
Appl Intell (2016) 44:621–633
DOI 10.1007/s10489-015-0716-4

A novel multiobjective particle swarm optimization
algorithm for signed network community detection

Zhaoxing Li1,2 ·Lile He1 ·Yunrui Li3

Published online: 26 October 2015
© Springer Science+Business Media New York 2015

Abstract Signed graphs or networks are effective mod-
els for analyzing complex social systems. Community
detection from signed networks has received enormous
attention from diverse fields. In this paper, the signed net-
work community detection problem is addressed from the
viewpoint of evolutionary computation. A multiobjective
optimization model based on link density is newly proposed
for the community detection problem. A novel multiobjec-
tive particle swarm optimization algorithm is put forward
to solve the proposed optimization model. Each single run
of the proposed algorithm can produce a set of evenly
distributed Pareto solutions each of which represents a net-
work community structure. To check the performance of
the proposed algorithm, extensive experiments on synthetic
and real-world signed networks are carried out. Compar-
isons against several state-of-the-art approaches for signed
network community detection are carried out. The exper-
iments demonstrate that the proposed optimization model
and the algorithm are promising for community detection
from signed networks.
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1 Introduction

The network is ubiquitous. Network facilitates us with
enormous convenience to better communicate with others.
Network is changing our daily life unprecedentedly. The
term “network” here mainly refers to the mobile commu-
nication networks. Besides the communication networks,
there are a lot of other networks in real life, such as the
power or the traffic transportation networks, the metabolic
networks, etc. To do research on these complex networks
is of great importance from the perspective of theoretical
analysis and real applications.

A direct way to analyze complex networks is to represent
networks by graphs. A graph is comprised of a set of nodes
and edges. The nodes represent the objects that consist of
the networks and the edges denote the relations among the
objects. By analyzing the characteristics of a graph one can
get to know the properties of a network. Networks have
many famous properties, such as the small-world property
[26], the scale-free property [2], etc., and among them the
network community structure property [10] has been proved
to be an eminent one. The network community property is
in accordance with the Chinese old saying that “birds of a
feather flock together”. A feather is like a community. In
graph language, a community is referred to as a subgraph
which holds the condition that within a community the sim-
ilarities between the nodes are high while between different
communities the similarities are low.

The community structure is very important for many
networks. Consequently, to discover the community struc-
tures of complex networks has aroused great interests of
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scholars. So far, a large amount of methods have been
proposed to detect the community structures of networks
[8, 15, 23, 28]. One of the landmark contribution should
owe to Girvan and Newman for their work in [10]. In their
work, the modularity index has been put forward. The mod-
ularity index has been widely used to evaluate the goodness
of a network partition. Following this work, many meth-
ods based on the modularity index have been cranked out
[8]. The essence of community discovery is a clustering
problem and a clustering problem can be effectively solved
by heuristic optimization methods. With respect to this, a
massive amount of creative works based on heuristic opti-
mization algorithms have been done [5, 8]. To solve the
signed network community detection problem, Cai et al.
in [4] have proposed a particle swarm optimization algo-
rithm which aims to maximize the signed modularity index
[11]. However, the modularity based index exists the resolu-
tion limitation [9], i.e., by purely optimizing the modularity
based index one cannot discover small communities whose
sizes are smaller than a scale which depends on the total
size of the network and on the degree of inter connected-
ness of the community. Apart from this, each sigle run of
the algorithm in [4] can only produce one network commu-
nity structure which is inconvenient for the decision maker.
To avoid these two drawbacks, Gong et al. in [12] have
put forward a state-of-the-art multiobjective discrete particle
swarm optimization (MODPSO) algorithm for complex net-
work clustering. Although the MODPSO algorithm is quite
promising for community discovery, its search ability still
needs improvement from the viewpoint of multiobjective
optimization. Besides, from the viewpoint of network com-
munity discovery, the established optimization model also
can be improved.

In this paper, to better solve the problem of commu-
nity discovery from signed networks, a novel algorithm
based on multiobject particle swarm optimization is newly
proposed. The main contributions of this paper are as
follows:

1. A new multiobjective optimization model is suggested
for the signed network community discovery problem.
The newly proposed model is based on the link den-
sity of a node. By optimizing the model one can ensure
that both the positive link density within a community

and the negative link density between different commu-
nities are big, which is in accordance with the signed
community property.

2. A novel multiobject particle swarm optimization
(MOPSO) algorithm based on the decomposition strat-
egy is developed to solve the established multiobjective
optimization model. In the newly developed algorithm,
an efficient subproblem update strategy is proposed to
enhance population diversity.

3. Extensive experiments compared against several state-
of-the-art signed network community discovery algo-
rithms are carried out. The experiments demonstrate
that the proposed optimization model is effective and
the devised subproblem update strategy does improve
the performance of the proposed algorithm for signed
network community discovery.

The rest of the paper is organized as follows. Section 2
gives the related backgrounds including the statement of
the network community discovery problem and the brief
introduction of MOPSO. Section 3 presents the proposed
algorithm for network clustering in detail. Section 4 shows
the experimental studies of the proposed method, and the
conclusions are finally drawn in Section 5.

2 Related backgrounds

2.1 Problem description

A signed network is normally represented by a signed graph
that is comprised of a set of nodes and edges. The edges
contain two types, the positive edges and the negative edges.
The task of signed network community detection is to divide
a signed network into different clusters based on certain
principles. Each cluster is called a community. Fig. 1 shows
an example of a signed network with 9 nodes and 16 edges.

Currently, there is no uniform definition of what a com-
munity is. In academic domain, a community is regarded as
a subset of a network that holds the condition that the sim-
ilarities within a community are big while the similarities
between different communities are small.

Gong et al. in [12] gave a condition that a signed com-
munity should satisfy. Given a signed network modeled as

Fig. 1 A graphical illustration
of a an example of a signed
network, b an example of the
corresponding community
structure
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G = (V , PL, NL), where V is the set of nodes and PL

and NL are the sets of positive and negative links, respec-
tively. Let A be the adjacency matrix of G and lij be the link
between nodes i and j.

Given that S ⊂ G is a subgraph where node i
belongs to. Let (d+

i )in = ∑
j∈S,lij ∈PLAij and (d−

i )in =
∑

j∈S,lij ∈NL|Aij | be the positive and negative internal
degrees of node i, respectively. Then S is a signed commu-
nity in a strong sense if

∀i ∈ S, (d+
i )in > (d−

i )in (1)

Let (d−
i )out = ∑

j /∈S,lij ∈NL|Aij | and (d+
i )out =

∑
j /∈S,lij ∈PLAij be the negative and positive external

degrees of node i, respectively. Then S is a signed commu-
nity in a weak sense if
{ ∑

i∈S(d+
i )in >

∑
i∈S(d+

i )out

∑
i∈S(d−

i )out >
∑

i∈S(d−
i )in

(2)

The above condition indicates that, in a strong sense, a
node has more positive links than negative links within the
community; in a weak sense, the positive links within a
community and the negative links between different com-
munities are all dense.

As can be seen from Fig. 1 that the task of community
discovery from a signed network is to separate the whole
network into many communities. However, how to evaluate
the goodness of a separation is still an open issue.

For a signed network, in order to give a quantitative stan-
dard to a signed community structure, Gómez et al. in [11]
presented a reformulation of the modularity metric which
was originally proposed by Girvan and Newman [10]. The
reformulated index is called the signed modularity (SQ)
which reads:

SQ= 1

2w++2w−
∑

i,j

(

wij −
(
w+

i w+
j

2w+ − w−
i w−

j

2w−

))

(δ(i, j)

(3)

where wij is the weight of the signed adjacency matrix,
w+

i (w−
i ) denotes the sum of all positive (negative) weights

of node i. If nodes i and j are in the same group, δ(i, j) = 1,
otherwise, 0. Normally by assumption we take it that the
larger the value of SQ is, the better the separation of the
community structure is.

2.2 Multiobjective particle swarm optimization

Particle swarm optimization (PSO) is a well known stochas-
tic searching algorithm. PSO has been widely applied to
solve a wide range of hard optimization problems [18].
PSO is an eminent optimization technique among the swarm
intelligence algorithms which are originated from the social

behaviors such as fish schooling and birds flocking. It was
first proposed by Eberhart and Kennedy [13] in 1995.

PSO is also a population based algorithm. It optimizes a
problem by having a swarm of individuals each of which is
called a particle. Each particle has a position and a velocity
vector. The position represents a candidate solution to the
optimization problem. The velocity denotes the tendency for
one particle to change its current position. The flight status
of a particle is updated by simple rules.

Given that the size of the particle swarm is pop and
the dimension of the search space is n. Let V i =
{vi1, vi2, . . . , vin} and Xi = {xi1, xi2, . . . , xin} be the ith
(i = 1, 2, ..., pop) particle’ velocity and position vectors,
respectively. Then the rules for particle i to adjust its status
are as the following:

V i ← V i + c1r1(P i − Xi ) + c2r2(G − Xi ) (4)

Xi ← Xi + V i (5)

where P i = {pi1, pi2, . . . , pin} is the ith particle’s personal
best position and G = {g1, g2, . . . , gn} is the best position
of the swarm. Parameter c1 and c2 are the learning factors,
and r1, r2 ∈ [0, 1] are two random numbers.

It can be seen from the above descriptions that the canon-
ical PSO is designed for continuous optimization problems.
Many efforts have been made to extend the basic PSO
into discrete contexts, and many discrete PSO (DPSO)
algorithms have been proposed [1, 6, 14, 20]. In real appli-
cations, many optimization problems involve more than one
optimization objective. These problems are the so called
multiobjective optimization problems (MOPs). In order
to solve MOPs, multiobjective PSO (MOPSO) algorithms
have emerged. In the existing literatures, the framework of
a general MOPSO is shown in Fig. 2.

Fig. 2 Pseudocode of a general MOPSO algorithm
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Most of the existing MOPSOs apply some sort of muta-
tion operator to promote diversity after performing the
flight. It is obvious that the scheme of the basic PSO has
to be modified if we want to apply PSO to MOPs, because
for a MOP, we aim to find a set of different solutions.
With respect to the leaders selection, the straight forward
method is random selection, but it is not good to guide
the flight. Another most simple approach is to adopt aggre-
gating functions (i.e., weighted sums of the objectives) or
approaches that optimize each objective separately. Other
techniques based on the concept of Pareto optimality can
also be utilized as a selection method, such as the density
measure [7].

3 Proposed method for signed network community
discovery

3.1 Framework of the proposed algorithm

Considering that the positive links within a signed commu-
nity and the negative links between different communities
should be dense, we separately model the two conditions
as two objectives and consequently, a bi-objective optimiza-
tion model is newly established in this paper. Let C =
{c1, c2, ..., ck} be a network partition where k is the num-
ber of communities. The two objectives are shown as the
following:

min F(·)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f1 = −
k∑

i=1

L+(ci ,ci )−L+(ci ,ci )|ci |

f2 = −
k∑

i=1

L−(ci ,ci )−L−(ci ,ci )|ci |
(6)

where L+(ci, cj ) = ∑
i∈ci ,j∈cj

Aij , (Aij > 0),

L−(ci, cj ) = ∑
i∈ci ,j∈cj

|Aij |, (Aij < 0), and ci = C − ci .
In the proposed optimization model, to minimize f1 we

can maximize the positive links within a signed community
while to minimize f2 we can maximize the negative links
between different communities.

In order to minimize these two objectives simultaneously,
decomposition strategy is employed to decompose the opti-
mization problem into many scalar optimization problems.
Because in this paper the two objectives are discrete, what
is more, it is hard to decide whether they are concave or

not. Based on these, the Tchebycheff approach is adopted
in our algorithm to decompose the multiobjective opti-
mization problem into scalar optimization problems. The
Tchebycheff decomposition technique is written as:

gte(x|w, z∗) = max1≤i≤k wi |fi(x) − z∗
i |

subject to x ∈ �
(7)

where z∗ = (z∗
1, z

∗
2, · · · , z∗

k) is the reference point z∗
i =

{min fi(x)|x ∈ �}.

Algorithm 1 shows the framework of the proposed algo-
rithm (denoted by PSOSCD) for signed network community
discovery. In step 2 and step 12, we have developed a posi-
tion repair operation which aims to save computational time.
The detailed operations are shown in Section 3.4. In step 11,
in order to better preserve population diversity, in this paper
we have devised a novel replacement strategy to update the
neighboring subproblems of xi . The detailed operations are
shown in Section 3.5.

Fig. 3 A schematic illustration
of the string based particle
representation schema
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Fig. 4 A graphical illustration
of the operations of the update
rules

3.2 Particle coding/decoding scheme

A particle represents a solution to the optimization prob-
lem. The update rules in (4) and (5) are for the particles
to reproduce offspring solutions. For the community detec-
tion problem, this paper adopts the string based coding
scheme in which the position vector of a particle is an inte-
ger permutation while the veloity vector is a binary coded
permutation. The adopted representation schema is shown
in Fig. 3.

It can be seen from the figure that the string based coding
scheme is direct and it is easy to decode. What most impor-
tant is that this kind of scheme does not need to specific the
community size in advance.

3.3 Particle update rules

From Fig. 3 we can notice that the (4) and (5) no longer
fit for the community detection problem. In this paper we
have redefined (4) and (5). The redefined rules are shown as
follows:

V i ← ϕ(ωV i + c1r1(P i ∩ Xi ) + c2r2(G ∩ Xi )) (8)

Xi ← Xi ∪ V i (9)

In the above equations, the symbol “∩” is the XOR
operator. The function ϕ(t) is defined as follows:

ϕ(t) =
{
1 if rand(0, 1) ≤ 1/(1 + e−t )

0 if rand(0, 1) > 1/(1 + e−t )
(10)

The operation rule for the symbol “∪” in (9) is defined in
the following way:
⎧
⎪⎨

⎪⎩

Xi � Vi = X′
i = {x′

i1, x
′
i2, ..., x

′
in}

x′
ij = xij if vi = 0

x′
ij = argmaxr

∑
k∈Nj

δ(xik, r) if vi = 1
(11)

where Nj is the neighbor set of node j . If a = b, δ(a, b) =
1, otherwise, 0.

Figure 4 graphically depicts the detailed operations of the
update rules. It can be seen that the particle status update

rules make use of the topology information of a signed
network, which makes the proposed algorithm feasible for
addressing the community discovery task.

3.4 Position repair

From the coding system described above one may notice a
phenomenon that two different position vectors may corre-
spond to the same network community structure. Figure 5
shows an example of this phenomenon.

In Fig. 5, Xi and P i are the ith particle’s current and his-
torically best positions respectively. After decoding, Xi and
P i represent the same network community structure. Based
on (8) and (9) we will get a non-zero vector V i , and Xi

will be changed which takes time. In order to save compu-
tational time, we have devised a position repair operation
whose pseudocodes are shown in Algorithm 2.

Fig. 5 An example of two different position vectors that correspond
to the same network community structure
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Table 1 Meanings of the
parameters in the extended
LFR model for generating
signed benchmark networks

Parameter Meaning

n number of nodes

kavg averaged degree of a node

kmax maximum degree of a node

γ exponent for the power law distribution of the node degree

β exponent for the power law distribution of the community size

smin minimum community size

smax maximum community size

μ mixing parameter

p− fraction of negative edges within communities

p+ fraction of positive edges between different communities

As shown in Fig. 5, after we repair the position, Xi and
P i become the same and based on (8) a zero vector is
obtained. Then there is no need to compute the new position
vector and the computational time is saved.

3.5 Replacement operation

The replacement operation aims to replace the subproblems
with better offspring solutions. In this paper, in order to bet-
ter preserve population diversity, we have proposed a novel
subproblems update strategy. Given that xt+1

i is a newly
generated solution, in our proposed update strategy, only T
subproblems are updated. The pseudocode of the proposed
strategy is shown in Algorithm 3.

The parameter T cannot be to large. On one hand, if T is
too big, it will cost a lot of computational time. On the other

hand, since T subproblems will be replaced by the newly
generated good individual, if T is too big, the population
diversity will decrease immediately.

4 Experimental testing

4.1 Experimental settings

In this part, the proposed PSOSCD algorithm will be tested
on both benchmark signed networks and real-world signed
networks. Several state-of-the-art signed network commu-
nity discovery methods have been selected to compare with
the proposed approach. The proposed algorithm is coded
in C++, and the experiments are carried out on an Inter(R)
Celeron(R)M CPU 550 machine, 3.2GHz, with 4GB
memory.

The comparison methods are the MODPSO algorithm
[12] and the MOEA-SN algorithm [3]. For all the algo-
rithms, the population size pop, and the maximal algorithm
iteration number gmax are all set to 200. The crossover and
mutation possibilities are set to 0.8 and 0.2, respectively.
In PSOSCD, the learning factors c1 and c2 are both set to
1.494, and the inertia weight ω is set to 0.729.

In order to estimate the similarity between the true net-
work partition and the discovered one, the widely used Nor-
malized Mutual Information (NMI) metric [27] is adopted.

Table 2 Parameter settings for the 216 generated signed benchmark
networks

Parameter Value Parameter Value

n 500 smin 10

kavg 15 smax 50

kmax 40 μ [0:0.1:0.5]

γ 2 p− [0:0.2:1.0]

β 1 p+ [0:0.2:1.0]
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Fig. 6 Averaged NMI values for the 216 signed benchmark networks
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Table 3 Statistics of the signed networks. E+ and E− denote the
positive and negative edges, respectively

Network #Vertex #Edge #E+ #E− Ref.

SPP 10 45 18 27 [16]

GGS 16 58 29 29 [24]

EGFR 329 779 515 264 [22]

Macrophage 678 1425 947 478 [21]

Yeast 690 1080 860 220 [19]

Ecoli 1461 3215 1879 1336 [25]

Given that A and B are two partitions of a network, then the
NMI between A and B is written as:

NMI = −2
∑CA

i=1

∑CB

j=1Cij log(CijN/Ci.C.j )
∑CA

i=1Ci.log(Ci./N) + ∑CB

j=1C.j log(C.j /N)

(12)

where N is the number of nodes of the network, C is a con-
fusion matrix. Cij equals to the number of nodes shared in
common by community i in partition A and by community j
in partition B. CA (or CB ) is the number of clusters in parti-
tion A (or B), Ci. (or C.j ) is the sum of elements of C in row
i (or column j). If NMI(A,B) = 1, then we say that A and
B are the same.

4.2 Testing on synthetic signed networks

Lancichinetti et al. in [17] have cranked out the so
called LFR model for generating unsigned benchmark
networks for testing purpose. In this paper, this model
has been extended to generate signed benchmark net-
works. The extended model is denoted by SN(n, kavg, kmax ,
γ, β, smin, smax, μ, p−, p+). By tuning the parameters in

SN we can control the structure of the generated network.
The meanings of the parameters are listed in Table 1.

In this paper, we have generated 216 benchmark net-
works to test the performance of the proposed algorithm.
Table 2 lists the parameters for the generated benchmark
networks.

Because the real community structures of the benchmark
networks are known, we use the NMI index to evaluate
the performance of the algorithms. For the benchmark net-
works, we run the proposed algorithm and the comparison
algorithms for 30 times and the averaged NMI values are
recorded.

Figure 6 shows the averaged NMI values for the
216 signed benchmark networks. When the parameter μ

increases, then the links within a community will be less,
consequently the community structure becomes more and
more vague, and it is harder and harder for an algorithm to
detect the ground truths of the benchmark networks.

The structure of each signed network is mainly decided
by the parameters μ, p−, and p+. If μ is bigger than 0.5,
then there is hardly community structure in the network.
Since we limit the range of μ from 0 to 0.5, consequently
the network structure is mainly decided by the parameters
p− and p+. From Fig. 6 we can see that when p− is
small, the obtained NMI values are high, close to or equal
1. With p− increases, the negative edges within a commu-
nity is becoming denser, i.e., the community structure is
becoming vague which makes it difficult for any methods to
discover the community structures. Reflected in the figure,
the NMIvalues decrease.

The experiments on the extended LFR signed benchmark
networks indicate that the proposed algorithm works well
on the benchmark networks. In the next subsection we are
going to show the performances of the proposed algorithm
on real-world signed networks.

Table 4 Hypervolumes of the
PFs generated by the proposed
algorithm with different
settings of the parameter T

Network HI T = 1 T = 2 T = 3 T = 4 T = 5

SPP Mean 1.4212 1.4212 1.4210 1.4212 1.4212

Std 0 0 0.0013 0 0

GGS Mean 1.3071 1.3146 1.3113 1.3004 1.2752

Std 0.0065 0.0030 0.0167 0.0293 0.0402

EGFR Mean 1.1321 1.1430 1.1385 1.1206 1.0732

Std 0.0333 0.0318 0.0415 0.0527 0.0993

Macrophage Mean 1.2038 1.2323 1.2387 1.2137 1.1882

Std 0.0204 0.0202 0.0198 0.0354 0.0685

Yeast Mean 1.1562 1.1782 1.1563 1.1338 1.1296

Std 0.0338 0.0323 0.0323 0.0474 0.0502

Ecoli Mean 1.1125 1.1343 1.1201 1.1127 1.0378

Std 0.0398 0.0282 0.0337 0.0401 0.1105
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Fig. 7 Pareto fronts obtained by the algorithms with biggest hypervolumes

4.3 Testing on real-world signed networks

Six real-world signed networks have been employed to test
the community discovery performances of the proposed

algorithm and the comparison algorithms. The statistics of
each network are given in Table 3.

In Table 3, the real community structures of the SPP
and the GGS network are known. In our experiments,
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Table 5 Statistical results over
30 runs on the signed networks
with known ground truth

Data Algorithm NMImax NMIavg Clusters SQmax SQavg

SPP PSOSCD 1 1 2 0.4547 0.4547

PSOSCD-v1 1 1 2 0.4547 0.4547

MODPSO 1 0.9949 2 0.4547 0.4532

MOEA-SN 1 0.9993 2 0.4547 0.4543

PSOSCD 1 1 3 0.4310 0.4310

PSOSCD-v1 1 1 3 0.4310 0.4310

GGS MODPSO 1 1 3 0.4310 0.4310

MOEA-SN 1 0.9955 3 0.4310 0.4303

each of the algorithm has been independently tested
for 30 times.

4.3.1 Impact of the parameter T

In our proposed subproblem update operation, there is a
parameter T which affects the performance of our proposed
algorithm. In this part we will test its impact.

Because different values of parameter T will lead to dif-
ferent Pareto fronts, since the true Pareto front for each
network is unknown, in order to evaluate the goodness of the
Pareto front yielded by the proposed algorithm, we adopt
the hypervolume index (HI) [29] which calculates the area
of the space covered by the Pareto front. The HI index,
also known as the S metric or the Lebesgue measure, is
calculated as follows:

HI(PS, yref ) = L
(∪y∈PS

{
y′|y ≺ y′ ≺ yref

})
, (13)

where PS is the set of Pareto-optimal solutions; yref ∈
R

m (m is the number of objectives) denotes the reference

(a)

(b)

Fig. 8 Detected community structures of the SPP network

point that should be dominated by all Pareto-optimal solu-
tions; L denotes the Lebesgue measure; and ≺ represents
dominance.

In our experiments, HI has been normalized and the ref-
erence point yref is set to (1.2, 1.2). We test our proposed
algorithm with different configurations of the parameter
T . We record the hypervolumes of the Pareto fronts when
experimenting on the six real-world networks. The results
over 30 runs are recorded in Table 4.

The parameter T determines the number of neighboring
solutions which will be updated by a new offspring solu-
tion. If T is very big, it will be very time consuming and the
whole population diversity will be lost because a good new
offspring solution will update the majority of the solutions.
If T is so small, the convergence speed will be slow because
at each update step only a small number of solutions will be
updated. The results in Table 4 suggest that T = 2 seems
to be the best. Based on this, in all the experiments, we set
T = 2 for our proposed algorithm.

4.3.2 Efficacy of the replacement operation

In this paper we have devised a new replacement opera-
tion to update the neighboring subproblems. In order to
test the effectiveness of the proposed strategy, we com-
pare the Pareto fronts obtained by PSOSCD and its variant
PSOSCD-v1 which does not use the update strategy. We
run both PSOSCD and PSOSCD-v1 for 30 times. The
Pareto fronts with the biggest hypervolumes are shown
in Fig. 7.

It can be seen from Fig. 7a that, for the SPP network,
PSOSCD yields the same Pareto front as PSOSCD-v1 does.
In our experiments we have found that each single run of
these two algorithms always output the same results when
experimenting on the SPP network, which indicates that the
impact of the replacement operation is not significant. One
reason that can explain this is because of the simple struc-
ture of the SPP network which makes the algorithm easy to
find the optimal solutions.

From Fig. 7b to f we can clearly see that PSOSCD yields
better Pareto fronts on the rest five real signed networks than
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Fig. 9 Detected community
structures of the GGS network

PSOSCD-v1 does. The above experiments demonstrate that
the proposed replacement operation can greatly enhance the
population diversity.

4.3.3 Community discovery performance

In view of that the parameter T is determined and the effi-
cacy of the replacement operation is validated, next step
we will show the community discovery performance of our
proposed algorithm.

For each network, we select the solution on the Pareto
front that has the biggest signed modularity value as the
final output of our proposed algorithm. Table 5 lists the sta-
tistical results when experimenting on the two small scale
networks with known community structures.

From Table 5 we can see that, for the SPP and the GGS
networks, all the algorithms perform similarly good, but the
proposed algorithm performs the best. These two signed
networks are small in size. It is easy for the algorithms to
find the optimal solutions.

Figures 8 and 9 display the community structures
obtained by our proposed algorithm when experimenting on
the SPP and the GGS networks.

Each single run of the proposed algorithm can yield a
set of solutions each of which denotes a network commu-
nity structure. In Figs. 8 and 9 we respectively display two
community structures of the corresponding network.

It can be seen that apart from the ground truth com-
munity structures, our proposed algorithm also discov-
ered other interesting community structures. For the SPP
network, it has discovered a structure with three com-
munities in which the node SNS has been separated as
an independent community. Because the node SNS has
two negative linkages with the nodes in its original com-
munity, consequently, the discovered structure with three
communities is meaningful. The similar phenomenon also
happens to the GGS network. Apart from the ground
truth structure, it also discovered other meaningful com-
munity structures which can facilitate intelligent decision
making.

Table 6 lists the experimental results for the four net-
works with unknown ground truth. Because these four
networks have no ground truth, we cannot compare the
detected community structures with any reference struc-
tures. Besides, since the scales of these networks are big,
it is hard to display their community structures. However,

Table 6 Statistical results over
30 runs on the signed networks
with unknown ground truth

Index Algorithm EGFR Macrophage Yeast Ecoli

Clusters PSOSCD 83 73 89 123

PSOSCD-v1 92 80 99 121

MODPSO 93 85 103 125

MOEA-SN 91 88 91 137

SQmax PSOSCD 0.2878 0.3244 0.6038 0.4032

PSOSCD-v1 0.2731 0.2985 0.5879 0.3652

MODPSO 0.2848 0.3028 0.5969 0.3979

MOEA-SN 0.2753 0.3010 0.5838 0.3980

SQavg PSOSCD 0.2835 0.3189 0.5979 0.3908

PSOSCD-v1 0.2635 0.2787 0.5434 0.3301

MODPSO 0.2791 0.2921 0.5741 0.3752

MOEA-SN 0.2678 0.2738 0.5321 0.3696
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from the viewpoint of the signed modularity we can notice
that, the maximum values and the averaged values obtained
by our proposed algorithm are higher than those obtained
by the rest algorithms, which indicates that the discovered
community structures are better than those discovered by
the comparison algorithms.

All the experiments have proved the validity of the
proposed algorithm. The proposed optimization model
is effective for the signed network community discov-
ery problem. The developed PSOSCD algorithm which
makes use of the decomposition strategy solves the pro-
posed model well. Meanwhile, the newly cranked out
subproblems update strategy enhances the population
diversity.

5 Conclusion

Community discovery from signed networks is an important
task in complex network analytics. This paper modeled the
task of signed network community discovery as a multiob-
jective optimization problem. Considering the very nature
of a signed community, in this paper, a new multiobjec-
tive optimization model based on the link density was put
forward. In order to solve the newly proposed model, a
novel multiobjective particle swarm optimization algorithm
was devised. The proposed algorithm divided the multiob-
jective optimization problem into many scalar optimization
subproblems by using the Tchebycheff decomposition tech-
nique. Each subproblem was optimized through the particle
swarm optimization technique. In order to enhance the
diversity of the swarm, a novel subproblem update tactic
was proposed. Each single run of the proposed algorithm
can yield a set of equally good solutions each of which rep-
resents a certain community structure of the tested signed
network. Extensive experiments compared against several
state-of-the-art approaches on both synthetic and real-world
signed networks demonstrated that the proposed optimiza-
tion model was effective and the devised algorithm was
promising for solving the signed network community detec-
tion problem.

In this paper, the proposed optimization model is promis-
ing for undirected and unweighted signed networks. How-
ever, in reality many signed networks are directed and have
weights. What is more, the topologies of many signed net-
works may evolve with the time. In our future work, more
efforts will be made to study the community detection
problem under these contexts.
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