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Abstract This paper proposes a systematized presentation
and a terminology for observations in a Bayesian network.
It focuses on the three main concepts of uncertain evidence,
namely likelihood evidence and fixed and not-fixed prob-
abilistic evidence, using a review of previous literature. A
probabilistic finding on a variable is specified by a local
probability distribution and replaces any former belief in
that variable. It is said to be fixed or not fixed regarding
whether it has to be kept unchanged or not after the arrival of
observation on other variables. Fixed probabilistic evidence
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is defined by Valtorta et al. (J Approx Reason 29(1):71–106
2002) under the name soft evidence, whereas the concept
of not-fixed probabilistic evidence has been discussed by
Chan and Darwiche (Artif Intell 163(1):67–90 2005). Both
concepts have to be clearly distinguished from likelihood
evidence defined by Pearl (1988), also called virtual evi-
dence, for which evidence is specified as a likelihood ratio,
that often represents the unreliability of the evidence. Since
these three concepts of uncertain evidence are not widely
understood, and the terms used to describe these concepts
are not well established, most Bayesian networks engines
do not offer well defined propagation functions to handle
them. Firstly, we present a review of uncertain evidence and
the proposed terminology, definitions and concepts related
to the use of uncertain evidence in Bayesian networks.
Then we describe updating algorithms for the propagation
of uncertain evidence. Finally, we propose several results
where the use of fixed or not-fixed probabilistic evidence is
required.

Keywords Bayesian network · Uncertain evidence ·
Probabilistic evidence · Likelihood finding · Soft
evidence · Virtual evidence

1 Introduction

Bayesian networks are probabilistic graphical models that
provide a powerful way to embed knowledge and to update
one’s beliefs about target variables given new information
about other variables. They are widely used for problems
with inherent uncertainty such as classification, diagnosis
and decision-making [65]. In a Bayesian network, prior
knowledge is represented by a probability distribution P

on the set of variables which define the problem, whereas
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updated beliefs are represented by the posterior probability
distribution P(. | obs) where obs represents new informa-
tion. Inference in Bayesian networks provides a means to
explain given evidence e.g., Maximum A Posteriori Assign-
ment (MAP), Most Probable Explanation (MPE) [61], and
Most Relevant Explanation (MRE) [73]. Evidence is the
starting point of these methods and refers to new informa-
tion in a Bayesian network. A piece of evidence is also
called a finding or an observation, and evidence refers to
a set of findings. Figure 1 illustrates the propagation of
evidence in belief updating.

A finding on a variable commonly refers to an instanti-
ation of the variable. This can be represented by a vector
with one element equal to 1, corresponding to the state the
variable is in, and all other elements equal to zero. This type
of evidence is usually referred to as hard evidence though
other terms are sometimes used.

This paper focuses on another type of evidence that can-
not be represented by such vectors: uncertain evidence. The
objective of the paper is to clarify the term uncertain evi-
dence and its underlying concepts. It is argued that three
types of uncertain evidence need to be clearly distinguished,
namely likelihood evidence, fixed probabilistic evidence
and not-fixed probabilistic evidence.

Likelihood evidence is applicable when there is uncer-
tainty about the veracity of an observation, such as, for
example, the information given by an imperfect sensor. Ide-
ally the Bayesian network should include two variables for
each of two physical quantities: one for the unobserved
real value, and one for the value observed by the sensor.
Using likelihood evidence avoids the need to add both these
variables in the model.

In contrast probabilistic evidence can be regarded as a
new probability distribution on a variable arising from a new
observation after creation of the model. This is dissimilar to
likelihood evidence where the original probability distribu-
tion is not challenged, only ones belief in it and which may
be amended with new likelihood evidence.

Not-fixed probabilistic evidence is typical of the situa-
tion where a variable is given new probability distribution
as a result of the BN models application to a specific sub-
population of the global population for which the model was
built. Thus the conditional probabilities remain the same

and the variable with the new observed distribution can be
updated in response to evidence at other nodes.

Fixed probabilistic evidence is conceptually similar to
not-fixed but the new probability distribution is regarded
as immutable, even after later evidence is applied to other
nodes. A typical example is where probabilistic evidence
is imparted to a subscriber from a publisher in a one-way
communication in an agent encapsulated Bayesian network.

Below these concepts are further explicated and defined.
The propagation of the various forms of evidence is dis-
cussed and examples of applications are given to further
illustrate the differences between these types of evidence.

The rest of the paper is organized as follows. Section 2
presents definitions of a Bayesian network and hard evi-
dence in a Bayesian network. Section 3 is a review of
terminology and concepts about evidence in Bayesian net-
works, in the literature and in Bayesian network engines,
followed by the proposed terminology for evidence in a
Bayesian network. Section 4 proposes definitions, proper-
ties and examples of the three types of uncertain evidence.
Section 5 describes updating algorithms for each type of
uncertain evidence. Section 6 proposes and discusses three
types of situation where the use of fixed probabilistic evi-
dence is required. The first one is about the integration of
Bayesian networks with Geographic Information Systems
(GIS), the second one concerns the propagation of a contin-
uous variable in a discrete Bayesian network, and the third
one is about using fixed probabilistic evidence for a dis-
tributed Bayesian network. Section 7 offers our conclusions
and presents our future research proposals.

2 Basics of a Bayesian network

This section concerns the definition of a Bayesian network
and hard evidence.

2.1 Bayesian network definition

Bayesian networks [20, 35, 42, 61] are a class of probabilis-
tic graphical models. After giving a definition of Bayesian
networks, we provide a brief overview about learning and
inference.

Fig. 1 Propagation of evidence
in belief updating
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Definition 1 (Bayesian network) A Bayesian network is a
couple (G, P ), where G = (X,E) is a directed acyclic
graph with nodes X = {X1, ..., Xn} and directed edges E
which represent conditional dependencies between nodes.
The joint probability distribution for X = {X1, X2, ..., Xn}
is given by the chain rule:

P(X1, X2, ..., Xn) =
n∏

i=1

P(Xi | pa(Xi))

where pa(Xi) represents the parents of Xi as defined by the
presence of directed edge from a parent node to Xi .

The graph G represents the qualitative component of the
Bayesian network; a quantitative component is given by P ,
which is defined by a set of conditional probability distri-
butions associated with each node in X. In this paper we
consider only discrete random variables, and thus each node
is associated with a conditional probability table (CPT).
Both G and P can be obtained from human experts or learnt
from available data.

Once the Bayesian network is defined, algorithms are
used to propagate new evidence through it. Unfortunately,
both exact and approximate methods of inference have been
proved to be NP-hard [16, 17], rendering the propagation
of evidence intractable in some cases. This intractability
depends on the size of the model (number of nodes, degree
of nodes, size of the sets of possible values for each node,
and other graphical parameters, such as the treewidth).
However, some approximate inference methods [72] have
been shown to work very well in practice for large scale
networks.

In the following, capital letters are used to represent
random variables, and lower-case letters represent their val-
ues. Bold capital letters correspond to sets of variables.
Here are some more notations used in the rest of the
paper:

X denotes a Bayesian network node X ∈ X having its
states (or values) in DX = {x1, ..., xm},
P(X) denotes P(X1, . . . , Xn); it is the joint probability
distribution that defines a Bayesian network on the set
X.
P(x) denotes P(X = x),
P(X) is the probability distribution (P (X =
x1), . . . , P (X = xm)).
R(Xi) and R(Xj , Xk) are local probability distribu-
tions used to describe uncertain findings on Xi and
(Xj , Xk).

2.2 Hard evidence in a Bayesian network

Bayesian networks are commonly used to propagate obser-
vations represented by hard findings.

Definition 2 (Hard finding) A hard finding e on a vari-
able X in a Bayesian network with values in DX is defined
by an observation vector of size m = |DX| containing a
single 1, at the position corresponding to a state x ∈ DX

and 0 for all other positions. This finding represents the
instantiation of X to the value x and it is characterized
by P(X = x | e) = 1. Hard evidence is a set of hard
findings.

Let Q denote the probability distribution reflecting the
belief state after taking into account hard evidence e. We
have Q = P(. | e).

3 Review of uncertain evidence in the literature
and Bayesian networks software

This section presents a seven point summary that estab-
lishes a picture of uncertain evidence in Bayesian networks.
This leads us to the tabulation of both concepts and ter-
minology presented at the end of this section. Detailed
definitions of each concept are presented in the following
section.

The seven points are:

1. A quasi-consensus on the definition of a finding in a
Bayesian network;

2. Uncertain evidence: two main concepts;
3. Likelihood finding: a first concept of uncertain evi-

dence well identified;
4. Soft evidence: a source of confusion due to terminol-

ogy;
5. Uncertain evidence specified by a local probability

distribution: no terminology, no consensus, and not
supported by Bayesian network engines;

6. Confusion leads to debates about commutation of iter-
ated belief revisions;

7. Uncertain evidence propagation in Bayesian network
software products.

3.1 A quasi-consensus on the definition of a finding
in a Bayesian network

The terms evidence and findings are synonyms, but only the
term finding is used in the singular form. When no adjective
qualifies the word evidence (or finding or observation), it
generally represents hard evidence, that is to say the instan-
tiation of a set of variables of the Bayesian network. In
the literature, a hard finding on a variable is also called an
observation, or a deterministic, specific, regular or positive
finding. Despite the variety of terminology in the litera-
ture, the definition of hard evidence is clear and presents no
particular problems (see Definition 2).
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However, a generalization of the definition of finding is
proposed by Jensen and Nielsen [35] in which a finding on
a variable X is an m-dimensional table of zeros and ones,
allowing several ones. We do not follow this proposition.
The second point of this review identifies two main concepts
of uncertain evidence in the context of belief updating in the
probabilistic framework.

3.2 Two main concepts of uncertain evidence

Many real world problems require reasoning with uncertain
inputs. Belief updating founded upon uncertain inputs may
differ from belief updating founded on certain inputs. We
cite the two possible meanings of the term “uncertain input”
in the probabilistic framework, following Dubois, Moral
and Prade [25]:

• “the uncertainty bears on the meaning of the input; the
existence of the input itself is uncertain, due to, for
instance, the unreliability of the source that supplies
inputs.”

• “the input is a partial description of a probability
measure; the uncertainty is part of the input and is
taken as a constraint on the final cognitive state.
The input is then a correction to the prior cognitive
state.”

In the following, we use the term uncertain evidence as
a generic term to refer to any of these two meanings. In
the context of Bayesian networks, only one of these mean-
ings is widely used. This is the next point of this review
about uncertain evidence. Complete definitions, properties
and examples pertaining to these two main meanings are
given in Section 4.

3.3 The first concept of uncertain evidence: likelihood
finding

The concept of likelihood evidence (or virtual evidence) [61]
models the case where the observation is uncertain due to,
for example, an unreliable source of information.

This type of uncertain evidence is well documented in the
literature and its propagation is possible in some Bayesian
network software, even if it is sometimes wrongly named.
Table 1 provides the list of terms used to refer to likelihood
evidence in several Bayesian network software applications.
Four of them employ the term soft evidence instead of like-
lihood evidence or virtual evidence. In the next section we
argue this term should not be used.

3.4 Soft evidence : a terminology with no consensus

The term soft evidence has been introduced in the context of
Agent Encapsulated Bayesian networks (AEBN) [11, 69].
It refers to evidence specified by local probability distri-
butions that define constraints on the posterior probability
distribution and that cannot be changed by further informa-
tion meaning that these probability distributions are fixed.
Each observed local probability distribution on a subset of
variables is different than the encoded prior probability dis-
tributions for these variables associated with the Bayesian
network.

The term soft evidence is used with that meaning by Val-
torta [40, 48, 49, 69] and other authors [43, 60, 63, 64, 68].
With that meaning, likelihood evidence can be interpreted
as evidence with uncertainty, while soft evidence can be
interpreted as evidence of uncertainty [64].

However, a review of the literature over the past ten
years shows that the term soft evidence is sometimes used

Table 1 Terminology used in several Bayesian networks software to name likelihood evidence in April 2014

Bayesian network software Terminology used in Bayesian networks software

to name likelihood findings

Netica [58] likelihood finding

Hugin [51] likelihood evidence

Genie [24] virtual evidence

Infer.NET [56] virtual evidence

gRain [33] virtual / likelihood evidence

BayesiaLab [38] likelihoods (soft evidence in the user’s manual)

BNT [57] soft evidence

Bayes Server [66] soft evidence

AgenaRisk [10] soft evidence
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Table 2 Available features in Bayesian network engines to propagate uncertain evidence specified by a local probability distribution (April 2014)

Bayesian network Terminology used Comments

software

BayesiaLab [38] probability distribution (fixed) Allows fixing the probabilities of the selected nodes to the current marginal probabilities.

probability distribution (not fixed) Allows entering a likelihood finding from a probability distribution.

Netica [58] calibration Ask for entering P(X | All observations)

ProBT [1] soft evidence Additional variables named “coherence variables” are used to combine prior beliefs

and new probabilistic information.

to refer to likelihood evidence [9, 13, 14, 18, 41, 44]. None
of these articles refers to Valtorta’s use of the term; it is
clear therefore, that their authors have developed a differ-
ent contemporary use which has led to confusion. The same
confusion occurs in Bayesian network software, where at
least four products use soft evidence to refer to likelihood
evidence (see Table 1). In another paper [12], the term was
used to refer to a variable X which does not take a specific
value x, that is to say X �= x, which is usually called a neg-
ative finding. Moreover, the concept of uncertain evidence
specified by a local probability distribution and that cannot
be modified by other information is not always named soft
evidence (Table 2).

Thus the term soft evidence is confusing since it is used
ambiguously both in the literature and by Bayesian network
software interfaces.

3.5 Uncertain evidence specified by a local probability
distribution: no terminology, no consensus, rarely
available in Bayesian network engines

Several papers concern both the specification of uncer-
tain evidence and its propagation [15, 20, 60, 64, 71].
The term uncertain evidence is often employed in a
generic way to name different types of non-hard evi-
dence . They clearly distinguish between two types of
uncertain evidence in Bayesian networks. The first con-
cept is likelihood evidence, as proposed by Pearl in
[61], and is clearly identified by the authors who men-
tioned it. The second concept of uncertain evidence is
specified by a local probability distribution but is not
so clearly defined. Thus two gaps need to be filled:
(1) an adequate terminology should be defined to name
uncertain evidence specified with a local probability
distribution; (2) this second type of uncertain evidence
requires a more precise definition to allow a clear
identification of, and to make the distinction between
two different sub-types. None of the above-cited papers
focuses on terminology, nor identifies clearly the two

sub-types of uncertain evidence specified by a local proba-
bility distribution.1

Chan and Darwiche present and compare two methods
of propagation of uncertain evidence [15]. They provide an
interesting discussion about the specification of evidence in
both cases. However, no terminology or definition is pro-
posed in order to consider the local probability distribution
as a particular type of uncertain evidence in a Bayesian net-
work. Although the analysis of Chan and Darwiche [15]
is referred to by Peng and Zhang [64], it does not lead to
a clear distinction of both sub-types of uncertain evidence
specified by a local probability distribution.

In Bayesian network software, very few products propose
the propagation of uncertain evidence specified with a local
probability distribution. Table 2 shows the available features
of three Bayesian network software products.

3.6 Confusion leads to debates about commutation
of belief revision

The confusion about uncertain evidence specified by a
local probability distribution gave rise to debates between
authors, particularly about the question of commutation.
The question “Should, and do, iterated belief revisions com-
mute?” [15] concerns the case of revision with several
pieces of evidence, of which some are uncertain. Some
authors claim that several pieces of evidence specified by
a local probability distribution and carrying the “All things
considered” interpretation must not be commutative [15].
Others argue that soft evidence is a true observation of the
distributions of some events, and as such, they should all be
preserved in the updated “posterior” distribution [64]. In the
first case, the arriving information is susceptible to improve-
ment by further evidence, whereas in the second case, the
arriving information has to behave as hard evidence and can
not be influenced by any other information.

1One article briefly mentions the three types of methods of propagation
of uncertain evidence in a Bayesian network [7].



Uncertain Evidence in Bayesian networks 807

Table 3 Proposed terminology about uncertain evidence in Bayesian network

Uncertain evidence

Hard evidence [61] Likelihood evidence [61] Probabilistic evidence

not-fixed fixed

[15] [64, 69]

No uncertainty The observation The constraint specified

is uncertain by the probability distribution

can be modified by other information ?

YES NO

The conclusion is that a third concept of uncertain evi-
dence has to be more clearly defined in the context of
Bayesian networks. More exactly, uncertain evidence can
be divided into two main concepts, namely likelihood evi-
dence and uncertain evidence specified by a partial measure
of probability. This second concept has to be divided into
two sub-concepts, according to whether the local probabil-
ity distribution which specifies a constraint on the posterior
belief state can be (or cannot be) modified by later arrival of
new information.

3.7 Proposed terminology for uncertain evidence
in a Bayesian network

In order to address the lack of an unambiguous terminology
in Bayesian network theory and practice, we propose the
use of the term probabilistic evidence for uncertain evidence
specified by a local probability distribution. In contrast to
hard evidence, the inconsistent use of terms for some type of
uncertain evidence is problematic, in particular the term soft
evidence, the misuse of which may cause real confusion. In
order to make a clear distinction between the two sub-types
of probabilistic evidence, we propose the terms fixed prob-
abilistic evidence to refer to soft evidence such as defined
by Valtorta [64, 69], and not-fixed probabilistic evidence to
refer to the concept used in Jeffrey’s rule and discussed in
[15, 64]. The terms “likelihood” and “probabilistic” cap-
ture the ways the evidence are specified. The adjectives
“fixed” and “not fixed” capture the expected behavior of
the posterior probability distribution after further evidence
is obtained. Table 3 presents the proposed terminology and
the main associated characteristics.

Up to now, the two concepts of uncertain evidence
specified by a probability distribution, namely fixed and
not fixed probabilistic evidence, are poorly identified in the
Bayesian network community. They are mostly absent from
Bayesian network software products.

3.8 Uncertain evidence in Bayesian network software

Most available implementations of uncertain evidence
propagation in Bayesian network engines concern Pearl’s
method of virtual evidence. Table 4 shows the features avail-
able for the updating of uncertain evidence among some
available Bayesian network engines.2

This review of literature leads to the conclusion that two
main types of uncertain evidence have been defined, but
neither terminology nor concepts have been clearly defined
by the Bayesian network user community. The next section
presents the definitions and characteristics of likelihood
evidence and probabilistic evidence.

4 Uncertain evidence in a Bayesian network

This section presents definitions and properties of the two
main types of uncertain evidence, namely likelihood evi-
dence and probabilistic evidence. Their definitions and
properties are illustrated with some examples, and the main
elements of propagation algorithms are given in the follow-
ing section.

4.1 Likelihood evidence: definition and characteristics

Likelihood evidence corresponds to the cases where the
observation is uncertain (Fig. 2). The uncertainty on the
observation may come from the unreliability or imprecision
of the source of the information.

2The software ProBT of Probayes proposes the use of a new vari-
able named “coherence variable” to take into account new information
specified by a local probability distribution [8]. Further studies remain
to be carried out to compare this proposition with the propagation of
likelihood evidence and probabilistic evidence.
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Table 4 Features of Bayesian network software about evidence updating

Hard Likelihood Not fixed Fixed

finding finding probabilistic probabilistic

finding finding

Elvira [26], Analytica [32], Samlam [21] X

AgenaRisk [10], Bayes Server [66], Infer.NET [56], X X

BNT [57], Genie [24], Hugin [51], gRain [33]

Netica [58] X X X

BayesiaLab [38] X X X X

Definition 3 (Likelihood finding or virtual finding) A like-
lihood finding (or virtual finding) on a variable X of a
Bayesian network is an observation with uncertainty of the
variable. It is specified by a likelihood ratio3

L(X) = (L(X = x1) : . . . : L(X = xm)) = (P (obs | x1) : . . . : P(obs | xm))

where the L(X = xi) are quantities relative to each other
representing the probability of the observed event given X

is in the state xi . Likelihood evidence, also called virtual
evidence, is a set of likelihood findings.

A particular case of likelihood finding occurs when the
likelihood ratio is composed of only zeros and ones, in order
to represent information meaning that only some values of
the observed variables are possible (Definition 4). The zeros
denote a negative finding, meaning that the corresponding
states of X are impossible, whereas the ones denote a dis-
junctive finding, meaning that the variable is necessarily
in one of the states corresponding to a one, but without
specifying that some values are more probable than others.

Definition 4 (Negative finding, disjunctive finding) A neg-
ative finding (or disjunctive finding) on a variable X with
values in DX is defined by an observation vector of zeros
and ones. It represents the information that X can be only
in one of the states corresponding to the ones and that the
other states are impossible.

A negative finding whose observation vector contains a
single one is a hard finding.

The next two properties describe how likelihood evi-
dence interacts with beliefs before and after its propagation.

3the terms of a likelihood ratio do not need to sum to one.

Property 1 Likelihood evidence is specified “without a
prior”, as a consequence, propagating likelihood evidence
takes into account the beliefs in the variable before the
evidence.

Property 2 Belief in a variable after propagating a like-
lihood finding on it is not fixed: it can be modified by
further evidence on other variables. In other words, let Q1

represent the beliefs after the propagation of a likelihood
finding on X and Q2 represent the beliefs after a second
piece of evidence on another variable; then it may occur that
Q1(X) �= Q2(X), meaning that the belief in X has been
modified by the second piece of evidence.

Example 1 (Likelihood finding: optical character recogni-
tion (OCR)) A Bayesian network includes a variable X

representing a letter of the alphabet that the writer wanted to
draw. The set of values of X is the set of letters of the alpha-
bet. A piece of uncertain information on X is received from
a system of OCR. The input of this system is an image of
a character and the output is a vector of similarity between
the image of the character and each letter of the alphabet.
Let o represent the observed image. Consider a case where,

Fig. 2 A likelihood finding on X. The variable X is observed with
uncertainty (e.g. via an imperfect sensor). The binary variable Obs

represents the observation, whereas X represents the real value. The
variable Obs is temporarily added to the graph in order to propa-
gate the observation Obs = obs. The evidence is specified by the
likelihood of the observed value obs with respect to each value of X
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due to lack of clarity, o can be recognized as either the let-
ter ’v’, ’u’ or ’n’. The OCR technology provides the indices
such that P(Obs = o | X = ’v’) = 0.8, P(Obs = o |
X = ’u’) = 0.4, P(Obs = o | X = ’n’) = 0.1 and
P(Obs = o | X = x) = 0 for any letter x other than ’u’,
’v’ or ’n’. This means that there is twice as much chance of
observing o if the writer had wanted to draw the letter ’v’
than if she had wanted to draw the letter ’u’. Such a finding
on X is a likelihood finding on X, specified by L(X) = (0 :
. . . : 0 : 0.1 : 0 : . . . 0 : 0.4 : 0.8 : 0 : 0 : 0 : 0). Note that
from the definition, the entries of L(X) need not add up to
1.

This example illustrates the two characteristics of likeli-
hood finding: in the Bayesian network, the prior probability
distribution P(X | pa(X)) includes knowledge about the
distribution of letters in the language of the text from which
the character comes whereas the OCR technology does
not integrate that knowledge. Thus it provides informa-
tion about X without prior knowledge. In order to update
the belief in the value of the character, the information
provided by the OCR (the vector of similarity) has to be
combined with the prior knowledge about the frequency of
letters. Moreover, the result of propagation is not fixed since
belief in X can be further modified by other information.
For example, information about the neighboring characters
could be taken into account.

Example 2 (Negative finding: Example 1 continued) Con-
sider now the negative (or disjunctive) finding given by the
information that the observed image (o) can be only the let-
ter ’u’ or ’v’, and that all other letters are excluded. We have
P(o | X = ’u’) = P(o | X = ’v’) and P(o | X = x) = 0
for all x ∈ DX \ {’u’, ’v’}. Thus,

P(X = x | o) =
{

P(X=x)

P (X=’u’)+P(X=’v’) for x ∈ {’u’, ’v’}
0 for other letters.

The posterior beliefs on the events X = ’u’ and X = ’v’
depend on the prior beliefs on these events and may differ
from them.

4.2 Probabilistic evidence: definition and characteristics

Probabilistic evidence corresponds to another meaning of
uncertain input where the evidence is specified by local
probability distributions. Fixed probabilistic evidence is
often called soft evidence [4–7, 48, 60, 64, 69].

The definition below is given in its simplest form. A more
general version is given below (Definition 6).

Definition 5 (Probabilistic finding, fixed or not-fixed) A
probabilistic finding on a variable X ∈ X is specified
by a local probability distribution R(X) that defines a

constraint on the belief in X after this information has
been propagated; it describes the state of beliefs in the
variable X “all things considered”. A probabilistic find-
ing is fixed (or not) when the distribution R(X) can
not be (or can be) modified by the propagation of other
findings. Probabilistic evidence is a set of probabilistic
findings.

The difference between fixed and not-fixed probabilis-
tic evidence cannot be seen before the arrival of new
information.

The next two properties describe how probabilistic evi-
dence interacts with beliefs before and after its propagation.

Property 3 A probabilistic finding R(X) on a variable X of
a Bayesian network replaces any prior belief or knowledge
on X. As a consequence, the prior P(X) is not used in the
propagation of R(X), and any previous finding or belief on
X is lost.

Probabilistic evidence includes both the strength of the
evidence and the state of beliefs before evidence.

Property 4 A probabilistic finding R(X) on a variable X

is preserved when updating belief. The beliefs after con-
sidering the probabilistic finding on X is represented by a
probability distribution Q on X such that Q(X) = R(X).

Property 5 A fixed probabilistic finding on X is not modi-
fied by further evidence on any other variables of the model,
and a further finding on X is not possible, unless it over-
writes the current evidence. Any kind of evidence received
on other variables after fixed probabilistic evidence makes
it necessary to re-propagate previous fixed probabilistic evi-
dence together with the new evidence, in order to keep
the former probabilistic evidence fixed. As a consequence,
the propagation of several fixed probabilistic findings com-
mutes: the result of propagation is independent of the order
in which fixed probabilistic findings are received.

Fixed probabilistic evidence behaves as hard evidence
in that the specified evidence remains unchanged after its
propagation, and still remains unchanged after the arrival of
other information on the same case.

Property 6 A not-fixed probabilistic finding on X can be
modified by further evidence on any variable in the model,
including likelihood evidence on X. As a consequence, the
propagation of several not-fixed probabilistic findings does
not commute.

In order to illustrate these definitions and properties, we
propose below three examples of probabilistic findings: the
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first one concerns a not-fixed probabilistic finding in the
example of character recognition, the second one presents
fixed probabilistic evidence coming from the observation of
a sub-population in the ASIA Bayesian network, and the
third one shows a case of probabilistic evidence that first has
to be fixed and not fixed afterwards.

Example 3 (not-fixed probabilistic finding: Example 1 con-
tinued) Consider for the variable X in Example 1 that the
language of the word from which the character comes, and
the frequency of letters in that language are known. If the
Bayesian network does not contain the variable “language
of the text” (L), this information can be applied as not fixed
probabilistic evidence for the variable X representing the
character: R(X) = (R(X = ’a’), R(X = ’b’), . . . , R(X =
’z’)), provided that R(X) satisfy the condition “all things
considered”, meaning that no other prior belief has to be
combined with it. This has to replace the prior belief in
the event X = x. Since that information about X could be
improved by further evidence such as a likelihood finding
on X described in Example 1, it is a not-fixed probabilistic
finding on X.

Remark: in that example, let us suppose now that the first
information is the likelihood finding provided by the OCR,
and the second information concerns the language of the
text (L = English), but L is not a variable of the Bayesian
network. In that case, the probability distribution R(X) rep-
resenting the frequency of each letters in English cannot be
used to specify a not-fixed probabilistic finding on X since it
does not consider “all things”, in particular, the information
provided by the OCR technology is not taken into account
in R(X).

Example 4 (Fixed probabilistic evidence in Asia Bayesian
Network) Consider the Bayesian network Asia [52] which
contains eight binary nodes, among which there is a (root)
node Smoking and a (leaf) node Dyspnea (Fig. 3). Instead
of having findings about a single person, consider find-
ings coming from the data of a particular sub-population,
such as the workers in a given factory FunT. Observing
that half of them have dyspnea and a tenth of them smoke

constitutes fixed probabilistic findings on these variables
such that: R(Dyspnea) = (0.5, 0.5) and R(Smoking) =
(0.1, 0.9). No other information about the factory FunT
can modify these probability distributions. The first find-
ing has to be preserved even after propagating the second
probabilistic finding. Thus both findings have to behave
as hard findings and must not to be modified by prop-
agation. They are fixed probabilistic findings. When no
more details are available, these findings cannot be con-
sidered as a single piece of probabilistic evidence on the
two variables R(Dyspnea, Smoking) as defined in the
extended definition of probabilistic finding (Definition 6
below).

Example 5 (Probabilistic findings in Asia Bayesian Net-
work: fixed then not-fixed) Consider again the Bayesian
network Asia and the case of Mr. Flipo who works in the
factory FunT about which a recent survey has revealed that
half of its workers suffer from dyspnea and only one in
ten smoke (see Fig. 4). Without any more information on
Mr. Flipo, the probability distributions R(D) = (0.5, 0.5)

and R(S) = (0.1, 0.9) represent the posterior belief in the
variables D and S for Mr. Flipo. The prior beliefs about
D and S represented by P(D) and P(S) no longer have
influence on our belief about Mr. Flipo thus R(D) and
R(S) replace the prior beliefs, and they are given “all things
considered”. Since the propagation of R(D) has to be pre-
served while R(S) is propagated (or vice versa regarding
the order of propagation), the first probabilistic finding, say
R(S) = (0.1, 0.9), initially has to be fixed. If new informa-
tion about Mr. Flipo arrives, such as a recent visit to Asia, it
should modify our belief in both variables S and D. Thus,
R(D) = (0.5, 0.5) and R(S) = (0.1, 0.9) become not-fixed
probabilistic findings (the probabilistic finding on S is no
longer kept fixed).

Consider now the case where the first information about
Mr. Flipo concerns his recent visit to Asia (A = true),
and the second information is that Mr. Flipo works in the
factory FunT, in which half its workers suffer from dysp-
nea and only one in ten smoke. The probability distributions
R(D) = (0.5, 0.5) and R(S) = (0.1, 0.9) do not represent

Fig. 3 Two fixed probabilistic
findings about Dyspnea (D) and
smoking (S) observed in a
sub-population. The evidence is
specified by the probability
distributions R(D) ans R(S)

that represent the belief in D

and S after the propagation
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Fig. 4 Two probabilistic
findings about Mr. Flipo’s case.
The first is keep fixed while the
second is propagated, but after,
both probabilistic findings are
not fixed since beliefs in variable
S and D can be modified by
further evidence about Mr. Flipo,
such as his recent visit in Asia

the posterior belief in the variables D and S for Mr. Flipo,
since they do not include the initial information about the
visit to Asia. Since these probability distributions are not
given with “all things considered”, they can not be used to
specify probabilistic findings.

This example illustrates that the propagation of several
probabilistic findings, such that all of them are preserved,
requires that they be fixed until the last finding has been
propagated. This has to be done even if the probabilistic
findings can be later modified by other information. In that
case, the initial probabilistic findings are no longer kept
fixed.

In this example, a set of not fixed probabilistic findings
are deduced from the same initial information. Since each of
these findings defines a constraint on the posterior probabil-
ity distribution, they have to be kept fixed until all of them
are propagated. Afterwards, these probabilistic findings can
be later modified by other information.

Example 4 illustrates that an observation from a sub-
population constitutes a fixed probabilistic observation,
whereas Example 5 illustrates that the information on a sin-
gle instance furnished by knowledge of the sub-population
to which it belongs, is not a fixed probabilistic observation
since this information can be improved by further evidence.
Two other kinds of probabilistic evidence are detailed below
in Section 6.

There are two main differences between probabilistic
evidence and likelihood evidence. Firstly the specifica-
tion: for probabilistic evidence the distribution is speci-
fied “all things considered” whereas for likelihood evi-
dence the likelihood ratio is without prior knowledge or
belief. Secondly the propagation: while probabilistic evi-
dence remains unchanged by updating the observed vari-
ables, likelihood evidence has to be combined with previ-
ous beliefs in order to update the belief in the observed
variable(s).

Fixed probabilistic evidence on a variable X can be
supplied by an expert on X, and her judgment on X cannot
be improved by other evidence on any other variables of
the model. This type of evidence can be obtained by the

precise observation of a variable on a sub-population. The
difference between fixed and not-fixed probabilistic evi-
dence is only visible when several pieces of evidence are
received and propagated.

Definition 5 has been extended by Valtorta [69] in order
to consider information about one or more variables of
the model, specified by different forms of probabilistic
evidence.

Definition 6 (extended notion of probabilistic finding) A
probabilistic finding on a subset of variables Y ⊂ X is a
partial description of a probability measure that can be one
of the following:

(a) a joint probability distribution R(Y),
(b) a conditional probability distribution R(Y | Z) where

Z ⊂ X \ Y,
(c) probability assignments on arbitrary events on vari-

ables of Y,
(d) probability assignments on arbitrary logic formulae

on variables of Y.

The extended notion of probabilistic evidence can be
handled for evidence updating by the introduction of an
observation node [69]. This technique allows the reformu-
lation of extended probabilistic evidence into probabilistic
evidence on a single new observation variable. In the fol-
lowing, we consider only probabilistic evidence involving a
single variable.

4.3 D-separation and uncertain evidence in a Bayesian
network

The property of d-separation is central in Bayesian net-
works. It allows the identification of those variables in the
network whose posterior probability could be modified by
new information, regarding both previous observations and
their relative position in the graph.

The property of d-separation between two variables
requires the examination of all the paths between them to
check whether they are blocked or not.
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Table 5 Classification of the status of the belief of a variable X regarding the kind of observation on that variable. This status holds as long as
the observed case is considered

Belief on X is fixed Belief on X may change

The belief on X cannot be modified by other information The belief on X can be modified by any other information

(neither on itself, nor on other variable)

The variable X received The variable X received

- a hard finding - no evidence

- or a fixed probabilistic finding - or a likelihood finding

- an d / or a not fixed probabilistic finding

Usually, a path between two nodes X and Y is said to be
blocked if there exists an intermediate node Z on the path
such that one of the following conditions are true:

– there is a serial or a diverging connection on Z and Z is
observed;

– there is a converging connection on Z and Z is not
observed and none of its descendants is observed.

However, it is necessary to be more precise to explain
what is meant by Z is observed (or not) regarding the dif-
ferent kinds of observations. Table 5 is a first step in that
direction. It shows how each kind of evidence can be clas-
sified in two classes, regarding whether the belief on the
observed variable is fixed or not, as long as the observed
case is considered.

The classification given in Table 5 allows a more general
characterization of a blocked path between two variables to
be given (see Table 6 and Definition 7).

Definition 7 (blocked path) A path between two nodes X

and Y is blocked if there is an intermediate node Z on the
path such that one of the following condition is true:

– there is a serial or a diverging connection on Z and Z

received a hard finding or a fixed probabilistic finding;

– there is a converging connection on Z and Z received
neither hard finding nor fixed probabilistic finding and
the same occurs for its descendants.

The notion of d-separation can now be extended to fixed
probabilistic evidence by using the definition above. Further
studies would be required about d-separation and differ-
ent types of uncertain evidence, particularly in the context
of the propagation of new evidence in a Bayesian network
including previous evidence.

4.4 Synthesis of properties of all types of evidence
in a Bayesian network

Table 7 summarizes the properties of different types of evi-
dence in a Bayesian network. It is interesting to note that
fixed probabilistic evidence has the same properties as hard
evidence.

5 Uncertain evidence: propagation algorithms
in Bayesian networks

This section briefly presents the main algorithms for the
propagation of uncertain evidence, also called updating

Table 6 Characterization of a blocked path between two variables X and Y , regarding the kind of evidence on an intermediate variable Z and the
type of connection on Z

No fixed observation on Z and its descendants Z is observed with certainty

(Z and its descendants may receive likelihood (Z received a hard finding or a fixed probabilistic finding)

findings and not fixed probabilistic findings)

X . . . −→ Z ←− . . . Y the path is blocked new information can be transmitted from X to Y

X . . . −→ Z −→ . . . Y new information can be transmitted from X to Y the path is blocked

X . . . ←− Z ←− . . . Y

X . . . ←− Z −→ . . . Y
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Table 7 Synthesis of properties of different types of evidence in a Bayesian network

Uncertain evidence

Hard Likelihood Probabilistic evidence

evidence evidence not fixed fixed

The evidence defines a constraint on the posterior probability distribution Yes No Yes Yes

The evidence is specified “all things considered” Yes No Yes Yes

Several observations can be combined on the same variable No Yes Yes No

Posterior probability distribution is modified by later observations on other variables No Yes Yes No

The propagation requires the prior probability distribution No Yes No No

The propagation of several findings commutes Yes Yes No Yes

algorithms. First we present Pearl’s method of virtual evi-
dence for propagating likelihood evidence. Then we present
Jeffrey’s rule for probabilistic evidence and we explain
why this method is restricted to the case where proba-
bilistic evidence is not fixed. This leads us to discuss the
commutativity of the propagation of several probabilistic
observations. Next, recent algorithms to propagate proba-
bilistic evidence respecting commutation are listed. Finally,
we summarize propagation algorithms for uncertain evi-
dence that are available in the main Bayesian network
software.

5.1 Pearl’s method of virtual evidence

Virtual evidence refers to Pearl’s idea of interpreting a like-
lihood finding on an event as a hard finding on some virtual
event that only depends on this event [61]. The virtual evi-
dence method provides a convenient way of incorporating
evidence with uncertainty in a Bayesian network.

Pearl’s method to propagate a likelihood finding on X

extends the given Bayesian network by adding a binary
virtual node which is a child of X. The uncertain evidence
on X is replaced by hard evidence on the added node. The
hard evidence on the added node is propagated using a
classical inference algorithm in the Bayesian network. The
uncertainty of the evidence is specified in the conditional
probability table of the added virtual node.

The probability distribution Q representing beliefs after
the propagation of a likelihood finding L(X) by the vir-
tual evidence method is defined as follows. Consider a
Bayesian network (G, P ) with G = (X,E), and a likeli-
hood finding on a variable X ∈ X, specified by a likelihood
ratio L(X). Let O be the node added in the Bayesian net-
work with the states {o, ō} where o is the observation. Let
G′ = (X ∪ {O},E ∪ {(X, O)} be the augmented graph
and (G′, P ′) the augmented Bayesian network, where the

probability distribution P ′ is defined by P ′(O = o | X) =
L(X) and

P ′(X ∪ {O}) =
∏

Xi∈X
P(Xi | pa(Xi)) × P ′(O | X).

With this notation, the posterior probability distribution Q

can be defined by:

Q(.) = P ′(. | O = o) (1)

Equation 1 is directly linked with Property 1 stating that
likelihood evidence on X has to be combined with prior
belief in X to be propagated.

5.2 Jeffrey’s rule and conversion in likelihood evidence:
propagating not-fixed probabilistic evidence

Jeffrey’s rule [34] specifies evidence using posterior prob-
abilities. Propagating a probabilistic finding on X ∈ X
requires a revision of the probability distribution P on X by
a local probability distribution R(X). The difficulty arises
since Bayes’ rule cannot be applied because R(X) is not an
event [64]. A probabilistic finding R(X) requires a recon-
sideration of the joint probability distribution P because it
replaces the existing prior on the variable X.

The propagation of probabilistic evidence requires the
replacement of the initial probability distribution P by
another probability distribution Q that reflects the beliefs in
the variables of the model after accepting the probabilistic
evidence. This replacement is not definitive: it lasts as long
as the specific observed case holds, whereas the Bayesian
network applies to a larger population.

Jeffrey’s approach for this problem is known as “prob-
ability kinematics”, and it is based on the requirements
that:

1. the posterior probability distribution on the observed
variable X Q(X) is unchanged: Q(X) = R(X),
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2. the conditional probability distribution of other vari-
ables given X remains invariant under the observation:
Q(X \ {X} | X) = P(X \ {X} | X).

Jeffrey’s rule is given in (2): for a given local probability
distribution R(X) and for Z ∈ X \ {X},
Q(Z = z) =

∑

x

P (Z = z | X = x)R(X = x) (2)

In other words, even if P and Q disagree on X, they agree
on the consequences of X on other variables.

However, Jeffrey’s rule cannot be directly applied to
Bayesian networks, because their operations are defined on
full joint probability distributions. This can be overcome by
converting a probabilistic finding to a likelihood finding:
R(X) can be converted to a likelihood ratio

L(X) = R(x1)

P (x1)
: . . . : R(xn)

P (xn)
. (3)

Propagating the likelihood finding L(X) with Pearl’s
method provides the same results as propagating R(X) by
Jeffrey’s rule [15, 64]. Thus, the posterior probability of X

after propagating L(X) by Pearl’s method, is equal to R(X).
The propagation of a not-fixed probabilistic evidence

with Jeffrey’s rule is available in the Netica software [58]
under the name of “calibration”. It requires the user to input
P(X = xi | “all observations”) for each value xi ∈ DX.
The term “all observations” means that the probabilistic
finding integrates any information about the variable.

In case of several probabilistic findings, the method of
converting probabilistic findings into likelihood findings
does not preserve probabilistic findings. A simple example
can be found in [15, 64]: let R1(X1) and R2(X2) be two
pieces of probabilistic evidence, and Q be the probability
distribution reflecting the state of beliefs after considering
both findings by using either Jeffrey’s rule or by the con-
version into likelihood findings. Then Q(X1) �= R1(X1) or
Q(X2) �= R2(X2) depending on the order of propagation.
Results are not better when the second probabilistic find-
ing is converted into likelihood finding using its probability
revised after propagating the first finding. It therefore holds
that the inclusion of several pieces of probabilistic evidence
with Jeffrey’s rule does not commute. In other words, final
beliefs depend on the order of arrival of the probabilistic
findings. The next section deals with the propagation of sev-
eral pieces of fixed probabilistic findings, such that their
order does not modify the final belief.

5.3 Fixed probabilistic evidence propagating

Propagating a single probabilistic finding can be done by
its transformation into a likelihood finding as in (3). This

section concerns the propagation of several fixed proba-
bilistic findings, that is to say that each of the specified
probability distributions has to remain unchanged and the
order of propagation should have no influence on the final
result.

Several algorithms were recently proposed to propagate
fixed probabilistic evidence in a Bayesian network. Most of
them are based on the Iterative Proportional Fitting Pro-
cedure (IPFP) algorithm, which is an iterative method of
revising a probability distribution to respect a set of given
probability constraints in the form of posterior marginal
probability distributions over a subset of variables. This
algorithm first appeared in the literature in [45], and shortly
after was used as a procedure to estimate cell frequencies
in contingency tables under some marginal constraints [23].
More recently, a space-saving implementation of IPFP has
been proposed [2, 36, 37]. However, the IPFP works on
full joint distributions, and thus is not directly applicable
to belief update in Bayesian networks. The algorithm could
be applied for very small Bayesian networks, but would be
infeasible for larger ones since it needs to literally modify
each entry of the joint probability distribution table at each
iteration.

The big clique algorithm is a variation of the junction tree
algorithm, based on the IPFP. When constructing the junc-
tion tree, all variables involved in a soft finding are fully
connected with each other by additional undirected edges.
After triangulation, these nodes appear in a single clique
(the big clique). The belief update is done by first updat-
ing the big clique by running IPFP to convergence and then
propagating the resulting distribution of this clique to the
rest of the junction tree.

The algorithms BN-IPFP1 and BN-IPFP2 [64] do not
modify the junction tree and can work with any Bayesian
network inference engine. Both algorithms utilize the IPFP,
although in quite different ways. The iterations of BN-IPFP-
1, BN-IPFP-2 and Big Clique algorithm all converge to
the same distribution [64]. The BN-IPFP-1 algorithm first
converts all pieces of probabilistic evidence to likelihood
evidence and then iterates using the IPFP to update the
Bayesian network until it settles down to a distribution that
satisfies all given probabilistic evidence. The BN-IPFP-2
algorithm is more similar to the big clique algorithm, but
without modifying the junction tree. BN-IPFP-2 can pro-
vide efficient computation when the number of variables
involved in the probabilistic evidence is small.

The algorithm SMOOTH was developed by modifying
the standard IPFP to support belief update with inconsistent
evidence.

Table 8 provides a list of algorithms to propagate fixed
probabilistic evidence [63, 64].
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5.3.1 The algorithm BN-IPFP-1

We present here the detail of one of the above algorithms.
We choose BN-IPFP1 because of the initial results of the
comparison of three algorithms (BN-IPFP1 and 2 and Big-
clique) [48].

The BN-IPFP-1 algorithm [64] manages a set of con-
sistent fixed probabilistic findings such that each fixed
probabilistic finding R(Yf ) is dominated by the initial
probability distribution (R(Yf ) << P(Yf )), meaning that
there is no value y such that P(Yf = y) = 0 and
R(Yf = y) > 0.

The BN-IPFP-1 algorithm is independent of the infer-
ence algorithm and combines the IPFP and the conversion of
probabilistic findings to likelihood findings. The BN-IPFP-
1 algorithm converts separately each probabilistic finding to
a likelihood finding and then iterates using IPFP to update
the Bayesian network until it settles down to a distribu-
tion that satisfies all given probabilistic evidence. At each
iteration, a new likelihood ratio is obtained by dividing a
probabilistic finding (one at each iteration) by the marginal
probability on that variable obtained in the previous step.
This new likelihood ratio is then combined with all previous
likelihood ratios on the same variable obtained in previous
iterations (one for m iterations).

The proof of the convergence of the algorithm BN-IPFP-
1 [64] is based on the convergence of the IPFP.

5.3.2 Dealing with the extended notion of fixed
probabilistic evidence

The following procedure allows the handling of the
extended notion of fixed probabilistic finding (see defini-
tion 6). This is done by adding an observation variable that
is created as follows:

– First, an observation variable Obs is created for each
piece of fixed probabilistic evidence received. Every

state of the observation variable corresponds to the
possible outcomes of the probabilistic finding.

– Second, directed edges to Obs are added from all
variables in the Bayesian network that have a direct
influence on the observation, that is to say variables
involved in the probabilistic finding (Fig. 5).

– Third, the dependence of the added nodes are mod-
eled by specifying the conditional probability tables
P(Obs | pa(Obs)).

Probabilistic evidence on the added observation node is
propagated in the augmented Bayesian network thanks to
one of the probabilistic evidence updating methods pre-
sented above.

In the case of evidence on a set of observation variables
E1, . . . , Ep that are independent in the Bayesian network,
the propagation can be done by considering a single piece
of evidence R(E1, . . . , Ep) = R(E1) × . . . × R(Ep).

6 Applications of fixed probabilistic evidence

Although the concept of probabilistic evidence in Bayesian
networks was introduced in 1998 [11, 25], it remains lit-
tle used by the Bayesian network user community. In this
section we propose several examples of the use of fixed
probabilistic evidence. Firstly we introduce the integra-
tion of Bayesian networks with Geographic Information
Systems (GIS), secondly applications concerning the prop-
agation of an observation on a continuous variable in a dis-
crete Bayesian network, and thirdly using fixed probabilistic
evidence for a distributed Bayesian network.

6.1 GIS applications

A range of applications of probabilistic evidence concerns
the integration of a Geographic Information System (GIS)
with a Bayesian network. The geographic area in focus
furnishes the Bayesian network with the fixed probabilis-
tic evidence derived from the GIS database held about a

Fig. 5 A Bayesian network receives a fixed probabilistic finding on
(X1, . . . , XP ) (Definition 6). An observation variable Obs is cre-
ated in order to consider the new piece of information as a fixed
probabilistic finding on a single node
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Table 8 List of algorithms to propagate fixed probabilistic evidence

Algorithms Characteristics

Big-Clique [11, 40, 69] recoding of the junction tree algorithm based on IPFP

Lazy big clique [48] modifies the updating algorithm [55]

BN-IPFP 1 and 2 [60, 64] manages consistent evidence,

independent of the inference algorithm,

combines IPFP and the conversion to likelihood evidence,

BN-IPFP-1: converts separately each probabilistic

evidence very expensive if the Bayesian network is large.

BN-IPFP-2: uses IPFP to calculate R(X1, . . . , Xp) from the set R(X1), . . . , R(Xp)

then propagates by transforming to likelihood evidence

Soft updating algorithm [68] context of hybrid Bayesian network

Approximate algorithms [62]

IPFP [2, 36, 37] A space-saving implementation for joint distributions, not for Bayesian networks

GEMA [70] inconsistent fixed probabilistic evidence for general joint distributions

SMOOTH [64, 74] propagation of inconsistent fixed probabilistic evidence (proof of convergence for two pieces of evidence.)

sub-population of the population used to derive the CPTs
employed in the Bayesian network. For example, a Bayesian
network is used to support conflict analysis for groundwa-
ter protection and observations about rainfall, groundwater
salinity and land use are obtained from the GIS [31]. In a
review of Bayesian network applications in ecosystem ser-
vice modeling [46], the authors point out that in most of
the studies which integrate a Bayesian network and a GIS,
GIS is used as an input for the Bayesian network, providing
probabilistic evidence for each geographical area.

Fixed probabilistic evidence can also been used in a
Bayesian network to evaluate the social, economic and
environmental impacts of community deployed renewable
energy; each geographic area of interest furnishes the
Bayesian network with a new fixed probability distribution
to describe renewable energy resources, socio-economic
parameters and the carbon intensity of displaced fossil fuels
[53, 54]. The new probability distributions cannot replace

prior probability distributions in the Bayesian network since
they have to be kept fixed; they have to be propagated as
fixed probabilistic evidence.

Figure 6 illustrates the use of fixed probabilistic evidence
from a GIS. New information about the geographic area of
interest is represented by a set of variables X1, . . . , Xp. An
area is composed of several units, each of them having a
specific value for each variable Xi . The unit can be a pixel,
a house, etc. Each observation of a variable Xi in an area
Ak is obtained from a source Si that allows to compute the
distribution of Xi in the area Ak . The source Si can be a
database, a GIS or any other source. Since information about
an area may come from different sources, it is specified
by a list of fixed probabilistic evidence rather than a sin-
gle joint probability distribution on the variables X1, . . . Xp.
Each local probability distribution has to be kept fixed since
it represents the variability of the observed variable in the
considered area.

Fig. 6 Fixed probabilistic
evidence on a geographic area of
interest
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The question of representing and propagating uncertainty
in geospatial information has been discussed by Laskey and
Wright [50]. In particular, the authors propose to represent
statistical regularities and uncertain evidence with proba-
bilistic ontologies. This consists of a generic model based
on Multi-Entity Bayesian Network (MEBN) that allows the
generating of a new Bayesian network for each pixel in the
database.

However, propagating uncertain evidence in a Bayesian
network remains a topic to explore in order to manage
uncertainty in geospatial information.

6.2 Observations on continuous variables

Here we present the principle of using fixed probabilistic
evidence for propagating observations on continuous vari-
ables in a discrete Bayesian network, as proposed by Di
Tomaso and Baldwin [68].

A common way to deal with a continuous variable in dis-
crete Bayesian network is to discretize it. Despite the loss
of information due to the discretization, this technique is
broadly used within the framework of Bayesian networks.
The impact of the choice of the discretization method in dif-
ferent Bayesian network classifiers has been studied, and it
appears that it does not really have an effect when classifiers
are being compared [29]. In contrast, the choice of the num-
ber of intervals influences the quality of the results. Each
interval is considered as a specific discrete value and all the
points within the interval are considered as if they were the
same discrete value. Thus, they are treated in the same way
wherever their position in the interval. For this reason dif-
ferent ways of defining the partition, i.e. with a differing
number of intervals and thresholds can give very different
results.

Discretization of continuous variables in a Bayesian net-
work is a compromise between three criteria that do not
always have the same importance:

(1) Information quality: discretization has to avoid or
minimize any loss of information regarding the objectives
of the model: to this end, intervals have to be defined such
that, if different values for an evidence node deliver a dif-
ferent outcomes for target nodes, they must be contained

Fig. 7 Fixed probabilistic evidence to manage observation on a
continuous variable in a discrete Bayesian network

within different intervals. This criterion leads to the choice
of smaller, and therefore a higher number of intervals.

(2) Statistical quality: with due regard for the available
data, discretization has to ensure there are enough sam-
ples falling within each interval. This aspect is all the more
important with insufficient data. This criterion leads to the
choice of larger, and therefore a smaller number of intervals.

(3) Computational feasibility: discretization has to pre-
serve the usability and the effectiveness of the model (spa-
tial and temporal complexity of inference). This aspect is
all the more important if the discretized variable has sev-
eral parent nodes and/or child nodes, and if the overall size
of the Bayesian Network is large. This criterion leads to the
choice of a smaller number of (and therefore larger) inter-
vals in order to create a model with a reasonable size. This is
because the number of intervals into which a particular node
is discretized, together with both the number of its parents,
and their respective number of states, determine the size of
its conditional probability table, and thus commensurately
the size of the overall model. The size of the model is a lim-
iting factor both for the learning of the Bayesian network
and inference making.

In situations where a very small number of intervals are
thought necessary for any of the reasons outlined above, an
observation on a continuous variable can be treated by using
a small number of fuzzy partitions. Figure 7 shows how hard
evidence is substituted by probabilistic evidence [68]. The
probabilistic evidence is obtained by fuzzy discretization.
This implies the computation of a probability distribution
on the discretized variable’s set of intervals such that each
element of the probability distribution represents the degree
of membership to the corresponding interval.

Definition 8 A fuzzy partition on the universe � is the set
of fuzzy sets f1, ..., fp such that

∀x ∈ �,

p∑

i=1

Xfi(x) = 1

where Xfi
is the membership function of fi , i.e. a function

Xfi
: � 
−→ [0, 1].

Choosing a discretization with a small number of inter-
vals reduces the size of the model, which facilitates infer-
ence making, and makes the learning step less data demand-

Fig. 8 Membership functions of the fuzzy discretization of the vari-
able age
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Table 9 Evidence vector obtained after discretization of two observed values of the age

Discretization of the variable age

3 intervals 20 intervals (5 years slices) fuzzy discretization with 3 states

age = 19 (1,0,0) (0,0,0,1,0,. . . ,0) (0.6,0.4,0)

age = 10 (1,0,0) (0,1,0,0,0,. . . ,0) (1,0,0)

ing. The loss of information may be partially compensated
by fixed probabilistic evidence propagation.

The appropriateness of using probabilistic evidence
rather than likelihood evidence is that likelihood evidence
represents a subjective statement that can be improved by
something observed later, while probabilistic evidence rep-
resents an observation that cannot be improved by anything
observed later i.e. it is fixed. This ensures that the proba-
bility distribution of the observed variable will not be later
influenced by further observations on any other variable.
This is required since the initial hard evidence on the con-
tinuous variable means that we are certain of the observed
value.

Example 6 (Age) Let us consider a variable age that rep-
resents the age of a person and a discretization in three
intervals: young (age < 20), adult (20 ≤ age < 70)
and old (age ≥ 70). On the one hand, the proposed dis-
cretization does not distinguish between 1 year and 19
years whilst on the other, the values 19 years and 21
years are treated differently. An example of fuzzy dis-
cretization of the variable age is given in Fig. 8. Table 9
shows the evidence vector obtained after each kind of dis-
cretization of age for two observed values (age = 19 and
age = 10). The probability obtained with fuzzy discretiza-
tion is computed using the membership function shown in
Fig. 8.

6.3 Probabilistic evidence for a distributed Bayesian
network: AEBN framework

Large real world intelligent systems are often too complex
or expensive to be built as centralized systems. Several solu-
tions have been proposed to address this issue, including
Agent Encapsulated Bayesian Network (AEBN) [11]. The
principle behind this framework has been the prime motiva-
tion for the definition and use of fixed probabilistic evidence
in a Bayesian network. Indeed, in an agent based model
using AEBNs, the belief of a receiver agent is updated fol-
lowing the transmission of probabilistic evidence sent from
a publisher agent.

Agent Encapsulated Bayesian Networks (AEBN) were
first proposed by Bloemeke [11] and extended by Langevin
and Valtorta [47, 49].

Definition 9 An Agent Encapsulated Bayesian Networks
(AEBN) is an agent equipped with a local Bayesian network
(V , E, P ), that represents its internal knowledge base. The
set of variables V = I ∪ L ∪ O is partitioned into three sets
of variables:

– Input variables (I): variables for which other agents
have better knowledge

– Output variables (O): variables for which this agent has
the best knowledge (oracular knowledge)

– Local or hidden variables (L): variables which are
private to this agent and not visible by the other agents.

The set E contains the edges in the model that define the
causal relationships amongst the variables of V . A joint
probability distribution P is defined over V . Variables in
I ∪ O are shared variables, while variables in L are private.

Agents are organized into a publisher/subscriber hierar-
chy, where agents are publishers of their output variables
and subscribers to their input variables. They communi-
cate by sending messages consisting of joint probability
distributions over the subset of shared variables. There-
fore, each agent that receives messages from other agents
obtains fixed probabilistic evidence for one or more obser-
vation variables (see Fig. 9). Fixed probabilistic evidence on
the added observation node is propagated in the augmented
Bayesian network of the receiver agent, thanks to one
of the probabilistic evidence update method presented in
Table 8.

Fixed probabilistic evidence updating assures a kind of
global consistency, since the belief in each shared vari-
able, represented by the marginal posterior probability, is
the same in every agent [69].

7 Discussion and conclusion

In this last section, we firstly discuss the difference between
probabilistic evidence propagation and model revision.
Then we examine a recently proposed Fuzzy/Bayesian net-
work and explain why this is actually a case of probabilistic
evidence. Finally, we conclude and present the perspectives
of that work.
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Fig. 9 Message passing
between AEBNs: the AEBN1 is
publisher of the variable X and
the AEBN2 is subscriber; it
receives a fixed probabilistic
finding on X from the AEBN1

7.1 Probabilistic evidence propagation versus model
revision

Since probabilistic evidence is a constraint on the posterior
probability distribution, it replaces the marginal probabil-
ity distribution over the variables concerned and thus casts
doubt on the joint probability distribution. Should we con-
sider probabilistic evidence to be a knowledge contribution?
In this case, why not change the model rather than propagate
probabilistic evidence? One paper argues that probabilis-
tic evidence propagation is suitable for model revision and
not for updating [71], but this viewpoint is later abandoned
by the author [40]. We present two scenarios which show
clearly the choice between probabilistic evidence updating
and model revision.

Firstly, consider evidence that has a temporary valid-
ity. Such evidence may result from the partial observation
of a particular state of the modeled system that is valid
as long as this state holds. Similarly the probabilistic evi-
dence may come from the observation of a sub-population.
A further example of temporary validity presents itself
when an observation of a continuous variable is made
and transformed via a fuzzy discretization. In those cases,
probabilistic evidence can be considered as temporary hard
evidence, and thus does not justify model revision.

In contrast the probability distribution P of a Bayesian
network (G, P ) to which the temporary probabilistic evi-
dence is applied, represents permanent knowledge which
does not need to be revised by short-term evidence.

The second argument deals with the fact that a model
is often a compromise between efficiency and accuracy,
meaning that the model never includes all parameters of
the modeled system. This limit of the model can be par-
tially overcome by using a probabilistic finding to consider
information about a variable which is not included in the
model. When the observer is able to translate the observed
characteristic onto a variable of the model she may apply
a probabilistic finding to that variable. While the knowl-
edge embedded in the probability distribution is permanent
knowledge this information is relevant only while the spe-
cific instance with that characteristic is considered. It can
be concluded that information about a specific state of the

modeled system has to be taken into account via propagat-
ing evidence (hard, likelihood or probabilistic), even if it
considers variables that are not in the model.

Revision of the model occurs when hypotheses associ-
ated with it are changed. Several methods for knowledge
integration and Bayesian network revision have been pro-
posed [63].

Some of the algorithms to propagate fixed probabilistic
evidence (Table 8) have been adapted in order to revise the
Bayesian network by the direct replacement of the initial
probability distribution by the revised probability distribu-
tion. These adaptations are the E-IPFP, E-IPFP-SMOOTH
and D-IPFP algorithms [63]. The E-IPFP algorithm inte-
grates the constraints by only changing the conditional
probability tables of the given Bayesian network while
preserving the network structure. The E-IPFP-SMOOTH
and D-IPFP algorithms are two variations of the E-IPFP
algorithm. The first deals with the situation where the
probabilistic constraints are inconsistent with each other or
with the network structure of the given Bayesian network.
The second reduces the computational cost by decompos-
ing a global E-IPFP into a set of smaller local E-IPFP
problems.

7.2 Probabilistic evidence and an example
of fuzzy/Bayesian network

Despite a number of papers dealing with fuzzy Bayesian
networks, for example [3, 28, 59, 67], there is still no com-
monly accepted definition of this concept. However, one
of the objectives of these is to manage uncertainties in the
input of the Bayesian Network. In this section, we examine
a recently proposed Fuzzy/Bayesian network to solve a fault
detection problem [19]. We explain why this is actually a
case of probabilistic evidence.

The real system described in [19] aims to detect short
circuits in stator-windings. The problem includes a set of
continuous variables representing the difference in magni-
tude between currents. These variables do not belong to the
proposed Bayesian network, but they are observed. Another
set of Boolean variables are included in the Bayesian net-
work, each of them associated with an observed continuous
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variable. A set of rules allows the determination of the val-
ues of the Boolean variables given the continuous variables.
If these rules are deterministic, the information on the con-
tinuous variables can be transformed into hard evidence
on the Boolean variables. In the other cases, it provides
uncertain evidence on the Boolean variables of the Bayesian
network. In the presented application, these rules consist of
a set of membership functions associated to each continu-
ous variable. It provides a vector of membership degree for
the states True and False of the associated Boolean vari-
able. We suggest that each vector specifies a probabilistic
finding on the Boolean variable. The equation proposed in
[19] to define the posterior probability of a variable after
such uncertain evidence would require both explanation and
justification. The proposed equation is applied in a very
simple example, including a single probabilistic finding for
each considered case. We compared the results of this appli-
cation with those obtained with Pearl’s method of virtual
evidence after converting probabilistic evidence into like-
lihood ratios4 and we obtained the same results.5 Having
a single probabilistic finding does not allow the discus-
sion of whether each probabilistic finding (given by the
membership degree) has to be kept fixed or not.

The comparison between a fuzzy Bayesian network and
probabilistic evidence suggests that further study of their
differing properties is required to achieve a better character-
ization of these methods.

7.3 Conclusion and future work

In this paper, we have set out definitions and properties of
hard and uncertain findings in a Bayesian network. Three
kinds of uncertain evidence are distinguished: likelihood
evidence, fixed and not-fixed probabilistic evidence. Evi-
dence is a set of findings on the variables of the Bayesian
network. (1) Likelihood evidence is unreliable, imprecise,
or vague evidence; it is specified by a likelihood ratio
and propagated by Pearl’s method of virtual evidence. This
method translates a likelihood finding on a variable X onto
a hard evidence on a new virtual node, added as a child
of the node X. (2) Fixed or not-fixed probabilistic evi-
dence expresses a constraint on the state of some variables
after this information has been propagated in the Bayesian
network. A probabilistic finding on X is specified by a
probability distribution R(X) that is given “all things con-
sidered”, meaning that is replaces any former belief and
knowledge on X. (2a) A not-fixed probabilistic finding can
be propagated by converting it in likelihood evidence (see

4We use the Bayesian software Netica, Menu: Enter finding / function:
calibration.
5There seems to be an error in the results displayed in Table 2 and 3 in
[19] since they do not correspond to the results announced in the text
and referring to these tables.

Eq. 3). It can be later modified by further evidence on any
node of the Bayesian network, including X itself. (2b) Fixed
probabilistic evidence is also known as soft evidence. A
probabilistic finding on a variable X cannot be altered by
any further information on variables in the model. Thus the
propagation of several pieces of fixed probabilistic evidence
is commutative. Fixed probabilistic evidence has to be prop-
agated by specific algorithms such as big clique or BN-IPFP
(Table 8).

We provide several examples where the application and
propagation of fixed probabilistic evidence in a Bayesian
network is of interest. In an agent organization based on an
AEBN, a probabilistic finding on a shared variable X is used
by a receiver agent to take into account the information sent
by a publisher agent which is considered to be an expert
on X. In a Bayesian network with discretized continuous
variables, a fixed probabilistic finding on such a variable
X is obtained when using fuzzy discretization, which for a
coarse discretization maintains a greater fidelity to a more
granular discretization. Finally, a fixed probabilistic finding
can also summarize observations about a set of instances of
a particular subgroup such as in Example 4.

This paper aims to contribute to the standardization and
clarification of the definitions and properties of different
types of evidence in a Bayesian network.

A number of terms for hard evidence are in use (specific
finding, positive finding, regular finding, deterministic find-
ing, observation), but there is no major semantic difference.
The general understanding is that hard evidence is when
there is a single one in the observation vector.

Negative evidence is characterized by observation vec-
tors of zeros and ones which may include several ones. A
negative finding is not a hard finding, except in case the
observation vector contains a single one. It is a specific case
of likelihood finding where the observation does not permit
the making of a distinction between included values.

Terms to describe uncertain evidence have been made
clearer: likelihood evidence, also called virtual evidence
has to be clearly distinguished from probabilistic evidence,
both in terms of specification and of propagation. This
latter notion includes two sub-groups, fixed or not-fixed
probabilistic evidence, regarding the impacts of future infor-
mation on the constraint defined by the probabilistic evi-
dence. Both classes are specified by a local probability
distribution. The distinction between fixed and not-fixed
probabilistic evidence, which is around the question of
commutativity had already been raised and discussed in
previous papers [15, 64], but it had not led to distinct defini-
tions. Fixed probabilistic evidence was initially called soft
evidence.

The problem addressed in this paper is one of belief
updating and not the problem of model revision, which
leads to a change of the probability distribution (or even the
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graph) of the Bayesian network. In the case of probabilistic
evidence, information is probabilistic in nature and leads to
the replacement (temporarily) of the prior distribution extant
in the defined model.

Currently, many Bayesian network engines allow the
propagation of likelihood evidence, even though the termi-
nology is not yet standardized. However, very few of them
possess the ability to propagate fixed or not-fixed prob-
abilistic evidence. This would be of a great interest and
utility to the Bayesian network user community. The intro-
duction of features in Bayesian network engines to allow
the propagation of uncertain evidence in a Bayesian net-
work would require clarity of terminology so that the user is
confident about the type of uncertain evidence propagation
being invoked. At least three new features are required in
most Bayesian network engines. The first is a requirement
to enter an observation on a subgroup of instances instead
of a single instance. This would be useful for applications
such as classification of sub-populations, as in [30] concern-
ing the detection of atmospheric pollution, since each case
represents both a sequence of images during a short period
of time and a set of areas of interest in the image. Another
useful application concerns the analysis of a body of text,
such as automatic text summarization [27]. The use of prob-
abilistic findings would allow the exploitation of features of
the text both at the level of the sentence and at the level of a
section, considered as a set of sentences. Secondly, software
should facilitate the implementation of an agent organiza-
tion based on AEBNs. This requires a subscriber agent to
integrate the information from a corresponding publisher
agent by propagating fixed probabilistic evidence in its local
Bayesian network. This would be very useful in large appli-
cations based on probabilistic graphical models such as
multi criteria decision aiding framework for recurrent prob-
lems [22]. Other set of applications that could benefit from
AEBNs concerns forensic science. For example, in order to
guide criminal investigations [39], the knowledge based sys-
tems elaborates a Bayesian network that regroups a set of
plausible scenarios in order to determine which investiga-
tion strategies are likely to produce the most conclusive evi-
dence. Such approaches could be augmented by considering
some types of uncertain evidence, such as the confidence
in a person’s testimony, or the importance of a person’s
financial situation. The uncertainty of this evidence is not
reducible and could be taken into account as probabilistic
evidence. Such uncertain evidence could be obtained from
experts, each of them using her own Bayesian network. The
resulting probabilistic evaluation could be exploited by the
main agent of the system, in an AEBN framework. The third
feature of interest would allow the propagation of obser-
vations on continuous variables using a fuzzy discretiza-
tion with degrees of membership of two or more coarse
intervals.

Another feature of interest would allow the combina-
tion of several uncertain findings on the same variable
when appropriate: for example when combining not-fixed
probabilistic finding with a likelihood finding on the same
variable, or several likelihood findings. At present, very few
Bayesian network software applications allow such com-
binations. Another area of work to be done is a detailed
comparison with the different types of uncertain evidence
presented in this paper and the interesting proposition of
Bessière [8] of using coherence variables to fuse prior belief
with evidence specified by a probability distribution.
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Delcroix received her PhD
in Computer Science from
the University of Paris VI
(France). Since 1998, she is
an associate professor at the
university of Valenciennes,
in the North of France. She
teachs in an engineer school
(ENSIAME) and belongs to
a multidisciplinary labora-
tory (LAMIH) in the field
of Artificial Intelligence.
Her research focuses on rea-

sonning with uncertainty with probabilistic graphical models. She
published in several international journals, about different kind of
Bayesian networks applications. In particular, she proposed a sys-
tem of recommandation based on Bayesian networks for recurrent
multicriteria decision problems.

http://www.bayesserver.com/


824 A. Ben Mrad et al.

Sylvain Piechowiak is full
professor in computer science
at University of Valenciennes
since 2003. He got his PhD
in 1992 and his HDR in this
university.

His research area concerns:
constraint based reasoning
(temporal, distributed, etc) and
uncertainty based reasoning.

He uses these paradigms
of reasoning to solve model-
based diagnosis in transport
systems or in health organi-
zations, to support multi-agent
systems in traffic simulation

and to elaborate timetables in university.
He is the author of many articles and papers in international

journals and in international congresses or workshops.

Philip Leicester is a Research
Associate in Loughborough
University working on the
widespread penetration of
solar PV and other low carbon
interventions in to the energy
system.

His research concerns the
transition to a more sustain-
able, distributed, low-carbon
energy infrastructure and
key focus of this research
is the evaluation of social,
environmental and economic
impacts using probabilistic
approaches. In particular

integrated modelling in the urban context allows the assessment of
carbon reductions, fuel affordability and returns on investments for
both domestic and non-domestic technology adopters. This work has
benefits from due consideration of probabilistic evidence in object
oriented Bayesian networks. His contribution to this work has been
conducted as part of the research project ‘PV2025 – Potential Costs
and Benefits of Photovoltaic for UK Infrastructure and Society’
project which is funded by the RCUK’s Energy Programme (contract
no: EP/K02227X/1).

Mohamed Abid is working
now as a Professor at the
Engineering National School
of Sfax (ENIS), University
of Sfax, Tunisia. He received
the Ph.D. degree from the
National Institute of Applied
Sciences, Toulouse (France)
in 1989 and the “thèse d’état”
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