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Abstract The citation count is an important factor to esti-
mate the relevance and significance of academic publica-
tions. However, it is not possible to use this measure for
papers which are too new. A solution to this problem is
to estimate the future citation counts. There are existing
works, which point out that graph mining techniques lead
to the best results. We aim at improving the prediction of
future citation counts by introducing a new feature. This
feature is based on frequent graph pattern mining in the so-
called citation network constructed on the basis of a dataset
of scientific publications. Our new feature improves the
accuracy of citation count prediction, and outperforms the
state-of-the-art features in many cases which we show with
experiments on two real datasets.

Keywords Citation count · Graph pattern mining · Feature
selection

1 Introduction

Due to the drastic growth of the amount of scientific pub-
lications each year, it is a major challenge in academia to
identify important literature among recent publications. The
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problem is not only how to navigate through a huge cor-
pus of data, but also what search criteria to use. While the
Impact Factor [2] and the h-index [3] measure the signifi-
cance of a particular venue or a particular author, the citation
count aims at estimating the impact of a particular paper.
Furthermore, Beel and Gipp find empirical evidence that
the citation count is the highest weighted factor in Google
Scholar’s ranking of scientific publications [4]. In other
bibliography search systems the citation count is also con-
sidered as one of the major search criteria [5]. The drawback
about using the citation count as a search criteria is that it
works only for the papers which are old enough. We will
not be able to judge new papers this way. To solve this
problem, we need to estimate the future citation count. An
accurate estimation of the future citation count can be used
to facilitate the search for promising publications.

A variety of research articles have already studied the
problem of citation count prediction. In earlier work the
researchers experimented on relatively small datasets and
simple predictive models [6–8]. Nowadays due to the oppor-
tunity to retrieve data from the online digital libraries the
research on citation behavior is conducted on much larger
datasets. The predictive models have also become more
sophisticated due to the advances in machine learning. The
major challenge is the selection of features. Therefore, our
goal is to discover features which are useful in the prediction
of citation counts.

Previous work points out that graph mining techniques
lead to good results [9]. This observation motivated us to
formulate the citation count prediction task as a variation
of the link prediction problem in the citation network. Here
the citation count of a paper is equal to its in-degree in the
network. Its out-degree corresponds to the number of ref-
erences. Since out-degree remains the same over years, the
appearance of a new link means that the citation count of
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the corresponding paper increases. In the link prediction
problem we aim at predicting the appearance of links in the
network. However, we do not solve the link prediction prob-
lem since we need to estimate only the amount of new links
for a specific node, but not with other nodes in the network
in which it gets connected. Our idea is to utilize frequent
graph pattern mining in the citation network and to calcu-
late a new feature based on the mined patterns – GERscore
(Graph Evolution Rule score). Since we intend to predict the
citation counts in the future, we want to capture the tempo-
ral evolution of the citation network with the graph patterns.
That is why we mine frequent graph patterns of a special
type - the so-called graph evolution rules [10].

The main contributions of this paper are the following:

– we study the citation count prediction problem as a link
prediction problem;

– we adopt score calculation based on the graph evolution
rules to introduce a new feature GERscore for solving
the citation count prediction problem, we also propose
a new score calculation;

– we design an extended evaluation framework which we
apply not only to the new feature, but also to several
state-of-the-art features.

The rest of the paper is structured as follows. In the next
section we formulate the problem which we are solv-
ing. Section 3 covers the state-of-the-art. In Section 4
we present our methodology to calculate the new feature.
Section 5 describes our approach to evaluate the new fea-
ture. This section also includes the experimental results on
two datasets followed by the discussion. Finally, we draw
the conclusion and point out future directions for work.

2 Predicting citation counts

We want to predict citation counts for scientific papers. For
this purpose we take the definition of the citation count
problem introduced by Yan et al. [11]. Formally, we are

given a set of scientific publications D, the citation count
of a publication d ∈ D at time t is defined as: Cit (d, t) =
|{d ′ ∈ D : d is cited by d ′ at time t}|. To achieve our goal,
we need to estimateCit (d, t+Δt) for someΔt > 0.We can
solve this task by using either classification or regression.

Classification Task: Given a vector of features ¯Xd,t =
(x1, x2, . . . , xn) for each scientific publication d ∈ D
at time t , the task is to learn a function for predicting
CitClass(d, t + Δt) whose value corresponds to a par-
ticular range of the citation count for the publication d at
the time t + Δt .

Regression Task: Given a vector of features ¯Xd,t =
(x1, x2, . . . , xn) for a publication d ∈ D at time t , the task
is to learn a function for predicting Cit (d, t +Δt) whose
value corresponds to the citation count of the publication
d at the time t + Δt .

We propose a new perspective on the citation count pre-
diction problem.We construct a paper citation network from
the set of scientific publications D. An example of a cita-
tion network is given in Fig. 1. Nodes represent scientific
papers. A link from one node to another means that the
first paper cites the latter. As we see, nodes and links have
attributes which we will discuss later on. In this setting, the
citation count of a paper is equal to the in-degree of the cor-
responding node. Its out-degree corresponds to the number
of references present in the network and does not change
over time. Since a node’s in-degree increases if a new link
appears, we can regard the citation count problem as a vari-
ation of the link prediction problem in citation networks.
Generally, the link prediction problem answers the question
whether there will be a link between two disconnected nodes
in the network. In our case there are two major differences
from the general link prediction problem. Firstly, new links
are formed with the nodes which do not yet exist in the net-
work (since the corresponding papers are not yet published).
Therefore, we cannot use classical link prediction meth-
ods. Secondly, for a specific node we are not interested to

Fig. 1 Example of a citation
network
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identify the nodes with which it will form links in the future,
rather we want to estimate the amount of such nodes. Thus,
we need to construct a suitable link prediction method to
estimate future citation counts for scientific publications.

3 Related work

To solve the problem at hand, we build upon the works
studying the citation count prediction and link prediction
problems. The former works provide the baseline to com-
pare our new feature, while the latter are used to construct
it.

3.1 Citation count prediction

The task of predicting the citation counts for scientific pub-
lications as well as the general study of citing behavior have
long attracted attention in the academic world. For example,
Callaham et al. predicted citation counts for 204 publica-
tions from the 1991 emergency medicine specialty meeting
[6]. They used decision trees and showed that the journal’s
impact factor is the most significant factor. Kulkarni et al.
studied 328 medical articles published in 1999 and 2000
[7]. By using linear regression they achieved R2 of 0.2 for
predicting citation counts five years ahead.

Nowadays with the majority of digital libraries, such
as ACM, IEEE, arXiv, etc., providing access online, it is
possible to retrieve data about scientific publications auto-
matically and to conduct studies of citation behavior on a
large scale. Recent studies on citation count problem are
performed on much larger datasets using more sophisti-
cated predictive models and features of papers. Using a
dataset of 30,199 papers from the arXiv, McGovern et al.
suggested to predict non-self citations for a set of papers
by performing a classification task of papers into quartiles
{0−1, 2−5, 6−14, > 14} according to their citations [12].
When constructing a training dataset, they considered char-
acteristics of papers, the referenced papers, authors, number
of pages and previous papers written by the authors. On
several data samples the authors achieved an average classi-
fication accuracy of 44 % using relational probability trees.
As an outcome of their study, several patterns are outlined
according to which paper has an 85 % probability of obtain-
ing more than 14 non-self citations. For example, one of
the patterns is that the paper has more than 8 references.
However, the authors do not provide detailed description
of the features in their prediction model as well as their
performance. The main focus of the paper is to uncover
interesting patterns of citing and publishing behavior in the
corresponding physics community.

Yan et al. introduce the citation counts prediction
task [11]. They propose several factors which correlate with

citation counts. These factors are based on content, author,
venue and publication year of scientific publications, e.g.,
they use such features as author and venue ranks. To obtain
author rank, the average citation counts in the previous years
for every author is determined and a rank is assigned based
on this number among the other authors. Venue rank is cal-
culated the same way using the venue of the paper instead
of the authors. In the succeeding work Yan et al. extend
the list of factors, but they still show that the author rank
is the most influential factor among those considered [13].
In these works the authors have also compared the perfor-
mance of different predictive models with Classification and
Regression Tree (CART) and Gaussian Process Regression
(GPR) providing higher R2 values compared to k-nearest
neighbor (kNN), support vector regression (SVR) and linear
regression (LR) models. The dataset which is used in their
experiments is publicly available. Yan et al. do not use any
features constructed from the citation network [11, 13].

Livne et al. extract a large and diverse dataset from
Microsoft Academic Search [9]. This dataset contains 38
million papers which they group into seven major academic
domains. For the citation count problem they construct
features based on the authors, author institutions, venue, ref-
erences and content of the papers. By using SVR they show
that the most significant group of features is the one based
on the citation network. However, the venue factor is more
significant in two out of seven domains. The authors suggest
that graph mining techniques might be better suited to cap-
ture the interest of research community. Similar results are
obtained by Didegah and Thelwall when analyzing a set of
papers published in nanoscience and nanotechnology jour-
nals from 2007 to 2009 [8]. They observe that the impact
factor of the publication venue and of the references are the
most significant determinants of the citation count. Summa-
rizing the results of the recent work [8, 9, 13], we come to
the conclusion that properties of papers which are related
either to the paper co-authorship or citation networks are
among the most significant factors for the paper citation
prediction task. This observation indicates that formulating
this problem as a link prediction problem in the citation net-
work might be a promising approach. None of the above
mentioned works considered a link prediction method to
predict future citation counts. We will show that it is pos-
sible to solve the citation count prediction problem with a
link prediction method and that by doing so we improve the
performance.

3.2 Link prediction

A known model for the link prediction task in social net-
works is the preferential attachment model [14]. This model
assumes that new nodes are more likely to form relation-
ships with those nodes in the network which have already
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high degree. This behavior creates the so called “rich-get-
richer” effect. Among the other methods for link prediction
in social networks, there are Adamic-Adar [15], Liben-
Nowell and Kleinberg [16]. Munasinghe and Ichise intro-
duce a time-aware feature which considerably improves the
performance of classical models for link prediction [17].
However, these methods can predict links only between
nodes which already exist in the network. The citation count
for a given paper increases if the corresponding node in the
network gets an incoming relationship from a new node.
By introducing graph evolution rules Bringmann et al. illus-
trate a way to predict links between an existing node and
a new node in the network [10]. Their approach is based
upon mining graph evolution rules in a network where links
are stamped with the creation time and nodes may have up
to one integer label. In our example network (see Fig. 1)
we introduce link attributes which correspond to the years
when the corresponding references appear. As a possible
node label, Bringmann et al. take the degree of the node.
In our work we consider number of authors and number of
references as possible node labels. The obtained rules pro-
vide an opportunity to capture the temporal evolution of the
network.

Another evidence that graph mining in the citation net-
work might lead to good results for the citation count
prediction can be found in [18]. Shi et al. investigate the pat-
terns of citations by constructing citation projection graphs.
The citation projection graph of a specific publication is a
subgraph of the citation network which includes the refer-
ences and citations among the papers which are referenced
by this publication and also cite it. The authors observe
that certain properties of the projection graphs are more
common for papers with high impact. The impact of a pub-
lication is measured by its citation count normalized by the
average citation count for all other papers published in the
same year. The publications are classified into three classes
according to their impact – high, medium and low. Though
the authors apply a graph mining technique to study the
citing behavior in three domains (natural sciences, social
sciences and computer sciences), they do not use any link
prediction method. The patterns which they uncover are not
graph patterns in the classical understanding (their structure
is not fixed and is more or less unique for each node), but
rather these patterns refer to the structural properties of the
citation projection graphs which differ for papers with high,
medium and low impact. We, on the other hand, mine the
local graph patterns which have specific properties in the
whole network. These patterns have fixed structure, capture
the temporal aspect of the citation counts and can be used
for link prediction unlike the work of Shi et al. [18].

Thus, we suggest a new feature GERscore which is
based upon frequent patterns of a specific form, i.e., graph
evolution rules, mined from the citation network.

3.3 Evaluation

The estimation of future citations can be done with clas-
sification [12] or regression [9, 11, 13]. The classification
task, where we predict intervals of citation counts, is in
general easier [19, Ch. 6.7], and in many applications it
is enough. For example, papers with more than 100 cita-
tions are referred to as influential in [13]. Shi et al. also
study the properties of papers with regard to three classes of
normalized citation counts [18]. Though both classification
and regression tasks provide estimations for future citation
counts in our case, there is a fundamental difference: the
former estimates the probability of a paper to belong to a
specific interval of citation counts, whereas the latter esti-
mates the real citation count for this paper. Yan et al. apply
the regression task to predict future citation counts and then
use the results to construct a recommender system for sci-
entific literature [13]. We also perform the regression task
to predict the exact future citation counts. Furthermore, a
dataset of publications from physics is used in [12], and
from computer science in [11, 13]. There are also two dif-
ferent evaluation approaches. The first one is to test the
performance for the freshly published papers [9, 12]. The
second approach is to predict the citation counts for all avail-
able papers [11, 13]. To ensure a comprehensive study of
performance of our new feature and several state-of-the-art
features, our evaluation framework includes both classifi-
cation and regression, two evaluation approaches and two
datasets of scientific publications. Furthermore, we include
two performance measures for each of the learning tasks:
average accuracy and precision for classification, R2 and
RMSE for regression. The previous works report their
results in terms of one performance measure. To sum it
up, we extend the evaluation frameworks from the previous
works, and we use the works of Mcgovern et al. and Yan
et al. as our baseline [11, 12].

4 GERscore

Our methodology to tackle the stated problem consists of
several steps which are depicted in Fig. 2. First, we con-
struct a citation network from a publication database (block
(1)), and by using additional constraints we mine the so-
called graph evolution rules in this network (block (2)).
Then we derive the GERscore for each paper using sev-
eral calculation techniques (block (3)). We also calculate
several state-of-the-art features (block (4)). All features
are obtained using data from previous years. To estimate
the performance of these features, we prepare training and
testing datasets following two different scenarios (blocks
(5)-(6)) and construct several predictive models for the clas-
sification and regression tasks (block (8)). In the rest of this
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Fig. 2 Process flow for
predicting citation counts using a
modified link prediction method (1) 

Publication database

(5) Random selection:
Scenario 1 / Scenario 2

(2) Mining graph 
evolution rules

(3) Calculating new 
feature - GERscore

(4) Calculating 
baseline features

(8) Citation Counts Prediction:
Classification & Regression

(6) Training dataset(7) Testing dataset

section, we explain the process of obtaining graph evolution
rules and GERscores (blocks (2) and (3)). Blocks (1) and
(4)-(8) are described in Section 5.

4.1 Mining graph evolution rules

To calculate the GERscore, we start with the discovery
of rules which govern the temporal evolution of links and
nodes. These rules are based on the frequent patterns of a
special form, the so-called relative time patterns, and are
introduced in [10]. Informally, a relative time pattern is a
connected graph with one type of label over nodes (exactly
one integer label or no label at all) and one integer label
over links which represents relative time. Examples of rel-
ative time patterns are given in Fig. 3a. We can embed this
pattern into a network if we can match each node of the pat-
tern to some node in the network by preserving node labels
and the structure of links between these nodes. Addition-
ally, link labels in the pattern should correspond with a fixed
gap to the labels of the matched links in the network. In
Fig. 1 the network is directed, but to apply the notion of rel-
ative time patterns we ignore the direction of links. Besides,
we may infer the direction of links: they point from a new
node towards the older one. As link attributes, we have the
year of link appearance in the network which corresponds to
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(a) Relative time patterns. (b) Graph evolution rule.

Fig. 3 Examples of relative time patterns and graph evolution rules.
Node labels correspond to the number of authors

the year of publication of the citing paper. Nodes can have
various attributes in the citation network, but we focus on
three possible options: no label, the number of authors and
the number of references of the corresponding paper. If we
consider only the number of authors as a node label in the
example citation network, then the pattern in Fig. 3a(1) can
be embedded with the time gap 2007 or 2006 into the cita-
tion network in Fig. 1 while the pattern in Fig. 3a(3) cannot
be embedded at all.

A graph evolution rule is a pair of relative time pat-
terns called body and head which is denoted as head ⇐
body [10]. Informally, the body can be represented as the
head without links which have the highest label. An exam-
ple of a graph evolution rule is given in Fig. 3b. Do not get
confused by the fact that body has less links than head. The
naming convention follows the one used for rules in logic.
Considering the definition of the evolution rule, we can rep-
resent any evolution rule uniquely with its head. That is why
relative time patterns in Fig. 3a(1)-(3) are also graph evolu-
tion rules. However, the relative time pattern in Fig. 3a(4)
cannot be regarded as an evolution rule since both link labels
equal zero.

To estimate frequency of the relative time pattern in the
given network, we use minimum image-based support. It
roughly equals to the minimum number of different nodes
in this network to which one of the nodes in the pattern can
be matched. The support of the evolution rule, sup(r), is
equal to the support of its head. The confidence of this rule,
conf (r), is equal to the ratio of the supports of the head
and the body. The graph evolution rule from Fig. 3b has
a minimum image based support 2 in the citation network
from Fig. 1. The support of its body is also 2. Therefore,
confidence of this rule is 1. We can interpret this rule the
following way: if the body of this rule embeds into the cita-
tion network to a specific node at time t , then this node is
likely to get a new citation at time t + 1. We assume that the
likelihood of such event is proportional to the confidence of



Citation count prediction as a link prediction problem 257

the rule. To determine all graph evolution rules in a network,
we need to employ a graph pattern mining procedure.

Since graph pattern mining is computationally hard, two
additional constraints are used to speed up the process of
mining graph evolution rules in a network. We mine only
those rules which have support not less than minSupport,
and which have number of links not more thanmaxSize. The
higherminSupport or the lowermaxSize, the faster the graph
pattern mining process will finish and the less patterns we
will obtain. In case we have node labels in the network, we
will also often arrive at better running times compared to
the case when no labels are used over the nodes. Among
the uncovered patterns, we identify graph evolution rules.
In other words, we look for the patterns which have at least
two different values on the links. Furthermore, we consider
only those graph evolution rules where body and head differ
in one link. In Fig. 3 all rules, except for a(3), correspond to
this condition. Finally, we obtain a setR of graph evolution
rules.

4.2 Calculating GERscore

To calculate the GERscore, we modify the procedure
from [10]. We need to do this modification since the sug-
gested approach in the previous work is a link prediction
method, whereas we need to adapt it to our problem. The
main task is to aggregate the information about the obtained
graph evolution rules for a scientific publication. For each
publication n in the citation network we identify rules from
the set R which can be applied to it. We say that a graph
evolution rule can be applied to the node n if its body can
be embedded into the network so that one of the matched
nodes is n. We obtain a set Rn ⊂ R of rules applicable to
the node n. Our assumption is that an evolution rule occurs
in the future proportional to its confidence. That is why we
put the GERscore equal to c ∗ conf (r), where c measures
the proportion of rule’s applicability. We define three ways
to calculate c. In the first case, we simply take c = 1. In the
second case, we assume that evolution rules with higher sup-
port are more likely to happen, i.e., c = sup(r). These two
scores are also used for the link prediction problem in [10].
Lastly, if the evolution rule r contains more links, it provides
more information relevant to the node n. We assume that
such rule should be more likely to occur than the one with
less edges. Since evolution rules are limited in their size by
maxSize, we put c = size(r)/maxSize. Thus, we obtain
three different scores:

1. score1(n, r) = conf (r),

2. score2(n, r) = sup(r) ∗ conf (r),

3. and score3(n, r) = conf (r) ∗ (size(r)/maxSize).

In the previous work the authors also experiment with
different score calculation techniques, and they show that

the best results for the link prediction problem are obtained
by using score2(n, r) [10]. However, we will still run exper-
iments with all three scores since we solve a different
problem.

Finally, we use two functions to accumulate the final
GERscore for the node n:

– GERscore1,i (n) = ∑
r∈Rn

scorei(n, r),

– GERscore2,i (n) = maxr∈Rn
scorei(n, r).

Here scorei(n, r) corresponds to one of three possible
score calculations. Therefore, we obtain six possible scores
for our new feature. Throughout the paper, whenever we use
the word “score”, we always refer to one of the possible
calculations for the GERscore.

Both aggregation techniques, maximum and summa-
tion, are used in [10]. The authors show that summation
leads to better results. Though it might be intuitive to
select the rule with the maximum score (which corresponds
to the usage of the maximum as an aggregation func-
tion), but taking into consideration all rules, which can be
applied to the node, might provide better estimation about
the evolution. However, if it turns out that graph evolu-
tion rules with the highest support are the determinants
of future citations, it has good implications in the sense
that we can set the support threshold for the graph pat-
tern mining procedure very high, thus reducing the running
time.

High values of the GERscore can mean two things: either
many rules or rules with very high confidence measures are
applicable to the node. In either case, the assumption is that
this node is very likely to get a high amount of citations.
We may have the situation when different rules correspond
to the appearance of the same link. For example, in Fig. 3
rules (b) and (a1) are subgraphs of rule (a2). It might hap-
pen that these rules correspond to the creation of the same
link. Still we consider all three rules, since we are inter-
ested to approximate the likelihood of increase in citation
counts. With this regard, the constructed GERscore is sim-
ilar to the network measures discussed in the work of Shi
et al. [18]. However, our feature is based on a link prediction
method which makes it distinct from the measures in this
work.

5 Experiment

5.1 Experimental data

We use two real datasets to evaluate the GERscore: HepTh
and ArnetMiner. The first dataset covers arXiv papers from
the years 1992−2003 which are categorized as High Energy
Physics Theory [12]. We mine graph evolution rules for the
network up to year 1996 which has 9,151 nodes and 52,846
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links. The second dataset contains papers from major Com-
puter Science publication venues [11]. By taking papers up
to year 2000, we obtain a sub-network with 90, 794 nodes
and 272, 305 links.

We introduce two additional properties for papers:
grouped number of references and grouped number of
authors. For the first property the intervals are 0 − 1, 2 −
5, 6−14, 15 ≤. The references here do not correspond to all
references of the paper, but only to those which are found
within the dataset. We select the intervals 1, 2, 3, 4− 6, 7 ≤
for the second property.

We construct several graphs from the described sub-
networks which differ in node labels. It is good to have a
label over nodes because this speeds up graph pattern min-
ing. Since we are not sure which label setting is better, we
use either the grouped number of references, or the grouped
number of authors, or no label. The choice of the first two
label settings is motivated by the uncovered citing patterns
in [12]. Bringmann et al. show that graph evolution rules
with no node labels lead to good results when solving the
link prediction problem [10]. Also, they use the node degree
as a label to obtain labeled graph evolution rules. In our
case, it makes more sense to use the out-degree (or the num-
ber of references) since it does not change over time. Since
it does not make sense to have continuous values as node
labels (possible rules will be too rare and their interpretation
will get harder), we group the values into categories. Bring-
mann et al. use also the grouped values of node’s degree as
labels [10].

In Table 1 we show the amount of graph evolution rules
obtained with the help of the tool GERM1 for different label
settings for our two datasets. It is clear that the amount of
evolution rules is considerably smaller than the amount of
mined frequent patterns: not every relative time pattern is
a graph evolution rule and we consider only graph evolu-
tion rules where body and head differ in one link. We obtain
230 evolution rules in the dataset HepTh, and 4, 108 in the
dataset ArnetMiner for the unlabeled case (when no label
over the nodes is used). We have 886 rules in HepTh, and
968 in ArnetMiner for the grouped number of authors. For
the grouped number of references the numbers are 426 and
1, 004 correspondingly. For both datasets we mine rules of
the size up to five. However, support thresholds are set dif-
ferent since the datasets have considerably different amount
of nodes. In our experiments we identified that this com-
bination of input parameters is feasible enough to obtain
results within one month for both datasets. The most crucial
parameter is the size of the evolution rules, and it drastically
affects the running times.

1http://www-kdd.isti.cnr.it/GERM/

Table 1 Results of graph pattern mining

min max # evolution

Network Setting support size # patterns rules

Hep-Th no label 1,000 5 1,412 230

upto # authors 500 5 7,441 886

1996 # references 500 5 6,565 426

Arnet no label 5,000 5 6,742 4,108

upto # authors 2,000 5 4,838 968

2000 # references 2,000 5 4,366 1,004

Figure 4 contains examples of graph evolution rules
which we obtain for the citation network with grouped #
authors as node labels. As we mention earlier, there are two
main measures to estimate the frequency for each evolution
rule: support and confidence. Thus, Figs. 4a and 4b con-
tain the rules which have the highest support in HepTh and
ArnetMiner correspondingly. In both cases the rules have
the same structure and same node labels, but they have dif-
ferent supports and confidence measures: a lower support
in HepTh than in ArnetMiner, but a higher confidence at
the same time. However, the rules with the highest con-
fidences are different for our datasets (see Figs. 4c, 4d).
Though they both have five links, they differ in structure,
node and link labels. Furthermore, the rule for ArnetMiner
(Fig. 4d) has higher support as well as higher confidence.
Such information already indicates that there are differ-
ences in the temporal evolution of the considered citation
networks. Firstly, the amount of mined rules is consider-
ably less for HepTh. Secondly, the differences in confidence
measures will affect the probabilities of link formation.

#authors 2

#authors 2 #authors 2

0
1

(a) support: 926, confidence: 0.342;

#authors 2

#authors 2 #authors 2

0
1

(b) support: 4336, confidence: 0.192;

#authors 3 #authors 2 #authors 2

#authors 2 #authors 2 #authors 2

0 0

0 0
1

(c) support: 619, confidence: 0.600;

#authors 2 #authors 1 #authors 2 #authors 2

#authors 2 #authors 2

0 1 1

1
2

(d) support: 2026, confidence: 0.767;

Fig. 4 Examples of graph evolution rules mined from HepTh and
ArnetMiner datasets using number of authors as node label: (a) rule
with highest support for HepTh, (c) rule with highest confidence for
HepTh, (b) rule with highest support for ArnetMiner, (d) rule with
highest confidence for ArnetMiner

http://www-kdd.isti.cnr.it/GERM/


Citation count prediction as a link prediction problem 259

5.2 Experimental setting

For a comprehensive study we perform two experiments. In
the first experiment we aim at classifying papers into quar-
tiles according to the future citation counts. We consider the
following models for the classification task:

1. Multinomial Logistic Regression (mLR) which is a gen-
eralization of logistic regression for the case of more
than two discrete outcomes,

2. Multi-class Support Vector Machines (mSVM) which
construct a hyperplane or a set of hyperplanes to sepa-
rate the training instance with the largest distance to the
nearest data point of any class [20],

3. Conditional Inference Trees (CIT) which recursively
perform univariate splits of the dependent variable and
use a significance test to select variables [21].

We predict the real future citation counts for papers in the
second experiment. Here, we consider such models for the
regression task:

1. Linear Regression (LR) which approximates the depen-
dent variable linearly based on the independent vari-
ables and intercept,

2. Support Vector Regression (SVR) which is an adapta-
tion of SVM to perform the regression task [20],

3. Classification and Regression Tree (CART) which
recursively perform univariate splits of the dependent
variable and use the Gini coefficient to select vari-
ables [22].

We use the implementation of these models in R [23].
We look at a variety of models because they make differ-
ent assumptions about the original data. Therefore, it is not
guaranteed that features perform equally well in different
models.

For each of the learning tasks (experiments) we con-
sider two scenarios for evaluation which differ in the way
we construct training and testing datasets. In Scenario 1 we
train the models on the papers published one year before. A
similar evaluation approach is undertaken in [9, 12, 17]. In
Scenario 2 the training and testing datasets are constructed
on the same pool of papers, e.g., as it is done in [11, 13].

In both scenarios we use a slightly modified 5 × 2
cross-validation [24], where each fold contains a stratified
selection of scientific publications, i.e., 1, 000 instances
for HepTh and 10, 000 for ArnetMiner. We chose such
approach to remain in line with the previous works where
10,000 papers are chosen both into the training and test-
ing datasets for ArnetMiner [11, 13]. We do not perform
complete cross-validation procedure in Scenario 1: the train-
ing dataset contains papers from the year t and the testing
dataset has papers from the year t +1, so changing the train-
ing and testing datasets does not make sense here. We use

�t = 1 both for classification and regression tasks which
corresponds to the prediction of citation counts for the next
year. Additionally, we perform 5 year prediction in the case
of the regression task to provide a more comprehensive
comparison to the previous works.

To compare performance of our new feature, we cal-
culate several state-of-the-art features: Author Rank, Total
Past Influence for Authors (TPIA),Maximum Past Influence
for Authors (MPIA), Venue Rank, Total Past Influence for
Venue (TPIV), Maximum Past Influence for Venue (MPIV)
and Recency [11, 13]. To obtain Author Rank, for every
author we calculate the average citation counts in the previ-
ous years and assign a rank among the other authors based
on this number. We identify the author with the maximum
citation counts in the previous years and put this total cita-
tion count as MPIA for the paper. TPIA is equal to the sum
of citation counts for the previous papers of the authors.
Venue Rank, TPIV and MPIV are calculated the same way
using the venue of the paper. Recency is the absolute dif-
ference in years between the publication and current years,
and it is used only in Scenario 2. Though recency is not a
good feature, we want to verify its performance in the clas-
sification task. Livne et al. introduce several features based
on the references of the paper in their work [9]. We do not
use all the features since we do not aim at constructing a
comprehensive model for citation count prediction, but we
rather show the viability of our new feature for this task.
Since we are not sure which feature performed the best in
their work, we select three features. Following their work
and preserving the naming convention of the earlier fea-
tures, we calculate References Rank, Total Past Influence for
References (TPIR) and Maximum Past Influence for Refer-
ences (MPIR). All these features are used as the baseline to
compare our new feature.

In total, we obtain 18 different scores for each paper:
GERscore

(j)

1,i for summation and GERscore
(j)

2,i for max-
imum, where i equals 1, 2, or 3 depending on the score
calculation, and j corresponds to a specific label setting:

j = 1 corresponds to the grouped number of authors as
node labels;

j = 2 stands for the unlabeled case;
j = 3 is for the grouped number of references.

We report results only for one score for each label set-
ting, because the scores exhibit similar behavior. Since our
new score score3 provides slightly better results, we choose
the GERscore

(j)

1,3 and GERscore
(j)

2,3. Additionally, feature
GERscore is the combination of our new 18 scores.

In Fig. 5 we illustrate the dependence between the fea-
tures author rank, venue rank, recency and GERscore on one
hand and average citation counts on the other hand for our
two datasets. There is a similar dependence between author
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Fig. 5 Correlation between
average citation count and
features: author rank, venue
rank, recency and GERscore21,3
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ranks and average citation counts in HepTh and ArnetMiner
datasets (see Fig. 5a and d). The dependence is clearer for
the dataset ArnetMiner: papers with higher rank (which cor-
responds to the lower value of the variable author rank) have
on average higher citation counts. However, there is even
more obvious dependence between venue rank and average
citation count for both datasets: papers with higher venue
rank (which corresponds to the lower value of the variable
venue rank) have considerably higher citation counts. The
dependence between recency and average citation counts
does not seem to be of a specific character (see Fig. 5c and f)
which can cause its poor performance in the learning tasks.
The last feature, GERscore21,3, shows an inverse trend
compared to Author Rank and Venue Rank: papers with a
higher score have on average higher citation count. This
observation supports the intuition of the score construction.

5.3 Classification task

In this experiment we compare how the calculated features
perform with regard to classifying academic publications
according to future citation counts. We assign class labels
with intervals 1, 2 − 5, 6 − 14, > 14 of citation counts.
Such intervals are chosen in correspondence to the previ-
ous work [12]. There the classes were specified for HepTh
dataset. It might occur that such distribution is not opti-
mal for ArnetMiner. Shi et al. define classes dynamically
for each dataset [18]. Such approach ensures that class
distribution is the same across different datasets, but the dis-
advantage is that class boundaries are not fixed and may
vary even over time. Therefore, we take the approach from
the work of McGovern et al. [12]. In Table 2 we summarize
the distribution of instances according to these classes for

the training and testing datasets. As we see, it is the case that
the class distribution is extremely skewed for ArnetMiner,
especially in Scenario 1. We do not change the intervals
because we want to have the same setting for both datasets.
To construct training and testing datasets, we randomly
select 1, 000 papers fromYear 1996 into the training dataset,
and from Year 1997 into the testing dataset in Scenario 1
for HepTh. 1, 000 instances are selected from Year 1997
into the training data in Scenario 2 for HepTh, and another
1, 000 instances are selected from the rest into the testing
data. For ArnetMiner the procedure is the same, except that
we select 10, 000 papers from years 2000 and 2001 cor-
respondingly. In all cases we construct stratified folds and
repeat the procedure 5 times.

We use average accuracy and precision to evaluate the
performance in the classification task. If we put tpi true pos-
itives, tni true negatives, fpi false positives, and f ni false
negatives for class i, then average accuracy of the classifier
is:

Accuracy = 1

l
∗

l∑

i=1

tpi + tni

tpi + fpi + f ni + tni

.

If class distribution is unbalanced, then precision is better
suited for the evaluation [25]:

Precision = 1

l
∗

l∑

i=1

tpi

tpi + fpi

.

The performance of the features for the classification task
is presented in Tables 3 and 4. We report average accu-
racy and precision for the new feature GERscore and the
baseline features: Author Rank, MPIA, TPIA, Venue Rank,
MPIV, TPIV, References Rank, MPIR, TPIR and Recency.
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Table 2 Distribution of
instances according to classes
(% Total)

HepTh ArnetMiner

Scenario 1 Scenario 2 Scenario 1 Scenario 2

Citation Class Year 1996 Year 1997 Year 1997 Year 2000 Year 2001 Year 2001

Class 1 42.9 % 40.33 % 34.09 % 97.27 % 96.69 % 88.86 %

Class 2 29.81 % 26.64 % 30.32 % 2.51 % 3.13 % 7.75 %

Class 3 13.70 % 18.77 % 19.85 % 0.19 % 0.18 % 2.40 %

Class 4 13.58 % 14.27 % 15.74 % 0.03 % 0.01 % 0.99 %

Total Amount 2,459 2,579 12,113 30,000 25,919 399,647

We mark in bold the features which lead to the highest per-
formance measure in each column. In both scenarios we
obtain that the highest accuracy and precision are for the
GERscore.

However, due to a highly unbalanced distribution
(Table 2), we observe only 1 % advantage in accuracy for
ArnetMiner in Scenario 2 and almost none in Scenario 1.
Moreover, we obtain that the average accuracy for Arnet-
Miner is very high and there is almost no difference in the
performance measures for different features. If the classifier
puts all observations into the first class in Scenario 1, we
arrive at an average accuracy of around 97 % and a precision
rate of about 24 %. Therefore, it is rather difficult to draw
conclusions about the performance of the studied features
on ArnetMiner dataset.

In the case of HepTh, the GERscore is at least 2 % better
in accuracy than the other features in both scenarios. The
increase is more obvious in terms of precision. Recency, as
expected, is not good for predicting future citation counts.

The full model with all considered features as indepen-
dent variables is indicated in the row “All” in Tables 5 and 6.

To be more precise, this model contains all features listed
in Table 3 in Scenario 1 and all features listed in Table 4
in Scenario 2. To verify how much the GERscore improves
the performance, we construct a full model without the new
feature denoted as “-GERscore” in the tables.

Statistical analysis shows that the GERscore provides
a significant improvement to the full model. The average
accuracy does not improve considerably if we add the GER-
score: for HepTh around 2 % increase in Scenario 1 and
less than 6% in Scenario 2; for ArnetMiner the increase is
less than 2 %. But if we compare precision rates, then we
have that the full model with the GERscore (“All”) is more
than 10 % better than without it (“-GERscore”). The best
achieved accuracy for HepTh in Scenario 1 is 44 % in previ-
ous work [12]. The accuracy of our full model mLR is 81 %,
but we cannot directly compare to the previous work since
we take into account self-citations and the sampling tech-
nique is different. Still we see that constructed classification
models provide accurate and rather precise results for both
datasets. Suppose we are to identify relevant literature, then
we could use classification as the first step to select potential

Table 3 Accuracy (%) and Precision (%) for the different features for the Classification Task in Scenario 1

Accuracy Precision

HepTh ArnetMiner HepTh ArnetMiner

Feature mLR mSVM CIT mLR mSVM CIT mLR mSVM CIT mLR mSVM CIT

New GERscore 75.93 75.35 75.3 98.35 98.35 98.34 44.67 36.54 39.65 38.91 36.29 31.33

Baseline

Author Rank 73.86 73.95 73.75 98.31 98.34 98.34 32.2 33.64 28.49 24.17 24.17 24.17

MPIA 73.76 73.39 72.99 98.31 98.34 98.34 33.46 27.9 31.59 24.17 24.17 24.17

TPIA 73.91 73.86 73.09 98.31 98.34 98.34 34.84 32.66 31.94 24.17 25.84 24.17

Venue Rank 71.37 71.74 71.9 98.31 98.34 98.34 29.8 26.98 22.97 24.17 24.17 24.17

MPIV 66.44 69.83 63.24 98.31 98.34 98.34 25.23 12.52 20.72 24.17 24.17 24.17

TPIV 70.87 69.82 67.93 98.31 98.34 98.34 27.89 22.39 22.48 24.17 24.17 24.17

References Rank 70.8 69.14 71.72 98.31 98.34 98.34 22.03 23.66 24.68 24.17 24.17 24.17

MPIR 72.9 71.79 71.76 98.31 98.34 98.34 29.3 26.3 25.8 28.19 24.17 24.17

TPIR 73.69 73.31 72.25 98.31 98.34 98.34 28.69 28.38 32.51 28.35 29.17 24.17
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Table 4 Accuracy (%) and Precision (%) for the different features for the Classification Task in Scenario 2

Accuracy Precision

HepTh ArnetMiner HepTh ArnetMiner

Feature mLR mSVM CIT mLR mSVM CIT mLR mSVM CIT mLR mSVM CIT

New GERscore 76.95 75.07 76.35 95.81 95.51 95.54 51.32 47.16 52.27 67.91 66.58 66.13

Baseline

Author Rank 72.88 73.3 72.97 94.18 94.44 94.39 41.85 43.32 42.03 38.77 29.51 30.38

MPIA 70.1 70.88 70.79 94.4 94.43 94.43 35.84 34.13 30.81 33.56 24.72 22.22

TPIA 70.95 71.36 71.47 94.43 94.43 94.42 38.49 35.89 36.9 22.22 22.22 23.26

Venue Rank 69.98 70.09 69.98 94.43 94.43 94.44 28.47 29.23 27.93 22.22 22.22 27.23

MPIV 68.79 69.08 69.02 94.31 94.41 94.43 22.88 27.97 21.28 24.29 22.22 23.16

TPIV 69.74 69.74 70.01 94.43 94.43 94.43 27.21 27.21 27 22.22 22.22 22.22

Recency 67.77 67.36 67.37 94.39 94.3 94.4 16.78 16.79 13.27 22.17 22.17 22.16

References Rank 69.01 68.91 69.04 94.36 94.43 94.43 26.94 24.91 31.28 27.47 22.22 22.22

MPIR 69.06 69.08 69.23 94.38 94.41 94.43 25.21 27.97 26.5 28.74 28.51 22.22

TPIR 69.4 69.83 69.73 94.4 94.43 94.43 28.55 30.51 30.74 34.15 31.48 23.17

papers and then perform regression on the selected papers
to obtain a better ranking.

Overall, the results of the classification task indicate that
the new feature is better than the baseline features and sig-
nificantly improves the full model. Statistical significance
of the improvement has been identified with analysis of
variance (ANOVA) conducted for two models, “All” and
“-GERscore”, since these models are built on the same
datasets. Surprisingly, mLR turns out to be the best perform-
ing method.

5.4 Regression task

In the second experiment we compare how the constructed
features perform with regard to predicting real values of
future citation counts for academic publications. To evalu-
ate the performance in this task, we calculate the R2 value
as the square of Pearson correlation coefficient between the
actual and predicted citation counts:

R2 = 1

n − 1

n∑

i=1

(
Xi − X̄

sX

) (
Yi − Ȳ

sY

)

,

where n is the sample size, X = (X1, ..., Xn) correspond
to the real citation counts, X̄ is the mean of X, sX is the
standard deviation of X, Y = (Y1, ..., Yn) correspond to the
predicted citation counts, Ȳ is the mean of Y , and sY is the
standard deviation of Y . R2 measures how good the con-
structed model is in relative terms. To measure the model’s
fitness also in absolute terms, we calculate the root of mean
squared error (RMSE):

RMSE =
√
√
√
√1

n

n∑

i=1

(Xi − Yi)
2.

R2 is a value between 0 and 1 while the value of RMSE

depends on the units of the response variable (in our case
on the real citation counts). That is why we can compare R2

for ArnetMiner and HepTh, but not RMSE: the ranges of
the citation counts are quite different for them. R2 measures
how good the model is fit, hence, bigger values correspond
to a better model. On the other hand, RMSE estimates the
non-fit of the model, therefore, it increases if the model
becomes worse. Hence, we expect that the model with a
higher R2 would have a lower RMSE.

Table 5 Accuracy (%) and Precision (%) for the full model with and without the GERscore for the Classification Task in Scenario 1

Accuracy Precision

HepTh ArnetMiner HepTh ArnetMiner

Model mLR mSVM CIT mLR mSVM CIT mLR mSVM CIT mLR mSVM CIT

All 77.08 74.85 75.8 98.37 98.36 98.36 50.05 47.62 40.83 41.84 35.31 31.7

-GERscore 74.69 70.44 73.53 98.31 98.35 98.33 43.74 36.24 37.19 24.17 30.01 26.79
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Table 6 Accuracy (%) and Precision (%) for the full model with and without the GERscore for the Classification Task in Scenario 2

Accuracy Precision

HepTh ArnetMiner HepTh ArnetMiner

Model mLR mSVM CIT mLR mSVM CIT mLR mSVM CIT mLR mSVM CIT

All 80.92 80.62 79.28 96.22 95.91 96.01 60.42 59.76 56.68 69.17 67.56 67.52

-GERscore 74.71 74.89 74.41 94.6 94.71 94.71 48.13 48.05 46.25 49.93 58.48 50.61

We summarize the performance of various features for
the regression task in Tables 7, 8 in terms of R2 and in
Tables 9, 10 in terms of RMSE. The results are indicated
for 1-year (Δt = 1) and 5-year prediction (Δt = 5). Again,
we mark with bold font those features which give the high-
est performance measure in each column. If a feature has
“NA” as a value for R2, it means we are not able to calculate
it because the standard deviation of the predicted citation
counts is zero.

The GERscore leads to better R2 values than the baseline
features for ArnetMiner dataset. We showed that the GER-
score is also the best performing feature for HepTh dataset
in the classification task. However, it is no longer true in
the regression task. An author-related feature, TPIA, yields
the best R2 results in Scenario 1 for HepTh in all cases (see
Table 7). Now if we examine Scenario 2, the best models
(LR and SVR) are still constructed with the author-related

features (see Table 8). But if we use CART as a learning
method, we arrive at a better R2 with our new feature than
with the others. Interestingly, the results of RMSE are not
always coherent with the results of R2. Depending on a
learning method, we arrive at a lower RMSE using our new
feature (e.g.,see Table 9). But it is still true that the low-
est RMSE is obtained for the author-related features using
SVR.

Though author related features result in higher R2 for
HepTh, we obtain that the GERscore still brings addi-
tional value to the full models (Tables 11 and 12). The
improvement is less obvious in Scenario 1, especially for
the 5-year prediction for HepTh. To verify the statistical sig-
nificance of the improvement, we conduct ANOVA for two
models, “All” and “-GERscore”. The analysis shows that
the GERscore improves significantly the full model in all
cases.

Table 7 Performance measure R2 for the different features for the Regression Task in Scenario 1

Δt = 1 Δt = 5

HepTh ArnetMiner HepTh ArnetMiner

Feature LR SVR CART LR SVR CART LR SVR CART LR SVR CART

GERscore(1)
1,3 0.01 0.033 0.072 0.02 0.014 0.015 0.01 0.026 0.044 0.028 0.026 0.019

GERscore(2)
1,3 0.075 0.11 0.122 0.111 0.095 0.073 0.06 0.083 0.084 0.123 0.13 0.101

GERscore(3)
1,3 0.01 0.033 0.106 0.147 0.129 0.158 0.004 0.038 0.07 0.121 0.122 0.103

GERscore(1)
2,3 0.003 0.017 0.023 0.026 0.029 0.04 0.002 0.015 0.015 0.022 0.028 0.022

GERscore(2)
2,3 0.006 0.006 NA 0.108 0.231 0.232 0.004 0.004 NA 0.108 0.153 0.166

GERscore(3)
2,3 0.067 0.111 0.104 0.109 0.131 0.182 0.04 0.073 0.069 0.117 0.125 0.123

GERscore 0.161 0.152 0.142 0.221 0.215 0.19 0.111 0.107 0.093 0.165 0.155 0.124

Author Rank 0.224 0.089 0.155 0.005 NA 0.003 0.183 0.076 0.136 0.008 0.004 0.009

MPIA 0.258 0.188 0.176 0.003 0.003 0.005 0.236 0.166 0.176 0.005 0.007 0.012

TPIA 0.275 0.219 0.193 0.001 0.001 0.01 0.249 0.189 0.195 0.002 0.006 0.013

Venue Rank 0.041 0.052 0.055 0.018 NA 0.029 0.03 0.054 0.035 0.063 0.062 0.063

MPIV 0.04 0.011 0.031 0.002 NA 0.034 0.037 0.001 0.027 0.004 0.011 0.035

TPIV 0.048 0.01 0.032 0.002 NA 0.021 0.037 0.002 0.022 0.001 0.026 0.027

References Rank 0.092 0.012 0.035 0.004 NA 0.029 0.073 0.004 0.029 0.02 0.023 0.026

MPIR 0.092 0.083 0.074 0.005 0.001 0.037 0.071 0.044 0.053 0.004 0.031 0.035

TPIR 0.076 0.1 0.095 0.008 0.001 0.037 0.061 0.066 0.058 0.006 0.028 0.033
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Table 8 Performance measure R2 for the different features for the Regression Task in Scenario 2

Δt = 1 Δt = 5

HepTh ArnetMiner HepTh ArnetMiner

Feature LR SVR CART LR SVR CART LR SVR CART LR SVR CART

GERscore(1)
1,3 0.062 0.072 0.121 0.154 0.172 0.173 0.055 0.065 0.099 0.236 0.224 0.275

GERscore(2)
1,3 0.126 0.226 0.247 0.382 0.374 0.428 0.106 0.17 0.176 0.447 0.448 0.472

GERscore(3)
1,3 0.019 0.017 0.009 0.186 0.193 0.228 0.013 0.012 0.011 0.226 0.243 0.258

GERscore(1)
2,3 0.027 0.036 0.049 0.066 0.092 0.101 0.024 0.033 0.045 0.095 0.128 0.132

GERscore(2)
2,3 0.033 0.059 0.058 0.086 0.139 0.186 0.031 0.058 0.058 0.114 0.171 0.215

GERscore(3)
2,3 0.006 0.015 NA 0.093 0.102 0.114 0.005 0.011 0.013 0.128 0.138 0.154

GERscore 0.188 0.201 0.217 0.445 0.298 0.444 0.14 0.161 0.157 0.543 0.355 0.483

Author Rank 0.201 0.264 0.179 0.118 0.121 0.17 0.164 0.21 0.17 0.133 0.181 0.159

MPIA 0.235 0.235 0.21 0.061 0.055 0.067 0.19 0.207 0.147 0.07 0.025 0.054

TPIA 0.303 0.239 0.236 0.002 0.067 0.056 0.25 0.216 0.167 0.004 0.062 0.071

Venue Rank 0.056 0.065 0.051 0.035 0.057 0.053 0.043 0.063 0.049 0.04 0.048 0.05

MPIV 0.046 0.056 0.044 0.031 0.027 0.035 0.032 0.043 0.038 0.025 0.009 0.039

TPIV 0.047 0.053 0.038 0.02 0.023 0.035 0.035 0.04 0.036 0.017 0.006 0.035

Recency 0.002 0.002 NA 0.006 NA NA 0.002 0.003 0.004 0.002 NA NA

References Rank 0.096 0.083 0.059 0.026 0.016 0.023 0.094 0.086 0.034 0.025 0.009 0.017

MPIR 0.094 0.088 0.086 0.018 0.022 0.02 0.098 0.092 0.065 0.018 0.014 0.019

TPIR 0.117 0.096 0.065 0.026 0.022 0.026 0.109 0.096 0.057 0.026 0.012 0.018

Table 9 Performance measure RMSE for the different features for the Regression Task in Scenario 1

Δt = 1 Δt = 5

HepTh ArnetMiner HepTh ArnetMiner

Feature LR SVR CART LR SVR CART LR SVR CART LR SVR CART

GERscore(1)
1,3 16.068 16.294 15.723 0.668 0.668 0.672 39.722 39.891 39.814 1.959 1.966 1.966

GERscore(2)
1,3 15.495 15.864 15.192 0.633 0.639 0.702 38.85 39.301 38.826 1.848 1.834 2.034

GERscore(3)
1,3 16.002 16.566 15.552 0.624 0.628 0.669 39.646 40.197 39.481 1.876 1.866 1.982

GERscore(1)
2,3 16.062 16.624 15.915 0.677 0.662 0.663 39.702 40.383 39.554 1.97 1.967 1.964

GERscore(2)
2,3 16.015 16.668 16.057 0.645 0.597 0.583 39.533 40.515 39.589 1.834 1.824 1.811

GERscore(3)
2,3 15.729 15.739 15.566 0.625 0.634 0.631 39.58 39.063 39.504 1.844 1.869 1.881

GERscore 15.317 15.004 15.689 0.625 0.593 0.651 39.516 37.97 40.22 1.88 1.811 1.995

Author Rank 16.742 15.522 16.261 0.674 0.672 0.689 41.791 38.494 44.437 1.973 2.004 1.986

MPIA 17.892 14.683 16.301 0.677 0.671 0.68 48.113 36.809 43.368 1.979 1.999 1.994

TPIA 20.059 14.636 18.913 0.673 0.672 0.687 53.046 37.625 49.093 1.966 1.999 2.003

Venue Rank 15.941 16.297 15.753 0.667 0.672 0.672 39.768 39.711 39.478 1.875 1.949 1.951

MPIV 18.887 16.662 16.189 0.673 0.672 0.672 47.044 40.418 40.378 1.988 1.991 1.946

TPIV 18.21 16.369 16.355 0.673 0.672 0.674 45.499 40.167 41.119 1.983 1.984 1.981

References Rank 17.847 16.344 16.593 0.674 0.671 0.666 42.742 40.046 41.651 1.969 2.053 1.964

MPIR 19.653 15.653 16.108 0.672 0.672 0.667 46.93 39.345 40.496 1.977 1.955 1.952

TPIR 22.359 15.462 17.775 0.67 0.67 0.667 53.624 38.715 45.761 1.98 1.958 1.977
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Table 10 Performance measure RMSE for the different features for the Regression Task in Scenario 2

Δt = 1 Δt = 5

HepTh ArnetMiner HepTh ArnetMiner

Feature LR SVR CART LR SVR CART LR SVR CART LR SVR CART

GERscore(1)
1,3 25.644 26.194 25.006 5.202 5.318 5.168 47.473 48.119 46.625 5.542 5.823 5.41

GERscore(2)
1,3 24.962 24.631 23.439 4.43 4.669 4.248 46.371 46.453 44.973 4.725 4.997 4.605

GERscore(3)
1,3 26.286 26.806 26.678 5.089 5.281 4.931 48.421 49.107 49.104 5.542 5.799 5.439

GERscore(1)
2,3 26.113 26.641 25.84 5.431 5.485 5.334 48.012 48.804 47.636 5.998 6.075 5.883

GERscore(2)
2,3 26.055 26.491 25.751 5.353 5.388 5.067 47.841 48.495 47.328 5.927 6.018 5.602

GERscore(3)
2,3 26.383 26.854 26.422 5.345 5.444 5.283 48.417 49.152 48.519 5.9 6.048 5.812

GERscore 24.263 24.651 24.346 4.198 4.935 4.201 45.867 46.296 46.237 4.287 5.386 4.571

Author Rank 24.032 23.994 24.783 5.26 5.403 5.119 45.015 45.383 45.999 5.863 5.924 5.789

MPIA 23.462 24.344 24.085 5.43 5.589 5.42 44.636 45.686 46.001 6.066 6.245 6.133

TPIA 22.512 24.086 23.785 5.585 5.561 5.472 44.45 44.874 46.847 6.261 6.193 6.049

Venue Rank 25.818 26.378 25.892 5.494 5.557 5.466 47.725 48.342 47.454 6.154 6.22 6.131

MPIV 25.923 26.504 25.974 5.522 5.608 5.514 47.873 48.623 47.703 6.2 6.263 6.167

TPIV 25.922 26.495 26.051 5.544 5.613 5.513 47.824 48.642 47.72 6.224 6.267 6.175

Recency 26.441 27.024 26.422 5.574 5.648 5.589 48.428 49.332 48.438 6.266 6.274 6.274

References Rank 25.33 26.16 26.269 5.533 5.619 5.549 46.593 48.006 49.467 6.202 6.259 6.245

MPIR 25.332 26.07 25.467 5.547 5.606 5.553 46.568 47.813 47.469 6.223 6.25 6.228

TPIR 25.055 25.792 27.29 5.528 5.606 5.542 46.162 47.371 47.961 6.203 6.251 6.223

We also observe that it becomes harder to predict cita-
tion counts over longer periods. The only exception is
ArnetMiner dataset in Scenario 2. In the previous work
the authors also showed better performance over longer
time periods in this setting [11]. Our explanation is that
it happens due to the specifics of the considered datasets
and evaluation approaches. The average citation count for
ArnetMiner dataset remains around 1 throughout years,
while it gradually grows till 12 for HepTh. Thus, the
performance of 5-year prediction for ArnetMiner does

not drop so much as for HepTh. The same observation
holds for the dataset in [11]. If we study the results in
terms of RMSE, we observe that 5-year prediction is
harder: the values more than double for both datasets in
Scenario 1 (see Table 11), but the relative drop in Sce-
nario 2 is not so high, especially for ArnetMiner. Again,
the reason is the difference between the average cita-
tion counts for these datasets (HepTh has it higher). This
also explains why the values of RMSE are higher for
HepTh.

Table 11 Performance measures (R2 and RMSE) for the full model with and without the GERscore for the Regression Task in Scenario 1

Δt = 1 Δt = 5

HepTh ArnetMiner HepTh ArnetMiner

Model LR SVR CART LR SVR CART LR SVR CART LR SVR CART

R2 All 0.3 0.19 0.218 0.224 0.197 0.193 0.273 0.147 0.154 0.173 0.162 0.136

-GERscore 0.288 0.115 0.215 0.022 0.011 0.026 0.269 0.085 0.141 0.063 0.037 0.057

RMSE
All 21.984 14.586 21.584 0.626 0.599 0.644 57.694 37.471 58.282 1.872 1.796 1.954

-GERscore 24.156 16.246 20.899 0.667 0.668 0.673 60.632 41.296 59.817 1.892 1.956 1.941
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Another interesting observation is that R2 is higher in
Scenario 2 compared to Scenario 1. We have expected that
predicting citation counts for freshly published papers is
more difficult since not much is known about them. How-
ever, if we compare RMSE across scenarios, we notice that
the values are lower in Scenario 1. The explanation is quite
simple: average citation counts in Scenario 2 are higher than
in Scenario 1, and this leads to a higher error. So, compar-
ing our two scenarios in terms of RMSE does not make
sense.

5.5 Discussion

Overall our new feature GERscore significantly improves
citation count prediction. The statistical significance of
the improvement has been verified for the full models
using ANOVA test. When classifying the future citations,
the GERscore is better than the baseline features in all
cases. However, author-related features are still better in
the regression task, but only for the dataset HepTh. HepTh
provides better coverage of papers in the relevant domain,
thus the citations are more complete. Another difference
of HepTh from ArnetMiner is the domain: physics for the
first and computer science for the latter. The last issue
is the amount of mined graph evolution rules: we have
only 230 unlabeled evolution rules for HepTh. We are
not sure which of these differences leads to the disagree-
ment in the best performing features. In the previous work
the authors argue that such disagreement arises due to
the nature of the relevant scientific domains [9]. How-
ever, additional investigation is required to draw a final
conclusion.

We observe that CART performs the best for the regres-
sion task in Scenario 2 which agrees with the previous work
[11]. However, LR provides better results in Scenario 1. In
general, the performance in Scenario 1 is not as good as
in Scenario 2. This means that it is much harder to predict
citation counts for freshly published papers. It might be the
reason why a simple linear regression with a better general-
ization ability performs well. Surprisingly, CART does not
yield the best results for the 5-year prediction which con-
tradicts to the previous work [11]. However, if we leave
out the GERscore from the full model (“-GERscore” in
Table 12), firstly, we have that non-linear models, namely
SVR and CART, perform better. Secondly, CART yields
the best result for ArnetMiner for predicting citation counts
over 5 years. For the full model it is the case that the perfor-
mance drops for HepTh and increases for ArnetMiner over
the longer time period. We face again the challenge that
more datasets are required to determine whether the nature
of the scientific domain influences these results.

Out of all scores which constitute the GERscore, the
best results are gained for the scores calculated from the

unlabeled graph evolution rules (see Tables 8 and 10).
When aggregating separate scores, summation is a bet-
ter choice compared to maximum. This is an unfortunate
outcome since aggregation with maximum would allow
us to speed up the graph pattern mining by setting a
high support threshold. The decrease in running time is
also gained through mining labeled graph evolution rules.
Though GERscore(2)

1,i provides better results compared to
other label settings and aggregation technique, we still
receive that the other scores contribute to the combined
GERscore.

Our results are coherent with Yan et al. for ArnetMiner
in Scenario 2 which is the only setting that corresponds
to theirs: Author Rank is better than Venue Rank [11, 13].
However, we show that the GERscore is even better in this
case. Moreover, we arrive already at a better performance
just by identifying graph evolution rules in the unlabeled
citation network from the previous years.

6 Conclusion and future work

We have constructed a new feature - GERscore - for esti-
mation of future citation counts for academic publications.
Our experiments show that the new feature performs bet-
ter than ten state-of-the-art features in the classification
task. Furthermore, the average accuracy of the classifica-
tion is not affected much if we bring in other baseline
features into the model. In the regression task the new fea-
ture outperforms the state-of-the-art features for the dataset
of publications from computer science domain (Arnet-
Miner), though the latter still contribute to the performance
of regression models. Thus, the application of graph pat-
tern mining to the citation count prediction problem leads
to better results. However, for the dataset of publications
from physics (HepTh) the GERscore is not as good as
the author related features, i.e., author rank, MPIA and
TPIA, though it does contribute to the increase of the per-
formance. Additional investigation is required to identify
the reason for the disagreement in the best performing
features.

We have performed both classification and regression
tasks for the prediction of citation counts in one year. Addi-
tionally, we predict the actual citation counts in 5 years.
We observe that it becomes harder to predict citation counts
over longer periods. Our results also indicate that the perfor-
mance of the model does not always improve if we include
more features. We have not included all features from the
previous works in our evaluation framework, e.g., content
related features [9, 11, 13] or network related features [9,
18]. Thus, an important aspect to investigate is the perfor-
mance of various features on different datasets and their
optimal combination where dimension reduction methods
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Table 12 Performance measures (R2 and RMSE) for the full model with and without the GERscore for the Regression Task in Scenario 2

Δt = 1 Δt = 5

HepTh ArnetMiner HepTh ArnetMiner

Model LR SVR CART LR SVR CART LR SVR CART LR SVR CART

R2 All 0.346 0.28 0.366 0.27 0.452 0.474 0.269 0.285 0.226 0.562 0.312 0.527

-GERscore 0.296 0.221 0.324 0.129 0.213 0.149 0.243 0.272 0.154 0.162 0.141 0.175

RMSE
All 22.483 23.438 21.674 4.977 4.166 4.089 44.485 43.258 45.939 4.198 5.478 4.415

-GERscore 23.112 24.689 22.275 5.325 4.998 5.172 44.686 43.755 47.81 5.767 5.933 5.778

might be of help. Ultimately, we want to include our find-
ings into a recommender system for academic publications.

Our future work includes thorough investigation how
the mined evolution rules influence the predictive power
of the GERscore. Here we want to investigate in several
directions. The first issue is to study the influence of input
parameters, minimum support (minSup) and maximum size
(maxSize), and what is the best combination for them. We
need to take into consideration that by setting maxSize
high and minSupport low we will obtain more evolution
rules, however the computational time will grow exponen-
tially. Another issue is that real-world networks change
considerably over time. It may lead to the fact that the evo-
lution rules which are frequent and have high confidence
at time t may become rudimentary in ten years and will
not be predictive of the citation counts. Thus, we plan to
investigate for how long mined evolution rules on average
stay predictive. This is an important question also because
mining graph evolution rules is computationally hard, and
reducing the amount of re-learning GERscores is extremely
important.

References

1. Pobiedina N, Ichise R (2014) Predicting citation counts for
academic literature using graph pattern mining. In: Proceeding
IEA/AIE, pp 109–119

2. Garfield E (2001) Impact factors, and why they won’t go away.
Science 411(6837):522

3. Hirsch J (2005) An index to quantify an individual’s scientific
research output. Proc the National Academy of Sciences of the
United States America 102(46):16569

4. Beel J, Gipp B (2009) Google scholar’s ranking algorithm: The
impact of citation counts (an empirical study). In: Proceeding
RCIS, pp 439–446

5. Bethard S, Jurafsky D (2010) Who should I cite: learning litera-
ture search models from citation behavior. In: Proceeding CIKM,
pp 609–618

6. Callaham M, Wears R, Weber E (2002) Journal prestige, publi-
cation bias, and other characteristics associated with citation of
published studies in peer-reviewed journals. J. Am. Med. Assoc.
287(21):2847–50

7. Kulkarni AV, Busse JW, Shams I (2007) Characteristics asso-
ciated with citation rate of the medical literature. PLOS One
2(5)

8. Didegah F, Thelwall M (2013) Determinants of research cita-
tion impact in nanoscience and nanotechnology. JASIST (JASIS)
64(5):1055–1064

9. Livne A, Adar E, Teevan J, Dumais S (2013) Predicting citation
counts using text and graph mining. In: Proceeding the iConfer-
ence 2013 Workshop on Computational Scientometrics: Theory
and Applications

10. Bringmann B, Berlingerio M, Bonchi F, Gionis A (2010) Learning
and predicting the evolution of social networks. IEEE Intell Syst
25:26–35

11. Yan R, Tang J, Liu X, Shan D, Li X (2011) Citation count pre-
diction: learning to estimate future citations for literature. In:
Proceeding CIKM, pp 1247–1252

12. Mcgovern A, Friedl L, Hay M, Gallagher B, Fast A, Neville J,
Jensen D (2003) Exploiting relational structure to understand pub-
lication patterns in high-energy physics. SIGKDD Explorations
5:2003

13. Yan R, Huang C, Tang J, Zhang Y, Li X (2012) To better stand on
the shoulder of giants. In: Proceeding JCDL, pp 51–60

14. Barabasi AL, Albert R (1999) Emergence of scaling in random
networks. Sci Mag 286(5439):509–512

15. Adamic LA, Adar E (2003) Friends and neighbors on the web. Soc
Networks 25(3):211–230

16. Liben-Nowell D (2007) The link-prediction problem for social
networks. JASIST 58(7):1019–1031

17. Munasinghe L, Ichise R (2012) Time score: A new feature for link
prediction in social networks. IEICE Trans 95-D(3):821–828

18. Shi X, Leskovec J, McFarland DA (2010) Citing for high impact.
In: Proceeding JCDL, pp 49–58

19. Devroye L, Gyrfi L, Lugosi G (1996) A Probabilistic Theory of
Pattern Recognition. Springer

20. Chang CC, Lin CJ (2011) Libsvm: A library for support vector
machines. ACM Trans Intell Syst Technol 2(3):1–27

21. Hothorn T, Hornik K, Zeileis A (2006) Unbiased recursive parti-
tioning: A conditional inference framework. J Comp Graph Stat
15(3):651–674

22. Breiman L, Friedman J, Stone CJ, Olshen R (1984) Classification
and Regression Trees. Chapman and Hall/CRC

23. The R project for statistical computing http://www.r-project.org/
(January 2013)

24. Dietterich TG (1998) Approximate statistical tests for compar-
ing supervised classification learning algorithms. Neural Comput
10(7):1895–1923

25. Sokolova M, Lapalme G (2009) A systematic analysis of per-
formance measures for classification tasks. Inf Process Manag
45(4):427–437

http://www.r-project.org/


268 N. Pobiedina, R. Ichise

Nataliia Pobiedina is a PhD
student at the Vienna PhD
School of Informatics, a
special program at Vienna
University of Technology,
Austria. In 2013 she won a
scholarship for a three month
internship at the National
Institute of Informatics in
the group of Ryutaro Ichise,
Tokyo, Japan. Her research
interests include machine
learning, data mining and
network analysis.

Ryutaro Ichise received his
Ph.D. degree in computer
science from Tokyo Insti-
tute of Technology, Tokyo,
Japan, in 2000. From 2001
to 2002, he was a visiting
scholar at Stanford Univer-
sity. He is currently an asso-
ciate professor in the Princi-
ples of Informatics Research
Division at the National Insti-
tute of Informatics in Japan.
His research interests include
machine learning, semantic
web, and data mining.


	Citation count prediction as a link prediction problem
	Abstract
	Introduction
	Predicting citation counts
	Related work
	Citation count prediction
	Link prediction
	Evaluation

	GERscore
	Mining graph evolution rules
	Calculating GERscore

	Experiment
	Experimental data
	Experimental setting
	Classification task
	Regression task
	Discussion

	Conclusion and future work
	References


