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Abstract When multiple robots perform tasks in a shared
workspace, they might be confronted with the risk of block-
ing each other’s ways, which will lead to conflicts or
interference among them. Planning collision-free paths for
all the robots is a challenge for a multi-robot system, which
is also known as the multi-robot cooperative pathfinding
problem in which each robot has to navigate from its starting
location to the destination while keeping avoiding station-
ary obstacles as well as the other robots. In this paper, we
present a novel fully decentralized approach to this problem.
Our approach allows robots to make real-time responses to
dynamic environments and can resolve a set of benchmark
deadlock situations subject to complex spatial constraints
in a shared workspace by means of altruistic coordination.
Specifically, when confronted with congested situations,
each robot can employ waiting, moving-forwards, dodg-
ing, retreating and turning-head strategies to make local
adjustments. Most importantly, each robot only needs to
coordinate and communicate with the others that are located
within its coordinated network in our approach, which
can reduce communication overhead in fully decentralized
multi-robot systems. In addition, experimental results also
show that our proposed approach provides an efficient and
competitive solution to this problem.
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1 Introduction

Autonomous multi-robot systems are now expected to per-
form complicated tasks consisting of multiple subtasks that
need to be completed concurrently or sequentially [7]. In
order to accomplish a specific subtask, a robot usually needs
to navigate to the right location first where the subtask can
be performed. When multiple robots are engaged in per-
forming tasks in a shared workspace, there is an inherent
risk that they may frequently block each other’s ways. As
a result, the use of multiple robots may lead to conflicts or
interference, which might decrease the performance of an
individual robot. In particular, deadlock situations have to be
taken into consideration in highly congested settings espe-
cially for distributed or decentralized robots to plan their
individual paths. This work is motivated by many practical
applications such as unmanned underwater/ground vehicles,
autonomous forklifts in warehouses, and deep-sea mining
robots.

Interference in the Multi-Robot Cooperative Pathfind-
ing (MRCP), or called Multi-Robot Path Planning (MRPP),
problem stems from conflicting paths, along which multiple
robots attempt to occupy the same places at the same time,
or to pass each other. The issue of how to plan collision-
free paths for multiple robots has been extensively studied
in [3, 8, 13–15, 19], where the robots are supposed to nav-
igate to distinct destinations from their starting locations.
Finding an optimal solution to such a problem, however, is
NP-hard and intractable [14]. Centralized solutions are usu-
ally based on global search and therefore could guarantee
completeness, but they do not scale well with large robot
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teams [3] and cannot be solved in real-time [10]. However,
in many practical applications, the robots are expected to be
fully autonomous and can make their own decisions, rather
than being managed by a central controller [9], and they
are supposed to make real-time responses to dynamic envi-
ronments. Decoupled (or called distributed) solutions are
fast enough for real-time applications, but they usually can-
not guarantee completeness [8], and the robots may easily
get stuck in common deadlock situations. Recent decou-
pled advances [12, 13, 17] have considered highly congested
scenarios. In comparison with our proposed approach, the
essential feature of decoupled approaches is that the robots
are still connected by a common database, e.g., the reserva-
tion table in [12] and the conflict avoidance table in [13]. In
this work, we are interested in a fully decentralized solution,
where the robots explicitly communicate with one another
to keep track of each other’s states and intentions, instead
of accessing a common database to be aware of the plans of
the others in decoupled solutions.

The advantage of decentralized solutions for multi-robot
systems is that, as the robots do not use any shared database,
they can be fully autonomous and each robot can be a
stand-alone system. On the other hand, such a solution often
suffers from high communication overhead in large-scale
robot teams because the robots need to directly communi-
cate with each other. To deal with this problem, each robot
in our approach only needs to communicate with the ones
locating within its coordinated network. For a team of k

robots, the communication overhead will be reduced to 12k
times in each time step, rather than k(k − 1) times in tradi-
tional decentralized systems. We analyze various deadlock
situations using graph-based models, and propose an altru-
istic coordination algorithm to identify which situation a
robot is confronted with and which strategy it should adopt.
Specifically, following the estimated shortest path to its
destination, a robot can employ waiting, moving-forwards,
dodging, retreating, and turning-head strategies to make
local adjustments to avoid potential collisions.

We begin this work by discussing the state-of-the-
art approaches to the MRCP problem in Section 2. We
analyze the models of our decentralized approach in
Section 3, and then discuss the altruistic coordination frame-
work in Section 4. The simulated experiments and results
are discussed in Section 5. Finally, Section 6 concludes
this work.

2 Related work

The problem of how to plan collision-free paths has also
been studied in the context of exploration (e.g., in [2,
11]). The difference is that the robots in [11] do not have
long-term destinations to move towards; instead, they are

continually attempting to choose one of the unexplored
neighboring vertices to cover. A decision-theoretic approach
to multi-robot exploration is presented in [2], where the
robots have long-term destinations but do not consider
congested configurations. Our work focuses on a general
MRCP problem, in which multiple robots are supposed to
navigate to distinct long-term destinations from their respec-
tive starting locations in a shared workspace that may have
highly congested environmental configurations.

Earlier work [1, 15, 20] presented their decoupled solu-
tions based on prioritized planning, where the robots need
to plan respective paths in order of their priorities. In other
words, the robot with the highest priority first plans its
path without considering the locations and plans of the
other robots, and then this robot is treated as a moving
obstacle so that subsequent robots have to avoid it when
planning their individual paths later. In such an approach,
each robot is expected to find a path without colliding with
the paths of higher priority robots, but the overall path plan-
ning algorithm will fail if there is a robot unable to find a
collision-free path for itself. In particular, such an approach
does not respond well in highly congested scenarios such
as intersections. The work in [4] introduced an approach to
solving the two-way intersection traffic problem, which is
not considered as a congested configuration in our work.
Traffic problems usually have two-way roads and thus can
be solved by introducing traffic lights, whereas one-way
intersections cannot be simply solved by using the traffic
light theory.

Recent decoupled advances considering highly con-
gested environments include FAR [16], WHCA* [12],
MAPP [17], and ID [13]. FAR andWHCA* are fast and can
scale well with large robot teams, but they are still incom-
plete and offer no guarantee with regard to the running time
and the solution length. MAPP has an assumption that for
every three consecutive vertices in a robot’s path to its des-
tination, an alternative path that does not go through the
middle vertex should exist, which apparently does not suit
a narrow corridor setting. As the ID [13] approach claims
that it provides a complete and efficient algorithm by break-
ing a large MRCP problem into smaller problems that can
be solved independently, we use it to compare with our
proposed approach in the experimental study.

Our work takes the advantage of push and swap ideas
proposed in [8], which presents a centralized approach that
allows one robot to push the other one away from its path,
or makes two robots switch their positions at a vertex with
degree ≥ 3. This approach only allows one robot (or paired
robots) to move in each time step. In contrast, we pro-
pose a fully decentralized approach in which the robots
are assumed to be altruistic, i.e., each robot has the will-
ingness to make concessions in congested situations, even
a concession may result in disadvantage for itself. In our
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approach, each robot follows a heuristic estimated short-
est path towards its destination, but it needs to make local
adjustments to deal with potential collisions with other
robots. When facing congested situations, the robots can
apply waiting, moving-forwards, dodging, retreating, and
turning-head strategies to coordinate with the other robots
that are located within its coordinated network to make
further progress. This work focuses on a general MRCP
problem that is analyzed based on graph-based models, so
the motion planning problems with regards to low-level con-
trol parameters, such as speed, acceleration, deceleration
and turning angle, are beyond the scope of this paper.

3 Models of decentralized cooperative pathfinding

In this section, we first formulate the problem that we study
here and then discuss the coordinated network that is used
for the robots to make local adjustments.

3.1 Problem formulation

A shared workspace can be divided into a finite set of n

discrete cells V with k robots R, k < n, and we use an
undirected graph G (V , E ) to represent the entire environ-
ment of the workspace. The edges E indicate whether two
vertices are connected or not in G . We assume that G is
divided uniformly, so edges have unit length l, i.e., it costs
l for a robot to move to a neighboring vertex from its cur-
rent vertex. In order to model realistic robots that are usually
equipped with physical actuators and effectors, we define
a spatial constraint in the graph: robots must be present at
distinct vertices at any time t :

∀i, j ∈ [1, k], i �= j : At [i] �= At [j ], (1)

where At [i] ∈ V indicates the vertex in which the i-th
robot locates at time t . The sets of starting locations and
destinations are denoted as S ⊂ V and T ⊂ V , respec-
tively. We use S [i] and T [i] to denote the starting location
and destination of the i-th robot. The robots are supposed
to navigate from their own starting locations to destinations
without blocking each others ways.

We assume that each robot can only move one unit length
per time step. In our work, in order to move to its destina-
tion, a robot should have a next-step plan Pt+1 at any time
t , either staying at its current vertex At or moving to one of
its neighboring vertices At+1:

Pt+1[i] ⇒
{

At [i] = At+1[i] (stay at its current vertex)

(At [i],At+1[i]) ∈ E (move to a neighbouring vertex)
, i ∈ [1, k]. (2)

Give the starting location S [i] and the destination T [i]
of the i-th robot, when beginning to carry out the task, the
robot needs to plan an initial path �0[i]:
�0[i] = {S [i], . . . , T [i]}. (3)

At any time t , the robot may need to adjust its initial planned
path �0[i] because of the existence of the other robots, so
we use �t [i] to represent its real-time planned path of the
i-th robot:

�t [i] = {At [i], At+1[i], . . . , T [i]}. (4)

If the robot has arrived at its destination at time e, then
we can know Ae[i] = T [i] and �e[i] = {T [i]}, which
means that the robot does not need to move anymore and
its next-step plan is staying at the current location. There-
fore, the objective of the robots working in such a shared
environment is to minimize e, while avoiding collisions with
stationary obstacles as well as the other robots.

3.2 Heuristic estimated shortest paths

Figure 1a shows an example of the initial configuration
of an environment for multi-robot path planning, where
four robots need to start from S1, S2, S3 and S4 to go to
their destinations T 1, T 2, T 3 and T 4. When planning their
respective paths to the destinations, if each robot disregards
the presence of the others, they can easily find the shortest
paths, as shown in Fig. 1b. Such a path, only considering
avoiding stationary obstacles, provides a heuristic optimal
estimate with the shortest travel distance that can be cal-
culated by performing a graph search, for example, using
Dijkstra’s algorithm.

Although these estimated paths do not guarantee that
a robot can successfully arrive at its destination without
any collisions with the other robots, it indeed provides an
idealized estimate, and at least indicates which direction
the robot can move towards. We use Ht [i] to denote the
heuristic estimated shortest path of the i-th robot at time t :

Ht [i] = {U1[i], U2[i], . . . , T [i]}, (5)

where U1[i] and U2[i] are the first and second successor
vertices in Ht [i], representing which vertices the robot is
planning to move in the next two steps. Thus, (4) can be
written as:

�t [i] = At [i]
⋃

Ht [i] = {At [i],U1[i],U2[i], , . . . ,T [i]},
(6)

and we can know that (At [i], U1[i]) ∈ E , (U1[i], U2[i]) ∈
E . If at time t the i-th robot can move to its destination after
one step, then Ht [i] = {T [i]}, �t [i] = {At [i], T [i]} and
U1[i] = T [i], U2[i] = 0. When the robot has arrived at its
destination, we can have U1[i] = U2[i] = 0, which means
that the robot does not have any plans of moving.
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Fig. 1 Heuristic estimated shortest paths

3.3 Coordinated network

As mentioned above, a robot takes unit length l to move to
a neighboring vertex in G . For any robot r ∈ R at time
t , it has the first and second successor vertices, U1[r] and
U2[r], along its estimated shortest path Ht [r] (see (5)). At
the moment, U1[r] might be occupied by one of its team-
mates, or be free but its teammate(s) is going to occupy it.
For example, Fig. 2a shows that the vertex that robot r wants
to move into is occupied by robot s, whereas Fig. 2b shows
that although that vertex is not occupied by any teammates
right now, but robot s and w also want to move into it. Thus,
if robot r executes its next-step plan, according to its esti-
mated shortest path, it might collide with another one, which
can be regarded as a conflicting plan.

From Figs. 2a and b, we can know that if the next-step
plan of robot r conflicts with the plan of robot s, s must be
locating within the distance of 2l. This means that in order
to avoid potential collisions, robot r only needs to care about
the presence of the others that are locating within the range
of 2l. The robot thus needs to coordinate with those robots
so that they can make local adjustments to avoid collisions.
To this end, the robot only need to communicate with a few
local robots, instead of all the other robots in the workspace.

For k decentralized robots, normally, each of them needs
to communicate with all the other k − 1 robots. Thus, the

robots need to communicate at least k(k − 1) times in
each time step. Excessive communication is then required
when a large number of robots is working in a shared
environment. In this work, each robot will construct a coor-
dinated network with the communication range of 2l, and
it only needs to communicate and coordinate with the oth-
ers locating within its coordinated network. As shown in
Fig. 2c, within that communication range, at most there
are 12 other robots, so the communication overhead can
be reduced to no more than 12k times for each time
step.

In addition, each robot, e.g., robot r , does not need to
communicate all the information about its heuristic esti-
mated shortest paths Ht [r]; instead, it only needs to broad-
cast its first and second successor vertices, i.e., U1[r] and
U2[r], in our approach. We will detail how the robots
use such information to make local adjustments to avoid
collisions in the next section.

4 Decentralized multi-robot altruistic coordination

In this section, we first discuss how a robot plans its next-
step towards its destination, and then discuss how it makes
local adjustments in order to avoid potential collisions with
the others.

Fig. 2 Coordinated network
with the communication range
of 2l
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4.1 Decision making for planning next-step

As robots can make their own decisions in decentralized
systems, we will discuss our proposed approach from the
point of view of an individual robot. Algorithm 1 shows the
main decision making process for an individual robot r to
make its next-step plan.

According to Algorithm 1, robot r needs to continuously
make its next-step plan until arriving at its destination (line
2). It either chooses the successor vertices along the esti-
mated shortest path (see line 6), or needs to turn its head to
a new coordinated robot (line 4) if it took a turning-head
strategy in the last cycle of the decision process, which will
be discussed in detail in Algorithm 2. If the first succes-
sor vertex of robot r is occupied by another robot s, then r

needs to coordinate with s (line 8). Sometimes the succes-
sor vertex might not be occupied, but one of its teammates
has planned to move into it (line 9). In this case, the robot
needs to wait at its current location for the next cycle of
decision making. Otherwise, it can make the plan to move to
the free successor vertex (line 11). In Algorithm 2, the robot
can also adjust its planned successor vertices, according to
the situation that it is facing at the moment. For communica-
tion, the robot only needs to broadcast its adjusted successor
vertices and next-step plan to the others that are locating
within its coordinated network (line 13). It happens that sev-
eral robots may make decisions to go to the same vertex
synchronously. In our approach, while executing a plan to
move to a vertex, if a robot finds that there is another one
moving to the same vertex as well, the robot will immedi-
ately stop moving, give up its original plan and inform the
other robot about its decisions.

4.2 Altruistic coordination in deadlock situations

When moving towards its destination along the estimated
shortest path, if a robot realizes that its first successor vertex
is occupied by another robot, it needs to make local adjust-
ments. The principle of our approach is that all the robots
are assumed to be altruistic, which means that each of them
has the willingness to make concessions in a congested sit-
uation in order to avoid collisions, even if a concession may
result in disadvantage for itself. In some situations such as
a narrow corridor, if two robots intend to pass each other,
one of them has to move backwards. Otherwise, they will
be blocked by each other. Thus, the robots need a method to
reach an agreement on which robot should make a conces-
sion and what kind of concessions is needed to make further
progress.

When the first successor vertex of a robot is occupied by
the other robot, they might be facing various environmental
configurations. We list the instances that may lead to a set
of benchmark deadlock situations in Fig. 3. In order to show
the completeness of the set of possible deadlock situations,
the listed instances will be analysed in different groups.
Basically, we need to check whether they are heading the
same direction, or they intend to swap their locations. For
the former case, we need to further check when their paths
will deviate from each other because they have different des-
tinations. Such a configuration is called trail following in
this work. For the later case, we need to consider whether,
and if so, how many neighboring vertices each of the robots
has. In the graph models, apart from the neighboring vertex
that a robot has planned to move in (i.e., the first succes-
sor vertex), it may have no, one, two or three other vertices.
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According to the current and intended locations of both of
the robots, the possible configuration might be a T-junction,
an intersection, a narrow corridor, or a dead-end corridor.
In the following subsections, we will discuss how to iden-
tify a possible situation, and which kind of strategies should
be used in each situation.

4.2.1 Trail following

Figure 3a and b depict that robot r is following the trail of
robot s, (U1[r] == At [s])⋂

(At [r] �= U1[s]). This means
that robot r wants to move into the vertex where robot s is
staying, but robot s wants to go to another vertex that differs
from the location where robot r is staying. Still, the choices
of robot s can be classified into two categories, as shown in
Figs. 3a and b, respectively. More specifically, after the first
successor vertex, robot r may diverge from s (see Fig. 3a),
U2[r] �= U1[s], or still follow the trail of s (see Fig. 3b),
U2[r] == U1[s].

In both instances, robot r would believe that s is try-
ing to move away from the occupied vertex at the moment,
so it can move forwards to the location of robot s. Some-
times they may come to a situation, as shown in Fig. 3c,
where robot s cannot move away right now just because it
is blocked by another robot v and does not have any other
free neighboring vertex. It should be noted that in such a
case it is not robot r who should try to find a solution for
robot s because s must be coordinating with v in its own

decision process at the same time. Robot r still believes
that robot s can successfully move away from that occu-
pied vertex, so it can wait at this time step for robot s to
succeed.

4.2.2 Intersections

In the remaining instances, i.e., from Figs. 3d to c,
robot r and s want to swap their positions, (U1[r] ==
At [s])⋂

(At [r] == U1[s]), but they still can be further
categorized into different congested situations. Figures 3a, b
and c shows T-junction or intersection configurations, where
at least one robot has the other free neighboring vertex that
differs from the second successor vertex of the other one.
This means that in order to avoid collisions and pass each
other, one of them can move to a temporal vertex that is not
a planned vertex of any robots along their estimated shortest
paths.

Such a temporal vertex can be available for both robot
r and s, as in Figure 3d, and only for one of them, as in
Figs. 3e and f. In our approach, as all the robots are assumed
to be altruistic, when robot r realizes that it has a free ver-
tex in Figs. 3d and e, it will actively dodge itself to this
vertex. For the instance in Fig. 3f, robot r believes that
robot s would apply the same strategy as what it will do in
Fig. 3e because they are all altruistic. Thus, robot r can con-
fidently move forwards to its first successor vertex in this
case because it believes that robot s will make a concession.

r s

r s r s v

r s r s r s

r s r s r s

r sw v r sw r s v

Fig. 3 Various environmental configurations that may result in a deadlock situation
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4.2.3 Corridors

Figures 3g, h and i show that both robot r and s do not have
the other free neighboring vertex, except for each other’s
second successor vertex. Such a configuration corresponds
to usual narrow or dead-end corridors, where one of them
has to go backwards in order to make further progress and
avoid collisions.

The difference between these instances is that in Fig. 3g
each robot can go backwards, whereas only one of them can
do so in Figs. 3h and i. In our altruistic coordination frame-
work, as robot r believes that it can go backwards in Fig. 3g
and h, it will actively retreat itself and move backwards at
this time step. However, when confronted with the situation,
as shown in Fig. 3i, robot r will take it for granted that robot
s can retreat as what it will do in the case of Fig. 3h, so it
can confidently move forwards to the location where robot
s is staying at the moment.

4.2.4 Clusters

Figures 3j, k and l show that robots are clustering together,
i.e., robot r and s do not have any free neighboring vertex. In
Figs. 3j and k, robot r has a neighboring vertex but occupied
by another robot w, whereas in Fig. 3l, apart from the vertex
occupied by robot s, r does not have any other neighboring
vertex, but s has the one but occupied by robot v.

At the moment, we can see that the coordination rela-
tionship is constructed between robot r and s, and they
cannot make any further progress to deal with such a dead-
lock situation. But in Figs. 3j and k, robot r can turn its
head and reconstruct a relationship to coordinate with robot
w, instead of keeping coordinating with s. Similarly, robot
s can reconstruct a relationship with robot v in its own
decision process when confronted with the case of Fig. 3l.
Applying the turning-head strategy, a robot can turn its head
towards a different direction, but it still needs to wait at this
time step because it cannot make any movements.

It should be noted that in the instances as shown in
Figs. 3d, g and j, one may worry that both robot r and s will
apply the same strategy (i.e., dogging, retreating or turning-
head) to make a concession at the same time step. In our
work, as the robots are fully decentralized, their decision
making processes are asynchronous. This means that once
robot r makes a decision and informs robot s, the environ-
mental configuration for s will be changed. Therefore, robot
s does not need to face the same situation.

4.3 Transformation of deadlock situations

As discussed above, the robots can employ waiting,moving-
forwards, dodging, retreating and turning-head strategies to
cope with a set of benchmark congested situations that have

trail following, intersection, corridor, or cluster configura-
tions. In the trail following situation, robot r needs to either
move forwards or just wait, so it still can keep the first and
second successor vertices, i.e., U1[r] and U2[r], along its
estimated shortest path. But in the other situations, the robot
may need to make local adjustments, i.e., move to a vertex
that differs from the planned U1[r], or head towards a direc-
tion that differs from U1[r], even if it cannot move. We will
discuss how these congested situations will be transformed
after applying corresponding strategies discussed above and
how robot r and s can successfully swap their locations.

4.3.1 Transforming intersections

Figure 4 shows how robot r and s swap their locations in an
intersection situation shown in Fig. 3d, which is also applied
to the instance in Fig. 3e. According to the estimated short-
est path, if robot r does not make local adjustments at time
t , it should move to its first successor vertex U1[r], which
is, however, impossible because robot s occupies that vertex
at the moment. If robot r applies the dodging strategy, it will
go to a free neighboring vertex. This means that the robot
needs to change its original next-step plan because of such
an adjustment (see Fig. 4b), and it will also inform the oth-
ers including robot s about the change of its next-step plan.
Here we replaceU1[r] by this free vertex and setU2[r] = 0.
Then, from the point of view of robot s, it does not need to
swap its location with robot r at the moment; instead, it will
face a new situation in which it is following the trail of robot
r , and, therefore, it can move forwards to its first successor
vertex.

After one step moving (i.e., at time t + 1 as shown in
Fig. 4c), robot r and s need to calculate their respective esti-
mated shortest paths again. As a result, robot r needs to go
backwards1 to the location where robot s is staying. Since
robot s has passed r , it can continue moving forwards along
its estimated path. For robot r , we can see that it will be fol-
lowing the trail of robot s at time t + 1, so it can move into
its current first successor vertex, i.e., the current location of
robot s. Finally, they can swap their locations after robot
r applying the dogging strategy. We can notice that inter-
section situations can be transformed into trail following
situations if one of robots applies the dogging strategy.

4.3.2 Transforming corridors

Figure 5 shows how robot r and s attempt to swap their
locations in a narrow corridor depicted in Fig. 3g, which
is also applied to the instance in Fig. 3g. Figure 5b shows
that robot r applies the retreating strategy, so it will change

1It is also possible that robot r may generate a new shortest path at the
moment, according to which it does not have to go backwards.
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Fig. 4 Transforming the intersection situation in Fig. 3d

its original next-step plan U1[r] and move backwards. At
the same time, robot s can confidently move forwards if it
knows that robot r has changed its heading direction. After
one time step, both of them need to make further progress
by re-calculating their respective shortest paths to their des-
tinations, as shown in Fig. 5c. It should be noted that if
robot s applies the retreating strategy at time t + 1, Fig. 5c
will become Fig. 5a again. This means that they may still
get stuck in a very long narrow corridor because of such
stochastic back and forth movements.

We can imagine that the only solution to breaking dead-
locks in a long narrow corridor is that one of the robots must
go backwards until they leave the corridor. To this end, it
requires that one robot must always go backwards, while
the other can continue moving forwards. In our work, once
a robot applies (or believes that the other robot will apply)
the retreating strategy, it needs to remember its choice. After
this time step, if they are still facing the corridor situation,
they need to apply the same strategy so that they can stick to
their choices. As shown in Fig. 5d, robot r should continue
retreating, whereas robot s can move forwards. The corridor
situation can be transformed into an intersection situation if
robot r can finally find a free neighbouring vertex to dodge.

4.3.3 Transforming clusters

In the cluster situations in Figs. 3j, k and l, both robot r and
s cannot make further progress, but one of them can turn its
heading direction to coordinate with the other robot. If robot
r turns its head to robot w at time t , it needs to change its
next-step plans U1[r] (also set U2[r] = 0) and inform the
other robots about its change. Since the environment config-
urations might be highly congested, we do not expect that

robot r will turn its head again to robot s at time t + 1 just
because it will be facing a new cluster situation with robot
w. Our solution is that once a robot applies a turning-head
strategy, it should remember its choice so that it will not turn
back again to robot s at time t + 1.

In cluster situations, even though applying the turning-
head strategy does not allow robot r or s to move one step,
the attempt to break up a cluster can be transmitted to the
other peripheral robots that have free neighboring vertex to
make room. Fig. 6 shows the basic idea of how a cluster sit-
uation can be gradually transformed into a trail following
situation. An effective step for the robots to make further
progress in cluster situations is that they can finally find
a free neighboring vertex, which can be a narrow corridor
situation, or even an intersection situation. As mentioned
above, a narrow corridor situation can be transformed into
an intersection situation, which can then be broken up by a
trail following situation.

4.4 Algorithm of altruistic coordination

Algorithm 2 gives the details on identifying which situa-
tion a robot is confronted with and which strategy it should
use. A robot can employ waiting, moving-forwards, dodg-
ing, retreating and turning-head strategies to make local
adjustments in the altruistic coordination framework. In
Algorithm 2, we still we use robot r as an example to explain
how it copes with congested situations.

As mentioned in Algorithm 1, robot r needs to coordinate
with robot s if its first successor vertex U1[r] is occupied
by robot s at the moment. In general, robot r could be
following the trail of s (line 4-8), or attempts to swap its
location with s (line 9-26), which can be further grouped

Fig. 5 Transforming the
corridor situation in Fig. 3g
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Corridors

Trail
Following

Intersections

Clusters

Fig. 6 Gradually transforming clusters into trail following

into intersection situations (line 10-14), corridor situations
(line 15-19), or cluster situations (line 20-25). It should be
noted in Algorithm 2 that if the robot only chooses wait-
ing or moving-forwards strategy, its original planned U1[r]
and U2[r] do not need to be changed, and its next step
plan Pt+1[r] will be either staying at current location (line
7, 13, 18 and 24), or moving to the first successor ver-
tex U1[r]. However, if the robot chooses both turning-head
and waiting strategies in the cluster situations, its should

also adjust its U1[r] and U2[r] (line 22). For the dogging
and retreating strategies, the robot always needs to accord-
ingly adjust its first and second successor vertices (line 11,
16).

4.5 Cooperative teams

We have discussed how an individual robot makes its next-
step plan towards its destination in Algorithm 1, and how it
makes local adjustments in order to avoid collisions or swap
positions with another robot. Here we need to consider an
important issue in which, for example, robot r has arrived at
its destination, but robot s, according to its estimated short-
est path, has to pass the location of robot r . In this case,
for robot r , in principle it does not need to move anymore
because of U1[r] = U1[r] = 0, but if robot s is consid-
ered as its teammate, it should has the willingness to help
robot s. In our approach, if robot r has arrived at its desti-
nation but realizes that s needs to pass its current location,
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Fig. 7 Implementing Algorithm
2 using GOAL, agent
programming language:
bel(Fact) means the agent
believes that Fact is true. When
the agent adopt(Goal), it will
insert Goal into its goal base and
execute an corresponding action
to achieve the goal. When the
agent insert(Fact), it will insert
Fact into its belief base. Agents
can also use send(Message) to
explicitly send messages to
other robots

it can actively apply dogging, retreating, or turning-head
strategy to temporally move away from its current location.
Once robot r deviates from its destination, it can again use
Algorithm 1 to replan a path to its destination, which can be
achieved by the same procedures discussed above.

5 Experiments and results

5.1 Experimental setup

For the sake of repeatability and accessibility, our experi-
mental study is performed in a simulator, called the Blocks
World for Teams (BW4T).2 Robots in the BW4T are
GOAL[5], the agent programming language that we have
used for implementing our proposed approach. We also use
GOAL agents to control real robots in the work [18], but
the simulator is much easier for collecting data and repeat
experiments. GOAL, is a rule-based language that supports
explicit communication among agents that make decisions
based on mental states consisting of knowledge, beliefs,
and goals. Here beliefs keep track of the current state of

2BW4T introduced in [6] has been integrated into the agent environ-
ments in GOAL [5], which can be found from http://ii.tudelft.nl/trac/
goal.

the world, while goals keep track of the desired state of
the world. Figure 7 gives an example of how to use the
GOAL agent programming language to implement the altru-
istic coordination module, i.e., Algorithm 2. Of course, the
agents in our approach also need other modules to work
in the BW4T, such as the modules to obtain environmen-
tal percepts and to handle messages. Detailed information
about the GOAL, agent programming language and the
development of GOAL, agents can be found in [5].

The environment of the BW4T simulator can be con-
structed using grid maps (see Fig. 8), and each cell in a
map only allows one robot to be present at a time in this
work. In our experiments, as shown in Fig. 8, the robots
start from the bottom of the map, and randomly choose dis-
tinct destinations locating at the top of the map to navigate
towards in each simulation. The other gray cells represent
the stationary obstacles. In the experiments, we investigate
scalable robot teams ranging from 1 to 8, and each simula-
tion has been run for 100 times to reduce variance and filter
out random effects. We consider the performance metrics,
time-cost and energy-cost, in which time-cost is concerned
with the average time that each robot spends on navigating
to its destination, and energy-cost is used to measure the
average steps that each robot has moved when arriving at its
destination. Our experiments run on an Intel i7-3720 QM at
2.6 GHz with 8 GB of RAM.

http://ii.tudelft.nl/trac/goal
http://ii.tudelft.nl/trac/goal
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Fig. 8 The map used for the
experiments in the BW4T
simulator

5.2 Results

Figure 9 shows the results of the experimental study in
which we have tested our proposed decentralized approach,
called DMRCP, and the ID approach proposed in [13]. The
horizontal axis in Fig. 9 indicates the number of robots
working in the environment.

5.2.1 Time-cost

As the program of each approach implemented by the
GOAL, agent programming language has different com-
plexities, we can get a general impression that for each cycle
of decision processes, the DMRCP agents run slower than
the ID agents. For instance, using the DMRCP approach, a
single robot takes 5.13 seconds to arrive at its destination
on average, whereas it only takes 3.92 seconds for the ID
approach (see Fig. 9a). We can see that for a small number
of robots, i.e., 1 to 4 robots, the DMRCP approach always
spends more time than the ID approach, but when the num-
ber of the robots increases, i.e., 5 to 8 robots, the DMRCP
approach takes less time than the ID approach. Therefore,
we can conclude that even though the running time of the

DMRCP’s program is more expensive than the ID’s program
implemented by GOAL, agents, the DMRCP approach can
provide a competitive solution to the multi-robot coopera-
tive pathfinding problem.

In addition, we can see in Fig. 9a that from 1 robot to
8 robots, the time-cost of the ID approach almost linearly
goes up from 3.96 to 10.45 seconds. The increasing rate
is around 10.45−3.96

8−1 ≈ 0.92. Comparatively, the time-cost
of the DMRCP approach grows from 5.13 to 9.24 seconds,
and its increasing rate is only about 0.59. The results thus
can reveal that with the increase of the robots working in a
shared space, the time-cost of the DMRCP approach goes
up slower than the ID approach. It is because the main strat-
egy of the ID approach is that if two robots have conflicting
paths, one of them needs to find an alternative path, the
length of which might be much longer than the previous one.
It will become much more severe when the number of robots
increases because more robots may need to frequently find
alternative paths. In contrast, the robots in the DMRCP
approach always take the shortest paths to their destinations
and only need to make local adjustments to avoid conflict-
ing plans. Most importantly, the robots can employ waiting
strategy in our approach, which cannot be easily modelled
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in other approaches to the MRCP problem. We can see that
waiting can be an effective strategy to avoid potential col-
lisions, but it does not significantly increase the time-cost
because the robots can still keep the shortest paths towards
their destinations. Thus, we believe that our solution can
scale well to a large number of robots.

5.2.2 Energy-cost

More robots will bring in more conflicts in a shared
workspace. From Fig. 9b, we can see the fact that if there
are more robots, each of them takes more moving steps on
average in order to arrive at their destinations. Theoretically,
for the single robot case, the DMRCP approach and the ID
approach take the same moving steps as there is no other
robot interfering it, which can also be seen in Fig. 9b.

With the increase of the number of the robots, the energy-
cost of the DMRCP approach goes up slowly, whereas
it rises quickly in the ID approach. For instance, in the
case of 8 robots, the DMRCP approach needs 15.69 mov-
ing steps on average; comparatively, the ID approach takes
25.25 moving steps. We can also see that the increasing
rate of energy-cost using the ID approach is 25.25−10.94

8−1 ≈
2.04 , while it is only 15.69−11.24

8−1 ≈ 0.64 if the robots

Fig. 9 Experimental results of the DMRCP and ID approaches

use the DMRCP approach. This is because the DMRCP
approach can benefit greatly from the waiting strategy as
well as the other local small adjustments. Waiting does not
increase energy-cost at all, and local adjustments allow the
robots to take as few additional moving steps as possible
but still keep the shortest paths towards their respective
destinations.

6 Conclusion

In this paper, we analyzed the decentralized multi-robot
cooperative pathfinding problem using graph-based models,
and then proposed a novel fully decentralized solution to
this problem. When confronted with congested situations, a
robot only needs to coordinate with the ones locating within
its coordinated network, which can also reduce the com-
munication overhead in decentralized systems. Our solution
allows the robots to make local adjustments by employing
waiting, moving-forwards, dodging, retreating and turning-
head strategies, and the experimental results have shown
that our approach can provide a competitive solution to this
problem and, in particular, scale well with the increase of
the robots.
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