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Abstract Naı̈ve Bayes learners are widely used, effi-
cient, and effective supervised learning methods for labeled
datasets in noisy environments. It has been shown that naı̈ve
Bayes learners produce reasonable performance compared
with other machine learning algorithms. However, the con-
ditional independence assumption of naı̈ve Bayes learning
imposes restrictions on the handling of real-world data. To
relax the independence assumption, we propose a smooth
kernel to augment weights for the likelihood estimation.
We then select an attribute weighting method that uses the
mutual information metric to cooperate with the proposed
framework. A series of experiments are conducted on 17
UCI benchmark datasets to compare the accuracy of the pro-
posed learner against that of other methods that employ a
relaxed conditional independence assumption. The results
demonstrate the effectiveness and efficiency of our pro-
posed learning algorithm. The overall results also indicate
the superiority of attribute-weighting methods over those
that attempt to determine the structure of the network.
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1 Introduction

Naı̈ve Bayes classification is a supervised learning method
based on Bayes rule of probability theory. The classifica-
tion uses labeled training examples, and is driven by the
strong assumption that all attributes in the training exam-
ples are independent of one another, given the class labels.
This is known as the naı̈ve Bayes assumption or naı̈ve
Bayes conditional independence assumption. Naı̈ve Bayes
classifiers exhibit high performance and rapid classifica-
tion speed, and their effectiveness has been demonstrated
using huge training instances with multiple attributes. This
strong performance is mainly because of the independence
assumption [11].

In practice, classification performance is affected by
the attribute independence assumption, which is often vio-
lated in real-world data. However, the advantages of effi-
ciency and simplicity, both stemming from the attribute
independence assumption, have led many researchers to
propose effective methods to further improve the per-
formance of naı̈ve Bayes classifiers by weakening the
attribute independence without neglecting its advantages.
We categorize and briefly review some typical methods
of relaxing the naı̈ve Bayes assumption in Section 3.
However, attribute weighting methods have received rela-
tively little attention among techniques to improve naı̈ve
Bayes classification, particularly when attribute weight-
ing is combined with a kernel method in a reasonable
manner.

Although [4] proposed an attribute weighting method
with the kernel, their weighting scheme generates a series
of parameters from least-squares cross-validation, which is
less meaningful in terms of interpretation than our proposed
method. In contrast, we propose an attribute weighting
framework with a kernel method, which enables the weights
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embedded in the kernel to have relatively interpretable
meaning. Thus, we can flexibly choose different metrics
and methods to measure the weights based on our attribute
weighting framework.

The contributions of this paper are threefold:

– We have briefly conducted a survey on ways to improve
naı̈ve Bayes classification, focusing on naı̈ve Bayes
weighting methods.

– We propose a novel attribute weighting framework
called Attribute Weighting with Smooth Kernel Density
Estimation (AW-SKDE). The AW-SKDE framework
employs a smooth kernel whereby the weights dom-
inate the probabilistic estimation of likelihood. This
enables kernel methods to be combined with weighting
methods. After setting up the kernel, we generate a set
of weights directly via various methods that cooperate
with the kernel.

– Under the AW-SKDE framework, we propose a learner
called AW-SKDEMI. This uses the mutual informa-
tion criterion to measure the dependency between an
attribute and its class label.

Our experimental results show that the mutual informa-
tion criterion based on the AW-SKDE framework exhibits
superior performance over standard naı̈ve Bayes classifiers,
and is comparable to other approaches that have included
the relaxation of the conditional independence assumption.

The remainder of this paper is organized as follows: we
first conduct a brief survey on methods to improve naı̈ve
Bayes classification in Section 2. In Section 3, we intro-
duce the background to our study. Section 4 describes the
proposed attribute weighting framework based on kernel
density estimation. We then propose a method that uses the
mutual information criterion for attribute weighting based
on our proposed framework. In Section 5, we describe
a series of experiments and discuss the results in detail.
Finally, we draw conclusions from our study and describe
avenues for future research in Section 6.

2 Related work

In recent years, a number of methods that weaken the
attribute independence assumption of naı̈ve Bayes learning
have been proposed. [7] conducted a survey on improved
naı̈ve Bayes methods. Such methods can be divided into
five main categories: data expansion, structure extension,
attribute weighting, feature selection, and local learning. We
now briefly review these categories.

For data expansion, [9] presented an algorithm called the
propositionalized attribute taxonomy learner (PAT-learner).
The PAT-learner first disassembles the training dataset into

small pieces with attribute values, then rebuilds a new
dataset called the PAT-Table using the divergence between
the distribution of class labels associated with the corre-
sponding attributes and the disassembled dataset. [8] also
proposed a Bayes learner based on the PAT-learner, called
propositionalized attribute taxonomy guided naı̈ve Bayes
learner (PAT-NBL). They used the propositionalized dataset
and PAT-Table generated by the PAT-learner to build naı̈ve
Bayes classifiers.

[16] focused on the discretization of attributes to improve
naı̈ve Bayes classification. Wong proposed a hybrid method
for continuous attributes, and mentioned that the discretiza-
tion of continuous attributes in a dataset using different
methods can improve the performance of naı̈ve Bayes learn-
ing. Additionally, [16] provided a nonparametric measure
to evaluate the level of dependence between a continuous
attribute and the class.

In terms of structure extension, [15] proposed a system
of aggregating one-dependence estimators (AODE). Under
AODE, the conditional probability of the test instances
given the class is tuned by one attribute value that occurs in
the test instances. After the training stage, AODE outputs
an average one-dependence estimator. AODE is considered
a lazy method of extending the structure of a Bayesian net-
work. [7] proposed a hidden naı̈ve Bayes (HNB) learner,
which is also a type of structure extension method.

Some approaches have attempted to discern the network
structure. [5] proposed a Bayesian scoring metric and a
heuristic search algorithm named K2. K2 learns the network
structure using a greedy search by maximizing the tradeoff
metric between network complexity and accuracy over the
training data. [6] developed Tree Augmented Naı̈ve Bayes
(TAN) learning, in which each attribute has a single class
variable and at most one other attribute as parents. With this
approach, TAN augments the maximum weight spanning
tree of the naı̈ve Bayes learner.

There are two main approaches for determining the
attribute weights. The first method constructs a function
with the attribute weight parameters, and allows this func-
tion to fit itself to the training data by estimating the
weights. [18] proposed a weighted naı̈ve Bayes algorithm,
called weighting to alleviate the naı̈ve Bayes independence
assumption (WANBIA). Based on the WANBIA frame-
work, the authors described two methods to obtain the
attribute weights: WANBIACLL, which maximizes the con-
ditional log-likelihood function, and WANBIAMSE, which
minimizes the mean squared error function.

[4] also reported an algorithm to minimize the mean
squared error function in order to obtain the attribute
weights. In another paper, [3] developed a method
called subspace weighting naı̈ve Bayes (SWNB), which
can deal with high-dimensional data. Using the local
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feature-weighting technique, SWNB has the ability to
describe different contributions of attributes in the train-
ing dataset, and outputs an optimal set of attribute weights
fitting a Logit normal a priori distribution.

There are many other techniques for attribute weighting.
For example, weights can be directly obtained by measur-
ing the relationship among the attributes or the relationship
between the attributes and class labels by some given metric,
or measured by the Gain Ratio method [14]. [10] calculated
the attribute weights via the Kullback–Leibler divergence
between the attributes and class labels. [17] proposed the
decision tree-based attribute weighted AODE (DTWAODE)
method. DTWAODE generates a set of attribute weights
directly, and the weights decrease according to the attribute
depth in the decision tree. [13] developed the confidence
weight for naı̈ve Bayes method, whereby the confidence
weight is derived from the probabilities of the majority class
in the training dataset.

3 Background

In this section, we explain the concepts behind the machine
learning methodologies used in this paper, including the
naı̈ve Bayes classifier, naı̈ve Bayes attribute weighting,
and kernel density estimation for naı̈ve Bayes categorical
attributes. The symbols used in this paper are summarized
in Table 1.

3.1 Naı̈ve Bayes classifier

In a supervised learning scenario, consider a training dataset
D = {

x(1), . . . , x(n)
}

composed of n instances, where each

instance x = 〈x1, . . . , xm〉 ∈ D (m-dimensional vector)
is labeled with some class label c ∈ C. For the posterior
probability of c given x, we have

p(c|x) = p(x|c) · p(c)

p(x)
∝ p(x|c) (1)

However, in practice, the likelihood p(x|c) cannot be
directly estimated from D because of insufficient data.
Naı̈ve Bayes learning uses the attribute independence
assumption to alleviate this problem. From this assumption,
p(x|c) is given as follows:

p(x|c) =
m∏

i=1

p(xi |c) (2)

In the training phase, only p(xi |c) and p(c) need to be
estimated for each class c ∈ C and each attribute value xi ∈
Ai . The estimation method uses the frequency of xi given c

and the frequency of c for p(xi |c) and p(c) respectively.
In the classification phase, if there is a test instance t =

〈t1, . . . , tm〉, where tm is an attribute value of the attribute
m in the test instance, the naı̈ve Bayes classifier will output
a class label prediction of t based on the frequency estima-
tions of p(xi |c) and p(c) generated in the training phase.
The naı̈ve Bayes classifier is then characterized as follows:

CNB(t) = arg max
c∈C

p̂(c)

m∏

i=1

p̂(xi |c) (3)

As mentioned above, the naı̈ve Bayes assumption con-
flicts with most real-world applications (note that it is rare
that attributes in the same dataset have no relationship
between one another). Therefore, many researchers have

Table 1 Symbols and their
descriptions Notation Description

Ai the ith attribute in dataset

|Ai | the cardinality of attribute i

a
(j)
i the value of Ai at j th instance

D = {
x(1), . . . , x(n)

}
training dataset consists n instances

x = 〈x1, . . . , xm〉 an instance, m-dimensional vector, x ∈ D
C class label, C = {

c1, . . . , c|C|
}

c an element of C, c ∈ C

t = 〈t1, . . . , tm〉 a test instance, m-dimensional vector

P(e) the unconditioned probability of event e

P (e|g) the conditional probability of e given g

P̂ (•) an estimation of P(•)

f̄c(ai) the frequency of ai given c

wi ∈ [0, 1] the weight-value of attribute Ai

I (Ai;C) the mutual information between Ai and C
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attempted to effectively relax the naı̈ve Bayes assumption,
as reviewed in Section 2.

In this paper, we focus on attribute weighting meth-
ods combined with the kernel density estimation technique
applied to naı̈ve Bayes learners in order to relax the condi-
tional independence assumption.

3.2 Naı̈ve Bayes attribute weighting

Generally, the naı̈ve Bayes attribute weighting scheme can
be formulated in several ways. First, the weight of each
attribute is defined as follows:

p̂(c|x) = p̂(c)

m∏

i=1

p̂(xi |c)wi (4)

If the weight depends on the attribute and class, the
corresponding formula is as follows:

p̂(c|x) = p̂(c)

m∏

i=1

p̂(xi |c)wci (5)

The following formula is used when the weight depends
on the attribute value:

p̂(c|x) = p̂(c)

m∏

i=1

p̂(xi |c)wi,xi (6)

When ∀wi = w, (4) becomes:

p̂(c|x) = p̂(c)

m∏

i=1

p̂(xi |c)w (7)

It is worth mentioning that (7) is considered to be a spe-
cial case of the naı̈ve Bayes classifier in which each attribute
Ai has the same weight, wi = w = 1∀i. In other words,
this naı̈ve Bayes classifier ignores the importance of the
attributes. From an information-theoretic perspective, naı̈ve
Bayes classifiers abandon the possibility of obtaining more
information from D to reduce the entropy of each class. This
is one of the reasons why attribute weighting methods pro-
vide more accurate classification results than naı̈ve Bayes
classifiers.

In our approach, we use (4), which assigns wi accord-
ing to the attribute Ai . However, instead of using wi as an
exponential parameter, we incorporate wi into p̂(xi |c) so
that it works in a more generalized form. In our method, the
weights are applied in the kernel, as shown in (13). This is
described in Section 4.1.

From an information-theoretic perspective, attribute
weighting attempts to determine which attributes provide
more information for classification than other attributes. If
an attribute Ai in dataset D provides more information to
reduce the entropy of class label C than other attributes, then
Ai will be assigned a higher weight.

3.3 Kernel density estimation for naı̈ve Bayes
categorical attributes

In the naı̈ve Bayes learner discussed in Section 3.1, the
likelihood p(a

(j)
i |c) is often estimated as f̄c(a

(j)
i ), the fre-

quency of a
(j)
i given c. Note that a

(j)
i is the value of attribute

i in the j th instance of dataset D. From a statistical perspec-
tive, a non-smooth estimator has the least sample bias, but
has a large estimation variance [4, 12]. [1] proposed a ker-
nel function, and [4] presented a variant of a smooth kernel
function with an alternating frequency. The kernel function
defined in [4] is as follows:

Given a test instance t = 〈t1, . . . , tm〉, where tm is the
attribute value of attribute m in the test instance:

κ
(
ti , a

(j)
i , λci

)
=

{
1 − |Ai |−1

|Ai | λci : ti = a
(j)
i

1
|Ai |λci : ti �= a

(j)
i

(8)

Note that κ
(
ti , a

(j)
i , λci

)
is a kernel function for Ai

given c, which may become an indicator if λci = 0. λci(=
wci · λc) is the bandwidth such that λc = 1√

nc
, λci ∈ [0, 1],

and nc is the number of instances in D given c.
In [4], (8) was used to estimate p(ti |c) as follows:

p̂(ti |c, λci) = 1

nc

nc∑

j=1

κ
(
ti , a

(j)
i , λci

)

= f̄c(ti) +
(

1

|Ai | − f̄c(ti)

)
λci (9)

where p(ti |c, λci) is used instead of p(ti |c). (Note that p(c)

is still estimated from the frequency.) They minimized a cost
function to estimate a series wci for each Ai in class c. The
cost function is defined as follows:

J (wc) =
m∑

i=1

Ai∑

ai

(
p̂(ai |c) − p̂(ai |c,wci)

)2 (10)

Hence, the classifier can be formulated as follows:

C(t) = arg max
c∈C

p̂(c)

m∏

i=1

p̂(ti |c, λci) (11)

4 AW-SKDE framework and AW-SKDEMI learner

In this section, we describe the proposed attribute weight-
ing framework for categorical attributes, which we call
Attribute Weighting with Smooth Kernel Density Estima-
tions. Based on the AW-SKDE framework, we propose a
learner named AW-SKDEMI, in which mutual information
is used to determine the attribute weights.
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Fig. 1 Mutual Information
based Attribute Weighting with
Smooth Kernel Density
Estimation (AW-SKDEMI)
algorithm

4.1 AW-SKDE framework

In (8), we made the assumption that, if a certain attribute Ai

has more importance for classification given the class label
(in other words, Ai provides more information to reduce the
indeterminacy of class c), then the value of p(a

(j)
i |c) should

be closer to f̄c(a
(j)
i ); otherwise, if Ai is less meaningful for

classification, then p(a
(j)
i |c) should be closer to 1

|Ai | . We let

the bandwidth λci = (1−wi)
2×λc, where wi ∈ [0, 1], λc =

1√
nc

, and nc is the number of instances labeled C = c. In

the proposed method, (8) is modified as follows:

κ
(
ti , a

(j)
i , wi

)
=

{
1 − |Ai |−1

|Ai | (1 − wi)
2λc : ti = a

(j)
i

1
|Ai | (1 − wi)

2λc : ti �= a
(j)
i

(12)

The estimate p(ti |c, wi) of probability p(ti |c) is
described as follows:

p̂(ti |c,wi) = 1

nc

nc∑

j=1

κ
(
ti , a

(j)
i , wi

)

= f̄c(ti) +
(

1

|Ai | − f̄c(ti)

)
(1 − wi)

2

√
nc

(13)

Hence, the AW-SKDE framework can be defined as:

CAW−SKDE(t) = arg max
c∈C

p(c)

m∏

i=1

p̂(ti |c,wi) (14)

The AW-SKDE framework incorporates a smooth ker-
nel to allow the probabilistic estimation of likelihood to be
dominated by the weights. This enables the natural com-
bination of kernel methods and weighting methods. After
setting up the kernel, we can generate a set of weights that
are estimated by various methods and cooperate with the
kernel.

4.2 AW-SKDEMI learner

The AW-SKDEMI learner generates a set of attribute
weights wi ∈ [0, 1] by calculating the mutual informa-
tion between Ai and C. If one attribute shares more mutual
information with the class label, that attribute will provide
more classification ability than other attributes, and should
therefore be assigned a higher weight.

Table 2 Time complexity (m:
number of attributes; n: number
of training examples; k: number
of classes; v: average number
of values for an attribute)

Algorithm Training time Classification time

NB O(mn) O(km)

AW-SKDEMI O(mnk + m2 + mv) O(km)
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Table 3 Description of datasets used in the experiments

Dataset Instances Attributes Classes Missing Numeric

anneal 898 39 6 Y Y

balance-scale 625 5 3 N Y

breast-cancer 286 10 2 Y N

breast-w 699 10 2 Y N

colic 368 23 2 Y Y

credit-a 690 16 2 Y Y

dermatology 366 35 6 Y Y

glass 214 10 7 N Y

heart-statlog 250 14 2 N Y

hepatitis 155 20 2 Y Y

ionosphere 351 35 3 N Y

lymph 148 19 4 N Y

primary-tumor 339 18 21 Y N

segment 2310 20 7 N Y

sick 3772 30 2 Y Y

vehicle 846 19 4 N Y

vote 435 17 2 Y N

The average weight wi avg of each attribute Ai is defined
as follows:

wi avg = I (Ai; C)
∑m

i=1 I (Ai; C)
(15)

where:

I (Ai; C) =
∑

i,c

p̂(ai |c)p̂(c) log
p̂(ai |c)
p̂(ai)

(16)

We also incorporate the split information used in
C4.5 [14] into our weighting scheme with wi split to avoid
choosing attributes with lots of values. The split information
for each Ai is defined as follows:

Ai split = −
∑

ai∈Ai

p̂(ai) log p̂(ai) (17)

where a
(j)
i is the value of attribute Ai in instance j th (as

described in Table 1). Now, the weight of Ai is defined as
follows:

wi =
wi avg

Ai split∑m
i=1

wi avg

Ai split

(18)

We supply AW-SKDEMI with a training dataset D. In the
training stage, we generate wi avg , Ai split , and wi for each
Ai . In the classification phase, given a test instance t, the
AW-SKDEMI classifier predicts the class label. The learning
algorithm of AW-SKDEMI is illustrated in Fig. 1.

During the training phase, AW-SKDEMI only needs to
construct conditional probability tables , which contain the
joint probabilities of attributes and a class label. In terms
of time complexity, the calculation of I (Ai; C), wi avg ,

Ai split , and wi takes O(mnk), O(m2), O(mv), and O(m2)

time, respectively. Therefore, the total time complexity of
the training phase is O(mnk+m2+mv). In the classification
phase, the algorithm’s time complexity is O(km). The time
complexity of AW-SKDEMI and naı̈ve Bayes classification
is summarized in Table 2.

We now describe a framework named Attribute Weight-
ing with Light Smooth Kernel Density Estimation (AW-
LSKDE), which does not consider the bandwidth. AW-
LSKDE can be regarded as a simplified version of AW-
SKDE. According to (8), we directly set λci = 1−wi , where

wi ∈ [0, 1]. Hence, the kernel κ
(
ti , a

(j)
i , λci

)
becomes

κ
(
ti , a

(j)
i , wi

)
, which is defined as follows:

κ
(
ti , a

(j)
i , wi

)
=

{
1

|Ai | + |Ai |−1
|Ai | wi : ti = a

(j)
i

1
|Ai | (1 − wi) : ti �= a

(j)
i

(19)

The estimate p(ti |c,wi) is then:

p̂(ti |c,wi) = 1

nc

nc∑

j=1

κ
(
ti , a

(j)
i , wi

)

= 1

|Ai | + wi

(
f̄c(ti) − 1

|Ai |
)

(20)

We can also construct an attribute weighting naı̈ve
Bayes learner with the mutual information metric based on
this AW-LSKDE framework. This is referred to as AW-
LSKDEMI. The weights of attributes Ai are obtained in the
same manner as for the AW-SKDEMI learner. Unfortunately,
the AW-LSKDE framework does not produce encourag-
ing results. The experimental results for the AW-LSKDEMI

learner are presented in Table 4.

5 Experimental results

To compare AW-SKDEMI, AW-LSKDEMI, and naı̈ve Bayes
learning in terms of classification accuracy, we conducted
experiments on UCI Machine Learning Repository Bench-
mark Datasets [2]. The UCI benchmark datasets used in
the experiments are listed in Table 3. Note that we have
discretized the numerical attribute values for each dataset.

In the implementation of the proposed algorithm, all
probabilities (including p̂(C = c), p̂(Ai = ai, C = c))
were estimated via the following Laplacian smoothing:

p̂(C = c) = count (c) + 1

n + |C| (21)

p̂(Ai = ai, C = c) = count (ai, c) + 1

ni + |Ai | × |C| (22)

where n is the number of training examples for which the
class value is known, and ni is the number of training
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examples for which both the attribute i and the class are
known. The function count (•) is the count value of •.
Dividing p̂(Ai = ai, C = c) by p̂(C = c) gives the
conditional probability p̂(Ai = ai |C = c).

To compare the performance of the algorithms, we used
an adapted t-test with 10-fold cross-validation. Using the
same training datasets and test datasets, we conducted
experiments on the proposed algorithms, standard naı̈ve
Bayes, PAT-NBL [8], AODE [15], HNB [7], K2 [5], and
TAN [6]. The algorithms performance was evaluated in
terms of the classification accuracy.

Table 4 compares the accuracy of standard naı̈ve Bayes,
AW-SKDEMI, AW-LSKDEMI, and the previously devel-
oped algorithms that use a relaxed conditional indepen-
dence assumption. Mutual information (MI) was used for
AW-SKDE and AW-LSKDE. The conditional minimum
description length (CMDL), conditional Akaike informa-
tion criterion (CAIC), and conditional log-likelihood (CLL)
were used in PAT-NBL, and the Bayesian information cri-
teria (BIC) was used in K2 and TAN. Some results are
missing for the HNB algorithm, because HNB cannot han-
dle datasets with missing values. Instead of using traditional
methods to fill the missing values or treating each missing
value as a new attribute value, we have simply omitted HNB
from the experiments using datasets with missing values for
fair comparison.

It can be seen that the AW-SKDEMI learner produced
four better results, six comparative results, and seven
worse results than the naı̈ve Bayes classifier. However,
the AW-LSKDEMI learner only outperformed the naı̈ve
Bayes learner on one dataset. Note that the accuracies were
estimated using 10-fold cross-validation with a 95% confi-
dence interval. The win/tie/lose results are summarized in
Table 5. Note that the overall win/tie/lose record between
naı̈ve Bayes and our AW-SKDEMI was 8/5/4. Although the
naı̈ve Bayes classifier achieved more wins than AW-
SKDEMI, the overall average accuracy of AW-SKDEMI

(84.81±3.22) was higher than that of the naı̈ve Bayes
method (84.78±3.23).

These experimental results prove that our new attribute
weighting model AW-SKDEMI achieves comparable and
sometimes better performance than the classical naı̈ve
Bayes method. AW-SKDEMI exhibited better performance
than PAT-NBL, with a win/tie/lose record of 11/0/6.

Unfortunately, AW-SKDEMI does not outperform AODE
and HNB. We have examined the results, and found that
the training error of AW-SKDEMI is usually higher than
that of AODE and HNB. This indicates that AW-SKDEMI

suffers from over-fitting. Overcoming this problem will be
considered in future research.

Compared with K2 and TAN, AW-SKDEMI exhibits
comparable and sometimes better performance, with
win/tie/lose records of 6/2/9 and 8/0/9, respectively.
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The AW-LSKDEMI learner performed poorly because
of its ignorance of bandwidth parameters in the kernel
methods, which results in a relatively large bias.

In the experiments we performed, it is interesting to note
that attribute weighting methods (AW-SKDE, AODE, and
HNB) were generally superior to network structure elicita-
tion methods (K2 and TAN). This indicates that stressing
significant attributes may be more important than eliciting
the dependence relationship between attributes.

6 Conclusions and future work

In this paper, a novel attribute weighting framework called
Attribute Weighting with Smooth Kernel Density Estima-
tions has been proposed. The AW-SKDE framework enables
the estimation of likelihood to be dominated by attribute
weights. Based on the AW-SKDE framework, mutual infor-
mation was exploited to give the AW-SKDEMI classifier.
We conducted experiments on seventeen UCI benchmark
datasets, and compared the accuracy of the standard naı̈ve
Bayes learner, AW-SKDEMI, AW-LSKDEMI, PAT-NBL,
AODE, HNB, K2, and TAN. The experimental results
demonstrated that our new learner, AW-SKDEMI, is as
efficient and effective as naı̈ve Bayes, and has compara-
ble performance to K2 and TAN. However, the relatively
large bias in the AW-LSKDEMI algorithm resulted in poor
performance.

Even though AW-SKDEMI produced comparable results,
as shown in Table 4, it did not completely outperform naı̈ve
Bayes. In future work, we plan to improve the AW-SKDE
framework and investigate more effective attribute weight-
ing methods to reduce over-fitting. We will also investigate
attribute weighting methods other than the weight measure-
ment method with mutual information between attributes
and class labels.
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