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Abstract Salient object detection aims to automatically
localize a foreground object with respect to its background
in an image. It plays a crucial role in a wide range of com-
puter vision and multimedia applications. In this work, we
propose an improved salient object detection method based
on biogeography-based optimization, a relatively new bio-
inspired metaheuristic algorithm that searches for the global
optimum using a migration model. Our approach consists
of two steps. In the first step, a set of local (multi-scale
contrast), regional (center-surround histogram), and global
(color spatial distribution) salient feature maps are extracted
and normalized. In the second step, an optimal weight vec-
tor for combining these feature maps into one saliency
map is determined using biogeography-based optimization
and improved variants of this algorithm. As a result, a
salient objects were identified and labeled as distinct from
the image background. We implemented our method using
three biogeography-based optimization variants, and com-
pared our results for three popular databases against two
other state-of-the-art approaches. The experimental results
demonstrate that our method exhibits refined and consistent
detection of salient objects.
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1 Introduction

Salient object detection (SOD) refers to detecting the loca-
tion of the foreground object that captures most human
perceptual attention in a scene [1, 2]. It aims at tagging both
figural and background regions, and has been widely inves-
tigated in neurobiology and psychophysics [3]. SOD plays
a crucial role in a broad range of computer vision and mul-
timedia applications, involving image compression, image
cropping, and image retrieval. It equips applications with a
basic technique to access key information in an image. In
mobile robotics localization systems, SOD endows mobile
robots with the capability to navigate to specific house-
hold objects and to interact with people [4]. In intelligent
traffic systems, SOD can be used for finding navigational
landmarks, as well as distinguishing traffic signs, vehicles,
and pedestrians [5]. In medical-imaging applications [6],
SOD facilitates the delineation of pathological structures
and other regions of particular interest for further segmen-
tation of anatomical images. In surveillance systems, SOD
can interpret activities in a scene automatically, and detect
unusual events, such as traffic violations or unauthorized
entry [7]. However, even now human perception is not been
fully understood; thus, detecting salient objects in an image
in an efficient and effective way is still a challenge.

From an information-processing point of view, the exist-
ing methods for modeling visual saliency can be classified
into two categories: bottom-up methods [5] and top-down
methods [8]. In bottom-up methods, the differences between
pixels or pitches on the low-level features, such as color
(intensity) and edge (texture) are calculated, and saliency
maps are extracted by assigning pixels that are more “dif-
ferent” from their surrounding areas with higher saliency
values. In top-down methods, high-level knowledge about
what types of objects are to be detected is used to process
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saliency information in a task-dependent manner. Although
the bottom-up methods work well for low-level saliency,
they are neither sufficient nor necessary for images where
salient regions are unique and related to the human percep-
tion [9]. In contrast, the top-down methods often require
prior knowledge of the visual system. Because both methods
have their disadvantages, it is likely that through integrat-
ing lower level features and higher level prior assumptions,
salient objects will be detected more effectively and effi-
ciently.

In a recent advance, Liu et al. [10] developed a SOD
method that combines bottom-up and top-down approaches.
In this method, the SOD model is formulated as a binary
labeling problem, while generic salient objects are cal-
culated by combining high-level concepts with a set of
novel local (multi-scale contrast), regional (center-surround
histogram), and global (color spatial distribution) salient
features with a conditional random field from maximum
likelihood estimation criteria. However, this model uses
only a single common linear weight vector based on a train-
ing set to combine the feature maps for all test images.
Thus, it loses generalizations and its performance degrades
dramatically, when it is applied across multiple types of
images, e.g., input images with high variations with respect
to training images. In addition, although maximum like-
lihood estimation is a well-known parameter estimation
technique, it is very sensitive to the choice of initial values
and does not always converge.

Biogeography-based optimization (BBO) [11] is a rela-
tively new bio-inspired and population-based metaheuristic
algorithm for global optimization based on mathematical
models of biogeography. In BBO, each individual solu-
tion to the problem is modeled as a “habitat” or “island”
with a given habitat suitability index (HSI). The algorithm
evolves a population of solutions by continuously migrat-
ing features between them, until a global optimum or an
acceptable near-optimal solution is reached. According to
such migration models, high HSI solutions tend to share
their features with low HSI solutions, while low HSI solu-
tions are likely to accept many new features from high HSI
solutions. BBO has proven itself as a competitive method to
many other well-known evolutionary algorithms on a wide
set of benchmarks and practical problems [11–19].

In this paper, we develop a novel method to tag salient
objects from the image background. Our method consists
of two steps. In the first step, multi-scale contrast, center-
surround histogram, and color spatial distribution feature
maps are extracted and normalized based on the Liu et al.
model [10]. In the second step, a BBO [11], including
its later improvements [20, 21] are used to determine an
optimal weight vector to combine these features into one
saliency map to label the salient object from the image back-
ground. To verify the efficacy of the method, we carried

out experiments on three well-known public data sets. Its
performance is evaluated in terms of precision, recall, the
F-measure, area under curve (AUC), computation time,
and peak memory use. We compared our method with the
other two state-of-the-arts techniques: the original approach
described in Liu et al. [10] and a revised method from Singh
et al. [22]. Our experimental results demonstrate that our
method has a significant performance advantage over these
other methods.

In general, the important contributions of our new
method are:

• To the best of our knowledge, it is the first time that
a BBO metaheuristic algorithm has been successfully
applied for SOD.

• Our method outputs uniformly highlighted salient
regions with well-defined boundaries.

• Our method is robust and computationally efficient.

The remainder of this paper is organized as follows.
Section 2 surveys related work on SOD. Section 3 describes
the considered optimization problem in SOD. Section 4
introduces the basic BBO and its variants used for SOD in
this work. Section 5 evaluates the proposed method on three
public datasets with computational experiments. Section 6
presents the conclusion and further work perspectives.

2 Related work

In the literature, the bottom-up methods comprise the great-
est proportion of publications. These methods only consider
low-level features based on image distinctiveness, making
them intuitional and fast.

In 1998, based on the behavior and neuronal archi-
tecture of the early primate visual system, Itti et al. [5]
proposed a seminal framework for SOD, where multi-scale
image features were combined into a single topographical
saliency map, and attended locations were selected using a
dynamical neural network to decrease saliency. Cheng et al.
[23] proposed a regional contrast-based saliency extraction
approach, named the histogram-based contrast method, to
evaluate global contrast differences and spatial coherence
simultaneously. However, this approach is targeted towards
natural scenes, and is suboptimal for extracting saliency of
highly textured scenes. Rahtu et al. [24] proposed a simple
method for detecting visually salient areas, using searching
image segments and sliding windows. It employs an integral
histogram approach to efficiently evaluate semi-local inten-
sity histograms, estimating the distributions of objects and
surroundings.

Harel et al. [25] presented a biologically plausible,
bottom-up visual saliency model, which uses novel concepts
from graph theory to concentrate mass on activation maps,
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forming activation maps from raw features. These maps
highlight conspicuity. Hou et al. [26] proposed a fast front-
end method that simulates the behavior of a pre-attentive
visual search to construct a saliency map. The spectral resid-
ual of a corresponding image in the spectral domain is
extracted and then transformed to obtain the saliency map.
These maps suggest positions of proto-objects. Achanta
et al. [27] presented a frequency-tuned approach to compute
saliency in images. They used low-level features of color
and luminance to estimate center-surround contrast. This
approach is able to output full-resolution saliency maps,
with well-defined boundaries to salient objects.

Based on contrast analysis, Ma et al. [28] presented a fea-
sible algorithm to extract attention areas from images. They
describe in abstract how to include such information into
the saliency computation. They also present an image atten-
tion analysis framework that simulates two types of human
cognition processes, and three levels of attention, including
attended view, attended areas, and attended points.

In comparison, the top-down SOD methods require a pri-
ori knowledge to achieve high-quality saliency detection;
hence, they are often slower than bottom-up methods.

Navalpakkam et al. [29] proposed a method that defines
complex targets and distracting objects as a conjunction
of different features across multiple-feature dimensions. It
uses top-down components to accumulate statistical knowl-
edge of the local features of the target, while computing
visual saliencies of scene locations for different local visual
features at multiple spatial scales using bottom-up compo-
nents. The model is not only applicable to natural scenes,
but also to artificial search arrays. Moreover, it allows
realistic observers with different beliefs. Zhang et al. [8]
proposed an adaptive Bayesian framework to detect salient
objects. This method involves human observation behav-
iors and scalable subtractive clustering techniques to con-
struct an attention Gaussian-mixture model and background
Gaussian-mixture model, respectively. It uses a Bayesian
framework to maximize the saliency difference. Goferman
et al. [30] proposed a novel algorithm to detect context-
aware saliency based on the fundamental idea that the
salient object is distinctive to its local and global surround-
ings. It adopts four principles observed in the psychological
literature, i.e., local low-level considerations, global consid-
erations, visual organizational rules, and high-level factors.

Shen [9] proposed a unified model based on low rank
matrix recovery, where a color image is represented as a
low-rank matrix plus sparse noise in a learned feature space.
In this method, low-level features and higher level guid-
ance are used to detect salient objects from color images.
Thus, the higher level guidance knowledge is integrated
as pixel-wise priors in the method. Following a decision-
theoretic formulation for saliency, previously developed for
top-down processing, Gao et al. [31] proposed a bottom-up

visual saliency detector that combines top-down discrimi-
nant principles with bottom-up saliency selection to detect
salient objects. In [22], Singh et al. proposed a new objective
function to obtain a weight vector for combining low-level
features to generate salient objects. It used a constrained
particle swarm optimization (C-PSO) algorithm to optimize
the vector, and employed an adaptive thresholding strategy
that first uses the Canny edge detector (an edge detection
operator) to generate edge and silhouette information. It
uses this information for classifying pixels. However, it was
found that both the C-PSO and the adaptive thresholding
strategy were computationally expensive, and the C-PSO
can be easily trapped in local optima.

3 Weight optimization in salient object detection

In this paper, we consider three key features for detecting
salient object(s) in a color image.

• f1: Multi-scale contrast, which is a widely used local
feature simulating human visual receptive fields for
attention, because contrast is the most important factor
that influences human visual perception [10, 23, 32].

• f2: Center-surround histogram, which is an important
regional salient feature simulating the way the human
vision system extracts edges, because a salient object
has a large center-surround histogram distance [10].

• f3: Color spatial distribution, which is a well-known
global feature describing the spatial distribution of spe-
cific colors, because the more widely a color is dis-
tributed in the image, the less likely it is occurs in salient
objects [10].

There are many ways to combine these features to obtain
saliency results for images. A simple way is to give equal
weight to all three features. Here, we solve an optimiza-
tion problem to combine them in the most optimal way
to detect salient objects from the background [22]. In a
pre-processing step, the three feature maps (f1, f2, f3) of
a given image are extracted and normalized according to
the model in Liu et al. [10]. As shown in Fig. 1, let �ω =
{ω1ω2ω3}denote a weight vector to combine the three fea-
ture maps (f1, f2, f3) to tag a saliency result that is as close
to the ground truth image as possible. The saliency value of
every pixel p for this saliency mapS is calculated as:

S(p, �ω) =
3∑

k=1

(ωk × fk(p)), (1)

where
3∑

k=1
ωk = 1.

The saliency map S is normalized between [0, 1], such
that 0 represents black and 1 represents white. We recount
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Fig. 1 A sample input image,
showing maps f1, f2, and f3
and its ground truth image

the saliency value of every pixel p for the normalized
saliency map SN as follows:

SN(p, �ω) = S(p, �ω) − min(p, �ω)

max(p, �ω) − min(p, �ω)
, (2)

where min(p, �ω) = min
p∈P

S(p, �ω)denotes the minimum

value among the set P of all pixels, and max(p, �ω) =
max
p∈P

S(p, �ω) denotes the maximum value among set P .

Using an iterative approach to find the desired optimal
weight vector, a fitness function is needed to assess the
candidate weight vectors at each iteration. For optimally
highlighting salient objects, the saliency values of atten-
tion pixels should be maximized, i.e., they should approach
1 (white). In contrast, the saliency values of background
pixels should be minimized, i.e., they should approach 0
(black). Hence, we used a fitness function similar to that
used by Singh et al. [22], but instead we chose a fixed
thresholding strategy that is more computationally efficient
than the originally adaptive strategy. In our approach, the
threshold is set to the half of the maximum value of the nor-
malized saliency mapSN for classifying each pixelp as an
attention pixel or a background pixel:

τ( �ω) =
max
p∈P

SN(p, �ω)

2
(3)

Thus, the binarized attention mask A of salient object is
given by:

A(p, �ω) =
{

1, SN(p, �ω) ≥ τ( �ω)

0, SN(p, �ω) < τ( �ω)
, (4)

where 1 denotes attention pixels and 0 denotes background
pixels.

Because the saliency contribution from attention and
background pixels should be maximized and minimized

simultaneously, the fitness function to assess the candidate
weight vector is given by:

Fitness( �ω) =
∑

p∈Patt

(1 − SN(p, �ω)) +
∑

p∈Pbkg

SN(p, �ω), (5)

where Pattand Pbkg denoting the set of attention pixels and
the set of background pixels, are defined as:

Patt ( �ω) = {p : p ∈ P ∧ A(p, �ω) = 1}
Pbkg( �ω) = {p : p ∈ P ∧ A(p, �ω) = 0} (6)

Clearly, our aim is to minimize the fitness function value,
and thereby the optimization problem, to find an optimal
weight vector �ω∗, such that:

�ω∗ = min
�ω∈W

Fitness( �ω), (7)

where Wdenotes the set of three-dimensional real-value

vectors satisfying
3∑

k=1
ωk = 1.

4 Biogeography-based optimization for salient
object detection

In this section, we introduce basic BBO and its improved
variants for solving the SOD optimization problem.

4.1 Basic biogeoraphy-based optimization

In BBO [11], each solution is modeled as a habitat, while
each solution component is modeled as a habitat feature,
with a suitability index variable (SIV). The algorithm main-
tains a population of habitats, ranked by their HSI or fitness
values. A higher (lower) HSI value signifies that the habitat
has more (less) energetic species, better (worse) living con-
ditions, and more (less) active interaction with neighboring
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habitats. We compute for each habitat Hi , an immigration
rate λi , and an emigration rate μi , which are functions of
its HSI value. High HSI habitats tend to share their features
with low HSI habitats, and low HSI habitats are likely to
accept new features from high HSI habitats.

Suppose habitats are sorted in increasing order of their
fitness values, then the immigration and emigration rates of
the ith habitat can be calculated as:

λi = I

(
i

n

)
, (8)

μi = E

(
1 − i

n

)
, (9)

where I is the maximum possible immigration rate (occur-
ring when the habitat has no species) and E is the maximum
possible emigration rate (occurring when the habitat has
maximum biodiversity). The linear relationship between the
HSI of a habitat and its migration rate is shown in Fig. 2.

In BBO, there are two main probabilistic operators:
migration, which allows information sharing between can-
didate solutions; and mutation, which allows candidate
solutions to exchange information themselves.

The migration operator works on immigration and emi-
gration rates of the habitats. For each generation, each SIV
of each habitat Hi has a probability .λi to be immigrated;
once selected, this SIV is exchanged with the corresponding
SIV of the emigrating habitat Hj , selected with a probability
proportional to μj .

For the mutation operator, we define a probability Pi for
each habitat Hi with respect to its immigration rate λi and

(I=E)

S0

Immigration  rate (λ)

Emigration rate (μ)

S1 S2

Number of species

ra
te

Fig. 2 The relationship between HSI and migration rates

emigration rate μi , and then compute a mutation rate πi for
Hi , as follows:

πi = πmax

(
1 − Pi

Pmax

)
, (10)

where πmax is the maximum mutation rate given by the
user, and Pmax is the maximum habitat probability for the
population.

Algorithm 1 presents the framework of the basic BBO for
optimizing the weight vector used to combine map features
for SOD, where function rand() produces a random number
uniformly distributed in [0, 1].

In the optimization problem for SOD, each candidate weight
vector is represented by a habitat and each vector compo-
nent is represented by a SIV (Fig. 3). Thus, in each iteration
we use (5) to assess each candidate weight vector of the
population.

4.2 Localized biogeography-based optimization
with ring topology

The basic BBO is based on a global topology, as shown in
Fig. 4a. Hence, whenever a habitat is selected for immigra-
tion, any other habitat has the chance to share information
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0.32 0.28 0.40Habitat H1

SIV1 SIV3SIV2SIV

Fig. 3 An example of candidate weight vectors in our optimization
problem. SIV = suitability index variable

with it. This often causes premature convergence, because
habitats may be strongly attracted by a habitat trapped in
a local optimum. Zheng et al. [20] suggested using local
topology to tackle this issue. One simple local topology is
the ring topology, where each habitat is only connected to
two other habitats and migration can only occur between
neighboring habitats (Fig. 4b). Although this ring topology
is quite easy to implement, it improves the search capability
very effectively.

The framework of the localized BBO using local ring
topology is described in Algorithm 2.

4.3 Localized biogeography-based optimization
with random topology

There are many other local topologies, such as triangle and
square topologies. Another extraordinary topology is the
local random topology, where the neighbors of any habi-
tat can be randomly set during the search process. Random
topology is much more complex, but it avoids prema-
ture convergence better and is more effective than static
topologies.

The simplest way to generate a random topology is to
randomly select K (where 0 < K < n, and n is the
size of population) neighbors for each habitat. A more
effective way is to make sure that each habitat has K

probable neighbors. Thus, the probability of any two habi-
tats being connected is K/(n-1). The parameter K can be
fine tuned to improve algorithm performance for specific
problems.

The framework of the localized BBO with random topol-
ogy is described in Algorithm 3, where Link is a matrix
giving the neighborhood of the solutions.
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Fig. 4 Global versus local ring
topologies used in models

(a) Global topology. (b) Local topology.

4.4 Ecogeography-based optimization

Using local topologies, Zheng et al. [21] improved the
BBO metaheuristic algorithm by differentiating between
migration across neighboring habitats and the migration
between non-neighboring habitats. This mimics the prin-
ciple of immigration and emigration of species between
habitats in ecogeographical distributions. This modification
is known as ecogeography-based optimization (EBO).

The original BBO had a unique migration operator, while
EBO differentiates between global and local migration.
Global migration puts more emphasis on exploration, while
the local migration tends to perform more exploitation.
These are controlled by a linearly decreasing immaturity
index η given by:

η = ηmax − t

tmax
(ηmax − ηmin) (11)

where t is the current generation, tmax is the total number
of generations of the algorithm, and ηmax and ηmin are the
upper and lower limits of η.

When a solution is to be immigrated, we generate a ran-
dom number uniformly distributed between 0 and 1. If this
number is smaller than η, then the global migration oper-
ator is adopted, otherwise the local migration operator is
adopted.

Both global and local migrations operate on each selected
dth dimension of habitat Hi , as shown in (12) and (13):

Hi(d)=
{

HF (d)+α(HN(d)−Hi(d)), f (HF ) ≤ f (HN)

HN(d)+α(HF (d)−Hi(d)), f (HF ) > f (HN)
,

(12)

Hi(d) = Hi(d) + α(HN(d) − Hi(d)), (13)

where α is a coefficient ranging from 0 to 1; HN and HF are
neighbor and non-neighbor solutions of Hi , selected accord-
ing to the emigration rate μi ; and f denotes the fitness
function.

The framework of the EBO is described in Algorithm 4.
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5 Computational experiments

We carried out experiments to evaluate the performance of
our method on the following three widely-used image data
sets:

• MSRA [10], which includes two image sets. Image
set A contains 20843 pictures with their ground truth
images manually labeled by three users. Image set B
contains 5000 pictures with their ground truth images
manually labeled by nine users. The ground truths of
MSRA images are presented in a bound box. They use
user-averaged results to construct their ground truths.

• iCoSeg [33, 34], is a publicly available co-segmentation
database, which contains 643 images along with their
pixel ground-truth hand annotations.

• SED [35, 36], which contains 2 subsets of 200 gray
level images, along with ground truth segmentation.
Each image is segmented by three users. The ground
truth is constructed by declaring a pixel as foreground,
if it was marked as foreground by at least two users.

We selected 300 images from above three data sets for
salient object detection testing. These images differed in
attributes, such as category, color, shape, and size. Sample
images and their ground truths from each data set are shown
in Fig. 5.

We compared our four BBO algorithms, i.e., basic BBO,
localized BBO with ring topology (denoted by LBBO-
Ring), localized BBO with random topology (denoted by

LBBO-Random), and EBO, against both the original model
from Liu et al. [10] (for which we used a matlab implemen-
tation from [37]) and the C-PSO algorithm from Singh et al.
[22]. In our algorithms, the fixed threshold τ was chosen to
be half of the maximum saliency value, the population size
was 20, and the iteration number was 10. In LBBO-Random
and EBO, the parameter K used to compute the probability
that any two habitats are connected was set to 3. In EBO,
the coefficient α was a random value between (0, 1), and the
upper and lower limit of η were 0.7 and 0.4. Parameter set-
tings for the models of Singh et al. [22] and Liu et al. [10]
were set, as suggested in their publications. The experiments
were conducted on a computer with an Intel Core i5-2400
processor and 4GB memory.

As a first step, we ran each BBO algorithm on each test
image five times. Based on the outputs of these algorithms,
we divide the test images into three groups:

• Group A: test images where all four BBO algorithm
outputs were optimal;

• Group B: test images where there is some proba-
bility for BBO algorithms to achieve optimal salient
results;

• Group C: test images where none of the four BBO
algorithm outputs was optimal.

The values for the first group were averaged over five com-
putational runs. For the other two groups, we carried out 20
additional simulations on each image, and computed their
average values for the top 20 of the total 25 runs.

Fig. 5 Sample images and their ground truths from the three data sets used for salient object detection tests: MSRA, iCoSeg, and SED
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5.1 Qualitative comparisons

Visual comparisons of the best results for the six different
algorithms on images in Groups A–C are shown in Figs. 6, 7
and 8 respectively. The ground truth is marked on the input
image. For Group B, we also present the average probability
of achieving optimal salient results for various algorithms in
Table 1; the best result among these algorithms is marked in
bold.

Clearly, Liu et al.’s model localized the objects accu-
rately, but it gave unnecessary information on the salient
object, which reduced its performance. Singh et al.’s model
obtained saliency results with clear and fine shape informa-
tion at times, but with a probability that was much smaller
than for our method. However, as the complexity of the test-
ing images increased, e.g., the image in the second row of
Fig. 7 has only small texture differences between salient
object and background, then the Singh et al. model was

Fig. 6 Visual performance comparison of salient object detection in
Group A images using various algorithms. Liu = algorithm from Liu
et al. [10]; Singh = algorithm from Singh et al. [22]; BBO = basic

biogeography-based optimization; LBBO-Ring = local BBO with ring
topology; LBBO-Random = local BBO with random topology; and
EBO = ecogeography-based optimization
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Fig. 7 Visual performance comparison of salient object detection in
Group B images using various algorithms. Liu = algorithm from Liu
et al. [10]; Singh = algorithm from Singh et al. [22]; BBO = basic

biogeography-based optimization; LBBO-Ring = local BBO with ring
topology; LBBO-Random = local BBO with random topology; and
EBO = ecogeography-based optimization

more likely to be trapped in local optima. Our method deals
better with challenging images, where the background was
cluttered. For example, the image in the third row of Fig. 6
as well as images in the first two rows of Fig. 7 show that the
other two approaches were distracted by the textures in the
background, while our four BBO algorithms successfully
output an accurate salient object. In Group C, our method
still produced the best results among all algorithms, con-
firming that our BBO algorithms are more robust to changes
in color, object size, and object location in images with
different background types.

5.2 Quantitative comparisons

We used precision, recall, the F-Measure, the AUC com-
putation time and peak memory usage to quantitatively
evaluate and compare the performances of these various
algorithms.

Because the ground truths for all MSRA images are
shown within a bound box, we surrounded our saliency
results with rectangles as well [22]. Based on both the
ground truth rectangle (GTRec) and the saliency result rect-
angles (RSRec) for each image we calculated TP (true
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Fig. 8 Visual performance comparison of salient object detection in
Group C images for various algorithms. Liu = algorithm from Liu
et al. [10]; Singh = algorithm from Singh et al. [22]; BBO = basic

biogeography-based optimization; LBBO-Ring = local BBO with ring
topology; LBBO-Random = local BBO with random topology; EBO
= ecogeography-based optimization

positives; the total number of attention pixels that are
detected as salient), FP (false positives; the total number
of background pixels that are detected as salient), TN (true
negatives; the total number of background pixels that are
detected as background) and FN (false negatives; the num-
ber of attention pixels that are detected as background)
values for the various algorithms as follows:

T P =
∑

GT Rec(x,y)=1

RSRec(x, y), (14)

FP =
∑

GT Rec(x,y)=0

RSRec(x, y), (15)

T N =
∑

RSRec(x,y)=0

(1 − GT Rec(x, y)), (16)

FN =
∑

RSRec(x,y)=0

GT Rec(x, y), (17)

where GTRec(x,y)=1 gives attention pixels in the ground
truth rectangle GTRec while RSRec(x,y)=1 gives attention
pixels in the saliency result rectangles RSRec.

Because the provided ground truths for images from
iCoSeg .[33] and SED .[35] are not defined by a rectangu-
lar shape, they can be generated as a binary mask. Thus, we

Table 1 Probability of achieving optimal salient results in Group B
images for various algorithms (Liu = algorithm from Liu et al. [10];
Singh = algorithm from Singh et al. [22]; BBO = basic biogeography-
based optimization; LBBO-Ring = local BBO with ring topology;
LBBO-Random = local BBO with random topology; and EBO =
ecogeography-based optimization)

Index Liu Singh BBO LBBO-Ring LBBO-Random EBO

Probability 0 % 23 % 61 % 47 % 56 % 54 %

Best result is shown in bold
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compared the attention mask A generated by different algo-
rithms with the binary ground truth mask pixel by pixel to
obtain TP, FP TN and FN values for images from these two
datasets.

Hence, the precision, recall and F-measure, were calcu-
lated as follows:

Precision = T P

T P + FP
, (18)

Recall = T P

T P + FN
, (19)

F − measure = 2 × Precision × Recall

P recision + Recall
. (20)

We drew a receiver operator characteristic (ROC) curve
between the true-positive rate (TPR) and the false-positive
rate (FPR) to obtain the AUC. TPR and FPR were calculated
using:

T PR = T P∑
(x,y) GT Rec(x, y)

, (21)

FPR = FP

w × h − ∑
(x,y) GT Rec(x, y)

, (22)

where w and h represent the width and height of the image.

A quantitative comparison of Groups A–C is given in
Tables 2, 3 and 4. The best result for each metric among the
various algorithms is marked in bold.

We obtained the peak memory use during processing
from Windows task manager for each of the six algorithms.
These values are listed in Table 5. Because Liu et al.’s
model [10], Singh et al.’s model [22], and our method used
a threshold to generate the attention mask A of the salient
object from the saliency map, we adjusted this threshold
to draw ROC curves. Figure 9 presents ROC curves for
TPR and FPR for the various algorithms. The AUC values
of these algorithms are listed in Table 5; the best result is
marked in bold.

For images in Groups A–C, our four BBO algorithms
had precision values that were much better than Singh et al.
and Liu et al. models. For images in Groups A–C, the
Singh et al. model gave the highest recall rates. Our four
BBO algorithms had highest F-measures among the six
algorithms for images in Groups A–C.

Our four BBO algorithms had least computation time,
without requiring more memory for images in Groups A–
C. They all ran much faster than the Singh et al. model.
The peak memory use for our four BBO algorithms was no
larger than either Singh et al. or Liu et al. models.

AUC is a measure used to rank quality. Algorithms cover-
ing larger AUC are better in terms of their performance. Our
four BBO algorithms had values of AUC that were much
better than either the Singh et al. or Liu et al. model.

Table 2 Quantitative metrics for Group A images (Liu = algorithm
from Liu et al. [10]; Singh = algorithm from Singh et al. [22];
BBO = basic biogeography-based optimization; LBBO-Ring = local

BBO with ring topology; LBBO-Random = local BBO with random
topology; and EBO = ecogeography-based optimization)

Index Results Liu Singh BBO LBBO-Ring LBBO-Random EBO

Precision average 0.843 0.913 0.991 0.991 0.991 0.991

max 1.000 1.000 1.000 1.000 1.000 1.000

min 0.535 0.357 0.963 0.963 0.963 0.963

std 0.204 0.225 0.014 0.014 0.014 0.014

Recall average 0.896 0.955 0.949 0.949 0.949 0.949

max 0.961 0.987 1.000 1.000 1.000 1.000

min 0.659 0.909 0.889 0.889 0.889 0.889

std 0.098 0.024 0.038 0.038 0.038 0.038

F-measure average 0.850 0.914 0.969 0.969 0.969 0.969

max 0.974 0.982 0.982 0.982 0.982 0.982

min 0.682 0.499 0.941 0.941 0.941 0.941

std 0.118 0.168 0.016 0.016 0.016 0.016

Time (in sec) per image average 8.110 16.809 6.944 7.035 6.928 6.988

max 8.837 46.189 7.785 8.127 7.663 7.858

min 7.064 8.100 5.928 5.868 5.886 5.917

std 0.594 13.449 0.632 0.738 0.604 0.633

Best result is shown in bold for each metric
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Table 3 Quantitative metrics for Group B images (Liu = algorithm
from Liu et al. [10]; Singh = algorithm from Singh et al. [22];
BBO = basic biogeography-based optimization; LBBO-Ring = local

BBO with ring topology; LBBO-Random = local BBO with random
topology; and EBO = ecogeography-based optimization)

Index Results Liu Singh BBO LBBO-Ring LBBO-Random EBO

Precision average 0.792 0.700 0.921 0.906 0.930 0.930

max 0.960 0.994 1.000 0.999 1.000 1.000

min 0.488 0.203 0.700 0.631 0.714 0.751

std 0.170 0.328 0.114 0.145 0.109 0.093

Recall average 0.903 0.945 0.924 0.919 0.911 0.918

max 0.986 1.000 0.989 0.991 0.990 0.992

min 0.784 0.765 0.800 0.781 0.764 0.779

std 0.077 0.090 0.067 0.078 0.087 0.079

F-measure average 0.837 0.750 0.916 0.897 0.914 0.919

max 0.973 0.979 0.983 0.983 0.981 0.983

min 0.593 0.332 0.725 0.687 0.716 0.753

std 0.129 0.243 0.099 0.113 0.104 0.089

Time (in sec) per image average 8.005 18.260 6.725 6.697 6.674 6.687

max 8.383 29.197 7.452 7.360 7.184 7.117

min 7.782 11.760 6.310 6.192 6.260 6.339

std 0.271 7.081 0.431 0.425 0.345 0.294

Best result is shown in bold for each metric

5.3 Discussion

Recall is a measure of how much of the ground truth is
detected. Clearly, the Singh et al. model had the highest

recall rates of all methods tested. This is because the Singh
et al. model always contains unnecessary information on
regions surrounding the salient objects. A high recall rate
can be achieved by simply selecting an attention region as

Table 4 Quantitative metrics for Group C images (Liu = algorithm
from Liu et al. [10]; Singh = algorithm from Singh et al. [22];
BBO = basic biogeography-based optimization; LBBO-Ring = local

BBO with ring topology; LBBO-Random = local BBO with random
topology; and EBO = ecogeography-based optimization)

Index Results Liu Singh BBO LBBO-Ring LBBO-Random EBO

Precision average 0.720 0.668 0.878 0.858 0.879 0.866

max 0.995 0.843 0.975 0.975 0.973 0.966

min 0.221 0.447 0.784 0.781 0.801 0.766

std 0.295 0.186 0.072 0.071 0.064 0.076

Recall average 0.904 0.957 0.831 0.840 0.844 0.820

max 0.986 1.000 0.976 0.975 0.958 0.984

min 0.823 0.862 0.702 0.694 0.744 0.611

std 0.071 0.056 0.125 0.119 0.101 0.152

F-measure average 0.760 0.759 0.824 0.838 0.851 0.831

max 0.900 0.896 0.913 0.896 0.898 0.904

min 0.359 0.582 0.749 0.731 0.776 0.675

std 0.228 0.130 0.071 0.074 0.059 0.096

Time (in sec) per image average 8.163 15.374 6.859 6.778 6.787 6.786

max 8.434 16.366 7.182 7.180 7.167 7.127

min 7.901 14.607 6.365 6.420 6.403 6.450

std 0.277 0.737 0.351 0.328 0.329 0.304

Best result is shown in bold for each metric
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Table 5 Area under curve (AUC) values and peak memory use
of different algorithms (Liu = algorithm from Liu et al. [10];
Singh = algorithm from Singh et al. [22]; BBO = basic

biogeography-based optimization; LBBO-Ring = local BBO with ring
topology; LBBO-Random = local BBO with random topology; and
EBO = ecogeography-based optimization)

Index Liu Singh BBO LBBO-Ring LBBO-Random EBO

AUC 0.858 0.846 0.965 0.935 0.965 0.959

Peak memory usage (in Mb) per image 399.641 400.500 398.543 397.078 395.988 395.387

Best result is shown in bold for each metric

large as possible. Therefore, it is not a very useful mea-
sure in SOD [10]. In contrast, precision is a measure of
how much noise is in the salient result. High precision
denotes accurate demarcation of a salient object, which is
a main objective of SOD. Although for an image with a
large salient object, a high precision can be achieved by
simply selecting a large attention region, it is difficult to
achieve high precision on an image with a small salient
object. We selected images containing small objects to test
this tactic, e.g., the image in the second row of Fig. 7; our
method yielded high precision for all such examples. As the
weighted harmonic mean of both precision and recall, the
F-measure is an overall performance measure. F-measures
for our experiments show that all four of our BBO algo-
rithms consistently outperformed other algorithms in this
study.

Although the Singh et al. model and our four BBO algo-
rithms require an optimization algorithm involving an iter-
ative process that is computationally expensive, our BBO
algorithms ran much faster than the Singh et al. model.
Because the capability of global optimization in the four
BBO algorithms depresses the influence of using a thresh-
old, a fixed threshold was selected. Thus, we saved the
computational effort required for calculating an adjusted

threshold in the Singh et al. model, without any loss of
performance. In fact, even when we adopt the adjusted
threshold method in the Singh et al. model, our computation
time per image is around 7 s, which is still faster than both
the Singh et al. and Liu et al. models. There were no sta-
tistically significant differences between peak memory use
among the different algorithms; this reflects that the cal-
culation of three feature maps requires the largest memory
storage in each algorithm.

Because the Liu et al. model uses a single common linear
weight vector that is based on the training set to combine the
feature maps for all test images; there is a slight probability
for it to output an optimal salient object. In contrast, the C-
PSO algorithm in the Singh et al. model often gets trapped
in local optima. Thus, its ability to find a global optimal
salient object is much lower than our method. There were no
statistically significant differences among the four versions
of the BBO algorithms. For Group A images, our four BBO
algorithms yielded an optimal salient object in each run;
thus, their values were the same. However, in the other two
groups (B, C), the precision values and F-measures for the
LBBO-Random and EBO were slightly better than for BBO
and LBBO-Ring. This is because local random topology
enhances the exploitation capability in BBO.

Fig. 9 The receiver operator
characteristic (ROC) curves for
various algorithms. TPR =
true-positive rate; FPR = false-
positive rate; Liu = algorithm
from Liu et al. [10]; Singh =
algorithm from Singh et al [22];
BBO = basic biogeography-
based optimization; LBBO-Ring
= local BBO with ring topology;
LBBO-Random = local BBO
with random topology; and EBO
= ecogeography-based
optimization
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Fig. 10 Results showing failure to identify the salient object based
on three feature maps (f1, f2, f3) in various algorithms. Liu = algo-
rithm from Liu et al. [10]; Singh = algorithm from Singh et al. [22];

BBO = basic biogeography-based optimization; LBBO-Ring = local
BBO with ring topology; LBBO-Random = local BBO with random
topology; and EBO = ecogeography-based optimization

6 Conclusion

In this paper, we proposed four BBO algorithms to com-
bine multi-scale contrast, center-surround histogram, and on
color spatial distribution feature maps to create a saliency
mask. Experiments carried out on three popular image
databases showed that our proposed approach has a sig-
nificant performance advantage over other state-of-the-art
methods. The LBBO-Random algorithm exhibited the best
performance. Moreover, our method is not only computa-
tional efficient, but also has robust and accurate saliency
estimation.

Some issues require further investigation. When the
multi-scale contrast, center-surround histogram, and color
spatial distribution features fail to describe the salient object
accurately, it is very difficult for our method, Liu et al. and
Singh et al. models to output a good result based on these
three feature maps. Figure 10 illustrates a case where these
algorithms fail. Currently we are adding more sophisticated
visual features to improve the performance of our method.
Such work will aim to develop a SOD-specific BBO variant.
We are also adapting some very recent and efficient meta-
heuristics including water wave optimization [38] and optics

inspired optimization [39] for solving the SOD optimization
problem.
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