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Abstract Schema theory is the most well-known model of
evolutionary algorithms. Imitating from genetic algorithms
(GA), nearly all schemata defined for genetic programming
(GP) refer to a set of points in the search space that share
some syntactic characteristics. In GP, syntactically similar
individuals do not necessarily have similar semantics. The
instances of a syntactic schema do not behave similarly,
hence the corresponding schema theory becomes unreliable.
Therefore, these theories have been rarely used to improve
the performance of GP. The main objective of this study is
to propose a schema theory which could be a more real-
istic model for GP and could be potentially employed for
improving GP in practice. To achieve this aim, the concept
of semantic schema is introduced. This schema partitions
the search space according to semantics of trees, regard-
less of their syntactic variety. We interpret the semantics of
a tree in terms of the mutual information between its out-
put and the target. The semantic schema is characterized
by a set of semantic building blocks and their joint proba-
bility distribution. After introducing the semantic building
blocks, an algorithm for finding them in a given population
is presented. An extraction method that looks for the most
significant schema of the population is provided. Moreover,
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an exact microscopic schema theorem is suggested that pre-
dicts the expected number of schema samples in the next
generation. Experimental results demonstrate the capabil-
ity of the proposed schema definition in representing the
semantics of the schema instances. It is also revealed that the
semantic schema theorem estimation is more realistic than
previously defined schemata.
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1 Introduction

Since the introduction of GP in 1992 [1], it has been suc-
cessfully applied for problem solving in various domains
such as circuits, controllers, image recognition, bioinfor-
matics, robotics, reverse engineering and symbolic regres-
sion [2]. However, a relatively small number of theoretical
results are available which explain why and how GP works.
Furthermore, these theoretical results have been seldom
used practically to improve GP and there is still a large
gap between theory and practice [3, 4]. Schema theory
is the oldest and the most well-known model of evolu-
tionary algorithms. A schema is a subset of points in the
search space that share some characteristics. The schema
theory predicts the number of individuals that belong to
the schema in the next generation in terms of information
obtained from the current generation. The schema theory
can provide a deeper understanding of the evolution process
and population dynamics. Furthermore, the insight gained
through schema theory investigations can result in advan-
tageous practical feedbacks. A well-defined schema theory
is a realistic model of evolutionary algorithm that is very
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useful in predicting the behavior of GP, for example detect-
ing the convergence possibility in early stages of evolution.
It can also be used for selecting the optimal configuration,
including the combination of operators, parameter setting,
fitness function, representation method and initialization
strategy.

Schema theory was originally developed for explaining
the power of GA [5]. Holland claimed that GA searches
for optimal patterns called schemata, while searching for
optimal chromosomes. His schema theory provides a lower
bound on the expected number of chromosomes belonging
to a given schema, in terms of some quantities measured
in the current generation, e.g., the number and the average
fitness of chromosomes matching the schema and the aver-
age fitness of the overall population. In the context of GA,
a schema is usually represented by a string over the alpha-
bet [6]. The character “#” refers to “don’t care” symbol
that could be replaced by any arbitrary symbol of alpha-
bets. Given a schema H and its information in generation t ,
the general form of schema theory (i.e., (1)) describes how
the expected number of individuals sampling H varies in
generation t+1,

E[m(H, t + 1)] = Mα(H, t), (1)

where M is the size of the population, m(H, t+1) is the
number of individuals belonging toH in generation t+1 and
α (the transition probability) is the probability that a newly
created individual belongs to schema H .

Schema theory was initially introduced for GA and later
was extended for GP [1]. However, due to some GP search
properties, principally the variability of individuals’ size and
shape, obtaining the schema theory for GP is much more
complicated than GA. After introducing the first schema
theory for GP [1], it has been enhanced in various ways by
extending the basic theorem for different operators, express-
ing the formulation in terms of different measures and
improving the exactness of the theorem equation [3, 7–16].
However, there are still some fundamental issues concerning
the GP schema theory which are not well addressed.

The most popular definition of a schema in GP liter-
ature is “a set of points in the search space that share
some syntactic characteristics” [15–17]. Considering the
principal objective of schema theory that is modeling the
behavior of evolutionary algorithms, the schema must be
a set of points of the search space which have common
behavior. Therefore, the above definition of the schema
can be valid just in the case that syntactically similar indi-
viduals have similar semantics and functionalities as well.
Although this assumption is almost true for GA, it does
not hold for GP because the representation of GP does not
preserve the neighborhood in genotype-phenotype mapping
[18, 19]. Nearly all schemata defined in the literature pro-
vide a partitioning over the genotype space. As a result, in

spite of syntactic similarity, different instances of a syntac-
tic schema may have extremely different phenotypes. There
are several major issues with relying on these schema theo-
ries for predicting future populations and applying them in
practice, principally:

• The internal fitness variance in syntactic schemata is
extremely high [13]. Therefore, the average fitness of
schema instances is not an appropriate descriptor of
samples’ fitness. The predicted schema status in the
next generation based on the schema’s average fitness
is far from the status of each of individuals sampling it.
In other words, obtaining a unified model for describ-
ing the behavior of all schema samples is not promising,
as individuals instantiating this kind of schema are
mapped to different phenotypes.

• The schema related quantities like fitness, change from
one generation to another in an unexpected way because
the schema is described based on syntactic features
rather than semantic characteristics or fitnesses. Since
the formulation of schema theorem is composed of
these schema related factors, even in exact schema the-
ories the prediction of the frequency of individuals
sampling the schema in the next generation is not pre-
cise. Under these circumstances, estimating the propa-
gation of a schema in further generations is not rational.
Therefore, one cannot predict the results of evolution
in early generations and schema theory remains just a
theoretical formulation without any usages in practice.

• As Majeed [20] noted, the fitness values of existing
schemas follow independent trends in different runs.
Thus, due to changes of schema frequency estimations
from one run to another, it is not possible to find a sin-
gle optimal configuration of GP for a specific problem
based on schema theory predictions.

• In syntactic schemata, there is a close relationship
between schema theory and the underlying GP rep-
resentation. Applying these schema theories to new
variants of GP is difficult.

• Most previous schema theorems provide the propaga-
tion of a given schema, without looking for schemata
that are actually present in the population. They do
not propose any extraction method for finding all or
even important schemata of the population. The main
reason possibly is the syntax-based definition of the
schema, which causes the number of schemas to be
greatly massive even in small populations. Thus, track-
ing and analyzing all schemata of the population is not
practically possible and this makes the usage of schema
theory difficult.

Consequently, syntactic schema theories are not reliable
descriptors of GP dynamics. Schema definition based only
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on the genotype of individuals is inadequate [19]. Nearly
all previous schema definitions are not beneficial enough in
understanding and predicting the behavior of GP.

The main objective of this study is proposing a schema
theory as a more realistic model of GP that can be poten-
tially employed for improving GP in practice. To this end,
the concept of semantic schema is introduced. The semantic
schema partitions the search space according to seman-
tics of trees, regardless of their shapes and structures. We
interpret semantics of a tree in terms of the mutual informa-
tion between its output and the target output. The semantic
schema is characterized by a set of semantic building blocks
together with their joint probability distribution. After defin-
ing the notion of semantic building blocks, we provide an
extraction algorithm for finding these building blocks in a
given population. A schema extraction method that looks for
the most significant schema present in the population and
an exact microscopic schema theorem are also proposed.

The rest of the paper is organized as follows. Section 2
aims to provide a comprehensive survey of GP schema the-
ory and the proposed method is explained in Section 3.
Experimental results are discussed in Section 4 and finally
Section 5 concludes the paper.

2 Related work

The first schema theory for GP was developed by applying
Holland’s schema theory to GP [1]. After presenting the ear-
lier work in GP schema theory, the basic schema theorem
was enhanced in many directions and several schema theo-
ries was introduced in the literature. Some researchers pro-
posed a type of rooted (i.e., positioned) schema [7-10, 16,
21-23] and some others suggested non-rooted (i.e., position-
less) variants [1, 13, 14, 20, 24]. In a rooted schema, the
schema is forced to occur in the root of its instances. Hence,
in addition to schema subtree or pattern, this kind of schema
provides the information about the position of the subtree.
In contrast, non-rooted schemata are subtrees that can occur
at any point in a program tree and may repeat multiple times
in the single individual.

The derived equation of schema theory is in terms of
microscopic measures (i.e., the detail information of each
individual) in some studies [9, 24] and macroscopic quan-
tities (i.e., the overall information about sets of individuals)
in others [1, 7, 7, 8, 10, 14, 16, 21, 23, 25].

The exactness of the schema equation was ignored in
the earlier work [1, 9, 13, 14, 21] and undertaken in more
recent ones [3, 7–14, 16, 23]. Inexact schema theories pro-
vide only lower bounds on the expected number of instances
of a schema in the next generation.

Koza [1] defined the schema to be a set of com-
plete subtrees or S-expressions, for example H = {(-xy)

(+ y(*xx))}. Each individual containing both specified
subtrees, instantiates the H .

The GP specific schema theory was first presented by
Altenberg [12] based on the probabilistic model of GP. He
defined a schema as a subtree that must exist in each of the
schema samples. Altenberg then obtained an equation that
provides the frequency of a given program in the next gener-
ation. He expressed the equation in terms of quantities, such
as the fitness and the frequency of each individual, the prob-
ability that inserting a given subtree in a given parent can
result in a specified offspring and the probability that a given
subtree is selected for crossover. The calculation was made
under several assumptions, including: the population is very
large, standard crossover and fitness proportionate selection
are used and crossover produces just one offspring.

Koza’s work on schema theory was generalized later by
O’Reilly and Oppacher [13] in order to include also incom-
plete subtrees called tree fragments. Tree fragment refers to
a tree having at least one “don’t care” symbol as the leaf
which can be matched by any valid subtree. In their study, a
schema is then represented by a set of pairs. Each pair con-
tains a complete or incomplete subtree along with an integer
indicating the minimum required number of occurrences of
the subtree in schema samples.

Whigham [14, 26] investigated the notion of schema
for context-free grammar-based GP and suggested a par-
tial derivation tree as a schema. Each program that can
be obtained by completing the schema is considered its
instance. He also provided the related schema theorem in
the form of a simple equation for the probability of schema
disruption under the presence of crossover and mutation.

Poli and Langdon [3, 22], defined a schema to be a tree
composed of functions from the set F U {=} and terminals
from the set T U {=}, respectively1. Where F and T are
problem specific function and terminal sets and “=” is a
“don’t care” symbol matched by a single terminal or func-
tion character. In contrast to previous research, this schema
is rooted which force the schema to be instantiated at most
once within a program. As a result, predicting the propaga-
tion of schema components in the population is equivalent
to studying the number of schema samples. Furthermore,
due to the special notion of the “don’t care” symbol in their
schema, the shape and size of all samples are the same.
Although this feature made the overall calculations easier,
fixed shape and size schema faced with serious difficulties
when investigating the effect of standard crossover because
standard crossover changes the shape and size of trees. The
resulting schema theorem was a worst-case scenario model,

1In the rest of the paper, we use “=” for referring to “don’t care”
symbol that is matched by a single terminal or function character and
“#” for “don’t care” symbol that is matched by any valid subtree,
consistently.
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since the schema creations from non-instance parents were
not calculated.

Rosca and Ballard [9, 27] also developed a rooted tree
schema theory. In their definition, the “don’t care” symbol
stands for any valid subtree. Rosca suggested a non-exact
schema theorem for GP with standard crossover as a func-
tion of microscopic quantities such as the size and fitness of
the programs matching the schema.

The difficulty with describing the effect of standard
crossover in fixed size and shape schema [3] led authors to
extend this schema in order to take the advantages of both
single [3] and subtree [9] “don’t care” symbols, through
the definition of hyperschema [10, 11]. As Poli defined, a
GP hyperschema is a rooted tree composed of the func-
tion set of F U {=} and terminal set of T U {=, #}.
The derived theorem corresponding to hyperschema was
an exact formula for predicting the expected number of
schema instances in terms of microscopic quantities, for GP
with one-point crossover [11] which was then extended to
macroscopic version [10]. Poli et al. continue to use this
definition of schema in many studies on schema theory for
GP with various operators like one-point crossover [15],
standard crossover applicable to linear structures [28] and
homologous crossover [29].

In order to obtain a valid schema theory for subtree-
swapping crossovers, Poli [23] extended the notion of
hyperschema to Variable Arity Hyperschema (or VA hyper-
schema for brevity). According to his definition, having
all features of the hyperschema, a VA hyperschema can
also include # symbol for internal nodes, which stands for
exactly one function of arity not smaller than the number of
linked subtrees. Poli proposed two exact schema theorems
indicated by both microscopic and macroscopic measures
respectively, for GP with subtree swapping crossover. This
work was then extended also for headless chicken crossover
and subtree mutation [30] and the general form with more
details and results, appropriate for many types of crossovers
was presented in [7, 8].

In 2004, Poli et al. [16] derived an exact macroscopic
GP schema theory applicable to the class of homolo-
gous crossovers. This schema was based on the concepts
of hyperschema and node reference system introduced in
their previous work. The authors also tried to develop a
Markov model for GP dynamics based on the suggested
theory.

More recently, Majeed [20] defined a schema as a sub-
tree with “don’t care” symbol in leaves and suggested a
method to extract it from the final generation. In his opin-
ion, a subtree with acceptable size must be present in at
least half of the population in order to form a schema. After
selecting a significant subtree, some nodes were probabilis-
tically replaced by the # symbol. In similar work, Smart
[25] defined schema as a subtree with “don’t care” symbol

called tree fragment. None of them provided a mathematical
formulation for predicting the schema instances in the next
generation.

Li et al. [25, 31, 32] represented a GP schema with an
instruction matrix. Each row of the matrix corresponds to a
single node of the tree and contains multiple copies of prim-
itive symbols. Each matrix element (i.e., instruction) stored
the best and average fitness value based the fitness of indi-
viduals containing it at the specified location. This approach
is considered to be more similar to Estimation of distribution
algorithm (EDA) [33] rather than schema-based GP.

Table 1 summarizes the important previous work in the
schema theory of GP. In this table, for each proposed
schema theory, the schema definition, schema instantiation
and an example are provided. The exactness of the schema
theory, whether the schema is rooted or not, whether the the-
ory is described in terms of macroscopic quantities or not
and whether the “don’t care” symbol is used (in the form
of single character (=) and/or subtree (#)) are reported in
subsequent columns. Then, genetic operators under which
the theory is developed are specified in the next column.
Finally, in the last two columns, providing a schema extrac-
tion method and experimental results by the related study is
determined.

As Table 1 demonstrates that in all studies the schema
definition is based on a syntactic element, usually a sub-
tree or a tree fragment. Thus, all of previously mentioned
schema theories suffer from issues enumerated in Section 1.
Except in very few researches [17, 20, 25], no extraction
method is specified for finding the present schemata in a
given population by studies of Table 1. Again, it is indicated
in the table that researchers rarely provided experimental
results for their schema theories. Some work analyzed and
tracked the schema frequency or other schema theory terms
in evolution [9, 17, 20, 21, 28]. Poli and Langdon [21] ana-
lyzed the empirical aspects of their schema [3] in a separate
study. They tracked the number of all possible schemata in
the population of Boolean programs with depth 2 and 3.
The estimation of schema frequency by the schema theory
was also compared with the observations under selection
only. Rosca [9] analyzed the values of important terms in
his schema theorem in actual populations. Poli and McPhee
[28] studied the size bias of genetic operators both using
schema theory and real runs in the case of linear repre-
sentation. Majeed [20] extracted schemata as subtrees with
acceptable sizes that occur in at least half of the population
and present in the last generation. Smart and Zhang [17]
also studied the number and size of fragments in population,
the popularity of most frequent fragment and the number
of “maximal fragments” over different generations. Some
other researchers tried to employ schema theory for improv-
ing the GP performance [7, 8, 34]. Poli and McPhee [34]
investigated the interaction of genetic operators in GP with
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linear structure and specified the optimum relative probabil-
ity of different operators just theoretically. Again, Poli and
McPhee proposed a selection strategy for controlling bloat
based on the schema theory [7, 8].

3 Proposed approach

While a great deal of work has been done on developing
the schema theory for GP, finding a reliable schema theory
is still a critical issue. In addition to explaining theoretical
aspects of the evolution process, a reliable schema theory
can be applied for enhancing the performance of GP. Most
of schema theories introduced in GP have been borrowed
from GA. In fact, they tried to keep the concept of GP
schema as close as possible to GA. However, the hierarchi-
cal representation utilized in GP causes difficulties that do
not exist when dealing with linear chromosomes of GA. The
representation of GP does not preserve the neighborhood
in genotype-phenotype mapping [18, 19]. However, almost
all existing GP schemata have been characterized based on
syntactic features. Syntactic schemata perform a partition-
ing over the genotype space. In contrast to GA, different
instances of a GP syntactic schema may have extremely dif-
ferent semantics and behavior. Since the main objective of
schema theories is describing the behavior of evolutionary
algorithms, to obtain a reliable schema theory, the schema
must be matched by a set of points of the search space that
share some semantic characteristics. The instances of this
schema will have obviously common behavior.

Due to various issues of syntactic schemata listed in
Section 1, we are interested in a semantic schema that par-
titions the semantic space rather than the syntactic space.
For introducing the semantic schema, the notion of seman-
tic space is first described in Section 3.1. The semantics of
a tree is interpreted in terms of normalized mutual informa-
tion of its output and the target output. The semantic space
is then defined accordingly. The semantic schema is identi-
fied based on semantic building blocks instead of syntactic
features. The concept of semantic building blocks is clar-
ified in Section 3.2 and the related extraction approach is
explained. Since the final solution found by evolution is a
combination of building blocks, the co-occurrence of these
blocks in individuals is also important in forming a seman-
tic schema. Section 3.3 is devoted to describing the steps of
the joint probability distribution estimation for a given pop-
ulation. In Section 3.4, the proposed schema is expressed in
terms of the joint probability distribution of semantic build-
ing blocks. The extraction procedure of significant schema
is also provided in this section. Significant schema refers
to the most important schema of a given population that its
samples have high semantic similarity to the target. Extract-
ing the significant schema is performed initially by selecting
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a cluster of individuals which are semantically similar to
the target, then discovering semantic building blocks con-
tributing in the selected cluster and finally estimating their
probability distribution.

3.1 Semantic space

In GP, the individual’s genotype is the actual representa-
tion of syntax in the tree and the individual’s phenotype or
semantics refers to the behavior of the tree during the exe-
cution. The phenotype is often considered equal to fitness
and fitness is typically calculated in terms of error-based
quantities. Due to the weaknesses of error-based measures,
we represent phenotype space using mutual information-
based measures. This space is referred to as semantic space.
As several genotypes may map to a same fitness, a phe-
notype space that is defined based on fitness, have less
redundancy than genotype. Mutual information is even more
abstract criterion for representing the phenotype and seman-
tic spaces. A group of individuals with different fitness
values may have the same semantic features. The semantics
of each tree is interpreted as normalized mutual information
between its output and the target output. Considering that
the mutual information between the output of various trees
(with different fitnesses) and the target may be equal, the
semantic space has much less redundancy than the ordinary
phenotype space.

Definition 1 (Semantic similarity) let X be a random vari-
able denoting the output value of tree t and Y be a ran-
dom variable denoting the corresponding target output, the
semantic similarity of tree t to the target is then defined to
be the normalized mutual information of X and Y as shown
in (2):

SS(t) = I (X; Y )

H(Y )
, (2)

where I (X; Y ) is the mutual information of X and Y and
H(Y) is the entropy of Y , given in (3) and (4), respectively:

I (X; Y ) =
∑

y∈Y

∑

x∈X

p(x, y) log(
p(x, y)

p(x)p(y)
), (3)

H(Y) = −
∑

y∈Y

p(y) log(p(y)). (4)

In the above equations, x values are different samples
of random variable X that denote output values of tree
t when substituting the problem test cases for tree vari-
ables. Y values are samples of the random variable Y that
refer to desired outputs obtained directly from the prob-
lem test cases. Extracting building blocks from semantic

space is more efficient than syntactic or error-based phe-
notype spaces. Intuitively, mutual information measures the
amount of information that subtree contains about the target.
We interpret tree semantics in terms of mutual information
rather than commonly used fitness measures, such as mean
squared error, because arbitrary fitness indicators often fail
to correctly reward potential building blocks contributing
to the final solution [35]. It means that the components
of the final solution do not necessarily have high fitness.
Furthermore, mutual information is invariant under invert-
ible transformation [36] and provides a general dependency
measure [37] so it can be effective in identifying potential
building blocks in early generations. In contrast to ordinary
fitness measures, mutual information can safely ignore con-
stant multiplication or addition in evaluating expressions of
symbolic regression problems. Sensitivity of error-based fit-
ness indicators to the details of expressions (e.g., constants)
causes the search procedure to pay less attention to the prin-
cipal components of the expressions and building blocks.
Applying information theory to evolutionary computation
has been already suggested in several studies [35, 38–40].

It should be noted that the relation of subtree-semantic
similarity is not invertible, such that the mutual information
between a group of subtrees and the target output may be the
same. For example, all expressions of (x+y), (x+y+ 100),
(2x + 2y) and (x + y + 2x- 2x) have the same semantics.
If two subtrees are equal, their semantic similarities to the
target are also equal, however, the inverse is not true. Hence,
for detecting semantically equal subtrees the semantic simi-
larity to the target is not adequate. The semantic equality of
two subtrees is defined in Def. 2.

Definition 2 (Semantic equality) let X and Y be random
variables denoting the output values of two trees t1 and t2.
Then, t1 is semantically equal to t2 if:

I (X; Y )

H(X, Y )
= 1, (5)

where I (X;Y ) is the mutual information and H(X, Y ) is the
entropy of X and Y given in (6).

H(X, Y ) = −
∑

y∈Y

∑

x∈X

p(x, y) log(p(x, y)), (6)

x and y values denote the different samples of random vari-
ables X and Y that are the output values of trees t1 and t2
respectively, when substituting the problem test cases for
tree variables.

For referring to the set of semantically equal trees, a
semantic representative tree is defined in Def. 3 as the
smallest tree that is semantically equal to trees of that set.
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Definition 3 (Semantic representative tree) let A =
{t1, t2...tn} be a set of semantically equal subtrees according
to Def. 2. Then, tk ∈ A is the semantic representative tree of
set A if it is the smallest tree in A.

Take for example the set A ={(+xy), (+++xxyy), (++
xy/xx), (++xy − +xx+xx)}, in which trees are repre-
sented in LISP language. According to Def. 3, the semantic
representative tree of A is (+xy).

3.2 Semantic building block

Building block hypothesis was originally introduced by
Goldberg for GA [41]. The hypothesis states that GA work
by combining short, low order and highly fit schemata,
named building blocks. These blocks combine with each
other to construct larger schemata with potentially higher
fitnesses and exponentially increasing instances in popula-
tion. There are several studies on discovering the building
blocks for GP. In the most of related work, the frequency of
a syntactic structure such as a subtree [42–45], an expres-
sion [46] or an instruction sequence [47, 48] is measured.
Likewise, Langdon and Banzhaf [49] considered the rep-
etition of correlated outputs in best of run individual for
detecting building blocks. For addressing the problems of
syntactic structures, we defined building blocks in semantic
space. The definition of a semantic building block is given
in Def. 4.

Definition 4 (Semantic building block) a semantic repre-
sentative tree is a semantic building block if it satisfies three
conditions: (1) it has high semantic similarity value (2) the

occurrence frequency of subtrees that are semantically equal
to it, is high and (3) its size is more than a threshold.

For a given cluster of population, the occurrence fre-
quency and semantic similarity of all large enough subtrees
to the target are investigated in order to identify building
blocks. According to Holland’s theory [5], building blocks
should have high fitness and occurrence frequency. How-
ever, due to definite advantages explained in Section 3.1, we
looked for subtrees with high semantic similarity instead of
fitness. Since introns distribute in high-fit individuals with-
out any immediate positive impact on modeling the target,
the semantic similarity is measured for all subtrees not just
the whole trees. Enumerating all subtrees in one hand and
selecting subtrees that have high semantic similarity to the
target on the other hand, avoid detecting introns as building
blocks. Similar to [49], for calculating the frequency of a
semantics, we enumerate all subtrees that are semantically
equal to its representative tree, regardless of their various
shapes and structures. Clearly, after mapping the subtrees
to semantic space, the frequency is measured in semantic
space instead of genotype or fitness spaces. The pseudocode
of Fig. 1 describes the details of related steps, in which three
conditions of Def. 4 are checked with thresholds minSe-
manticSimilarity,maxFrequencyRank andminBlockSize. For
each set of trees having semantic similarity value equal
to ss, their semantic representative tree, referred by srt is
identified.

Table 2 illustrates an example of extracted building
blocks from generations 1, 10 and 20 of benchmark x4 +
x3 + x2 + x (F1 in Section 4.1). For each building block,
the value of semantic similarity and the corresponding

Fig. 1 Pseudocode of semantic
building block detection

Inputs: 
C: the cluster of trees
minSemanticSimilarity: minimum acceptable semantic similarity for building blocks
maxFrequencyRank: maximum acceptable frequency rank for building blocks
minBlockSize: minimum acceptable size for building blocks

Outputs: 
blockList: the list of selected building blocks
-------------------------------------------------------------------------------------------------
ExtractSemanticBuildingBlocks
for each semantic similarity value ss in C

freq = the number of occurrences of all subtrees of C having semantic similarity value of ss
srt = the smallest subtree having semantic similarity value of ss
add < ss, freq, srt > to ssList

end
sort ssList according to freq
rank = 0
for each semantic similarity ss in ssList

if ss > minSemanticSimilarity  && size(ssList (ss).srt )> minBlockSize  
&& rank < maxFrequencyRank
add srt to blockList
rank++

end
end
return blockList
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Table 2 An example of extracted semantic building blocks in different generations for x4 + x3 + x2 + x (F1 in Section 4.1)

Generation Building blocks Semantic similarity Frequency Fitness

1 x3 0.7 1465 0.56

x2 + 2x 0.94 1061 0.65

x2 + x 0.88 958 0.68

−x2 + 2x 0.59 875 0.56

2x2 + x 0.77 252 0.71

10 x2 + 2x 0.94 1199 0.65

x2 + x 0.88 2756 0.68

x3 + 2x2 + x 0.9 1433 0.73

x4 + x3 + x2 + x 1 559 1

20 x4 + x3 + x2 + x 1 10532 1

frequency are also mentioned. The building blocks dis-
tribute and combine throughout the evolution process to
form the final solution. As it is demonstrated in this table,
two building blocks of generation 1 (i.e., x2+x and x2+2x)

are also distinguished as building blocks in generation 10
with higher frequencies. The building blocks x3and 2x2 +x

from generation 1 are combined to form the building block
x3+2x2+x in generation 10. In generation 20 the evolution
converges to a single building block that is the final solution
to the problem. Additionally, Table 2 illustrates the seman-
tic similarities of building blocks to the target along with
their corresponding fitnesses. It can be also inferred from
the table that the average semantic similarities increase over
evolution.

3.3 Estimating probability distribution

Due to the complex tree structure and node interactions,
direct modeling of tree-based GP is very complicated [50].
Thus, we map the tree space to the new space of building
blocks �, which is absolutely simpler and more effective
in representation of the semantics behind the trees. Consid-
ering that the GP evolves the best solution by combining
building blocks, describing trees in terms of building blocks
simplifies evolution modeling. To this end, each tree t ε

C is mapped to a point t̂ ε � in building block space such

that t̂[i] denotes the number of subtrees in t , semantically
equal to ith building block. As a result of this mapping,
all trees are represented by fixed length vectors of integer
values (i.e., building block frequencies) rather than variable
shape-and-size tree structures. Considering k as the number
of extracted building blocks, the mapping can be formally
represented as,

C → �

� = {t̂ |t̂[i] = BBi f requency in t ∈ C : i = 1, ..., k}
(7)

Figure 2 illustrates the tree t in C and � spaces, assum-
ing building blocks of generation 1 given in Table 2 as a
required building block set.

A tree may contain one or more occurrences of some
extracted building blocks. When a tree does not include a
building block, a zero value is inserted in the corresponding
place of its mapped vector. In many problems the num-
ber of these zero values is relatively high, which results
in sparse vectors that bias the modeling. This phenomenon
is similar to what happens in natural language processing
when documents are mapped to the vector space model [51].
By removing zero values, distribution estimation becomes
simpler, however, points in k-dimensional space of � are
converted to variable length vectors. Hence, vectors are

Fig. 2 An example of mapping
a tree to building block space t k BBk

BBk

frequency in t

1 3x 0

0 1 2 0 0

2 2 2x x 1

3 2x x 2

4 2 2x x 0

5 22x x 0

+

+

x *

+

x x

x

x

x x

+

*
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partitioned based on their contributing building blocks to

spaces
[1]
� containing the first building block,

[2]
� containing

the second building block,
[1,2]
� containing both and so on:

{1,2,...,k+1}
� =

⋃

s⊂{1,2,...,k+1}

s

� ,
s

� ={t̂ |∀j ∈ s, t̂[j ] �= 0}.

(8)

For estimation of the underlying distribution of �, we use a

mixture of normal distributions such that each cluster
s

� is
supposed to follow the multivariate normal distribution:
s

� ∼ N|s|(μs, �s), (9)

the |s| refers to the size of s. The parameters μs(mean) and
�s(covariance matrix) are estimated using basic estimator

biased to semantic similarity of
s

� members, as follows:

μs = 1

| s
�|∑

i=1
SS(t̂i)

| s
�|∑

i=1

t̂i .SS(t̂i ) , �s

= 1

| s
�|∑

i=1
SS(t̂i)

| s
�|∑

i=1

(t̂i− μs)(t̂i − μs)
T .SS(t̂i). (10)

Finally, the distribution of total set � will be the union of

distributions of its partitions
s

�. Like the Gaussian mixture

model, a weight φs is also assigned to each component
s

�,
taking into account the significance of each set:

p(t̂ |λ) =
M∑

i=1

φiN|si |(μsi , �si ) (11)

λ = {λs}s⊂{1,2,...,k} , λs = {φs, μs, �s},
where λ is the sequence of parameters λs indexed in subset
s. λs is itself the set of μs , �s and φs parameters that char-

acterizes the distributions of
s

�. M is the number of subsets

s ⊂ {1, 2, ..., k}with large enough members in
s

� and finally
φi is calculated as the average semantic similarity of set si
normalized by its maximum value as shown in the following
equation:

φs =

∑

t̂∈ s
�

SS(t̂)

Max
l=1:M

(φsl )
. (12)

It should be noted that, in order to skip the bias of sparse-
ness, the distribution of a mixture of non-sparse vectors
is calculated and since the underlying distribution of each

partition
s

� is unknown, normal distribution is employed.
The pseudocode of probability distribution estimation is
demonstrated in Fig. 3.

3.4 Semantic schema

As discussed in previous sections, the schema is defined in
GA and subsequently GP literature as a set of points in the
search space that share some syntactic characteristics. Syn-
tactic schemata are not reliable descriptor of GP behavior
because they matched by semantically different individu-
als that behave differently under evolution. Our proposed
schema called semantic schema appears as a partitioning
over the semantic space. This schema is matched by a set
of points of the search space that have common semantic
features.

3.4.1 Definition

The semantic schema should be described so that reflects
the semantic features of its samples. An ideal definition of
the schema is a definition that is matched by semantically
similar trees. In this study, the notion of semantic schema
is defined in terms of semantic building blocks. According

Inputs: 
C: the cluster of schema instances
blockList: the list of selected building blocks

minInstanceSize: minimum acceptable size for set

Outputs: 
the sequence of normal distribution parameters 

-------------------------------------------------------------------------------------------------
probabilityDistributionEstimation
for each tree t in C

s = {}, i = 0, k = 0
for each building block BB in blockList

f = the frequency of BB in t
if (f 0)

add i to s

[k] = f
k++

end
i = i+1

end

add to 

+ sematic similarity of 

end

for each s with > minInstanceSize

calculate and by Eq. 6

Max

End

return

Fig. 3 Pseudocode of probability distribution estimation
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to the building block hypothesis, the final solution is con-
structed by combining building blocks during the evolution.
Poli also claimed that schema theory is the result of rep-
resenting the dynamics of GP in building block basis [52].
Consequently, we defined the semantic schema in terms
of semantic building blocks. Since the final solution is a
combination of building blocks, the co-occurrence of these
blocks in a tree is a good representative of the degree of
similarity of that tree to the final solution. As a result, a
semantic schema should also specify the appropriate co-
occurrence of building blocks in order to distinguish schema
instances from other individuals. To the sum up, semantic
schema is defined as given in Def. 5.

Definition 5 (Semantic schema) given a cluster of trees,
a semantic schema is composed of two components: (1) a
set of semantic building blocks {B1, B2, ..., Bk} and (2) the
joint probability distribution of building blocks in schema
instances,p( t̂

∣∣ λ):

H = ({B1, B2, ..., Bk} ∼ p( t̂
∣∣ λ)). (13)

The definition of semantic building blocks in the seman-
tic space enables the schema to keep high diversity in
genotype space while it is restricted in semantic space.
This feature vastly expands the expression power of schema
because it can describe all subtrees with nearly similar
meaning and many different shapes, structures and even
functionalities. The definition of schema is actually respon-
sible for describing the principal feature of the instances and
leads them to have similar semantics. This feature is sup-
posed to be the distribution of semantic building blocks in
schema samples.

As discussed in Section 2, most researches in the liter-
ature provided the propagation of a given schema, without
looking for real schemata that are present in the popula-
tion. Lack of a practical definition and extraction method
is one of the issues that caused criticizing the usefulness
of schema theorems. In this paper, we intend to propose
a schema theory that in addition to theoretical descrip-
tion of evolution process can be employed for improving
GP in practice. Hence, the empirical aspects of schema
theory, such as extraction method are also considered in
the definition of the schema. According to practical con-
siderations, the focus of this study is on a significant
schema that its samples have high semantic similarity to
the target. The definition of significant schema is given in
Def. 6.

Definition 6 (Significant schema) the significant schema
is a semantic schema extracted from individuals with more
than average semantic similarity.

3.4.2 Extraction approach

The significant schema is extracted through three steps.
Inspired from the building block hypothesis [5], a cluster of
trees, including individuals with more than average seman-
tic similarity is first selected, the building blocks of this
cluster are then detected as explained in Section 3.2 and
the probability distribution of building blocks is finally esti-
mated by the approach described in Section 3.3. Detecting
the building blocks in schema instances and estimating their
joint probability distribution characterize the underlying
semantic schema.

3.4.3 Schema instances

In previously proposed schemata, instances are identified
simply through matching a syntactic pattern. In the pro-
posed method, a tree t instantiates the semantic schema H if
its occurrence probability according to p(t̂ |λ) is more than
a specified threshold denoted by η:

p(t̂ |λ) > η → t ∈ H. (14)

Generating schema instances is also important for eval-
uation goals. Given the schema H = ({B1, B2, ..., Bk} ∼
p( t̂

∣∣ λ)), a selection probability proportional to φs is
assigned to each set s ⊂ {1, 2, ..., k}. For generating a
new schema instance, one set is first selected according to
these probabilities. The contributing building blocks in the
selected set are then added to GP terminal set and random
tree t is regenerated until t ∈ H . This generation method

guarantees that the trees will be generated in all clusters of
s

�

proportional to the average semantic similarity of its mem-
bers. Consequently, the diversity of generated trees is also
preserved.

3.5 Schema theory

After defining the semantic schema, the effects of genetic
operators are investigated. The total transmission probabil-
ity of semantic schema H in generation t under selection
and crossover operators can be expressed in (15):

α(H, t) = p(H, t)(1 − pxo) + pxoαxo(H, t), (15)

where p(H, t) is the probability of selecting schema sam-
ples, pxo is the probability of crossing over and αxo(H, t) is
the transmission probability of H under crossover.
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3.5.1 Effect of fitness proportionate selection

If fitness proportionate selection is used, the probability of
selecting each schema instance is

p(H, t) = m(H, t)f (H, t)

Mf̄ (t)
, (16)

wheref (H, t) and m(H, t) are the average fitness and the
number of schema instances of H in generation t.f̄ (t) is the
average fitness of the population in generation t .

3.5.2 Effect of standard crossover

In this section, the effect of standard crossover on schema
samples is investigated under the assumption that crossover
points are selected outside of subtrees semantically equal to
building blocks. We restrict the selection of crossover points
in order to protect building blocks from disrupting. This
encapsulation preserves building blocks as problem spe-
cific subroutines and leads to more effective search. Inspired
from [7, 8], the transmission probability of the semantic
schema H due to the crossover in terms of microscopic
quantities is given by (17).

αxo(H, t) =
∑

h1

∑

h2

p(h1, t)p(h2, t)
∑

i∈NB(h1)

∑

j∈NB(h2)

δ(p(Ĉ(h1, i) + Ŝ(h2, j)|λs1∪s2) > η)

|NB(h1)| |NB(h2)| , (17)

where p(h, t) is the selection probability of tree h and
NB(h) is the set of nodes of h not belonging to building
blocks that can be selected as crossover points. C(h, i) is
the context of h which is the remaining part of tree h after
eliminating the subtree rooted at node i and S(h, i) is the
subtree of h rooted at node i. Ĉ(h, i) denotes the result of
mapping C(h, i) to the building block space as discussed in
Section 3.3 and δ(x) is a function returning 1 when x is true
and 0 otherwise. The λ and η are defined as stated in (14).
Finally, s1 and s2 are as follows:

s1 = {l|Ĉ(h1, i)[l] �= 0} , s2 = {l|Ŝ(h2, j)[l] �= 0}. (18)

The expression of right hand side of (17) iterates over
all pairs of individuals enumerating the fraction of allowed
crossover points under which the generated offspring is

in schema H. The context and subtree parts of the par-
ents are mapped to building block space, yielding, Ĉ(h1, i)

and Ŝ(h2, j) vectors of the same size. The corresponding
offspring in building block space is then obtained by the
addition of these two vectors. It should be noted that the
crossover operator in tree space is simply converted to the
addition in building block space.

4 Experimental results

As indicated in Table 1, researchers rarely provided exper-
imental results for evaluating their proposed schema the-
ories. Most of the previous studies concentrated on the-
oretical definition and investigation of the schema. Thus,
lack of practical and experimental evidences causes crit-
icizing the usefulness of schema theory. In this section,
we evaluate the proposed schema in representing semantic
features and compare it with some existing GP schemata
in literature. Furthermore, the estimation of schema theory
under selection is verified by experimental results which
show the agreement of theory and practice. The quality
of extracted building blocks is also evaluated in terms of
semantic similarity to the target.

4.1 Benchmarks

Table 3 shows the benchmarks used for evaluation. The first
three functions are univariate. F1 is a polynomial employed
in [1, 53], F2 is the square root function, suggested in [53,
54] and as a sample of logarithmic functions, F3 is selected
similar to [53]. F4 is a bivariate trigonometric function used
for testing numerous GP variants employed in [53, 55]. All
functions are mentioned in [56] which enumerates many
candidate benchmarks of GP literature.

4.2 Settings

Giving any population of trees, the proposed method can
extract the significant schema. For better investigation of
the performance of the schema and building blocks, we
extracted the schema from evolving population of different
generations. To achieve this goal, a standard GP, based on
a traditional fitness measure (MSE) is employed to produce

Table 3 Benchmarks used for evaluation

Name Function Test cases

F1 x4 + x3 + x2 + x 20 points in [-1 1]

F2
√

x 20 points in [0 4]

F3 ln(x + 1) + ln(x2 + 1) 20 points in [0 2]

F4 2 sin(x1) cos(x2) 100 points in [-1 1]2
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Table 4 Parameter settings

GP settings Schema extraction settings

Parameter Value Parameter Value

Population size 10000 minBlockSize 5

Function set {+, −, ∗, /} maxFrequencyRank 10* benchmark dimensions

Generations number 100 minSemanticSimilarity Population’s average semantic similarity to the target

Initialization method Ramped half and half minInstanceSize 0.1 * of cluster size

Maximum initial depth 6 Schema instantiation threshold (η) 0.5 * max probability

Selection Tournament (k=2)

Population model Generational

different populations with different levels of diversity from
the initial population up to 100 generations. The schema
and building blocks are extracted every twenty generations
from scratch, independent of what has been obtained in

previous generations. The GP configuration and the param-
eter settings of schema extraction are given in Table 4. The
terminal set consists of the input variables equal to the
function dimensionality.
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Fig. 4 The semantic schema generalization
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4.3 Schema generalization

The main purpose of defining the semantic schema is to pro-
pose a descriptive model that is matched by semantically
similar trees. This model should describe the semantics
behind the schema instances. As discussed in Section 3, the
schema is extracted from a cluster of semantically similar
trees. If the schema explanation is specific and expressive
enough, other trees matching it should also have similar
semantics to initial cluster. Therefore, for evaluating the
generalization of a schema, we generate a set of random
sample matching the schema using the method explained
in Section 3.4.3. The average semantic similarity of newly
generated trees to the target is then compared with the
average semantic similarity of initial cluster for differ-
ent generations. Figure 4 reveals the initial and generated

average semantic similarities over generations for different
benchmarks.

Figure 4 shows that the semantic similarity of generated
instances to the target is changing close to initial cluster
and schema is generalized well on newly created instances.
Raising the average semantic similarity of generated
instances shows that the schema is also evolved while its
initial instances are evolving. Consequently, similar to Hol-
land’s claim for GA [5], GP performs a far greater parallel
search for good schemata, when searching for fit individuals.

Again, after generating new samples of the schema, the
fraction of generated trees matching it is an evaluation crite-
rion for studying the generalization ability of the schema. To
do this, a generated tree is assumed to match the schema if
its semantic similarity is higher than minSemanticSimilarity
threshold. The percentage of generated individuals match-
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ing the schema (i.e., the schema generation rate) is illus-
trated in Fig. 5. As shown in this figure the schema genera-
tion rate is high for all generations of different benchmarks.
The average of this measure is 0.91, 0.89, 0.90 and 0.89 for
F1,F2,F3 and F4 respectively. During the evolution process,
minimum semantic similarities of initial clusters become
higher and higher. Although generating individuals with
semantic similarity more than this threshold is more diffi-
cult, the semantic schema definition is capable of modeling
initial trees and generalizes well on generated instances.

4.4 Building block evolution

Since the proposed schema is based on semantic building
blocks, its efficiency is highly dependent on the quality of
these blocks. Hence, in this section we analyze the num-
ber and semantics of different building blocks, extracted

independently over generations. First, we investigate the
number of extracted building blocks in different genera-
tions. As demonstrated in Fig. 6, the number of building
blocks reduces over the generations until getting to a single
building block with maximum semantic similarity. In ear-
lier generations, the diversity of the population is high and
individuals are distributed near several local optimums, so
the number of building blocks is high. However, in further
generations, by converging the population, the number of
building blocks reduces gradually.

The quality of extracted building blocks is illustrated in
Fig. 7 in terms of the average and standard deviation of their
semantic similarity to the target. The average semantic sim-
ilarity of each population is also depicted as a borderline.
As shown in Fig. 7, the average semantic similarity of build-
ing blocks is more than the corresponding average of the
population. This is due to the certain conditions of selecting
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Fig. 6 The number of extracted building blocks in different generations
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Fig. 7 The average semantic similarity of building blocks to the target in different generations

building blocks enumerated in Def.4. By preceding the evo-
lution, the extracted building blocks are also evolved until
reaching to maximum semantic similarity of 1. Standard
deviation, that is an indicator of the semantic diversity of
building blocks, is high in initial populations and gradually
tends to become zero in further generations.

4.5 Schema coverage

Since finding all possible schemata of the population is
very complicated and time-consuming, in previous stud-
ies the schema extraction algorithm is seldom presented.
In Section 3.4.2, we proposed a method to find and con-
centrate on the most significant schema of the population.
Figure 8 reveals the proportion of population instantiating
this schema in different generations. As you can see, the

schema covers more individuals when evolution proceeds
until it includes the whole population.

It should be noted that, the most significant schema is
extracted in generation 1, 10 and then every twenty gener-
ations, so it evolves implicitly in parallel with individuals’
evolution. Figures 8 and 4 together show increasing both
quality and quantity of significant schema over evolution.

4.6 Comparison

As stated in Table 1, few studies have provided experimen-
tal results for evaluation of their suggested schemas. Among
them only two work can be compared with the proposed
approach. The first one is Majeed’s study [20] in which the
fragment (exp #) is detected as a schema for benchmark
F1. Table 5 reveals that the standard deviation and entropy
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Fig. 8 The schema coverage during the evolution

of schema instances (extracted from initial population) are
lower in the semantic schema for both error-based fitness
and semantic similarity measures. The average is higher for
semantic schema in both domains. To sum up, Table 5 shows
that the semantic schema can partition both semantic and
fitness spaces better than syntactic schemas such as [20].

Again an experiment is conducted similar to [3] for val-
idating the schema theory predictions. In this experiment,

the number of estimated schema instances under selec-
tion only is compared with numerical results obtained from
a real run. We investigate the exactness of schema esti-
mations in two modes. In the first set of experiments, in
every twenty generations a schema is extracted from the
population and the number of individuals sampling it, is
estimated for the next generation (Fig. 9). In the second
set of experiments, a single schema is extracted from initial

Table 5 Comparison of semantic schema with Majeed’s schema

Fitness Semantic similarity

Average Std Entropy Average Std Entropy

Semantic schema 0.551 0.081 1.417 0.665 0.158 1.061

Majeed’s schema 0.368 0.188 1.706 0.427 0.296 1.900
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Fig. 9 The estimation error of schema theory under selection only for predicting one next generation

population and the number of its instances in further gen-
erations (i.e., generations 1, 10, 20, 40... 100) is estimated
(Fig. 10).

These experiments suggest that there is a good agree-
ment between predictions (E[m(H, t+1)]) and observa-
tions (m(H, t+1)). Since predictions are very close to the



Semantic schema theory for genetic programming 85

0 20 40 60 80 100
0

500

1000

1500

2000

2500

3000

Generations

T
h

e 
n

u
m

b
er

 o
f 

sc
h

em
a 

in
st

an
ce

s
F

1

m(H,t+1)

E[m(H,t+1)]

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

Generations

R
el

at
iv

e 
er

ro
r

0 20 40 60 80 100
0

500

1000

1500

2000

2500

3000

Generations

T
h

e 
n

u
m

b
er

 o
f 

sc
h

em
a 

in
st

an
ce

s

F
2

m(H,t+1)

E[m(H,t+1)]

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

Generations

R
el

at
iv

e 
er

ro
r

0 20 40 60 80 100
0

500

1000

1500

2000

2500

Generations

T
h

e 
n

u
m

b
er

 o
f 

sc
h

em
a 

in
st

an
ce

s

F
3

m(H,t+1)

E[m(H,t+1)]

0 20 40 60 80 100
0

500

1000

1500

Generations

T
h

e 
n

u
m

b
er

 o
f 

sc
h

em
a 

in
st

an
ce

s

F
4

m(H,t+1)

E[m(H,t+1)]

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

Generations

R
el

at
iv

e 
er

ro
r

0 10 20 30 40 50 60 70 80 90 100
0

0.01

0.02

0.03

0.04

0.05

Generations

R
el

at
iv

e 
er

ro
r

Fig. 10 The estimation error of schema theory under selection only, for predicting all generations

observations, the absolute value of the estimation error is
also depicted in logarithmic scale. This agreement is due to
the powerful definition of semantic schema which describes

trees with similar behavior not just similar syntaxes. The
results of Figs. 9 and 10 demonstrate that the semantic
schema theory can be employed for predicting the dynamics
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of evolution not only in the next generation but also in even
100 generations later. This capability makes the semantic
schema reliable enough to be applied for improving GP in
practice.

5 Conclusions

In this paper, the concept of schema was studied from a new
point of view. Semantic schema, according to this view, was
defined as a set of points in the search space that share some
semantic characteristics. The mutual information between
the output of a tree and the target output was considered as
a metric for measuring the semantic similarity of that tree
to the target. Semantic building blocks were introduced and
an extraction approach was suggested to discover the build-
ing blocks of a given population. The main contribution of
this study is proposing semantic schema which is identified
by the joint probability distribution of semantic building
blocks instead of syntactic features. An extraction proce-
dure was presented to detect the most significant schema
of a population, in contrast to previous work, in which a
sample arbitrary schema was analyzed or all schemas of
a population were tracked. For predicting the number of
schema instances in the next generation, a semantic schema
theory was provided. The theory describes the propaga-
tion of GP schema under selection and standard crossover
through an exact microscopic formulation. For proving the
performance of the semantic schema theory, a set of exper-
iments was conducted. Results indicated that the semantic
schema is more reliable to predict the dynamics of schema
instances during the evolution. It was also demonstrated that
the semantic schema can generalize the semantics to newly
created instances.
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