes more time consuming. However,
in our proposed algorithm, BNC-VLA, cycle avoidance
process runs during the BN construction phase, and no
more phases is needed. In order to do these the action
sets of learning automata should be variable, so we have
used variable-action set learning automata. At each stage, a
BN is constructed based on the selected edges by learning
automata; and it is evaluated using a scoring function and a
training dataset. As algorithm proceeds, the learning algo-
rithm tries to find BN structure with a higher score. Guided
search by learning automata makes the search space smaller
in order to find optimal BN structure in a lower computation
time.

The reminder of this paper is organized as follows.
Section 2 explains the BNs and structure training prelimi-
naries. Learning automata is described briefly in Section 3.
In Section 4 the proposed learning automata-based algo-
rithm for training the BN structure is explained. Time
complexity analysis and convergence results are presented
in Section 5. Experimental results obtained by BNC-VLA
are reported in Section 6. Finally, the paper concludes with
a conclusion given in Section 7.

2 Bayesian networks and structure training

A BN describes the joint probability distribution over a
set of random variables with defining series of proba-
bility independences and series of conditional indepen-
dences [16]. From an informal perspective, a BN is a
directed acyclic graph (DAG), where nodes are random
variables, and arcs specify the independence assumptions
that must be held between the random variables. Giving
prior probabilities for nodes with no parent and conditional
probabilities for all other nodes given all possible com-
binations of their parents, we can specify the probability
distribution of a BN. The joint probability of any partic-
ular combination of n random variables can be written
according to (1),

P (X1, . . . , Xn) =
∏n

i=1
P(xi |Parents (Xi)) (1)

where (X1, . . . , Xn) is the set of random variables. When
the network is constructed it can be an efficient device
to perform probabilistic inference. Nevertheless, the prob-
lem of constructing such a network has remained [1].
Construction of the BN is separated into two training sub-
tasks: structure training to determine the topology of the
network, and parameter training which defines numerical
parameters (conditional probabilities) for a given network
topology.

In this work, we focus on structure training based on
search-and-score approach. Algorithms which follow this
approach have two main components: a search procedure
and a scoring metric. Search procedure determines an algo-
rithm to search throughout all possible networks and then
select one; and scoring metric evaluates the quality of the
selected network. In the rest of this section, we briefly
describe both of these components.

2.1 Scoring metric

There are varied metrics proposed for evaluating the struc-
ture of a BN such as Bayesian metric, Minimum Description
Length, and Bayesian Information Criterion, to mention a
few. Bayesian metric measures the quality of the BN by
computing a marginal likelihood of the BN with respect to
the given data and inherent uncertainties [17], [18]. Mini-
mum Description Length is based on the assumption that
the number of regularities in the data encoded by a model
is somehow proportional to the amount of data compression
allowed by the model [10]. And finally the Bayesian Infor-
mation Criterion (BIC), which is used as scoring metric in
this work, is a criterion for model selection among a finite
set of models, and it is based on the likelihood function.



BNC-VLA: bayesian network structure learning using a team of variable-action set learning automata 137

The BIC metric for a constructed graph G is given by the
following equation,

BIC = log2 P
(
D | G, ˆθG

)
− |n|

2
log2 (M) (2)

where D is the set of training samples, ˆθG is Maximum
Likelihood (ML) estimation for G’s parameters, and M is
the number of samples in the dataset. If all variables are
multinomial, by considering ri as a finite set of outputs for
xi, qi as the number of configurations for xi’s parents, Nij as
the number of observations of xi where its parents’ config-
uration is j , and finally Nijk as the number of observation
of xi = k where its parents’ configuration is j , (2) can be
rewritten as:

BIC =
∑M

i=1

∑qi

j=1

∑ri

k=1
log2

(
Nijk

Nij

)

− log2n

2

∑M

i=1
qi(ri − 1) (3)

and in this case, BIC is converted to a simple counting
problem.

2.2 Search procedure

Given a scoring metric, the problem of learning the struc-
ture of a Bayesian network belongs to the case of NP-hard
problems and there is no polynomial-time algorithm for
finding the best network structure corresponding to the most
scoring metrics [2]. Usually, a simple greedy algorithm is
used to build the network [12]. The greedy algorithm adds
an edge with the greatest improvement of the current net-
work quality in search step until no more improvement is
possible. The initial network structure can be a graph with
no edges; furthermore, it can take advantage of using the
prior information such as using the best tree computed by
the polynomial-time maximum branching algorithm [17],
[19] Since Bayesian network is an acyclic graph, after each
search step, the graph structure must be validated, and all
cycles must be removed from the constructed graph To the
best of our knowledge, Genetic Algorithms [1, 8], Hill-
Climbing [12], Simulated Annealing [15], A* search [13],
Ant Colony optimization [14] and Learning Automata [10],
[11] are used in search procedure to build the network.

3 Learning automata

A learning automaton [20], [21] is an adaptive decision-
making unit that improves its performance by learning
how to choose the optimal action from a finite set of
allowed actions through repeated interactions with a ran-
dom environment. The action is randomly chosen based on

a probability distribution kept over the action-set and at each
instant, the given action is served as the input to the ran-
dom environment. The environment responds to the taken
action in turn with a reinforcement signal. The action proba-
bility vector is updated based on the reinforcement feedback
from the environment. The objective of a learning automa-
ton is to find the optimal action from the action-set so
that the average penalty received from the environment is
minimized.

The environment can be described by a triple E =
{α, β, C}, where α = {α1, α2,. . . ,αr} represents the finite
set of inputs, β = {β1, β2,. . . , βm} denotes the set of val-
ues that can be taken by the reinforcement signal, and C =
{c1, c2,. . . ,cr} denotes the set of penalty probabilities, where
element c1 is associated with the given action α1. If the
penalty probabilities are constant, the random environment
is said to be a stationary random environment, and if they
vary with time, the environment is called a non stationary
environment. The environments depending on the nature of
the reinforcement signal β can be classified into P -model,
Q-model and S-model. The environments in which the rein-
forcement signal can only take two binary values 0 and 1
are referred to as P -model environments. Another class of
environments allow a finite number of values in the interval
[0, 1] be taken by the reinforcement signal; such environ-
ments are referred to as Q-model environments. In S-model
environments, the reinforcement signal lies in the interval
[a,b].

Learning automata can be classified into two main fam-
ilies [20, 23] and [24]: fixed structure learning automata
and variable structure learning automata. Variable struc-
ture learning automata are represented by a triple,〈β, α, T 〉,
where β is the set of inputs, α is the set of actions, and T

is learning algorithm. The learning algorithm is a recurrent
relation, which is used to modify the action probability vec-
tor. Let αi(k)εα and p(k) denote the action selected by a
learning automaton and the probability vector defines over
the action-set at instant k, respectively. At each instant k,
the action probability vector p(k) is updated by the linear
learning algorithm given in (4), if the selected action αi(k)

is rewarded by the random environment, and it is updated as
given in (5) if the taken action is penalized.

pj (k + 1) =
{

pj (k) + a
[
1 − pj (k)

]
j = 1

(1 − a) pj (k) ∀j �= i
(4)

pj (k + 1) =
{

(1 − b)pj (k) j = 1(
b

r−1

)
+ (1 − b) pj (k) ∀j �= i

(5)

Where a and b denote the reward and penalty parameters
and determine the amount of increase and decrease of the
action probabilities, respectively; and r is the number of
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actions that can be taken by learning automaton. If a = b,
the recurrent (1) and (2) are called linear reward-penalty
(LR−P ) algorithm, if a>b the given equations are called lin-
ear reward-ε penalty (LR−εP ), and finally if b = 0 they are
called reward-Inaction (LR−I ) In the latter case, the action
probability vectors remain unchanged when the taken action
is penalized by the environment.

3.1 Variable action-set learning automata

A variable action-set learning automaton [20] is an automa-
ton in which the number of actions available at each instant
changes with time. Such an automaton has a finite set of
n actions, α = {α1α2, . . . , αr}. A = {A1, A2, . . . , Am}
denotes the set of action subsets and A(k) ⊆ α is the sub-
set of all the actions that can be chosen by the learning
automaton, at each instant k. the selection of the par-
ticular action subsets is randomly made by an external
agency according to the probability distribution ψ(k) =
{ψ1(k), ψ2(k), ψm(k)} defined over the possible subsets of
the actions, where ψi(k) = prob[A(k) = Ai |AiεA, 1 ≤ i ≤
2n-1].

p̂i (k) = prob[α(k) = αi |A(k), αiεA(k)] denotes the
probability of choosing action αi , conditioned on the event
that the action subset A(k) has already been selected and
αiεA(k) too. The scaled probability p̂i (k) is defined as:

p̂i (k) = pi(k)

K(k)
(6)

Where K (k) = ∑
αi∈A(k) pi(k) is the sum of the prob-

abilities of the actions in subset A(k), and pi (k) =
prob[α (k) =αi]

The procedure of choosing an action and updating the
action probabilities in a variable action-set learning automa-
ton are described as follows. Let A(k) be the action subset
selected at instant n. Before choosing an action, the prob-
abilities of all the actions in the selected subset are scaled
as (6). Then the automaton randomly selects one of its
possible actions according to the scaled action probabil-
ity vector p̂i (k). Depending on the received response from
the environment, the learning automaton updates its scaled
action probability vector. Note that only the probability of
the available actions is updated. Finally, the action probabil-
ity vector of the chosen subset is rescaled as pi (k + 1) =
p̂i (k + 1)K(k), for all αi ∈ A(k).

4 Learning automata-based BN structure training
algorithms

In this section, we propose a new learning automata-based
structure training algorithm for BNs, called BNC-VLA This

algorithm increases the quality of constructed BNs and it
decreases the execution time for constructing BNs. Over-
all, in comparison with other search-base algorithms like
Genetic Algorithm [1, 8], Hill-Climbing [12], Simulated
Annealing [15], A* search [13], Ant Colony optimization
[14], and Learning Automata-based algorithms [10, 11],
BNC-VLA shows superior results. In our algorithm, a team
of learning automata is assigned to the random variables;
they choose a network from all possible networks, and then
a scoring function evaluates the chosen network. A rein-
forcement signal is produced based on the given score, and
finally the action probability vectors of every automaton are
updated according to the received signal. Pseudo code of
BNC-VLA is given in Algorithm 1.

Algorithm 1 Pseudo code of BNC-VLA

1: Let be the number of random variables, and also the
number of learning automata

2: Let and be the iteration counter and The average
score of the entire constructed network until stage
respectively. Both initially set to 0

3: Assign an automaton to each node and initially set it to
the passive state.

4: Repeat
5: Let denotes the set of activated automata and is

the constructed BN which are initially null
6: While there are passive automata
7: Select one of the automata (passive or active with at

least one unmarked action at random and call it
8: If is passive then
9: Insert to

10: If is not null then
11: Automaton chooses one of its actions corre-

sponding with
12: Add edge to BN
13: chosen action is marked
14: each automaton (passive or active) prunes its action-

set for cycle avoidance
15: End If
16: End while
17: Compute BIC scoring metrics of constructed BN using

training dataset as BIC
18: If BIC then
19: Reward the best selected actions of activated automata
20: Else
21: Penalize the selected actions of activated automata
22: Update using [(k-1) BIC ]
23: Increase by adding one
24: Enable all disabled actions
25: Until Th or BIC BIC

Let n denotes the number of random variables. By assign-
ing a learning automaton to each random variable we have
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a team of n learning automata A = {A1, A2, . . . , An} with
a set of action-sets, α = {α1α2, . . . , αn in which αi =
{αi1αi2, . . . , αij , . . . , αiri

defines the set of actions which
can be taken by learning automaton Ai for each αi ∈ α and
ri = (n−1). In a network with n random variables the max-
imum number of directed edges from a node to other nodes
is (n − 1); therefore, each learning automata has (n − 1)

actions in its action set corresponding to the possible edges.
Each learning automaton can be in one of two states: active
and passive, all learning automata are initially set to passive
state. BNC-VLA consists of a number of stages. Stage k of
BNC-VLA is briefly described in the following steps:

1. BN construction
Choose one of the passive automata at random, and

mark it as active.
Repeat the following until there is no more passive

automata to be activated.

a) The chosen automaton chooses one of its actions
according to its action probability vector. Then
the selected action is marked, and the automaton
cannot choose it again in current stage.

b) Each learning automaton changes its number of
actions (or scales its action probability vector) by
disabling the actions that may cause a cycle during
the construction of the BN (the process of disabling
the actions is described later).

c) Choose one of the automata at random and if it is
passive, mark it as active. Chosen automaton can be
passive or active; however, active automata which
have no unmarked action cannot be chosen.

2. Dynamic threshold computing
Let us assume that BN τk is constructed at stage k.

The average score of the entire constructed networks
until stage k is computed as a dynamic threshold Tk:

Tk = 1

k

∑k

i=1
BIC(τi) (7)

where BIC(τi), which is defined using (3), denotes the
score of the constructed network, BN τi in stage i.

3. Update action probability vector
At each stage k, if the score of the constructed net-

work, BIC(τi) is more than or equal to the dynamic
threshold Tk , then the actions chosen by automata are
rewarded and penalized otherwise. If a learning automa-
ton has been chosen more than once, it would have
more than one selected actions; however, only the best
action participates in rewarding and penalizing pro-
cesses. In order to find the best selected action in an
automaton, for each selected edge which is associated

to one action, mutual information between the nodes is
computed using (8) and the training dataset.

I (ij) =
∑

xi ,xj

P
(
xi, xj

)
log

P (xi, xj )

P (xi) P (xj )
(8)

Where, xixj are two corresponding nodes. The best
action is the action with the highest mutual information
value. This approach causes to find simpler networks as
well as speed up the convergence. Then, each automa-
ton updates its action probability vector by using LR−I

reinforcement scheme. Disabled actions are enabled
again and probability vectors are updated as described
in Section 3.1 on variable action-set learning automata.

4. Termination
Step 1, 2, and 3 are repeated until the stage number

exceeds a pre-specified threshold Thk or the score of
a constructed BN becomes greater than a certain pre-
defined score BICopt . In the latter, the network which
is constructed just before the algorithm stops is the BN
with the maximum expected score among all networks.

As mentioned earlier, at each stage the number of actions
that can be taken by an automaton, changes (or reduces)
with time in such a way that no cycle appears in the BN (see
line 14 of the Algorithm). To avoid the formation of a cycle
in the BN, BNC-VLA performs as follows: At each stage
k each edge e(ji) is removed and its corresponding action
is temporarily disabled in the action-set of the automaton
Aj , if the edge e(i,j) is chosen. Then Let πi,j denotes the
path connecting random variable xi to random variable xj ,
and pi

j and qi
j denote the choice probability of edge e(i,j)

and path πi,j , respectively. BNC-VLA also removes each
edge e(rs) and temporarily disables its corresponding action
in the action-set of the automaton Ar , if the edge e(i,j) is
chosen and both paths πi,r and πs,j have been already con-
structed by the activated automata. This disabling process is
repeated until the stop condition of step 1 is met. By this,
the cycle freeness of the proposed BN construction algo-
rithm is guaranteed. At each stage, the algorithm updates
the action probability vectors twice; the first time is when
the selected actions are rewarded or penalized, and the sec-
ond time is when the disabled actions are enabled again at
the end of each stage. In both cases, the action probabili-
ties are updated as described in previous section on variable
action-set learning automata.

4.1 Simple improvements

In this section, two improvements are proposed in order to
speed up the convergence.

Method1: Usually, there is no prior information in learn-
ing automata, and action probability vectors are uni-
formly initialized. However, in the field of BNs we
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can get prior information about variables’ dependencies,
which can be used for initializing probability vectors
in order to speed up the convergence. To do this the
mutual information for each possible undirected edge is
computed using (8), and training dataset.

Let p
j
i be the probability of choosing action (edge) αij

by Ai ; p
j
i can be initialized as follows.

p
j
i = I (i, j)∑

f or all j �=iI (i, j)
(9)

It is expected that the convergence speed of BNC-VLA is
improved in this case.

Method2: In BNC-VLA, all learning automata use the
same learning rate, which remains unchanged during the
execution of the algorithm. Such a learning rate gives
the equal importance to all possible edges to appear in
the BN. This may prolong the convergence of the opti-
mal solution for some learning automata and accelerate
the convergence to a non-optimal solution for some oth-
ers. Here, we discuss a statistical method for adjusting
the learning rate to speed up the convergence rate. This
method uses the Maximum Likelihood (ML) estimation
in BNs for adjusting the learning rate during the algo-
rithm. For each possible edge e(i,j) the probability of
being observed in the BN is computed by dividing the
number of samples xj if xi is its parent to the number of
all samples. Then, the learning rate is increased for the
edges which have higher ML value in comparison with
others. In this case, the convergence speed of BNC-VLA
may be increased.

5 Theoretical analysis

In this section, time complexity analysis and convergence
results are presented.

5.1 Time complexity analysis

Lemma 1 Let the number of iterations is iters and the num-
ber of random variables is n; the time complexity of the
proposed algorithm is O(iter × n2).

Proof The inner loop of BNC-VLA, in Step 1, executes
n × (n − 1) times in the worst case and n times in the best;
so the upper bound on its time complexity is O(n2) Besides,
the time complexity of computing the BIC in Step 2 is
O
(
Mn2

)
, where M is the number of training samples; and

in Step 3 the time complexity of updating the action prob-
ability vectors for n learning automata is O(n2). Finally,
the outer loop is related to the number of iterations iters,

and the time complexity of the proposed algorithm, BNC-
VLA, is O(iter × (n2 + Mn2 + n2)); which is rewritten as:
O(iter × n2).

5.2 Convergence results

In this section, we prove the convergence of BNC-VLA
to the optimal solution, when each learning automaton
updates its action-set by a linear reward-inaction reinforce-
ment scheme. BNC-VLA is designed for stochastic environ-
ments, where the environmental parameters may vary over
time; therefore, the method that is used to prove the conver-
gence of it, partially follows the method given in [21, 23] to
analyze the behavior of the learning automata operating in
non-stationary environments.

Theorem 1 Let qi (k) be the probability of constructing
BN τiat stage k. If q(k)is updated according to BNC-
VLA, then there exists a learning rate a*(ε) ∈ (0,1)
(for every ε>0) such that for all a∈(0,a*), we have
Prob [limk→∞qi (k) = 1] ≥ 1 − ε

Proof The steps of convergence proof are briefly outlined as
follows. At first, it is proved that the penalty probability of
each BN converges to the constant value of the final penalty
probability, if k is selected large enough. This property is
shown in Lemma 2. Then, it is shown that the probability of
choosing a BN with the maximum score is a sub-martingale
process for large values of k, and so the changes in the
probability of constructing the BN are always nonnegative.
Lemma 3 and 4 show this result. Finally, the convergence
of BNC-VLA to a BN with the maximum expected score is
proved by using martingale convergence theorems. There-
fore, the following lemmas need to be proved before starting
the proof of Theorem 1.

Lemma 2 If BN τi penalized with probability ci(k) at stage
k (i.e. ci (k) = prob

[
BICτi < Tk

]
) and limk→∞ ci (k) =

c∗
i . Then, for every ε ∈ (0, 1) and k>K(ε) we have,

prob
[∣∣c∗

i − ci (k)
∣∣ > 0

]
< ε

Proof Let ci denotes the final value of probability ci(k)

when k is large enough. Using weak law of large numbers,
we have concluded that prob

[∣∣c∗
i − ci (k)

∣∣ > ε
]→ 0

Hence, for every ε ∈ (0, 1), there exists a∗ (ε) ∈ (0, 1)

and K(ε)<∞ such that for all a<a* and k>K(ε) we have
prob

[∣∣c∗
i − ci (k)

∣∣ > 0
]

< ε , and the proof of Lemma 2 is
completed.

Lemma 3 Let cj (k) = prob[BICτj (k + 1) < Tk and
dj (k) = 1 − cj (k) be the probability of penalizing and



BNC-VLA: bayesian network structure learning using a team of variable-action set learning automata 141

rewarding BN τj at stage k, respectively. If q (k) evolves
according to BNC-VLA, then the conditional expectation of
qi(k) is defined as

E[qi(k + 1)|q(k)]
=
∑r

j=1
qj (k)

[
cj (k) qi (k) + dj

∏
e(m,n)∈τi

δm
n (k)

]

Where

δm
n (k) =

{
pm

n (k + 1) = pm
n (k) + a

(
1 − pm

n (k)
) ; e(m,n) ∈ τj

pm
n (k + 1) = pm

n (k) (1 − a) ; e(m,n) /∈ τj

Where r denotes all constructed BNs.

Proof Since the reinforcement scheme that is used to update
the probability vectors in BNC-VLA is LR−I , at each stage
k the probability of choosing the BN τi (i.e., qi(k)) remains
unchanged with probability cj (k) (for all j = 1, 2, . . . , r)

when the selected BN τj is penalized by the random envi-
ronment. On the other hand, when the selected BN τj

is rewarded, the probability of choosing edges of BN τi

increases by a given learning rate as that of the other edges
decreases Hence the lemma is proven.

Lemma 4 The increment in the conditional expectation of
qi(k) is always non-negative subject to q (k) is updated
according to BNC-VLA. That is, �qi(k)>0.

Proof Define �qi (k) = E[qi(k + 1)|q(k)] − qi(k)

From Lemma 3, we have

�qi (k) = E[qi(k + 1)|q(k)] − qi (k)

=
r∑

j=1

qj (k) [ cj (k) qi (k)

+ dj

∏

e(m,n)∈τi

δm
n (k) ] − qi (k) (10)

where

δm
n (k)=

{
pm

n (k+1)=pm
n (k)+a(1−pm

n (k) ; e(m,n) ∈ τj

pm
n (k+1)=pm

n (k) . (1−a) ; e(m,n) /∈ τj

(11)

pm
n (k) is the probability of choosing edge e(n,m) at stage

k. The probability with which the BNs are constructed,
rewarded or penalized is defined as the result of the proba-
bility of choosing the edges along the BNs, so we have

�qi (k) =
r∑

j=1

∏

e(m,n)∈τj

pm
n (k)

⎡

⎣
∏

e(m,n)∈τj

cm
n (k)

∏

e(m,n)∈τi

pm
n (k)

+
∏

e(m,n)∈τj

dm
n (k)

∏

e(m,n)∈τi

δm
n (k)

⎤

⎦−
∏

e(m,n)∈τi

pm
n (k)

Where δm
n (k) is defined as given in (10) cm

n (k) is the prob-
ability of penalizing edge e(m,n) at stage k, and dm

n (k) =
1−cm

n (k). At each stage, BNC-VLA chooses edges of DAG
constructing one of r possible BNs.

�qi (k) =
∏

e(m,n)∈τi

E
[
pm

n (k + 1) |pm(k)
]

−
∏

e(m,n)∈τi

pm
n (k)

The above mentioned equality can be rewritten as:

�qi (k) ≥
∏

e(m,n)∈τi

E
[
pm

n (k + 1) |pm(k)
]− pm

n (k)

=
∏

e(m,n)∈τi

�pm
n (k) (12)

And �pm
n (k) =a. pm

n (k)
∑rm

s �=n pm
s (k) .(cm

s (k) − cm
n (k))

qi (k) ∈ (0, 1) for all q ∈ S0
r , where Sr = {q(k) : 0 ≤

qi(k) ≤ 1; ∑r
i=1 qi(k) = 1} and S0

r denotes the interior of
Sr . Hence, pm

n (k) ∈ (0, 1) for all m, n. Since edge e(m,n) ∈
τi is the edge with high probability which can be selected
by automaton Am, it is shown that cm∗

s (k) − cm∗
n (k) > 0

for all s �= n. It follows from Lemma 2 that for large val-
ues of k, cm

s (k) − cm
n (k) > 0. Therefore, we conclude

that for large values of k,the right hand side of the above
equation consists of nonnegative quantities and so we have∏

e(m,n)∈τi
apm

n (k)
∑rm

s �=n pm
s (k) .(cm

s (k) − cm
n (k)) ≥ 0 and

from (10), we have

�qi (k) ≥
∏

e(m,n)∈τi

apm
n (k)

∑rm

s �=n
pm

s (k) .

(cm
s (k) − cm

n (k))

This completes the proof of this lemma.

Corollary 1 The set of unit vectors in Sr − S0
r forms the set

of all absorbing barriers of the Markov process {q (k)}
k≥1

,

where S0
r =

{
q (k) : qi (k) ∈ (0, 1) ;∑r

i=1qi (k) = 1
}
.

Proof Lemma 4 implicitly proves that q (k) is a sub-
martingale. Using martingale theorems and the fact that q (k)

is a non-negative and uniformly bounded function, it is con-
cluded that qi(k) converges to q∗ with probability one.
Hence, from (10), it can be seen that qi(k + 1) �= qi(k)

with a nonzero probability if and only if qi (k) /∈ 0, 1},
and q (k + 1) = q(k) with probability one if and only if
q∗ ∈ {0, 1} where limk→∞ qi(k) = q∗, and hence the proof
is completed.
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Let �i(q) be the probability of convergence of BNC-VLA
to unit vector ei with initial probability vector; q. �i (q) is
defined as follows:

�i (q) = prob[qi(∞) = 1|q(0) = q]
= prob[q∗ = ei |q(0) = q].

Let C (Sr) : Sr → 
 be the state space of all real-valued
continuously differentiable functions with bounded deriva-
tive defined on Sr , where 
 is the real line. If ψ(.) ∈ C(Sr),
the operator U is defined as:

Uψ(q) = E[ψ (q (k + 1)) |q (k) = q] (13)

where E[.] represents the mathematical expectation.
It has shown in [23] that operator U is linear, and it pre-

serves the non-negative functions as the expectation of a
non-negative function remains nonnegative. In other words,
Uψ(q) ≥ 0 for all q ∈ Sr , if ψ(q) ≥ 0. If the operator U is
applied n (for all n>1) times repeatedly, we have

Un−1ψ (q) = E[ψ(q(k + 1))|q (1) = q].
Function ψ (q) is called super-regular (sub-regular) if

and only if ψ (q) ≥ Uψ (q) (ψ (q) ≤ Uψ (q)), for all
q ∈ Sr . It has been shown in [23] that �i (q) is the only
continuous solution of U�i (q) = �i (q) subject to the
following boundary conditions.

�i (ei) = 1

�i

(
ej

) = 0; j �= i (14)

Define φi [x, q] = e−xqi /a−1
e−x/a−1

where x>0. φi [x, q] ∈ C (Sr)

satisfies the boundary condition above.

Theorem 2 Let ψ(.) ∈ C(Sr) be super-regular with
ψi (ei) = 1 and ψi

(
ej

) = 0 for j �= i then

ψi (q) ≥ �i (q)

for all q ∈ Sr . If ψ(.) ∈ C(Sr) is sub-regular with the same
boundary conditions, then

ψi (q) ≤ �i (q) (15)

for all q ∈ Sr .

Proof Theorem 2 has been proved in [21].
In what follows, we show that φi [x, q] is sub-regular

function, and φi [x, q] qualifies as a lower bound on �i (q).
Super and sub-regular functions are closed under addition
and multiplication by a positive constant, if and only if φ(.)

is super regular then – φ(.) is sub-regular. Therefore, it fol-
lows that φi [x, q] is sub-regular if and only if θi [x, q] =
e−xqi/a is super-regular.

We now determine the conditions under which θi [x, q]
is super-regular. From the definition of operator U given in
(13), we have:

E

[
e

xqi (k+1)

a

∣∣∣∣ q(k) = q

]

=

⎡

⎢⎢⎢⎢⎣

∑r

j=1
qjd

∗
j e

− x
a

⎡

⎢⎣
∏

e(m,n)∈τi ,

e(m,n)∈τj

(pm
n +a(1−pm

n ))

⎤

⎥⎦

+
∑r

j=1
qjd

∗
j e

− x
a

⎡

⎢⎣
∏

e(m,n)∈τi ,

e(m,n) /∈τj

(pm
n (1−a))

⎤

⎥⎦

⎤

⎥⎥⎥⎥⎦

Uθi (x, q)

=
⎡

⎣qjd
∗
j e− x

a
(qi+a(1−qi ))

+
∑r

j=1
d∗
j e

− x
a

⎡

⎢⎣
∏

e(m,n)∈τi ,

e(m,n)∈τj

(pm
n +a(1−pm

n ))

⎤

⎥⎦

+
∑r

j �=1
qjd

∗
j e

− x
a

⎡

⎢⎣
∏

e(m,n)∈τi ,

e(m,n) /∈τj

(pm
n (1−a))

⎤

⎥⎦

⎤

⎥⎥⎥⎥⎦

Where d∗
j denotes the final value to which the reward

probability dj (k) is converged (for large value of k), and
e− x

a
(qi+a(1−qi )) is the expectation of θi (x, q) when the BN

τi is rewarded by the environment.

Uθi (x, q) =

⎡

⎢⎢⎢⎢⎣
qjd

∗
j e− x

a (qi+a(1−qi ))

+
∑

j �=i
qj d

∗
j e

− x
a

⎛

⎜⎝qi (1−a)
∏

e(m,n)∈τi ,

e(m,n)∈τj

(pm
n +a(1−pm

n ))
(pm

n (1−a))

⎞

⎟⎠

⎤

⎥⎥⎥⎥⎦

=
[∑

j=i
qj d

∗
j e

− x
a
ρi

j (qi+a(1−qi ))

+
∑

j �=i
qj d

∗
j e

− x
a
ρi

j (qi (1−a))
]

Where ρi
j > 0 is defined as

ρi
j =

⎧
⎪⎨

⎪⎩

∏
e(m,n) ∈ τi,

e(m,n) ∈ τj

(pm
n +a(1−pm

n ))
(pm

n (1−a))
; i �= j

1; i = j or
(
τi ∩ τj

) = ∅
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Uθi (x, q) − θi (x, q)

=
[
e
−xqiρ

i
j /a
∑

j=i
qid

∗
j e

−x(1−qi )ρ
i
j

+e
−xqiρ

i
j /a
∑

j �=i
qid

∗
j exqiρ

j
i

]
− e−xqi/a

θi (x, q) is super-regular if

e
−xqiρ

i
j /a
∑

j=i
qid

∗
j e

−x(1−qi )ρ
i
j

+e
−xqiρ

i
j /a
∑

j �=i
qid

∗
j exqiρ

j
i ≤ exqi/a

and

Uθi (x, q) ≤ exqi/aqid
∗
j e−x(1−qi ) + exqi/a

∑

j �=i

qid
∗
j exqi ,

if θi (x, q) is super-regular. Therefore, we have

Uθi (x, q) − θi (x, q)

≤
[
e−xqi/aqid

∗
j e−x(1−qi )+e−xqi/a

∑
j �=i

qid
∗
j exqi

]
−e−xqi/a.

After multiplying and dividing the right hand side of the
inequality above by −xqi and some algebraic simplifica-
tions, we have

Uθi (x, q) − θi (x, q)

≤ −xqie
−xqi/a

[
qid

∗
j

e−x(1−qi ) − 1

−xqi

−
∑

j �=i
qid

∗
j

exqi − 1

xqi

]

= −xqie
− xqi

a

[
d∗
j

e−x(1−qi ) − 1

−x
−
∑

j �=i
qid

∗
j

exqi − 1

xqi

]

= −xqie
−xqi/a

[
(1 − qi)d

∗
j

e−x(1−qi ) − 1

−x(1 − qi)
−
∑

j �=i
qid

∗
j

exqi − 1

xqi

]

and

V [u] =
{

eu−1
u

; u �= 0
1; u = 0

Uθi (x, q) − θi (x, q)

≤ −xqie
− xqi

a

[
(1 − qi) d∗

i V [−x (1 − qi)]
−
(∑

j �=i
qj d

∗
j

)
V [xqi]

]
= xqiθi (x, q)Gi(xq)

where

Gi (x, q) = (1 − qi) d∗
i V [−x (1 − qi)]

−
(∑

j �=i
qj d

∗
j

)
V [xqi] (16)

Therefore, θi (x, q) is super-regular if

Gi (x, q) ≥ 0. (17)

From (16), it follows that θi (x, q) is super-regular if we
have

fi (x, q) = V [−x(1 − qi)]

V [xqi]
≤
∑

j �=iqid
∗
i

(1 − qi)d
∗
i

. (18)

The right hand side of the inequality (18) consists of the
non-negative terms, so we have

(∑
j �=i

qi

)
minj �=i

(
d∗
j

d∗
i

)
≤ 1

(1 − qi)

∑
j �=i

qj

d∗
j

d∗
i

≤
(∑

j �=i
qi

)
maxj �=i

(
d∗
j

d∗
i

)
.

Substituting
∑

j �=i qi by (1 − qi) in the above inequality,
we can rewrite it as:

minj �=i

(
d∗
j

d∗
i

)
≤
∑

j �=iqj

d∗
j

d∗
i∑

j �=iqj

≤ maxj �=i

(
d∗
j

d∗
i

)
.

From (18), it follows that θi (x, q) is super-regular if we
have

fi (x, q) ≥ maxj �=i

(
d∗
j

d∗
i

)

For further simplification, let us employ logarithms. If
�(q, x) = lnfi (x, q), it has been shown in [23] that

−
∫ x

0
H

′
(u) du ≤ �(q, x) ≤ −

∫ 0

−x

H
′
(u) du

H (u) = dH(u)

du
, H (u) = lnV (u).

Therefore, we have

1

V [x] ≤ V [−x(1 − qi)

V [xqi] ≤ V [−x]

and

1

V [x] = maxj �=i

(
d∗
j

d∗
i

)
. (19)
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Fig. 1 The ALARM network

Let x∗ be the value of x for which (19) is true. It is
shown that there exists a value of x>0 under which (19)
is satisfied, if (dj /di) is smaller than 1 for all j �= i. By
choosing x = x∗, (19) holds true. Consequently, (15) is
true and θi (x, q) is a super-regular function. Therefore,
φi [x, q] = e−xqi /a−1

e−x/a−1
is a sub-regular function satisfying the

boundary conditions given in (14). From Theorem 2 and
inequality (15), we conclude that

φi [x, q] ≤ �i(q) ≤ 1.

From definition of φi [x, q], we see that given any
ε>0 there exists a positive constant a∗<1 such that 1 −
ε≤ φi [x, q] ≤ �i(q) ≤ 1 for all 0 < a ≤ a∗.

Thus we conclude that the probability with which BNC-
VLA constructs the BN with the maximum BIC is equal to
1 as k → ∞, and so Theorem 1 is proved.

Theorem 3 Let qi(k) be the probability of constructing BN
τi at stage k, and (1-ε) be the probability with which Algo-
rithm 1 converges to BN τi. If q(k) is updated by Algorithm
1, then for every error parameter ε ∈ (0, 1) there exists

a learning rate a ∈ (εq) so that xa
exa−1 =

(
dj

di

)
, where

1 − e−xqi = (1 − e−x
)
(1 − ε) andqi = [qi(k)|k = 0].

Proof It has been proved in [23] that there always exists a
x>0 under which (19) is satisfied, if

dj

di
< 1 for all j �= i.

Hence, it is concluded that φi [x, q] ≤ �i (q) ≤ 1−e−xqi

1−e−x

where qi is the initial choice probability of the optimal
BN τi. From Theorem 1, for each 0<a<a∗ the probabil-
ity of converging Algorithm 1 to the BN with the maximum
expected BIC is (1- ε) where a∗ ∈ (0, 1). Therefore, it is
concluded that,

1 − e−xqi

1 − e−x
= 1 − ε. (20)

It is shown that for every error parameter ε ∈ (0, 1)there
exists a value of x under which (19) is satisfied, and so we

have x∗a
ex∗a−1

= maxj �=i

(
d∗
j

d∗
i

)
.

It is concluded that for every error parameter ε ∈ (0, 1)

there exists a learning rate a ∈ (εq) under which the
probability of converging Algorithm 1 to the BN with the

Fig. 2 The ASIA network



BNC-VLA: bayesian network structure learning using a team of variable-action set learning automata 145

0
0.05
0.1
0.15
0.2
0.25
0.3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
or

m
al

iz
ed

 B
IC

a

Fig. 3 Analysis the effect of parameter a for BNC-VLA

maximum expected BIC is greater that (1-ε) and hence the
theorem is proved.

6 Numerical results

In order to evaluate the performance of BNC-VLA, two
classes of experiments have been developed. First we have
determined two well-known BNs (structures + conditional
probabilities). We have simulated them, using BNC-VLA
and databases of cases, which reflect the conditional inde-
pendence relations between the variables. We have evalu-
ated the constructed BNs; and we have also compared the
proposed algorithm, BNC-VLA with other algorithms in
this case. Second, since classification is one of the important
applications of BNs, for 25 chosen datasets the classifica-
tion accuracy of the proposed algorithm has been compared
against other algorithms.

6.1 Evaluation results on well-known networks

The BNs used in these experiments are the ALARM and
the ASIA networks. ALARM network [25] is a medical
diagnostic alarm message system for patient monitoring; it
contains 37 nodes and 46 arcs (see Fig. 1). Researchers
in this field use datasets which are generated from three
versions of ALARM network with the same structure but
different probability distributions. We use the 5000 first
cases from the database that was generated by Edward Her-
skovits [26]. ASIA network [27] is a simple network with
eight binary nodes and eight arcs (Fig. 2). It was introduced
by Lauritzen and Spiegelhalter to illustrate their method of
propagation of evidence, considers a small piece of factious
qualitative medical knowledge. A dataset with 5000 cases
is sampled using the Netica tool [28] for constructing its
network.

6.1.1 Sensitivity analysis

In this section, we study the effect of learning parameters,
a in (4) and bin (5), on the performance of the BNC-VLA
Since the reward-Inaction (LR−I ) algorithm has been used,
b = 0, and we only peruse the effect of parameter a in
order to find the best value of it in our implementation. To
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Table 2 Comparative experiments results after 10 runs

Algorithms ALARM ASIA

BIC Normalized1 Computation BIC Normalized Computation

Hamming time Hamming time

Distance Distance

BNC-VLA 23853.83± 0.72 1.0 116.14 12145.87± 0.2 1.0 35.5

(23854.23) (12146.00)

FALA-based 15472.14± 27.10 2.05 195.14 10494.75± 17.02 1.0 71.12

(15501.12) (10509.99)

Hill climbing-based 8781.2± 35.44 7.21 308.0 8065.42± 16.13 2.75 100.54

(8802.32) (8075.03)

Genetic algorithm-based 11461.15±16.21 2.82 284.15 9839.18± 8.70 1.25 90.3

(11475.57) (9845.22)

ACO 11822.67± 8.98 2.93 279.12 9752.55± 4.06 1.30 89.07

(11827.98) (9755.55)

do this the database with 5000 cases is considered to con-
struct the ALARM network. Figure 3 represents the results.
It indicates that the best value of parameter a is between
0.4 and 0.5, therefore in following experiments the value of
a is 0.4.

6.1.2 Performance evaluation of BNC-VLA

In these experiments, BNC-VLA is employed to construct
well-known BNs, the ALARM and the ASIA, using their
training samples. The constructed network for ALARM is
identical to its origin; except that two arcs {21 − 31 and
12−32} are missed. A subsequent analysis has revealed that
missing arcs are not supported by the 5000 cases, and their
nodes are actually independent in the employed database. It

is similar to the result of [2] which used 10000 cases and
nodes ordering. On the other hand, the constructed BN for
ASIA is completely the same with its original network.

Then, we consider different subsets of datasets for both
ALARM and ASIA networks, which consist of the first 500,
1500, 3000, and 5000 cases. In order to evaluate the behav-
ior of the algorithm, for each dataset of cases, following
parameters are considered:

I. BIC as scoring metric
II. Hamming distance

III. Computation time

BIC is measured by (3). The interpretation of BIC is:
the higher this parameter, the better the network. Hamming
distance directly compares the structure of the learned and

Table 3 Datasets and their samples

Dataset Number Number Number Dataset Number Number Number

Of Of Of Of Of Of

classes Attributes Samples classes attributes samples

australian 2 14 690 Iris 3 4 150
breast 2 10 683 Letter 26 16 15000
Chess 2 36 2130 lymphography 4 18 148
Cleve 2 13 296 mofn-3-7-10 2 10 300
corral 2 6 128 Pima 2 8 768
crx 2 15 653 shuttle-small 7 9 3866
diabetes 2 8 768 Vote 2 16 435
flare 2 10 1066 sat image 6 36 4435
german 2 20 1000 Segment 7 19 1540
glass 7 9 214 soybean-large 19 35 562
glass2 2 9 163 Vehicle 4 18 846
heart 2 13 270 waveform-21 3 21 300
hepatitis 2 19 80
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Table 4 Average error rate for different datasets

BNC-VLA FALA ACO Genetic Hill climbing NB TAN

Australian 0.1221 0.1236 0.1488 0.1444 0.1391 0.1489 0.1751
Breast 0.0201 0.0425 0.0339 0.0351 0.0668 0.0245 0.0351
Chess 0.0312 0.0422 0.06 0.062 0.0966 0.1266 0.076
Cleve 0.1664 0.1997 0.166 0.1704 0.182 0.1791 0.2164
Corral 0.0041 0.0119 0.1273 0.1271 0.0114 0.1277 0.0143
Crx 0.1392 0.158 0.1505 0.1503 0.137 0.1505 0.1631
Diabetes 0.2168 0.2666 0.2419 0.2384 0.255 0.2571 0.2384
Flare 0.1803 0.1814 0.1825 0.178 0.181 0.2024 0.1789
German 0.2412 0.2643 0.2456 0.2609 0.3085 0.2458 0.2609
Glass 0.3012 0.4173 0.422 0.4818 0.4412 0.4412 0.4578
Glass2 0.1634 0.2691 0.1938 0.1949 0.2329 0.2236 0.2249
Heart 0.1526 0.1874 0.155 0.1547 0.2221 0.155 0.1847
Hepatitis 0.0938 0.1618 0.1294 0.13 0.1967 0.193 0.1302
Iris 0.0401 0.042 0.0485 0.0463 0.0414 0.0699 0.0763
Letter 0.023 0.183 0.3068 0.3752 0.1896 0.3068 0.1752
Lymphography 0.1396 0.1635 0.147 0.1484 0.2247 0.1662 0.1784

Mofn-3-7-10 0.08 0.0859 0.1367 0.1932 0.0859 0.1328 0.085

Pima 0.1375 0.2666 0.2505 0.2484 0.255 0.2571 0.2384

Sat image 0.1481 0.1745 0.173 0.162 0.184 0.1915 0.1395

Segment 0.0544 0.0571 0.0701 0.0671 0.0831 0.1221 0.0675

Shuttle-small 0.004 0.0047 0.0083 0.0082 0.0145 0.014 0.0093

Soybean-large 0.0629 0.0754 0.092 0.0963 0.0922 0.0852 0.0644

Vehicle 0.2736 0.2922 0.3453 0.4327 0.3451 0.3892 0.2718

Vote 0.0319 0.0417 0.037 0.0387 0.0467 0.0991 0.0509

Waveform-21 0.1770 0.267 0.1772 0.1734 0.2543 0.2142 0.2534

average 0.120174 0.159136 0.161916 0.172716 0.171472 0.18094 0.1586

the original networks. We define the Hamming distance
between two DAGs as the number of following operators
required to make the DAGs match: add, remove, or reverse
a directed edge. The lower Hamming distance indicates the
more similarity between the constructed network and the
original one. BNC-VLA is also evaluated based on the com-
putation time; to do this it is implemented in .Net framework
in a PC which has a single CPU of Intel(R) Core™2 Duo
3.33GHz and a 1GB memory. To measure the computation
time, BNC-VLA is run with no prior limitation in the num-
ber of iterations until more repetition does not increase the
score.

Table 1 represents the average results found after 10 inde-
pendent runs with the databases of 500, 1500, 3000, and
5000 cases. In this table μ + σ indicates the mean, and
the standard deviation over the executions carried out. The
value inside (.) is the best resul found along the exper-
imentation. As the results indicate, BNC-VLA constructs
satisfactory networks (networks with low Hamming dis-
tance and high BIC score) especially with databases of 3000
and 5000 cases, in acceptable time consuming. Better results
for ASIA were predictable, because the ASIA is simpler
than the ALARM.

6.1.3 Comparison the BNC-VLA with other algorithms

In the following experiments, BNC-VLA is compared
against other algorithms. All implemented algorithms are
described below:

• Other learning automata-based method, which uses a
team of FALA [10];

• Hill climbing-based algorithm [12];
• Genetic algorithm which, firstly, findsthe best ordering

of variables and then starts the search process [3];
• And finally Ant colony optimization [14] called ACO.

Many other BN structure learning algorithms exist; A*
search-based algorithm with a shortest path perspective [13]
is an example. But, it is not possible and necessary to com-
pare our proposed algorithms with all of them; so we have
selected more comprehensive algorithms, which also stand
in the same class with our algorithm.

Datasets with 5000 cases are considered for both the
ALARM and the ASIA networks; considered metrics are
the same as the metrics in previous experiments. Algorithms
have run with no prior limitation in time until no improve-
ment in the score is observed. Table 2 shows the results after
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Fig. 4 Scatter chart, compare BNC-VLA classifier with (a) FALA-based, (b) Genetic-based, (c) ACO-based, (d) Hill Climbing-based (e) Na¿ve
Bayes, and (f) TAN, classifiers; points above y = x show better performance of proposed algorithm

10 independent runs. In this table μ+σ indicates the mean,
and the standard deviation over the executions carried out.
The value inside (.) is the best result found along the experi-
mentation. From the results, we observe that the BNC-VLA
is superior to other algorithms in both the ALARM and the
ASIA networks.

6.2 Evaluating the predictive ability of proposed
algorithm in classification

A constructed BN is an efficient device to perform proba-
bilistic inference whereupon, predictive ability in different
applications is one of the significant issues in the field of
BNs. Classification is one of the important applications of
BNs which is used in varied fields such as recommender
systems for estimating users’ ratings based on their implicit
preferences, bank direct marketing for predicting clients’
willingness of deposit subscription, and disease diagno-
sis for assessing patients’ breast cancer risk [29]. In this
section, at first we briefly explain about BNs classifiers
in Section 6.2.1, and then by choosing datasets of differ-
ent applications, we evaluate the classification accuracy and
classification time of different algorithms in Sections 6.2.2
and 6.2.3, respectively.

6.2.1 BN classifiers

Suppose that each training sample is a vector of attributes
(X1, X2. . . Xv−1, C). The goal of classification is predict-
ing the right value of class variable c = xv having
(x1, x2. . . xv−1). If the performance measure is the percent-
age of correct predictions on test samples (classification
accuracy), the correct prediction for (x1, x2. . . xv−1) is a
class that maximizes P(c|x1, x2. . . xv−1). If there is a BN
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Fig. 5 Average error rate for classification
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Table 5 Classification execution time of different algorithms on different datasets

BNC-VLA FALA ACO Genetic Hill climbing NB TAN

Letter 136.09 326.49 628.64 652.13 898.81 676.42 458.59

Chess 71.93 165.93 349.88 350.03 570.22 357.36 288.45

German 33.12 58.12 136.32 132.46 164.80 148.42 95.45

Hepatitis 21.99 44.99 59.34 52.85 93.01 66.54 88.43

Breast 13.42 21.42 55.13 50.63 241.09 82.73 28.43

Glass2 7.14 14.14 29.14 29.75 49.41 28.45 24.39

Iris 4.32 6.42 17.12 17.83 29.29 19.90 14.54

over (x1, x2. . . xv−1, C), we could compute these proba-
bilities by inference on it. After the structure of a BN is
specified, estimating the parameters so that the network can
provide the best prediction for the value of the class vari-
able in the test samples is important; however, it is out
of the scope of this study, and we simply use Maximum
Likelihood (ML) to estimate the parameters’ values.

6.2.2 Comparison the classification accuracy of BNC-VLA
against other classifiers

In order to evaluate and compare the classification accuracy
of proposed algorithm, BNC-VLA, 25 datasets are used,
which consist of 21 datasets from UCI [30] and others from
[31]. Table 3 shows a brief description of these datasets. All
other implemented classifiers are described as follows:

• Naı̈ve Bayes classifier;
• TAN-based classifier;
• FALA-based classifier[10];
• Hill climbing-based classifier [12];
• Genetic algorithm-based classifier [3];
• And finally ACO-based classifier [14].

We also compare the performance of proposed classifiers
with two simple and well-known classifiers, Naı̈ve Bayes
and TAN.

Furthermore, in order to construct more efficient net-
works, another scoring function is used, which is proposed
in [31] and is called classification rate:

CR = 1

|D|
∑|D|

m∈D
δ(BD

(
xm

1:N
)
, cm) (21)

Where, |D| is the number of training samples. The equation
simply represents the rate of samples that are classified cor-
rectly by the network. And δ

(
BD

(
xm

1:N
)
, cm

) = 1 if BN
classifier BD

(
xm

1:N
)

which is trained with D, predicts the
right value of class variable cm having attributes xm

1:N .

Table 4 represents the average error rate of different
algorithms for classification of different datasets. For each
algorithm, we have carried out 10 independent runs over
each dataset with a fixed execution time. The best results are
highlighted.

As a reference for the goodness of the results, we can
consider the average error rate for all 25 datasets, which are
0.120174 for BNC-VLA, 0.159136 for FALA, 0.161916 for
ACO, 0.172716 for Genetic, 0.171472 for Hill Climbing,
0.18094 for NB, and 0.1586 for TAN. Moreover, for 20
datasets BNC-VLA has shown the best results. For five
remaining datasets, Cleve, Crx, Flare, Sat image, and Vehi-
cle, results are approximately the same as the best. The best
results for Cleve and Crx are achieved by ACO and HC,
respectively; this is justifiable by considering the stochastic
nature of the algorithms. For other datasets TAN is supe-
rior to BNC-VLA. The volumes of data in Flare, Sat image,
and Vehicle are large enough and moreover; the numbers of
classes are small considering the number of attributes.

Therefore, since TAN constructs the network based on
the conditional mutual information test, it has shown good
results on them. However, the differences between the best
results and the results achieved by BNC-VLA are negligible.

Figure 4 represents the scatter charts which directly com-
pare the BNC-VLA classifier with other classifiers; points
above the line y=x represent wherever the BNC-VLA has
shown better performance in comparison with other algo-
rithms. Figure 5 shows a bar chart which compares average
classification error of all algorithms on different datasets.

All in all, the BNC-VLA has outperformed simple struc-
tures like NB and TAN; and in comparison with FALA-
based algorithm, Genetic algorithm, ACO-based algorithm,
and Hill climbing algorithm, again BNC-VLA has shown
better results.

6.2.3 Comparison the computation time for classification

Finally, classification execution time of BNC-VLA is
compared against other algorithms. All algorithms are
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implemented and executed in. Net framework in a PC which
has a single CPU of Intel(R) Core™2 Duo 3.33GHz and
a 1GB memory. Table 5 shows the results after 10 inde-
pendent runs for seven chosen dataset. Chosen datasets for
these experiments are: Letter, Chess, German, Hepatitis,
Breast, Glass2, and Iris. The results indicate that BNC-VLA
needs less time for classification, in comparison with other
algorithms.

7 Conclusion

In this paper a learning automata-based algorithm, named
BNC-VLA, is proposed for BN structure training. Unlike
the other learning automata-based methods which assign
learning automata to the possible edges, in our algorithm
each automaton is assigned to a random variable. Therefore,
the number of learning automata reduces and the conver-
gence speeds up. Furthermore, despite other algorithms,
there is no additional phase to remove cycles from the con-
structed BN; it is simply done during the network construc-
tion by using variable-action set learning automata. More-
over two improvements are proposed, which can increase
the quality of the constructed network and decrease the exe-
cution time. The time complexity of the proposed algorithm
is O(n2). The convergence of BNC-VLA is theoretically
proved. Convergence results confirm that by a proper choice
of the learning rate, the probability of choosing a BN with
the maximum score converges to one. Reported experi-
mental results show that BNC-VLA is superior to other
related algorithms based on the quality and performance
measures. BNC-VLA has two main features: (1) it builds
acceptable networks, and (2) it has lesser computational cost
for network construction; these may be due to the learning
capability and a negligible computational cost of learning
automata. In comparison with two other learning automata-
based methods, BNC-VLA can locate better structure, and
also it exhibits superior speed of convergence. Moreover,
since classification is one of the important applications of
BNs which is used in varied fields, we examine the clas-
sification accuracy of the proposed algorithm. To do this,
classification error is measured for different BNs on 25
different datasets. Again experimental results show that
BNC-VLA classifier performs better than other classifiers.
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