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Abstract When multiple mobile robots cooperatively
explore an unknown environment, the advantages of robust-
ness and redundancy are guaranteed. However, available
traditional economy approaches for coordination of multi-
robot systems (MRS) exploration lack efficient target selec-
tion strategy under a few of situations and rely on a perfect
communication. In order to overcome the shortages and
endow each robot autonomy, a novel coordinated algorithm
based on supervisory control of discrete event systems and
a variation of the market approach is proposed in this paper.
Two kinds of utility and the corresponding calculation
schemes which take into account of cooperation between
robots and covering the environment in a minimal time, are
defined. Different moving target of each robot is determined
by maximizing the corresponding utility at the lower level
of the proposed hierarchical coordinated architecture. Selec-
tion of a moving target assignment strategy, dealing with
communication failure, and collision avoidance are modeled
as behaviors of each robot at the upper level. The pro-
posed approach distinctly speeds up exploration process and
reduces the communication requirement. The validity of our
algorithm is verified by computer simulations.
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1 Introduction

There are many applications for mobile robots in areas such
as surveillance, exploration and rescue, mowing, and clean-
ing. For the exploration and rescue application, an important
goal is covering the whole environment to find possible
victims in a minimal time. Compared with a single-robot
systems, multi-robot systems (MRS) not only speed up the
exploration process but also have advantages of robustness
and redundancy. In addition, MRS can finish tasks that
the single robot systems cannot do. In order to utilize the
advantages of MRS, it is an essential to have a coordi-
nated algorithm which realizes moving target selection for
each robot whilst considering the environment status and the
moving targets of other robots. During the past two decades,
a great deal of results for coordinating motion of MRS was
developed.

A primary method for MRS coordination is market econ-
omy based approach. The essence of the approach is that
all robots in the team (teammate) trade tasks and resources
with each other to maximize individual profits. In the results
of early research, robots bid for tasks based on distances,
or times [1–3]. A distributed bidding algorithm (DB-A) was
proposed to coordinate the MRS exploring unknown envi-
ronments [2]. One contribution of the approach is that a
nearness measure was introduced in bidding to maintain all
robots close to each other to overcome the shortage of com-
munication range is limited. On the other hand, a decision-
theoretic approach dispersed robots over unknown envi-
ronment through a utility calculation scheme that a robot
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utility reduction was inversely related to distances to tar-
gets of other robots [27]. For a known environment, task
allocation was realized by repeating the auction algorithm
when a robot finished its task [3]. More recently, an energy
consumption based bidding scheme was proposed [4]. In
the proposed approach, a hierarchical coordinated architec-
ture for MRS exploring unknown environment is proposed
where the lower level is developed by maximizing two kind
of new utility, respectively. A few of improvements for auc-
tion based approach were made [5–8]. For example, an
adaptive bidding based on back propagation (BP) neural net-
work in a foraging scenario was proposed [5]. Each robot
adopted a neural network to learn environment structure
regarding energy consumed, speed and damage to the robot.
However, the result needed to be verified on actual robots.
The other kind of improvement is to deal with heterogene-
ity in MRS. The method developed in [6] is that each robot
offers three bids from the aspects of the shortest path length,
moving speed and battery life, respectively. A BP neural net-
work based approach was proposed to decide which robot
was the winner. The method in [7] used vectors to express
capabilities of robot and task, respectively. The auctioneer
broadcasts a task and its capability vector, and each robot
bids for the task based on its capability. The task allocation
was realized within the framework of Contract Net Proto-
col. Finally, the authors of this paper proposed an index for
describing exploration performance of each robot for a het-
erogeneous MRS [8]. However, the approaches mentioned
above depend on a perfect communication among all team-
mate robots. Different to the existing results, the proposed
algorithm improves the market economy based approach
on the purpose of dealing with both target selection and
heterogeneity.

Nowadays, both auction algorithm and frontier-based
exploration strategies were still used to develop other
coordination algorithms. For example, a multi-robot par-
tially observable Markov decision process (POMDP) was
emulated by combining individual behaviors that was
represented by single-robot POMDPs, and cooperation
between robots was realized by using POMDP behav-
ior auctions [9]. Moreover, the authors of [10] proposed
three coordination algorithms which are named as Reserve,
Divided and Conquer, and Buddy System. All of them
selected navigation goals utilizing frontier-based approach.
The differences of the three algorithms lie in the lev-
els of trading off availability and non-interference. The
proposed approach selects navigation goals from frontier
cells too.

Artificial potential field method is an efficient approach
for mobile robot path planning [11]. In the approach, the
motion direction of a robot is determined by the sum of
attractive and repulsive force vectors which were result
from goal and obstacle locations, respectively. Recently, the

approach was combined with fuzzy systems and searching
algorithm to realize multiple robots path planning [12], and
coordination [13, 14]. The work presented in [12] used
a global path planner which selects paths using a poten-
tial field, and a local planner which modifies the global
path using a fuzzy system. Similarly, the repulsive poten-
tial energy which is computed according to both distances
between the robots and the potential collision points was
used as cost map to estimate the collision risk [13]. Sub-
sequently, the optimized coordination solution was found
through searching the roadmap. On the purpose of haz-
ardous spill detection and perimeter surveillance, a kind of
hierarchical control architecture for multiple autonomous
robotic agents was proposed [14]. The upper level model
is a state transition graph which consists of three discrete
states, and the lower level model is a unicycle one. Contin-
uous control laws for each discrete state are designed based
on the artificial potential field method. Furthermore, sta-
bility of the system is analyzed. In this paper, the idea of
artificial potential field approach will be used to define a
new kind of utility which is used to disperse robots over the
environment.

Unlike the work in [14], a three-level optimization based
hierarchical coordinated algorithm for MRS exploring an
unknown environment was proposed in [15]. In order to
overcome the greedy behavior the unknown workspace is
partitioned into as many regions as there are robots by
K-mean clustering at the uppermost level. The objective
of this level is to reduce the variance of waiting time on
those areas and to fulfill balanced and sustained exploration
for each teammate of the MRS. The middle level realizes
an on-line assignment of robots to targets based on linear
programming, and the lowest level realizes path planning.
In the proposed hierarchical coordinated architecture, the
lower level is a variation of market economy algorithm, and
the upper level is a supervisor which is described in the
following.

The concept of discrete event system (DES) appeared
in 1980s. Supervisory control theory (RW theory) of DES
can effectively solve the control and synthesis problem of
systems which cannot be modeled by differential/difference
equations [16]. It is adept at dealing with the problem from
a logical point of view.

There are two mathematical approaches for model-
ing and control synthesis of discrete event systems. The
first is formal language and automata theory which was
used in leader follower formation control for a team of
nonholonomic mobile robots [17] and unmanned aerial
vehicles [18], respectively, and the coordination of MRS
[19]. In [17], a formation problem that the followers keep
a predetermined geometric formation with the leader in
an obstacle populated environment was discussed. Behav-
iors of leader robot and follower robots were modeled
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by automata, respectively, for obstacle avoidance, naviga-
tion, and formation control. A supervisor accomplished the
coordination between the continuous controllers. To have
a fully trustable algorithm, a hybrid supervisory control
architecture for formation control of aerial vehicles was pro-
posed [18]. By applying a polar partitioning based state
abstraction and utilizing the properties of multi-affine vector
fields over partitioned space, the infinite space was reduced
into finite states of an automaton model. Afterwards, two
supervisors were designed; one for reaching and keeping the
formation, and the other for collision avoidance. A common
feature of the two approaches is that the final supervisor
was achieved through the parallel composition of the indi-
vidual supervisors. A shortcoming of parallel composition
is state explosion of the product system which makes the
final supervisor too complex to deal with. Another par-
titioning was implemented on trajectories of each robot
in [19] where a serious of trajectory sectors constituted
members of the state set of an automaton model. Then,
the collision and deadlock avoidances behaviors of MRS
were discussed, respectively, by supervising the trajectory
sectors. The results of temporal discrete event systems and
fuzzy discrete event systems have been applied in coordina-
tion of MRS too [20, 21]. In present paper, formal language
and automata are used to endow each robot with auton-
omy. Inspired by the state abstraction idea [18], a sectorzone
definition is established to reduce the size of automata state
set.

The other mathematical approach is Petri net which is
good at modeling and analyzing concurrent behaviors of
discrete event systems. In a disaster response scenario,
colored Petri nets were used to realize the complex and
concurrent conversations between agents [22]. According to
whether installed task detection device, all robots are cat-
egorized into initiators or helpers, respectively. The later
assisted the former to finish task when it matched the
task requirements. The robots can change their teammate
selection strategies to adapt to dynamic environment.
The authors of [23] presented a language which allows
for intuitive and effective behavior design of multi-
robot based on Petri net. In [24], stochastic Petri nets
were used to model coordinated behavior and search
for optimal waiting time of bidding in an offline
way.

The proposed approach will discuss how to speed up
MRS exploration process in unknown environments. The
remainder of this paper is organized as follows. After
reviewing the related work, Section 2 presents the problem
description of our coordination exploration and our motiva-
tion. Section 3 gives a few of definitions and a DES model.
Section 4 is utility calculation schemes and upper supervi-
sory control strategy. Section 5 is simulation results. And
the paper is concluded by Section 6.

2 Problem description and motivation

The market economy approach is suitable for heteroge-
neous MRS of moderate size [1–8]. For a variety of
market based approaches for unknown environment explo-
ration, each robot bid for frontier cells based on the
evaluations of utility and costs of the corresponding fron-
tier cells. The frontier cell with maximal evaluation is
assigned to the current robot as its target. However, there
are a few cases where the targets chosen from fron-
tier cells are not optimal in the sense of exploration
efficiency.

First, a case where the target is selected from frontier
cells detected by Ri is shown in Fig. 1 where there are
frontier cells (shaded ones), free cells (white ones), and
unknown cells (mesh ones). It is assumed that Ri has moved
upwards, and it detected frontier cells f1 to f11 at current
position. In case of selecting f6 as its moving target, it will
move to f6 consecutively before take part in next round of
auctions. It is obvious that Ri is not necessary to reach at
f6 because it can detect the obstacle by moving upwards
only one cell. If Ri turns moving direction to left or right
after detected the obstacle, it will detect more frontier cells.
So, the first goal of the proposed approach is making cur-
rent exploration of each robot more efficient by supervisory
control. To realize the above goal, the exploration process
of each robot is taken as a discrete event system and a
new supervisory control based coordinated algorithm is pro-
posed that monitors and regulates the motion of Ri at each
discrete time instant.

The other case is shown in Fig. 2 in Section 4.

Fig. 1 Demonstration of frontier cells and partitioning of sector zones
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Fig. 2 Demonstration of NGFCk and target selection based on future
utility

Besides the above goal, the second goal is giving each
robot more autonomous power, such as selecting a different
target assignment strategy according teammates and envi-
ronment status, dealing with communication failure, colli-
sion avoidance ability, etc. The target assignment strategy
behavior also includes forbidding undesired task switching
action, i.e., Ri bids for and gets a frontier cell detected by
Rj (i �= j ) as its moving destination. The switching phe-
nomenon occur often in MRS coordinated by traditional
auction based approaches. In fact, it may result in ineffi-
ciency motion. For simplicity, the case shown in Fig. 1 that
Ri can detect frontier cells from f1 to f11, is named as a
complete detecting case. In other words, Ri can detect a
series of congruous frontier cells at each scan in a com-
plete detecting case. There is no case that Ri can detect
more frontier cells than that in a complete detecting case.
Obviously, it is not necessary for Ri to bid for the frontier
cells detected by other teammate robots when it in a com-
plete detecting case. If there exists the other robot in a zone
that Ri will explore, then Ri will be reassigned a new tar-
get. Else, Ri need to continue its complete detecting case
for succeeding exploration. The supervisor which is devel-
oped here will maintain Ri in complete detecting case and
realize target selecting strategy switching. Correspondingly,
the exploration is divided into two periods where each robot
pursues two kind of utility, respectively, as will be described
in Section 3.

In order to realize above autonomous functions, each
robot is modeled by an automaton at the upper level of the
proposed two-layer coordination architecture. Autonomous
ability are defined as strings of actions included in desired
behaviors. In order to model the state of each robot by a

finite state machine on a large environment, an environ-
ment partitioning scheme based on polar coordinate [18] is
used. The exploration process of each robot is evaluated and
controlled by a upper automaton at a fixed sample period,
which is similar to the corresponding concept of sampled-
data control systems. However, the sampled-data are taken
from robots and the environment.

In supervisory control theory, the modeling of current
systems suffers from the problem of state explosion when
constructing a product system. The third goal of the pro-
posed approach is modeling the robot behavior with less
state set members, and dealing cooperation between team-
mate robots by a simple and efficient way. Also, each
supervised robot in MRS has the ability of autonomous
exploration in case of communication failure.

In traditional market economy approach, an auction
action includes task announcement, bidding for tasks, noti-
fying of winners, etc. All of these depend on a perfect
communication. Moreover, the communication traffic con-
centrates on each auction period. It is shown by the analysis
of Fig. 1 that some of above communication traffic is not
necessary when Ri is in a complete detecting case. So, the
fourth goal of the proposed approach is spreading commu-
nication traffic over all sample rounds and saving waiting
time in each auction period.

For a heterogeneous MRS conducting exploration, the
detection ability (detecting range) of each robot is one of
factors which determines exploration efficiency of the cor-
responding robot, even the exploration efficiency of MRS.
So, the final goal of the proposed coordinated algorithm
is taking the ability into account in the lower level task
assignment strategy.

3 Preliminary

An MRS which consists of total n heterogeneous mobile
robots is considered in this paper. These robots are named
as R1, . . . , Rn, respectively. The MRS carries out an explo-
ration and mapping task in an unknown environment which
is sparsely occupied by obstacles. It is assumed that
each robot runs a simultaneous localization and mapping
(SLAM) algorithm [28, 29] which produce a local occu-
pancy grid map. All the robots have the same geometrical
sizes which occupy a grid cell on the map, and they have
the ability of communicating the environment information
with no delay. It is also assumed that each robot has no
knowledge about the environment except the relative dis-
tances with other robots. In the following, Ri(i = 1, . . . , n)

is taken for instance to discuss the proposed coordinated
algorithm.

The objective of MRS exploration is covering the whole
environment in a minimal time. All exploration tasks
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can be finished by any teammate robot, and there is no
inter dependence between tasks. According to [26], the
exploration problem discussed in this paper belongs to
the ND [ST-SR-IA] class, i.e., no dependence and sin-
gle task robot and single robot task with an instantaneous
assignment.

A few of definitions are now provided for the conve-
nience of discussing moving target selections of robots.

Definition 3.1 Immediate utility is defined as the infor-
mation that a robot will gain after it has moved to one of its
adjacent cells from its current location.

Definition 3.2 Future utility is defined as the information
that a robot will gain after it has moved at least two steps
from its current location.

At a moment, the fact that Ri gains whether immediate
utility or future utility is dependent on the distance between
the target frontier cell and its current location. Even in the
case that Ri cannot gain immediate utility, it has chance to
gain future utility as long as the environment is not com-
pletely covered. A teammate robot can only belong to one
of the following two exploration periods.

Definition 3.3 If Ri can gain immediate utility in the
course of exploration, then it is said that Ri belong to an
independent exploration period.

Definition 3.4 If Ri pursues future utility in the course of
exploration, then it is said that Ri belong to an cooperative
exploration period.

In the next section, the above definitions are going to
be used to develop coordinated algorithm for the explo-
ration process. In addition, the exploration process of each
robot is going to be monitored and adjusted by the super-
visor developed hereafter at a fixed time interval (sample
period) to realize collective and desired behavior. Accord-
ing to RW theory, the behavior model of Ri is described
by an automaton

Gi = {Qi, �i, δi, q0} (1)

where Qi is a state set, ∀q ∈ Qi represents a status of
Ri , for example, arriving at a new target, or having fin-
ished communication with other teammate robots, etc., �i

is an alphabet, whose elements are listed in Table 1, δi :
�i×Qi → Qi represents a partial transition function which
realizes a state transition from qi to q ′

i under the occurrence
of σi , i.e., q ′

i = δi(σi, qi), and q0 is an initial state. The
behavior of Ri is described by the language generated by Gi

L(Gi) = {
s ∈ �∗

i |δi(s, qi0)!
}

(2)

L(Gi) represents all possible behavior when Ri conduct-
ing exploration. In order to realize a desired behavior K ⊆
L(Gi) , the necessary and sufficient conditions for a super-
visor to exist is that K is prefix closed and controllable, i.e.,
K̄ ⊆ K and K̄�u ∩ L(Gi) ⊆ K̄ [16]. The desired behavior
is designed in advance according to the autonomous ability
that each robot is given.

Fortunately, different with the coordination in discrete
event systems [25], the proposed coordination [ST- SR-IA]
has no logical restriction on the event occurrence sequence
of different robots. So, the product system for all robots
is not needed. In addition, cooperation between robots is
realized by calculating and communicating the future utility
which is calculated by a scheme inspired by the traditional
potential field method for path planning. Therefore, only
the supervisor and desired behavior for Ri is discussed
hereafter.

4 Coordinated algorithm based on supervisory
control

At first, to represent the moving target and current location
ofRi with fewer variables in the whole environment, the fol-
lowing definition of surrounding environment of each robot
is provided.

Definition 4.1 A sector zone of Ri is a part of the envi-
ronment lying between two line segments that start from
the geometrical centre of Ri and extend to the environment
border.

Figure 1 shows an example where the surrounding envi-
ronment ofRi is partitioned into four sector zones which are
named S1, S2, S3, and S4. The surrounding environment may
be known or unknown. In general, the intersection angles of
all sector zones are the same, and most of the sector zones
have no regular geometry shapes. As shown in Fig. 1, only
the shape of S1 is an equilateral triangle. The sector zones
of Ri is dynamic, i.e., they are defined relative to the current
location of Ri .

It must be remarked that each robot has its partitioning of
the sector zones.

Ri calculates its immediate utility or future utility at each
sample instant. If at least one frontier in sector zone Sk(k =
1, . . . , 4) is detected at current position, then the immediate
utility of Sk is the number of the frontier cells.

Uimm
i =

nf i∑

j=1

P j

(
||pf

j − pr
i || <= dr

i

)
(3)

where Pj (·) is the probability that frontier cell
fj (i =1,. . . ,nf i) will be covered when Ri arrived
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Table 1 ALPHABET LISTS
Symbol QUANTITY Controllability

α0 sense surroundings controllable

α1 frontier cells are detected uncontrollable

α2 no frontier cells are detected uncontrollable

α3 obstacles or robots are detected uncontrollable

η0 communicate with others controllable

η1 communication succeed uncontrollable

η2 communication failed uncontrollable

β1 select a target under α1 controllable

β2 select a target under α2 and η1 controllable

β3 select a target under α2 and η2 controllable

β4 avoidance collision controllable

τ state update controllable

μ give up communication controllable

λ move to a target controllable

at pr
i , pr

i = [
xr
i yr

i

]T
is the moving target of

Ri, p
f
j =

[
x

f
j y

f
j

]T

is the location of frontier cell j , nf i is

the number of frontier cells which are located in the sector
zone, and dr

i is the sensor detecting range.
If there are no frontiers detected in Sk at the current loca-

tion, then the corresponding immediate utility is zero. If
all immediate utility are zeros, then Ri will pursue future
utility which is determined by known locations of frontier
cells, obstacles, and other robots within the sector zone. The
frontier cells mentioned above are the ones detected by all
robots in previous exploration periods and stored in a unfin-
ished job list which is used to remember the unexplored
environment information. The list is maintained and
updated by the achievements of all teammate robots during
the course of exploration.

The future utility of Sk for Ri can be represented as

U
f ut
ik = Uatt

ik − ξU
rep
ik (4)

where Uatt
ik and U

rep
ik are attractive and repulsive parts,

respectively, and ξ is a weighting scalar.
For convenience to describe the future utility calculation

scheme, the following definition is given.

Definition 4.2 A nearest group of frontier cells of
Sk(NGFCk) is defined as a series of frontier cells that sat-
isfy the following conditions, i) one frontier cell is adjacent
to at least one of other frontier cells, ii) a frontier cell has
the shortest distance to current location of Ri , and iii) all of
these frontier cells are located in Sk .

The attractive partUatt
ik of Sk is generated by all members

of NGFCk, and can be represented as,

Uatt
ik =

nf i∑

j=1

1

dj

(5)

where dj = ||pf
j − pr

i ||is a Euclidean distance, pr
i and

p
f
j (j =1,. . . ,nf i , j �= i) are the same as in (3), and nf i is

the size of NGFCk.
The assigned target locations which are located in

Sk have repulsive affects to Ri . So, U
rep
ik can be

calculated by

U
rep
ik = U

rep
ik

(
pr

i , t
r
ij
|j = 1, . . . , nri , ij �= i

)
(6)

where, t tij
=

[
xt
ij

yt
ij

]T

is the target locations of Rij ,

and nri is the numbers of the corresponding robots.
U

rep
ik (·) takes the role of preventing the occurrence of

inefficiency exploration behavior of Ri , i.e., preventing
more robots moving to the same area. If the target of
Rj is located in Sk , then the reduction of the amount
of unknown cells that Ri can explore after entered Sk

is proportionate to the detecting radius of Rj

(
dr
j

)
, and

is inversely proportional to the distance between current
location of Ri and the target location of Rj . If there are
nri targets located in Sk , then the repulsive part can be
represented as

U
rep
i =

nri∑

j=1

dr
j

dt
j

(7)
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where dt
j is an Euclidean from current location of Ri to the

target location of Rj .
In the cooperative exploration period,Ri will select a sec-

tor zone with the maximal future utility to explore according
to

kmax = argmax
k=1,...,4

{
U

f ut

1 , . . . , U
f ut

4

}
(8)

After deciding the target sector zone, the next step is to
decide the target coordinates. It is realized by

xt
i =

( nf i∑

j=1
x

f
i

)
/nf i

yt
i =

( nf i∑

j=1
y

f
i

)
/nf i

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(9)

Let the shortest distance from a frontier cell in Sk to the
location of Ri is

dmin = min
j=1,...,nf i

{d1, . . . , dnf i
} (10)

If dmin < ||pt
i − pr

i || and the frontier cell is not an end of

NGFCk, where pt
i = [

xt
i yt

i

]T
, then the target cell location

(9) is replaced by pt
i′ = [

xt
i′ yt

i′
]T
, where

i′ = argmin
j=1,...,nf i

{d1, . . . , dnf i
} (11)

The coordinated exploration for each robot is realized by
monitoring immediate utility or future utility at every sam-
ple instant. This results in that each robot’s exploration
process is an interleaved arrangement of independent explo-
ration periods and cooperation exploration periods.

Proposition 4.1 The exploring mode for each teammate
robot in a sample period is that it pursues immediate utility
first, and pursues future utility finally.

The aim of the lower level target assignment is to maxi-
mize current exploration efficiency. Obviously, if Ri being

in the complete detecting case, then it belongs to indepen-
dent exploration period, and has the most efficiency. The
time complexity of the lower task assignment algorithm in
the proposed approach is O(n) and O(m3), where n is the
numbers of frontier cells the involved robot detected at cur-
rent period, and m are the size of the unfinished job list,
when a robot pursues the immediate utility and the future
utility, respectively.

In the proposed approach, Ri selects and moves to targets
consecutively at each supervisory control sample period.
The sample period is less than the auction period. An acces-
sorial advantage of the proposed task assignment at lower
level algorithm is communication volume being spread
over all sample periods, not being concentrated on auction
periods as in traditional market economy approach. In addi-
tion, waiting time in the traditional approach is saved.

The superiority of the above scheme for calculating util-
ity is demonstrated by Fig. 2 where the color meanings of
cells are the same as Fig. 1. In the figure, there are 25 fron-
tier cells and 4 sector zones. In the market based approaches,
if these frontier cells are considered as independent tasks,
both of distanced based approach [2] or time based approach
[3] will select f4 as target. Although d

f

4 is the shortest dis-
tance, f4 is not the optimal target for Ri . It is obvious that
Ri will explore 3 cells if it moves upwards for 2 cells and
will explore only one cell if it moves downwards for one
cell. According to Definition 4.2 and the sector zone parti-
tioning in the figure, NGFC1 = ϕ, NGFC2 ={f1, f2, f3},
NGFC3 ={f5, . . . , f9}, and NGFC4 ={f4}, respectively.
The future utility of the four sector zones are calculated by
(7), and the results are thatUf ut

i1 , Uf ut

i2 , Uf ut

i3 , and U
f ut

i4 are
equal to 0, 0.49, 0.36, and 0.2, respectively. Then the pro-
posed approach will select S2and f2 as the target sector zone
and the target cell based on (8) and (9), respectively.

Since the exploration mode and goal for each robot is
identical, a universal and independent supervisor will be
developed. In order to describe the behavior forRi , the robot
actions and action results are defined as events, respectively,
as shown in Table 1.

Fig. 3 The desired behavior K

of Ri
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Fig. 4 Environments used for simulations: (a) line segments, (b) geometries, and (c) blank

The desired behavior K of Ri when realizing cooperative
exploration is shown in Fig. 3. A supervisor S is constructed
to make the closed-loop behavior

L(S/Gi) = K (12)

In each supervisory control circle the actual behavior is a
subset of the language described in Fig. 3.

The actions of Ri can be fired by the supervisor, and
results of actions are uncontrollable. To deal with the occur-
rence of uncontrollable events, a few controllable events
are introduced. For example, the detecting or sensing sur-
rounding action (α0) is controllable, i.e., its happening can
be permitted or prohibited by the supervisor. However, the
detecting results are uncontrollable, i.e., the results may be
one of the following, frontier cells are detected (α1), no
frontier cells are detected (α2), and obstacles are detected

Fig. 5 Exploration time mean vs. robot team scale in the line seg-
ments environment. Grey, green and red bars represent the exploration
time means of MRS under coordination of DB-A, RA-A and SC-A,
respectively

(α3). In other words, these result events cannot be prohib-
ited from occurrence. In addition, for both communications
to succeed (η1) or communications to fail (η2) between
two robots rely on the environment and the communication
infrastructure on two corresponding robots, not upon the
supervisor. They are uncontrollable too.

The coordinated events are described as follows. τ is the
state update event, i.e., after arrived at the target cell Ri

updates the target cell as the new current state. Therefore,
only one member of state set Q in (1) is needed to represent
the location of Ri . β1 selects a sector zone as moving target
according to maximize immediate utility (3). Similarly, β2

selects a sector zone which has the maximal future utility as
target sector zone according to (8). β3 is the behavior that
Ri selects a sector zone based on limited available informa-
tion. It must be remarked that β1 and β3 select their target

Fig. 6 Exploration time mean vs. robot team scale in the geome-
tries environment. Grey, green and red bars represent the exploration
time means of MRS under coordination of DB-A, RA-A and SC-A,
respectively
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Fig. 7 Exploration time mean vs. robot team scale in the blank
environment. Grey, green and red bars represent the exploration
time means of MRS under coordination of DB-A, RA-A and SC-A,
respectively

from adjacent cells, β2 selects its target from the unfinished
job list.

In the dependence exploration period, the behavior of
Ri is (α0α1β1λτ)∗. In the cooperative exploration period,
the behavior consists of two strings: (α0α2η0η1β2λτ)∗ and
(α0α2η0η2β3λτ)∗ for the cases of communication succeed-
ing and communication fail, respectively.

In general, the avoiding ability to obstacles and other
robots cannot be guaranteed when Ri is going to the target
generated by (9) or (11). The reason is that the repulsive
part is fused with attractive part in future utility. In order
to make Ri realizing reliable collision avoidance with other
teammate robots or obstacles, a collision avoidance behav-
ior (α0α3β4λτ)∗ is included in the desired behavior. The
avoidance behavior has the highest priority.

In the implementation, each robot has its own supervi-
sor, so there is no central supervisor in the MRS. In other
words, the supervisory control of MRS is realized in a dis-
tributed way. In addition, the synchronization of sampling

period for all teammate robots is not needed in both inde-
pendent nor cooperative exploration periods. Each team-
mate robot decides its moving destination based on avail-
able information from the environment and all teammate
robots.

5 Simulation results

The simulations are conducted on Matlab 7.1 on a personal
computer with Intel® Core™i5-4460 CPU. The environ-
ments used for our simulations are shown in Fig. 4. In the
figure, there are three different environments which are the
same sizes. The first two environments are sparsely occu-
pied by obstacles of different shapes, and the last is a blank
one. The three environments are named as line segments,
geometries, and blank, respectively. Each environment will
be modeled as an occupancy grid of 100 cells multiply 100
cells after exploration. The objective of exploration is to
cover the environment by a team of heterogeneous MRS in
a minimal time.

It is assumed that all robots have the same speed of
1 distance unit per time unit. Also, all robots can move
upward, downward, leftward, and rightward only. Finally, it
is assumed that the sample period is 1 time unit.

The proposed supervisory control based algorithm (SC-
A), DB-A and repeated auction algorithm (RA-A) are
compared. In order to disperse all robots over each envi-
ronment, the decision-theoretic utility [27] is adopted in
DB-A, instead of the one with nearness measures. To apply
RA-A, the explored part of each environment and fron-
tier cells are taken as known world and tasks, respectively.
Since the above tasks are dynamically changing, the RA-
A applied hereafter has no commitment to unfinished tasks
which were assigned to the corresponding robots. The pool
of candidate robots is a set R = {R1, . . . , R10}. The team-
mate robots for each run are selected from R1to Rn in the
set R, where n is a current team size for simulation, it is set
as 2, 4, 6, 8, and 10, respectively. It is assumed that detect-
ing ranges of R2 and R3 are 8 and 3, respectively, and those

Table 2 Auction times
mean/exploration time mean of
DB-A and RA-A

Algorithm Number of Teammate Robots

2 4 6 8 10

164/924 150/655 111/470 91/386 76/318

DB-A 152/889 142/615 104/449 82/354 71/302

152/820 143/606 109/458 86/362 72/303

145/931 135/679 105/500 89/415 77/359

RA-A 142/917 131/656 102/495 88/413 74/342

134/810 129/640 103/491 87/404 72/330
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Fig. 8 Trajectories of four robots coordinated by DB-A in the blank
environment. The correspondences are star -R1, circle -R2, x-mark -
R3, and solid -R4

of other robots are 4s. 30 runs for each algorithm per envi-
ronment are conducted. The means and standard deviations
of exploration times are shown in Figs. 5 to 7.

It is shown that SC-A improved exploration time effi-
ciency compared with the other two algorithms for all cases
of team sizes over the three environments. A common
trend in the three figures is that the exploration time means
descend when the number of teammate robots increase. The
other trend is that exploration time means for the same
team size in the three environments descend from Figs. 5
to 7. This is results from the fact that the obstacles in the
first environment most limit the detecting ranges of each

Fig. 9 Trajectories of four robots coordinated by RA-A in the blank
environment. The correspondences are star -R1, circle -R2, x-mark -
R3, and solid -R4

robot. On the other hand, both detecting range and mov-
ing direction of each robot have no limitations in the third
environment (Fig. 6).

In previous sections, Figs. 1 and 2 showed how our algo-
rithm saves exploring time from the target selection point
of view. Next, it will be demonstrated that the proposed
algorithm improves exploration efficiency from the other
two aspects. First, waiting time for each auction period
during the exploration process is saved. In the presented
simulation results, the waiting time in each auction round is
set to be 1 time unit. In this time unit, all teammate robots
do nothing except for waiting for better bids. Table 2 shows
auction times means and exploration time means of MRS
coordinated by DB-A and RA-A in the three environments,
respectively. In the table, the three rows of data for each
algorithm from up to down correspond to line segments,
geometries and blank environments, respectively.

Finally, the exploration time efficiency improvement is
demonstrated by comparing the trajectories of all team-
mate robots for the three algorithms. Due to limitations on
paper space, only the trajectories of team size 4 for the
three algorithms in the blank environment are shown in
Figs. 8 to 10, respectively. The initial locations of the four
robots for the three algorithms are identical which are ran-
domly selected as (30, 37), (19, 70), (19, 55), and (68, 44),
respectively. The initial orientations of the four robots are
selected randomly which are upwards, leftwards, leftwards,
and leftwards, respectively (Fig. 9).

It can be seen that the trajectories of robots coordinated
by DB-A and RA-A are more abnormal and have more inter-
sections than that of the corresponding robots coordinated
by SC-A. The exploration times of the MRS coordinated by
the three algorithms are 597, 684 and 427, respectively.

Fig. 10 Trajectories of four robots coordinated by SC-A in the blank
environment. The correspondences are star -R1, circle -R2, x-mark -
R3, and solid -R4
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6 Conclusion

We have proposed a hierarchical coordinated approach for
MRS exploring unknown environments. The upper level
emphasizes on endowing each robot autonomy based on
supervisory control of discrete event systems, and the lower
level emphasizes on navigation goal selection. By partition-
ing the environment into a few of sector zones, a simple
upper automaton with a limited state set was established.
The autonomous abilities are represented as symbol strings
which are included in the desired behavior language. At the
lower level, two kinds of utility which are used to realize
efficient moving target selection and cooperation between
robots are proposed. The proposed approach improved
exploration efficiency compared with single robot systems.
Moreover, it has the following advantages, selecting a target
assignment strategy according to the MRS and the environ-
ment status, the ability of dealing with heterogeneity, less
communication traffic, trajectory smoothness, etc. over the
traditional market economy based approach. The validity of
the proposed coordinated algorithm should be proved from
a theoretic point of view. Moreover, the future work includes
implementing the proposed algorithm on real robots.
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