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Abstract Ontology matching is among the core tech-
niques used for heterogeneity resolution by information
and knowledge-based systems. However, due to the excess
and ever-evolving nature of data, ontologies are becom-
ing large-scale and complex; consequently, leading to per-
formance bottlenecks during ontology matching. In this
paper, we present our performance-based ontology match-
ing system. Today’s desktop and cloud platforms are
equipped with parallelism-enabled multicore processors.
Our system benefits from this opportunity and provides
effectiveness-independent data parallel ontology matching
resolution over parallelism-enabled platforms. Our system
decomposes complex ontologies into smaller, simpler, and
scalable subsets depending upon the needs of matching
algorithms. Matching process over these subsets is divided
from granular to finer-level abstraction of independent
matching requests, matching jobs, and matching tasks, run-
ning in parallel over parallelism-enabled platforms. Execu-
tion of matching algorithms is aligned for the minimization
of the matching space during the matching process. We
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comprehensively evaluated our system over OAEI’s dataset
of fourteen real world ontologies from diverse domains,
having different sizes and complexities. We have executed
twenty different matching tasks over parallelism-enabled
desktop and Microsoft Azure public cloud platform. In a
single-node desktop environment, our system provides an
impressive performance speedup of 4.1, 5.0, and 4.9 times
for medium, large, and very large-scale ontologies. In a
single-node cloud environment, our system provides an
impressive performance speedup of 5.9, 7.4, and 7.0 times
for medium, large, and very large-scale ontologies. In a
multi-node (3 nodes) environment, our system provides an
impressive performance speedup of 15.16 and 21.51 times
over desktop and cloud platforms respectively.

Keywords Ontology matching · Heterogeneity
resolution · Multithreading · Parallel processing ·
Parallel programming · Semantic web

1 Introduction

In this era of automated knowledge aggregation, integration
of data and information from heterogeneous sources is the
key [1]. The excess of available information over ubiquitous
platforms, contributed by various domains using various
input devices has substantially increased the amount of dis-
parate information; consequently, semantic heterogeneity
issues have emerged. The primary solution for semantic
heterogeneity problem is ontology matching. It determines
correspondence between semantically related ontologies.
This correspondence is termed as mappings or alignment
[2]. These mappings are further used by information sys-
tems, electronic commerce systems, knowledge-based sys-
tems, search engines and social networking systems. Due
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to the greater benefits of ontology matching, ontologies
are extensively utilized in multiple domains. For exam-
ple, in biomedicine, ontologies are used for representing
medical knowledge and clinical guidelines [3], standardiza-
tion of medical data formats [4], clinical data integration
and medical decision-making [5]. Consequently, biomedical
ontologies like the Gene Ontology (GO) [6], the National
Cancer Institute Thesaurus (NCI) [7], the FoundationModel
of Anatomy (FMA) [8], and the Systemized Nomenclature
of Medicine (SNOMED-CT) [9] have emerged; further-
more, infrastructures like OBO Foundry [10] and BioPortal
[11] are promoting the usage of ontologies in biomedicine.
Similarly, in electronic commerce, ontologies are used for
mediation among two or more web services [12] and their
discovery [13]. The vast usage of ontologies has compelled
researchers and experts to invest more in development of
newer ontologies and provide continuity to the already cre-
ated ones. As a result, ontologies are becoming larger in
size, complex in structure, and their matching process has
become computationally expensive.

Ontology matching is a two-fold problem where chal-
lenges and issues are classified into two categories; (i)
accuracy that deals with the effectiveness of the matching
algorithms and (ii) performance that is based upon scala-
bility, resource utilization, and overall execution time of
the whole matching process [14]. Although the trade-off
between accuracy and overall execution time exists, by
implementing scalable and optimal resource utilization
techniques, performance of the ontology matching process
can be largely improved with effectiveness independence.

Ontology matching is a computationally intensive task
with quadratic computational complexity [15]. It is a Carte-
sian product of two candidate ontologies, which requires
Resource-based element-level (String-based, Annotation-
based, and Label-based) [2] and structural-level (Child-
based, Graph-based, and Property-based) [2] matching
algorithms to be executed over candidate ontologies for
the generation of the required mappings. In our experi-
ments, executing these matching algorithms over various
size ontologies has taken from hours till days to generate
desirable results. This delay in mapping results makes onto-
logy matching ineffective for dynamic applications with
in-time processing demands.

Ontology matching systems developed over the years
have taken the execution time into consideration and have
implemented possible resolutions. However, the perfor-
mance aspect of these systems is tightly coupled with the
accuracy and complexity of matching algorithms. Their
implemented resolutions are more focused on optimiza-
tion of the matching algorithms and partitioning of larger
ontologies into smaller chunks for performance benefits
[16]. In these implementations, a clear distinction between
the resolutions for accuracy and performance does not exist.

Furthermore, an explicit and decoupled runtime has not
been proposed yet which can improve the performance fac-
tors without inflicting any changes in the effectiveness of
matching algorithms. Therefore, these resolutions fall into
the category of effectiveness-dependent solutions where a
trade-off between matching effectiveness (accuracy mea-
sures, precision, recall, and F-Measure) and execution time
(performance) exists. Moreover, the performance improve-
ment based-on exploitation of newer hardware technologies
has largely been missed. Among these technologies are
affordable parallel systems that are easily available as
stand-alone and distributed platforms [14]. Current ontol-
ogy matching systems are design time tools which are
not optimized for resource consumption [14]. Therefore,
they have not provided substantial performance-gain by
just deploying over parallelism-enabled stand-alone and
distributed platforms.

In earlier years, parallelism and distributed platforms
were associated with High Performance Computing (HPC)
[17]. To support HPC, expensive platforms have been devel-
oped over the years. These platforms are not only scarce,
but also have higher costs and skill-set requirements, mak-
ing them incurious for average developers and platform
administrators. However, more recently, parallelism has
been applicable over personal computing devices like desk-
top PCs, laptops, and even over smartphones because of
the advent of multicore processors [18]. These proces-
sors are equipped with multiple cores on a single die,
enabling each core to serve as a virtual microproces-
sor, providing parallelism at the hardware level. More-
over, with the arrival of Cloud computing as a back-
bone platform for ubiquitous computing [19], these mul-
ticore processors are always available as distributed plat-
forms of commodity machines with utility-based pricing
model. With these readily available, yet affordable par-
allel platforms, an opportunity emerges for their utiliza-
tion in ontology matching. Furthermore, their utilization
can lead to an effectiveness-independent performance-gain
ontology matching solution where the accuracy of the
matching algorithms remains preserved and performance-
gain is extracted from smarter use of available computing
resources.

The innovation of hardware architecture has brought par-
allel computing over personal and ubiquitous platforms;
however, the utilization of these resources requires par-
allel programming techniques. Ontology matching being
a compute intensive task can be resolved by several
parallel programming paradigms including Message Pass-
ing over high-end hardware and communications devices
[20], Task Parallelism, and Data Parallelism [21]. Message
passing requires inter-process communication that is appro-
priate for iterative problems where dependency between
operations exists [22]. In task parallelism, independent
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threads execute different operations on the same data. How-
ever, data parallelism is one such technique where multiple
autonomous operations are performed repeatedly on mul-
tiple pieces of data [23]. Looking from the perspective of
ontology matching problem, data parallelism is a candidate
technique in which these ontologies can be divided into
smaller pieces and assigned over to computing resources
for executing matching algorithms in parallel. The par-
allel data implementation largely improves the ontology
matching performance over other parallel paradigms. By
implementing data parallelism, thread-level parallelism gets
implemented with a set of independent matcher threads exe-
cuting the same matching algorithm on a different part of
candidate ontologies. This mechanism also enables match-
ing space reduction as every following set of matching
threads will only match ontology resources left by the previ-
ous set with another algorithm. Moreover, unlike message-
passing, data parallelism resolves ontology matching by
using independent threads with zero inter-thread commu-
nication and network I/O during matching. In case of task
parallelism for matching ontologies, matcher threads can-
not be truly independent because: (i) redundant matching on
same part of candidate ontologies will occur, i.e., a concept
matched by one algorithm will be matched in parallel by
another algorithm, unless communicated otherwise. Redun-
dant matching not only costs extra computation time at
matching but also has an aggregation overhead; (ii) higher
chances of idle cores, i.e., as the computational complexity
and overall time taken by an algorithm running by a thread
on same part of candidate ontologies will be different from
other algorithms running by other threads. Therefore, one
thread will finish early and wait in idle for others to finish
unless a costly load redistribution is performed at runtime.
Data parallelism with its better scalability, matching space
reduction, and no communication overhead is more perfor-
mance efficient than other parallel paradigms for ontology
matching. In addition, work distribution among a set of
threads running the same algorithm is based on having an
equal amount of workload per thread, which reduces the
chances of idle processing cores to a bare minimum, i.e., no
runtime load redistribution required.

By accumulating the opportunities mentioned earlier, i.e.,
delay in ontology matching, effectiveness-dependent nature
of current ontology matching systems, absence of exploita-
tion of parallelism-enabled stand-alone and ubiquitous plat-
forms for effectiveness-independent performance-gain dur-
ing matching, and likelihood of data parallelism over these
platforms for ontology matching, provides the motivation
for a performance-based ontology matching system. This
paper contributes by presenting one such system that imple-
ments data parallelism over parallelism-enabled platforms
for parallel ontology matching. Utilization of these plat-
forms leads to an effectiveness-independent performance-

gain, as our system decouples the performance aspect from
accuracy and explicitly provides resolution to earlier men-
tioned performance challenges of ontology matching. Con-
sequently, no change is inflicted in the implementation
of matching algorithms, keeping the accuracy preserved.
Moreover, with the availability of better computational
resources, faster-matched results are obtained. In our pro-
posed system, we provide a resolution to performance
challenges by:

• decomposing the complex ontologies into smaller
Resource-based ontology subsets depending upon the
needs of matching algorithms. These subsets are inde-
pendent and simpler (reduced computational comple-
xity) with performance and scalability-friendly data
structures. This method contributes to our system’s
performance by only loading the ontology resources
required by matching algorithms and data structures
that can be easily partitioned for data parallel match-
ing. These subsets are also preserved by serialization to
reduce the matching effort for future matching requests
of same ontologies;

• division of the matching process over these subsets
into three levels of abstractions (independent Matching
Requests, Matching Jobs, and Matching Tasks) depend-
ing upon the available parallelism-enabled platform.
Matching Requests are assigned to participating
node(s), matching jobs are the division of one matching
request over available computing cores within a node,
and each core is assigned with a set of equal num-
bers of matching tasks to complete the whole matching
process. Matching task invokes assigned matching
algorithm for effectiveness-independent matching. This
method contributes to our system’s performance by dis-
tributing matching tasks over participating computing
cores and executing them in parallel at finer level with
optimal computing resource utilization;

• aligning the execution of matching algorithms to mini-
mize the matching space for every following matching
algorithm execution during the whole matching pro-
cess. This method contributes to performance by redu-
cing the number of matching tasks to unmatched
resources only, thus avoiding redundant expensive
matching operations.

Performance-gain of our proposed system is substantially
achieved from our data-parallel methodology. Therefore,
our system requires the availability our system requires
of parallelism-enabled platforms. We have used quad-core
desktop PCs and Microsoft Azure public cloud platform
configured in single- and multi-node environments for the
deployment, execution, and evaluation of our system. In
case of availability of subpar computational resources,
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our system scales down to conventional sequential match-
ing. Furthermore, our proposed system is independent
of ontology types and domains. Any ontology following
RDF/XML1 syntax specification is processed by our sys-
tem for matching; thus, no changes in the original structure
of the candidate ontologies is required for our performance-
based ontology matching solution.

We have comprehensively evaluated our system with
Ontology Alignment Evaluation Initiative (OAEI)’s 2013
dataset of real world ontologies (14 ontologies in total) from
diverse knowledge domains, having various sizes and com-
plexities. For ontologies from Anatomy track (adult mouse
anatomy with human anatomy part of NCI Thesaurus), our
system has been able to achieve an impressive performance
speedup of 4 times over the desktop and 5 times over the
cloud platform (single-node). For ontologies from Library
track, our system has been able to achieve an impressive
performance speedup of 3.9 times over the desktop and
6.3 times over the cloud platform (single-node). For all six
tasks of Large Biomedical Ontologies track, our system has
been able to achieve an impressive performance speedup of
4.4, 4.7, and 5.3 times over the desktop and 6.5, 7.5, and
7.25 times over the cloud platform for tasks 1, 3, and 5
respectively (single-node). For tasks 2, 4, and 6, our sys-
tem has been able to achieve an impressive performance
speedup of 14.65, 15.64, and 15.19 times over desktop and
21.6, 21, and 21.93 times over cloud platform respectively
(multi-node). We have also evaluated our system with small
ontologies from Conference track over a dual-core Azure
Virtual Machine. We have executed 12 different tasks from
this track and recorded an average performance speedup of
1.25 times. Furthermore, we have compared our systemwith
GOMMA’s [24] parallel matching techniques. For large
category, our system outperforms intra-matcher by 5.2 % on
desktop and 55 % over cloud platform. For very large cate-
gory, our system outperforms intra-matcher by 4.6 % on
desktop and 47.7 % over cloud platform. Our system also
outperforms Intra&Inter multi-node matcher by 12.8 %.

The rest of the paper is structured as follows. In Section
2, we describe the related work in the field of ontology
matching from the perspective of performance. Section 3
describes our proposed methodology on which our sys-
tem has been constructed. Implementation details of our
system, including the stack design of components and
their details are presented in Section 4. Section 5 provides
a comprehensive evaluation of our system on real-world
ontologies of various domains, types, and sizes over mul-
ticore desktop PC and Microsoft Azure’s public cloud
platform. Section 6 concludes this paper.

1http://www.w3.org/TR/REC-rdf-syntax/

2 Related work

Nowadays, Internet has grown to become a huge public
resource for large and ever-growing heterogeneous data
[25]. This excess of knowledge provides a great opportunity
for integration by heterogeneity resolution; consequently,
researchers have developed ontology matching systems and
techniques. As our work is related to performance, In
this section we have discussed performance aspect of two
types of ontology matching systems, i.e., generic ontology
matching systems and ontology matching systems imple-
mented in particular for biomedical ontologies due to their
usage, complexity, and size. Furthermore, we have also dis-
cussed candidate parallel techniques and their feasibility for
ontology matching.

From the technique perspective, a considerable amount
of research has been done towards optimizing ontology
matching algorithms for better performance [16]. Conse-
quently, various structural partitioning approaches for
ontologies have emerged. Falcon-AO [26], a famous onto-
logy matching tool provides a divide-and-conquer approach
called PBM [27]. Similarly, an ontology segmentation
approach called Anchor-Flood is proposed by [28]. How-
ever, in both of these techniques, performance is coupled
with the complexity of the partitioning approach. Neither of
these techniques benefits from readily available parallelism-
enabled platforms for ontology matching.

Among the generic ontology matching strategies and
systems, multi-agent systems based on the semantic nego-
tiation have also been proposed in [29] and [30]. These
works are based on semantic negotiation protocols HISENE
[31] and HISENE2 [32]. In [29], an algorithm is pro-
posed to compute the ontology-based similarity and an
agent-based system to perform this computation in a dis-
tributed fashion called clustering method. For agent deploy-
ment, JADE (Java Agent DEvelopment Framework) [33]
is utilized. Although the semantic negotiation has shown
promising results in efficiency, its performance is depen-
dent on the amount of communication over an asynchronous
message passing protocol required for negotiation between
distributed agents. In case of a homogenous cluster of
agents, this mechanism is efficient; however, in case of
increased heterogeneity, the communication among the
agents will increase, adding to the network I/O overhead.
In a decentralization approach proposed in [30], the com-
munication cost for large multi-agent systems has been
reduced but the semantic negotiation is a learning process
that is based on strong collaboration among agents over
iterative communication. Thus, communication overhead
can be reduced but will fluctuate during the ontology evo-
lution. Furthermore, behavior scheduling of an agent is not
pre-emptive, making an agent to be a single Java threaded
instance [33]. Although this can be efficient in limited
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computational resource environment, it leads to under-
utilization of computational resources in current multicore
systems.

In current state-of-the-art generic ontology matching sys-
tems, i.e., AgrMaker [34], LogMap [35], and GOMMA
[24], performance has been given a considerable focus to
complement accuracy of these systems. AgrMaker with its
effectiveness-dependent performance-gain implementation
tightly integrates matching algorithms and the system’s user
interface and relies on user interactions and feedback. Per-
formance of AgrMaker depends upon the iterative execution
of matching algorithms as the sample set for the following
matching algorithms gets reduced. However, with no par-
allelism at all, baseline performance of AgrMaker depends
upon the complexity of the first matching algorithm. From
OAEI 2011.5 campaign, AgrMaker scored highest precision
but lagged over performance. It did not participate in 2012
and 2013s OAEI campaign.

Analogous to AgrMaker, LogMap is another generic
ontology matching system. Its implementation is claimed as
highly scalable from the perspective of ontology matching;
however, this scalability is not of any parallel or distributed
nature. From the anatomy of LogMap described in [35], it
is clear that LogMap is based on a step-by-step matching
process (from the lexical indexation to compute overlap-
ping) with a core iterative process for mapping repair and
discovery. Although it uses highly optimized data struc-
tures for lexical and structural indexing, the whole matching
process is sequential in nature. The performance of the
system varies with the effectiveness of the matching pro-
cess; thus, accuracy of the system cannot be preserved for
performance-gain.

GOMMA is another ontology matching tool that is con-
sidered the most performance efficient. The researchers
of GOMMA understand the benefit of parallelism-
enabled platforms and provide an effectiveness-independent
performance-gain implementation in [36] and [16]. In
[36], authors acknowledge the fact that very little research
has been performed in devising parallelism for matching
problems; furthermore, it describes size-based partitioning
scheme to perform parallel matching. Research presented
in [36] discusses entity matching in general. However, in
[16], authors specifically discuss parallelism techniques
pertaining to life science ontologies. They propose inter-
and intra-matcher parallelism techniques, which uses paral-
lel and distributed infrastructure for ontology matching to
improve performance. Inter-matcher parallelism processes
independent matchers on a parallel platform. However, as
acknowledged by the authors, inter-matcher has memory
requirements as matchers evaluate on complete ontologies
creating memory strains during execution. In this case, a
matcher thread is loading the ontology information which
may not be required for its matching algorithm (e.g., a

synonym-based matcher does not require ontology’s struc-
ture information). On the other hand, intra-matcher paral-
lelism deals with the decomposition of ontology resources
into several finer parts with limited complexity so that
matcher on these parts can be executed in parallel (e.g., tok-
enization of concept names). However, defining the granu-
larity for decomposition is not a one-size-fits-all solution.
Some ontology concepts may not require to be decom-
posed. In this case, parallelism technique becomes subjec-
tive to the complexity of the ontology resource. Over or
under decomposing ontology resources can end up inflicting
performance degradation instead. Moreover, neither inter-
nor intra-matcher guarantees the optimal computational
resource utilization and ontologies used for their evaluation
are only of smaller to medium size, i.e., AdultMouse-
Anatomy MA (2,737 concepts) with anatomical part of NCI
Thesaurus (3,289 concepts) and two GO sub-ontologies
Molecular Function (9,395 concepts) with Biological Pro-
cesses(17,104 concepts).

Due to the excessive utilization of ontologies in biomed-
ical and bioinformatics, some of the ontology matching
systems are developed particularly for matching biomedical
ontologies [37]. Among them, SAMBO [38] is a pioneer-
ing system which provides a framework for aligning and
merging biomedical ontologies. SAMBO’s implementation
is focused towards its matcher algorithms, i.e., a termi-
nological matcher that uses WordNet [39] as thesaurus, a
structural matcher that matches the hierarchies, a domain
knowledge matcher that uses UMLS as Meta-thesaurus, a
learning matcher that generates PubMed [40] abstracts for
alignments, and a combination matcher for using more than
one matcher for an integrated execution. Despite the fact
that integration with third-party thesauri and resources is
highly beneficial for the effectiveness, slow nature of these
resources creates performance bottlenecks while matching
over millions of concepts. Besides that, SAMBO’s sequen-
tial nature of execution limits its abilities to overcome its
performance bottlenecks with better and parallel platforms.
In [38], authors failed to mention any performance related
aspect of SAMBO while integrating third-party resources.
Furthermore, authors have used very small subsets of
biomedical ontologies GO (57 and 73 terms) with SigO (10
and 17 terms) [41], and MeSH (15, 39, and 45 terms) [42]
with MA (18, 77, and 112 terms) [43] for system evaluation
and have not provided any benchmarks regarding large-
scale biomedical ontologies. However, results of OAEI 2008
[44] provides performance evaluation of SAMBO, it took
12 hours to complete the anatomy track of biomedical
ontologies NCI and MA.

Similar to SAMBO, a hybrid ontology matching strat-
egy for biomedical ontologies is explained in [45]. This
technique also utilizes UMLS thesaurus for lexical match-
ing during its sequential execution. The authors failed to
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mention any aspect related to performance and repercus-
sions associated while using a third-party thesaurus.

Another ontology matching system with the motiva-
tion of producing alignments for biomedical ontologies
is ASMOV [25]. With its effectiveness dependent perfor-
mance, authors of [25] acknowledged that effort is required
to improve the computational complexity of the system.
With high coupling between ASMOV’s performance and
computational complexity of matching algorithms and its
sequential execution, it is incongruous for ASMOV to avail
any performance benefits from parallel platforms. Evalua-
tion of ASMOV is provided in [25]. It is evaluated over
anatomy parts of NCI (3304 classes) with Adult Mouse
Anatomy (2744 classes) which are far smaller subset of
biomedical ontologies. Even for such a small matching task,
ASMOV took 3 hours to complete the matching process.

ServOMap [46] is another biomedical ontology match-
ing system but built with the motivation of matching
large-scale biomedical ontologies. Instead of using lexi-
cal resources like WordNet and UMLS, ServOMap relies
on information retrieval and an ontology repository tech-
nique. Ontology repository acts as a server of semantic
indexes that later contributes to perform similarity opera-
tions between ontology entities. Moreover, ServOMap uses
lexical and context-based matching algorithms for mapping
generation. ServOMap has been able to record better perfor-
mance over large-scale biomedical ontologies FMA, NCI,
and SNOMED-CT; however, from [46] it is understood that
this performance gain is because of the absence of third-
party resources and thesauri. ServOMap does not implement
any performance gain techniques that can exploit paral-
lelism over available multicore platforms for the benefit of
large-scale biomedical ontology matching.

From the perspective of data parallelism over distributed
platforms, big data technologies like Hadoop, with its
MapReduce programming model, query over distributed
data with larger volumes. From this regard, it can be con-
sidered as a candidate technology for ontology matching;
however, the performance benefits of Hadoop and MapRe-
duce are primarily coupled with two aspects, i.e., the size
of the data that is typically in gigabytes and terabytes [47]
and the structure of the data as Hadoop is unsuitable in
situations where structure of the data is as important as
the data itself [48]. The ideal size of single chunk of data
in Hadoop is 64 MB, which is relatively equal to whole
larger-size ontologies; for example, large-scale biomedical
ontologies like FMA = 46 MB, NCI = 50 MB, SNOMED
extended = 142.6 MB, making an ontology too small to be
distributed over HDFS (Hadoop File System). If distributed,
it will inflict performance degradation instead. Further-
more, Hadoop is built for unstructured data, distributed
in binary format over participating nodes. On the other
hand, ontologies are graph like constructs. During matching,

relationships among the ontology resources are of vital
importance; in case of the binary distribution these relation-
ships are lost. To preserve these relationships, the resources
need to be labeled prior to distribution, adding an addi-
tional storage and processing overhead. In MapReduce,
mappers have to classify whether an incoming ontology
resource belongs to which candidate ontology before match-
ing in the reducers at runtime, adding more processing
overhead and increased memory footprint. In our experi-
ments, Hadoop-MapReduce based matching has shown 5
times slower performance in contrast with our proposed sys-
tem due to the stated reasons. From these aspects, Hadoop
and Hadoop-like solutions (e.g., CloudBLAST [49]) are
unsuitable for the ontology matching problem. Moreover,
Hadoop-MapReduce has yet to be equipped with an effi-
cient RDF and OWL plugin. Projects like Reasoning-
Hadoop [50], Heart [51], and Hadoop Distributed RDF
Store (HDRS) [52] have yet to prove their efficiency and
performance.

Parallel ontology matching has been theoretically dis-
cussed in [20]. It provides a generic ontology distribution
mechanism for selecting a priority ontology and matching
it with other candidate ontologies over participating nodes.
For parallelization, authors propose the data distribution
from the standard parallelization provided by Flynn’s tax-
onomy [53], i.e., SCMD, MCSD, and MCMD. For actual
parallel implementation, authors recommend generic tech-
niques like Message Passing and Hadoop-MapReduce. The
limitations of both of these approaches in perspective of
ontology matching have been discussed earlier; further-
more, [20] fails to provide any details of how an ontology
matching system should be using Message Passing middle-
ware or Hadoop-MapReduce platform. Also, it does not pro-
vide any evaluation to complement the proposed theoretical
details.

In contrast with the above-mentioned techniques and
systems, our proposed system implements data paral-
lelism over parallelism-enabled platforms for effectiveness-
independent performance-gain during ontology matching. It
decomposes complex ontologies into smaller and simpler
resource-based scalable subsets depending upon the needs
of the matching algorithms. These subsets are serialized to
preserve the parsing effort for future matching requests of
the same ontologies, and their usage reduces memory strains
during execution as subsets required by the matching algo-
rithms are loaded instead of whole ontologies. Our system
provides three levels of abstraction for the distribution of
matching process, enabling every computing resource to be
used at a finer level for effectiveness-independent paral-
lel matching. Equal number of independent matching tasks
is assigned to all matching jobs, reducing the chances of
idle cores and ensuring the optimal utilization of computing
cores during execution. Furthermore, our system aligns the
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execution of matching algorithms to minimize the matching
space significantly contributing to performance-gain.

3 Proposed methodology

This section provides an overview of our proposed method-
ology. The primary objective of this methodology is to
implement effectiveness-independent performance-gain by
drawing abstraction over ontology matching process. These
abstractions are drawn to a primitive level such that an
independent execution can invoke any matching algorithm
without inflicting a change in the implementation of the
algorithm. This independent execution is called a match-
ing task (MT) which is the unit of matching process;
defined as, a single independent execution of a match-
ing algorithm over a resource from source (OS) and tar-
get ontologies (OT ). These matching tasks are distributed
over available computing cores and become the foun-
dation of our data parallelism based ontology matching
system. Equations (1, 2, and 3) describe this distribution
process.

MT i ∩ MT i+1 ∩ MT i+2.... ∩ MT n = ∅ (1)

MT T otal ≥ m × n ∀ m ∈ OS & n ∈ OT (2)

MT Core ← MTT otal

CoresT otal

(3)

A primitive example of MT is illustrated in Fig. 1, where
a concept C0 of a source ontology is matched with C0 of tar-
get ontology. Four independent matching tasks perform the
complete matching process, for example, MT1, MT2, and

MT3 perform element-level string-based, properties-based,
and annotation-based matching, respectively, and MT4 per-
forms structural-level child-based relationship matching.
All these matching tasks are mapped to individual cores
available in a single- (e.g., multicore desktop) or multi-node
platforms (e.g., cloud).

In a single-node, all the matching tasks execute within
the computational capacity the node offers. On multi-node
platform, the request receiving node becomes the primary
node, and it communicates with other participating (sec-
ondary) node(s) by sending and receiving control messages
for distributed matching.

As illustrated in Fig. 2, to complete the whole match-
ing process, a request is processed through Pre-Matching,
Parallel-Matching, and Post-Matching stages. By default
ontologies are not scalable structures from the perspec-
tive of performance ([54, 56] and [55]). Therefore, the
pre-matching stage is introduced where candidate ontolo-
gies OS and OT are converted into simple subsets with
performance and scalability-friendly data structures (e.g.,
arrays and lists). Furthermore, these subsets are generated
depending upon the needs of the matching algorithms mak-
ing them encapsulated and independent (4, 5, and 6); for
example, a string-based matching algorithm for concept
names only requires a linear data structure of concepts. As
a result, two subsets of candidate ontologies with only con-
cept names will be loaded for matching tasks executing
the string-based matching algorithm. Accessing ontology
resources from these subsets in following stages is signifi-
cantly faster due to their smaller size, independent nature,
and data structures that can easily be partitioned for data
parallelism. This approach effectively contributes in over-
all performance-gain especially when matching large-scale
ontologies. In our experiments, we have recorded as much
as 8 times faster ontology resource loading with 4 times
smaller memory footprint working with ontology subsets
instead of whole ontologies for matching. These subsets are
serialized and persisted in repositories, preventing us from

Fig. 1 Matching tasks between
two concepts of candidate
ontologies
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Fig. 2 Execution flow of the
matching process

re-generating ontology subsets of already serialized ontolo-
gies for future matching requests.

i ∈ Algorithms : Algorithms

= {String, Label, P roperties, ..., Child} (4)

Oi
x ← f i (Ox) : x ∈ {source, target} (5)

Ox =
n⋃

j=1

O
j
x : n = NumberOf Algorithms (6)

After pre-matching, parallel-matching stage is invoked.
Data parallelism requires each processing core to perform
the matching task on a separate piece of candidate ontolo-
gies. To enable this, the total number of matching tasks is
determined from serialized subsets of ontologies. As illus-
trated in Fig. 2, by distribution abstractions over matching
process, these matching tasks are distributed among the par-
ticipating nodes as matching requests (single request per
node) and their cores (single job per core). As described
in (3), number of matching tasks across all matching jobs
is equal. This strategy ensures the reduced chances of hav-
ing an idle processing core during later stages of parallel
matching and optimal computing resource utilization. In a
single-node platform, matching tasks are only distributed
among existing cores as matching jobs; however, in a multi-
node platform, distribution is among the participating nodes
as matching requests. Each set of matching tasks is assigned
to a computing core with knowledge of matching algorithm
to be executed on them. Subsequently, all cores in participat-
ing nodes are invoked in parallel for the matching process.
The following (7, 8, 9, and 10) describe this distribution
abstraction implemented by our methodology:

MR ←
n∑

i=1

MRi : n = T otalNodes (7)

MRi ←
c∑

i=1

MJi : c = T otalCoresP erNode (8)

MJi ←
{

t⋃

i=1

MT i

}
: t = T otalT asksP erCore (9)

MT i ← m × n ∀ m ∈ OS & n ∈ OT (10)

Apart from distribution over the available computing
cores, parallel-matching also aligns the execution of match-
ing algorithms to minimize the matching space for every
following matching algorithm execution (11 and 12).

O1
b ← (m × n)i=1 ∀ i ∈ Algorithms,

m ∈ Oi
s & n ∈ Oi

t (11)

OB ←
t⋃

i=2

((
mi −

(
mi ∩ Oi−1

b

))

×
(
ni −

(
ni ∩ Oi−1

b

)))
| Oi

b ≥ Oi+1
b (12)

As illustrated in Fig. 3, a matching process with
two matching algorithms is described where element-level
string-based matching algorithm determines more match-
ing results than structural-level child-based matching algo-
rithm. Therefore, string-based algorithm is executed in par-
allel first and generates its intermediate bridge ontology
(O1

b ). In the following execution (child-based), ontology
resources that are already matched and now part of O1

b are
removed from loaded ontology subsets (OC

s and OC
t ) prior

Fig. 3 Algorithm sequence to minimize matching space
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to parallel-matching. By this method, the number of expen-
sive matching operations is reduced as they only execute on
ontology resources that are still unmatched; consequently,
the chances of redundant matching tasks and overall match-
ing performance during run-time are improved. Further-
more, this method also eliminates the chances of redundant
matches in the final bridge ontology (OB ).

After completion of parallel-matching stage, i.e., all the
parallel matchers have finished their respective matching
jobs over their assigned cores in a single- or multi-node
environment, post-matching stage is invoked. For this stage,
all the matched results are aggregated and the final media-
tion bridge ontology is generated. In a multi-node environ-
ment, the primary node waits for all the secondary nodes to
submit their match results before generating the aggregated
bridge ontology. The following equations (13, 14, and 15)
describe this process in a multi-node platform.

OJob
b ←

t⋃

i=1

(m × n)i : m × n �= ∅,

t = T otalT asksP erCore (13)

ONode
b ←

j∑

i=1

OJob=i
b : j = T otalJobsP erNode (14)

OB ←
n∑

i=1

ONode=i
b : n = T otalNodes (15)

On a single-node environment, where utilization of com-
puting resources scales down to multicore, generation of
mediation bridge ontology is a two-step process (described
in 16 and 17):

OJob
b ←

t⋃

i=1

(m × n)i : m × n �= ∅,

t = T otalT asksP erCore (16)

OB ←
j∑

i=1

OJob=i
b : j = T otalJobs (17)

Firstly, results of matching tasks are combined (
⋃
) to

become an intermediate bridge ontology per matching job.
Secondly, these intermediate bridge ontologies are accumu-
lated (

∑
) to generate a formal mediation bridge ontology

(OB ). The finalized OB is delivered to the client as the
matching response.

4 Implementation details

This section provides the implementation details of our sys-
tem based upon the proposed methodology. It includes the
overall stack design of our system and the details regarding
the core components.

4.1 Stack design

Our proposed system has a layered architecture, following
a stack design. With agility in mind, this design supports
incremental development and over-time updates without
propagating implementation changes across the system. The
stack view of system’s layers and components is illustrated
in Fig. 4. This stack is deployed as an integrated system on
all participating nodes involved in ontology matching.

Our system provides two interfaces to interact with the
client, i.e., a web service and a graphical user interface
(GUI). If a third party system, service, or a client wants to
use the parallel matching facility, they can interact by uti-
lizing Ontology Matching Request Interface. This interface
is hosted by a SOAP-based web service to be consumed by
client programs and systems. Adjacent to the request inter-
face is a GUI-based interaction component which facilitates
the utilization of our system by an individual researcher via
browser. In parallel, there is an Ontology Change Request
interface that is used to implement the evolution process
of ontology’s design. Ontology change request interface
receives the change updates for serialized ontologies to
support continuity in ontology change management. These
interfaces and GUI rely on lower-level core components
for actual parallel matching and change implementation,
executing over single- and multi-node platforms.

The core of our system consists upon six loosely coupled
components (File IO, Init Daemon, Multi-node Distributor,
Aggregator, Communication,2 and a Multicore Distributor)
and an ontology repository. These components with their
focused responsibilities are integrated with an intermediate
workflow layer called Matcher Workflow. This workflow
layer hosts two paths for system execution, i.e., a matcher
execution for parallel matching request and a change imple-
mentation to support ontology’s design evolution. Among
the core components, init daemon is responsible for set-
ting up the multi-node environment by providing a socket
table for all the participating nodes. This setup is required,
prior to any distributed matching. File IO component is
used for parsing and loading candidate ontologies. It is
responsible for serializing candidate ontology subsets and
implementing CRUD operations on these subsets for change
implementation. Multi-node distributor is responsible for
distribution of matching process as matching requests over
participating nodes via control messages. These messages
are sent and received by the communication component.
This component also hosts an ontology synchronization
service to replicate ontology changes over secondary repos-
itories hosted by participating nodes. For local distribution
of matching tasks such as matching jobs over available

2Utilization of communication by each core component is described in
the components explanation.
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Fig. 4 Stack design

cores, multicore distributor is used. This component exploits
the existing cores by implementing thread-level parallelism.
Each matcher thread is assigned to its matching job cou-
pled with instance of matching algorithms over candidate
ontologies.

For the utilization of multicore platforms, a programming
language is required with a strong emphasizes on concur-
rency and platform independence. Java is one such language
that is equipped with an effective multithreading model and
is available for most of the computing platforms. Keeping
these facts in perspective, we have provided our system’s
implementation in Java and used its concurrency, collection,
NIO and stream libraries for our benefit.

4.2 Core component details

This section provides details regarding the inner workings
of the core components of our proposed system.

4.2.1 Init daemon

Initialization Daemon (Init Daemon) is responsible for set-
ting up the environment for the matching process. It exe-
cutes in pre-matching stage of the system. In a multi-node
platform, init daemon is responsible for providing commu-
nication objects of every participating node in a collection
called socket table. This table is generated at every node
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Fig. 5 Barrier read sequence
diagram

and contains the collection of socket objects for every
other node, distinguished by unique identifiers (UUID).
From a higher level abstraction, each UUID represents a
running instance of a participating node in a multi-node
environment.

Algorithm 1 describes the details of init daemon’s socket
table creation. Prior to execution, each daemon holds a text
file containing ranks (unique integer values) of participa-
ting nodes and their respective IP addresses. Algorithm 1
enables each node to generate its own UUID, attach it with
information regarding available computational resources on
that node and shares it among the participating nodes; con-
sequently, each daemon receives a UUID with available
number of cores over a particular node on a socket object.
All the receiving UUIDs with their corresponding number

of cores and socket objects are stored as a socket table
in every node’s main memory. At communication level,
sharing of UUIDs among the nodes is performed by a barrier
read. This communication is illustrated in the sequence dia-
gram of Fig. 5. Barrier read is initiated by invoking a 24 byte
control message, sent from one node to the other node(s).
This message contains the respective UUID of the sending
node (16 bytes), number of available computing cores
(4 bytes), and ctrl key (3 bits). Every receiving node
acknowledges the control message by similar reply and
subsequently attaches the receiving port number with the
received UUID and forwards it to its socket table. Figure
6 provides a depiction of socket tables in a tri-node envi-
ronment after init daemon setup. This strategy enables the
system to avoid unnecessary file access and re-creation of
socket objects for every communication. Socket tables are
further used by each node to send and receive control, onto
logy change and synchronization messages during system
execution.

4.2.2 File IO

File IO component is responsible for ontology loading,
subset creation, and providing an interface to ontology
repository for ontology persistence. It also executes in pre-
matching stage of the system. File IO provides serialization
and deserialization operations. When the system receives
a new ontology, i.e., a candidate ontology that has not
been converted into subsets, file IO parses it to create a
respective object model. This object model is persisted as
serialized subsets according to the needs of matching algo-
rithms along with the ontology hash value. For matching
request of already serialized ontology, deserializer loads the
required subsets into respective ontology models and pro-
vides these models to distributor component for parallel
matching operations.

To facilitate parallel matching in a multi-node platform,
ontology subsets need to be available on every partici-
pating node; therefore, the ontology subsets are replicated
over secondary repositories with the help of connectivity
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Fig. 6 Socket tables in a
tri-node (2 cores/node)
environment

information provided by the init daemon. Communication
between primary and secondary node(s) for subset replica-
tion is illustrated in the sequence diagram of Fig. 7. Unlike
barrier read, control messaging for ontology subset repli-
cation is a two-step process. Firstly, primary node sends
a 24 byte message to secondary node(s) containing ontol-
ogy UUID (16 byte), size of the subset to be sent (4 bytes)
and ctrl key (3 bits). Secondary node(s) receive this mes-
sage and create receiving buffers of size of the subset and
send prompt acknowledgments to the primary node. Sec-
ondly, the primary node sends the subset to the secondary
node(s). By this method, matching threads only load sub-
sets from their local repositories, avoiding the internode
communication during matching.

File IO is also responsible for implementing ontology
changes. To implement a change, the ontology must be
loaded inside nodes memory as an instance of the ontology
model. Ontology change request interface through matcher
workflow provides file IO with the UUID for ontology to be
updated. Deserializer loads the required ontology from the
repository into an ontology model instance. This instance
is returned to file IO for change implementation. Matcher
workflow receives the instance of the ontology model to be
updated from ontology change request interface. A change
can be of many types, from a triple update to an addition of
an entirely new hierarchy. Operations for change implemen-
tation are classified into Create, Update, and Delete types.
These operations are used by file IO over ontology model

instance for change implementation. ChangeManager is a
command pattern [57] implementation. Apart from agility,
this pattern provides undo and redo operations for change
implementation. After the change implementation, updated
subsets are serialized back in the repository and in case
of multi-node platform, these changes are replicated over
repositories of secondary nodes. Communication between
primary and secondary node(s) for change implementation
is illustrated in the sequence diagram of Fig. 8. Similar to
subset replication, change implementation request is also a
two-step process. Firstly, primary node sends a 24 byte mes-
sage to secondary nodes containing information regarding
the ontology that needs to be updated (16 bytes), the size of
updates that needs to be implemented (4 bytes), and ctrl key
(3 bits). Secondary node(s) receive this message and deseri-
alize the candidate ontology into an ontology model object;
subsequently, they create receiving buffers of size of the
updates and send a prompt acknowledgment to the primary
node. Secondly, the primary node sends the actual changes
to the secondary nodes. After the change implementation,
updated ontology model instance is sent to file IO for per-
sistence. File IO serializes the ontology model and stores it
back in the ontology repository.

4.2.3 Distributor

Distributor components (multicore and multi-node distri-
butors) are collectively responsible for the distribution of

Fig. 7 Ontology subset
replication sequence diagram
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Fig. 8 Ontology change request
sequence diagram

matching process over computational resources for invoking
parallelism on candidate ontologies (OS , OT ) in paral-
lel matching stage. To accomplish this responsibility, the
matching process is layered into three levels of abstrac-
tion, i.e., from macro-level matching request (MR) and
grainer-level matching jobs (MJ) to finer-level matching
task (MT).

The distribution process for implementing data paral-
lelism in a multi-node environment is illustrated in Fig. 9. A
whole matching request (classified as a matching process)
received by the primary node is divided among participat-
ing nodes depending upon their computational resources.
A matching request received by an individual node is fur-
ther subdivided into matching jobs such that each job on

a node contains an equal number of matching tasks. Sub-
sequently, a matching job is assigned to execute over a
processing core available on a participating node. This tech-
nique provides three major benefits to our system: (i) better
scalability, as chances of idle cores are minimal because
each core is assigned with equal number of matching tasks;
(ii) implementing the most efficient scenario of parallel
execution, i.e., one job per core; and (iii) matching tasks
are independent among themselves, other matching jobs,
and other matching requests running remotely, ensuring
no communication required between nodes during paral-
lel matching. These three characteristics of the distribution
are the foundation of achieving data parallelism for parallel
matching.

Fig. 9 Matching request
distribution in a tri-node
environment
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In the case of single-node systems, the distribution pro-
cess scales down to multiple cores on one node. The
multicore distributor divides a whole matching request into
matching jobs with an equal number of independent match-
ing tasks. Each job is assigned to run over a particular core,
consequently achieving data parallelism.

Algorithms 2, 3, and 4 describe the distribution of match-
ing tasks in single- and multi-node environments. In the case
of single-node platform, multicore distributor (Algorithm 3)
is invoked. It identifies the number of participating cores
from the native runtime and calculates the partition slab by
dividing the size of the bigger ontology with the number
of cores and taking its ceiling value in case of fraction. A
matching job per core is created and invoked by thread-level
parallelism. For example, in case of matching conference
ontology “iasted” having 140 concepts with another con-
ference ontology “cmt” with 29 concepts over a quad-core
single-node platform, Algorithm 3 first calculates the parti-
tion slab (140/4 = 35). First 35 concepts of iasted ontology
are assigned to be matched with all the 29 concepts of
cmt ontology as first matching job with a total number of
35 × 29 = 1015 matching tasks. This matching job is
invoked as first matching thread. In parallel, next 35 con-
cepts of iasted ontology are matched with all the 29 concepts
of cmt ontology as second matching job with the same
number of 1015 matching tasks, invoked as second match-
ing thread. Similarly, third and fourth matching threads are
also assigned in parallel with their respective matching jobs
of 1015 matching tasks each, thus distributing the whole
matching process of 4060 matching tasks evenly among 4
cores for parallel matching.

In multi-node environments, distribution algorithm
invokes the multi-node distributor (Algorithm 4) which
receives the information regarding the available computa-
tional resource of participating nodes from init daemon.
Distribution slab is calculated and control messages are cre-
ated sent with matching requests to the secondary nodes.
The size of these control messages is 64 bytes contain-
ing information regarding source and target ontologies (32
bytes), start index (4 bytes), partition slab (4 bytes), matcher
algorithm id (16 bytes), and ctrl key (3 bits). In reply, a sin-
gle byte acknowledge message is received by the primary
node. This process is illustrated in the sequence diagram of
Fig. 10. To elaborate the execution of Algorithm 4, consider
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Fig. 10 Ontology matching
request sequence diagram

the example of matching process between two biomedical
ontologies, “adult mouse anatomy (2,744 concepts)” with
“NCI human anatomy (3,304 concepts)” over the tri-node
environment illustrated in Fig. 9. Algorithm 4 first calcu-
lates the distribution slab by dividing the size of the bigger
ontology (NCI human anatomy) with the total number of
participating cores (3,304/8=413). Request for matching
first 826 concepts of NCI human anatomy ontology with
all the concepts of adult mouse anatomy is created. This
matching request is distributed over the local node by call-
ing multicore distributor (Algorithm 3) which calculates the
partition slab for 2 available cores ((826-0)/2=413). Con-
sequently, two matching jobs are invoked by thread-level
parallelism starting from concepts [0 to 413) and [413 to
826) of NCI human anatomy ontology respectively. As first
secondary node is a quad-core resource, second matching
request is generated for matching next 1,652 concepts of
NCI human anatomy ontology starting from [826 to 2,477)
with all the concepts of mouse anatomy. This matching
request is sent via control message using communication
protocol illustrated in Fig. 10. and received by the mul-
ticore distributors (Algorithm 3) of first secondary node.
Matching request is extracted from the control message and
four matching jobs are created each with 413 concepts of
NCI human anatomy ontology ([826 to 1,239), [1,239 to
1,652), [1,652 to 2,065), and [2,065 to 2,478)) to be matched
with all the concepts of mouse anatomy. Similar to second
matching request, third matching request is generated for
the other secondary node which distributes it between two
matching jobs ([2,478 to 2,891), and [2,891 to 3304)), thus
distributing the whole matching process of over nine mil-
lion matching tasks (9,066,176), evenly among 3 nodes for
parallel matching.

From the description of multi-node distributor algorithm,
it is quite clear that our distribution component assumes
the multi-node environment to be homogenous. The distri-
bution slab calculated by Algorithm 4 precisely considers
the parallelism ability of participating nodes, i.e., num-
ber of computing cores per node; however, in case of

heterogeneity among the computational ability (processor
frequency, memory size, and IO performance) of participat-
ing nodes, an idle core can exist as one node might complete
its the matching request prior to the others.

Distributor components also provide an interface to the
matching library. Matching algorithms can be plugged
in and out of the system or can be executed as suites
based on software engineering design principles. This inter-
face ensures the effectiveness-independent performance-
gain aspect of our system and decouples the performance
of the system from the effectiveness and accuracy of the
system. By default, the system provides a library of element-
level and structural-level matching algorithms. Further-
more, matching algorithms provided by various semantic
web experts have been incorporated for evaluation.

4.2.4 Aggregator

This component is responsible for aggregating matched
results from participating nodes and generating the required
mappings in post-matching stage. Depending upon the
deployment environment (single- or multi-node), aggregator
accumulates matched results from two different interfaces
(local and remote) and creates a formal representation of
mappings called Mediation Bridge Ontology (MBO). MBO
is a pattern-based bridge ontology that provides mediation
between different candidate ontologies. Type and structure
of the MBO can be changed depending upon the needs by
customization of bridge ontology definition.

In a single-node, aggregator receives the intermediate
bridge ontologies from each core as a result of a match-
ing job via local interface. All the intermediate bridge
ontologies are aggregated to generate the formal and final
mediation bridge ontology.

In the case of multi-node environment, the primary
node receives the intermediate bridge ontologies from
local interface and remote interface where secondary nodes
send their intermediate bridge ontologies as matching
response. Aggregator at primary node aggregates all these
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intermediate bridge ontologies to generate the formal and
final mediation bridge ontology.

5 Evaluation and discussion

In this section, we describe a comprehensive experimenta-
tion performed on our proposed system. For the evaluation,
we have used the OAEI 2013 dataset of real world ontolo-
gies. Our system is evaluated over Anatomy, Library, Large
Biomedical, and Conference tracks of OAEI 2013’s dataset.
The candidate ontologies used in these tracks are of var-
ious sizes, covering the different magnitudes of ontology
matching problem.

We have executed three different libraries of ontology
matching algorithms (computational complexity ≥ O(n2))
provided to us by different semantic web experts. Our
system is evaluated over two platforms: (i) a single-node
quad-core desktop PC, equipped with 3.4 GHz Intel(R) Core
i7(R) Hyper-Threaded (Intel(R) HT Technology) [58] CPU
(2 threads/core) with 16 GB memory, Java 1.8 and Win-
dows 7 64 bit OS, and (ii) a public cloud Microsoft Azure
instance with two virtual machine (VM) configurations, i.e.,
standard A4 VM instances with 8 cores, 14 GB of mem-
ory, Java 1.8, and Windows 2012 R2 Guest OS running over
an AMD Opteron(TM) 2.1 GHz CPU and A2 VM instance
with 2 cores, 3.5 GB memory, Java 1.8, and Windows 2012

R2 Guest OS running over an Intel(R) Xeon(R) 2.1 GHz
CPU.

5.1 Anatomy track

The anatomy track consists of mapping generation between
the Adult Mouse Anatomy (2,744 concepts) [59] and part
of NCI Thesaurus describing human anatomy (3,304 con-
cepts). Beside their larger size, these ontologies are care-
fully harmonized by OAEI experts such that a rather high
number of mappings can be found by trivial string matching
techniques and a good share of non-trivial mappings require
complex analysis over ontology structures. To generate the
bridge ontology we have used the default matching library
with String-based, Label-based, and Child-based Structural
matching algorithms.

We have executed our system in both multicore desk-
top and cloud scenario as a single-node execution (illus-
trated in Fig. 11). Matching requests are generated from
the client; consequently, adult mouse anatomy (OS) and
human anatomy (OT ) ontologies are loaded in parallel by
file IO and provided to multicore distributor component.
With the knowledge of available computing resources and
ontology subsets (Os, Ot ) required by matching algorithms,
distributor creates 8 independent matching jobs. Each job is
allocated with a set of equal numbers of independent mat-

ching tasks
(

AdultMouseAnatomyclasses×HumanAnatomyclasses

8

)
.

Fig. 11 Parallel flow for
anatomy track over single-node
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Fig. 12 Results from anatomy track

As String and Label-based matching algorithms execute on
the same subsets of the respective ontologies, the distributor
assigns these two algorithms to every matching job. Sub-
sequently, the distributor allocates each matching job to a
single-core for matching. After completion of all jobs, an
intermediate bridge ontology (Ob) is created by the aggre-
gator. Thereafter, the distributor loads the subsets of adult
mouse anatomy and human anatomy required for the Child-
based structural matching algorithm through file IO and
follows the same procedure as before. After the completion
of the Child-based structural matching algorithm, the aggre-
gator accumulates its results with the intermediate bridge
ontology (Ob) and generates the formal mediation bridge
ontology (OB). This bridge ontology is finally delivered to
the client as a response.

Results from both the scenarios (desktop and cloud) are
illustrated in Fig. 12. For the desktop, scenario, the matching
request executes over the quad-core desktop, and the results
are described in Fig. 12a. The sequential process (illus-
trated in Fig. 13) takes 7.5 seconds to complete the matching
request; however, with the use of our data parallelism
enabled system over multiple cores, total matching time
starts improving as more cores are introduced. Our system
completes the matching process in less than 2 seconds over
4 cores (= 8 threads) with a speedup of 4 times. The same
matching request is executed for the second scenario over
the Azure VM. The sequential process over the VM takes
17.5 seconds to complete; however, our system completes
the whole matching process over 8 threads within 3.1 sec-
onds with an impressive speedup of 5.5 times. The overall
performance of the matching process is slightly slower over
the Azure VM due to the virtualization layer (Hyper-V).

Accuracy preservation throughout the performance
speedup is illustrated in Fig. 12b. As stated earlier, for
effectiveness-independent performance-gain, the perfor-
mance is extracted from parallel threads over multiple cores,
and no changes in matching library have been made for
performance reasons. Consequently, the matching effec-
tiveness (e.g., precision, recall, F-Measure) stays the same
throughout the performance speedup.

The same matching track was evaluated by [16] as
a medium-scale problem by its intra-matcher paralleliza-
tion on a single node. Matchers are evaluated individually
and possibly generate individual alignments. These align-
ments are later to be aggregated for a comprehensive bridge
ontology. A performance speedup of 3.6–4.2 times (depend-
ing upon the matching algorithm) have been achieved by
intra-matcher of [16]. In our system, matchers execute as
a combined matching process; consequently, it efficiently
generates a single comprehensive bridge ontology instead.
Even with an inferior hardware platform, our system slightly
outperforms the performance speedup of [16] on the desk-
top scenario, i.e., 4 times (vs. mean(3.6–4.2)) and largely
outperforms it by 41 %when executed in the cloud scenario,
i.e., 5.5 times (vs. mean(3.6–4.2 times)).

5.2 Library track

The library track consists of mapping generation between
the STW [60] and the TheSoz thesaurus [61] ontologies.
Both ontologies provide a vocabulary for economics with
respect to social science subjects. These ontologies are
primarily used by libraries for indexation and retrieval.
Although lightweight, these ontologies are large with STW
containing 6,575 concepts and TheSoz containing 8,376

Fig. 13 Sequential flow on a single-node
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Fig. 14 Results from library track

concepts. To generate the bridge ontology we have used the
same matching library used earlier in anatomy track.

Similar to anatomy track, we have executed our system in
both multicore desktop and cloud scenario as a single-node
execution. Results from these scenarios are illustrated in
Fig. 14. For the single-node desktop scenario, the sequential
process takes close to 47 seconds to complete the matching
request; however, our system completes the matching pro-
cess around 11 seconds over 8 threads with an impressive
performance speedup of 4.15 times. Same matching request
is executed for the second scenario over the single-node
Azure VM. The sequential process over the VM takes close
to two minutes to complete; however, our system completes
the whole matching process over 8 threads in 18 seconds
with an impressive speedup of 6.38 times. Furthermore,
similar to anatomy tasks, the accuracy of the matching pro-
cess stays preserved with the same effectiveness throughout
the performance speedup (illustrated in Fig. 14b).

5.3 Large biomedical ontologies track

The large biomedical ontologies track consists upon find-
ing mappings between FMA, SNOMED-CT, and the NCI
ontologies. These ontologies are semantically rich, sub-
stantially complex, and significantly large containing thou-
sands of concepts. For this track we have used a matching
library with String-based, Annotation-based, and Child-
based structural matching algorithms for bridge ontol-
ogy generation. This track consists upon 6 tasks that are
described in following subsections.

5.3.1 Task 1: FMA-NCI small fragments

This task consists upon matching relatively smaller frag-
ments of FMA and NCI ontologies. The FMA fragment
consists upon 5 % of the whole FMA ontology (3,696 con-
cepts) while the NCI fragment consists upon 10 % of the
whole NCI ontology (6,488 concepts).

We have executed our system in both multicore
desktop and cloud scenario illustrated in Fig. 15 as a

single-node execution. Matching requests are generated
from the client; consequently, smaller fragments of FMA
(OS) and NCI (OT ) ontologies are loaded in parallel by
file IO and provided to multicore distributor component.
With the knowledge of available computing resources and
ontology subsets (Os, Ot ) required by matching algorithms,
distributor creates 8 independent matching jobs. Each job is
allocated with a set of equal numbers of independent match-
ing tasks (FMAclasses×NCIclasses

8 ). As String and Annotation-
based matching algorithms execute on the same subsets
of the respective ontologies, distributor assigns these two
algorithms to every matching job. Subsequently, distributor
allocates each matching job to a single-core for match-
ing. After completion of all jobs, an intermediate bridge
ontology (Ob) is created by aggregator. Thereafter, distrib-
utor loads the subsets of adult mouse anatomy and human
anatomy required for Child-based structural matching algo-
rithm through file IO and follows the same procedure
as before. After the completion of Child-based structural
matching algorithm, aggregator accumulates its results with
the intermediate bridge ontology (Ob) and generates the for-
mal mediation bridge ontology (OB). This bridge ontology
is finally delivered to the client as a response.

Results for this track from both the scenarios (desktop
and cloud) are illustrated in Fig. 16. For the desktop sce-
nario, the matching request executes over the quad-core
desktop. The sequential process (similar to the illustration
in Fig. 13) takes 48 seconds to complete the matching
request; however, our system completes the matching pro-
cess in slightly over 11 seconds over 4 cores (= 8 threads)
with the performance speedup 4.2 times. Same match-
ing request is executed for the second scenario over the
Azure VM. The sequential process over the VM takes 100
seconds to complete; however, our system completes the
whole matching process over 8 threads in slightly over
15 seconds with an impressive speedup of 6.5 times. Fur-
thermore, similar to anatomy track the accuracy of the
matching process stays preserved with the same effective-
ness throughout the performance speedup (illustrated in
Fig. 16b).
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Fig. 15 Parallel flow for large
biomedical track over
single-node

5.3.2 Task 2: FMA-NCI whole ontologies

This task consists upon matching the whole FMA and
NCI ontologies. The FMA ontology consists upon 78,989
concepts while the NCI ontology consists upon 66,724
concepts. Due to the very large size of the ontologies,
the matching process is scaled over multi-node environ-
ment, i.e., 3 desktops and Azure VMs with above-stated
specification for the first and second scenarios respectively.

As illustrated in Fig. 17, the primary node receives the
matching request for candidate ontologies, whole FMA
(OS) and NCI (OT ) from the client. Candidate ontolo-
gies are loaded in parallel by file IO of the primary node
which consequently invokes the multi-node distributor for

distributed matching. Socket table provides the multi-node
distributor with socket objects for secondary nodes. With
the knowledge of available computing resources (3 nodes,
1 primary and 2 secondary, each with 8 cores available)
and the ontology subsets (Os, Ot ) required by matching
algorithms, the multi-node distributor of the primary node
creates 3 independent matching requests of equal size. The
first matching request is forwarded to the local multicore
distributor where 8 independent matching jobs with an equal
number of independent matching tasks are created. Sub-
sequently, multi-node distributor sends control messages
to other secondary nodes with their respective matching
requests. At receiving nodes, these matching requests are
forwarded to their local multicore distributor. Assigned

Fig. 16 Results from large biomedical ontologies track, task 1
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Fig. 17 Parallel flow for large
biomedical track over
multi-node

with their respective matching requests, all 3 participat-
ing nodes load serialized subsets of the whole FMA and
NCI required by matching algorithms from their respec-
tive ontology repositories. From this point forward, every
participating node executes independently, similar to the
execution of task 1 until an intermediate bridge ontology is
generated by every node (Ob0, Ob1, and Ob2). The aggre-
gators at secondary nodes send their respective intermediate
ontologies to the primary node. These bridge ontologies
are accumulated by the aggregator at the primary node and

finally delivered to the client as the formal mediation bridge
ontology (OB).

Results for this task from both the scenarios (desktop
and cloud) are illustrated in Fig. 18. For the multi-node
desktop scenario, the sequential process takes around 7
hours to complete the matching request; however, our sys-
tem completes the matching process within half-an hour
over 24 threads with an impressive performance speedup of
14.75 times. The same matching request is executed for the
second scenario over the multi-node Azure VM. The

Fig. 18 Results from large biomedical ontologies track, task 2
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Fig. 19 Results from large biomedical ontologies track, task 3

sequential process over the VM takes 15.5 hours to com-
plete; however, our system completes the whole matching
process over 24 threads in slightly over 40 minutes with an
impressive speedup of 21.8 times. Furthermore, similar to
task 1 the accuracy of the matching process stays preserved
with the same effectiveness throughout the performance
speedup (illustrated in Fig. 18b).

5.3.3 Task 3: FMA-SNOMED small fragments

This task consists upon matching relatively smaller frag-
ments of FMA and SNOMED ontologies. The FMA frag-
ment consists upon 13 % of whole FMA ontology (10,157
concepts) while the SNOMED fragment consists upon 5 %
of whole NCI ontology (13,412 concepts).

Similar to task 1, we have executed our system in both
multicore desktop and cloud scenario as a single-node exe-
cution. Results from these scenarios are illustrated in Fig.
19. For the single-node desktop scenario, the sequential
process takes around 8 minutes to complete the matching
request; however, our system completes the matching pro-
cess in slightly over one and a half minutes over 8 threads
with an impressive performance speedup of 4.76 times.
Same matching request is executed for the second scenario
over the single-node Azure VM. The sequential process
over the VM takes around 18 minutes to complete; how-
ever, our system completes the whole matching process over

8 threads in slightly less than two and half minutes with
an impressive speedup of 7.56 times. Furthermore, simi-
lar to previous tasks, the accuracy of the matching process
stays preserved with the same effectiveness throughout the
performance speedup (illustrated in Fig 19b).

5.3.4 Task 4: FMA whole ontology with SNOMED large
fragment

This task consists upon matching the whole FMA ontol-
ogy with a large fragment of SNOMED ontology. The
FMA ontology consists upon 78,989 concepts while the
SNOMED fragment consists upon 40 % of SNOMED
ontology (122,464 concepts).

Similar to task 2, we have executed our system in both
multicore desktop and cloud scenario as multi-node exe-
cution. Results from these scenarios are illustrated in Fig.
20. For the multi-node desktop scenario, the sequential pro-
cess takes about 14 hours to complete the matching request;
however, our system completes the matching process in
less than an hour over 24 threads with an impressive per-
formance speedup of 15.64 times. Same matching request
is executed for the second scenario over the multi-node
Azure VM. The sequential process over the VM takes
over 26 hours to complete; however, our system completes
the whole matching process over 24 threads in slightly
over an hour with an impressive speedup of 21 times.

Fig. 20 Results from large biomedical ontologies track, task 4
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Fig. 21 Results from large biomedical ontologies track, task 5

Furthermore, similar to the previous tasks, the accuracy of
the matching process stays preserved with the same effec-
tiveness throughout the performance speedup (illustrated in
Fig. 20b).

5.3.5 Task 5: SNOMED-NCI small fragments

This task consists upon matching relatively smaller frag-
ments of SNOMED and NCI ontologies. The SNOMED
fragment consists upon 17 % of SNOMED ontology
(51,128 concepts), while the NCI fragment consists upon 36
% of whole NCI ontology (23,958 concepts).

Similar to task 1 and 3, we have executed our system
in both multicore desktop and cloud scenario as a single-
node execution. Results from these scenarios are illustrated
in Fig. 21. For the single-node desktop scenario, the sequen-
tial process takes around an hour to complete the matching
request; however, our system completes the matching pro-
cess in 11 minutes over 8 threads with an impressive
performance speedup of 5.31 times. Same matching request
is executed for the second scenario over the single-node
Azure VM. The sequential process over the VM takes
around 116 minutes to complete; however, our system com-
pletes the whole matching process over 8 threads in 16
minutes with an impressive speedup of 7.25 times. Fur-
thermore, similar to previous tasks, the accuracy of the
matching process stays preserved with the same effec-

tiveness throughout the performance speedup (illustrated
in Fig. 21b).

5.3.6 Task 6: NCI whole ontology with SNOMED large
fragment

This task consists upon matching the whole NCI ontology
with a large fragment of SNOMED ontology. The NCI
ontology consists upon 66,724 concepts while the
SNOMED fragment consists upon 40 % of SNOMED
ontology (122,464 concepts).

Similar to task 2 and 4, we have executed our system
in both multicore desktop and cloud scenario as multi-node
execution. Results from these scenarios are illustrated in
Fig. 22. For the multi-node desktop scenario, the sequen-
tial process takes close to 8 hours to complete the matching
request; however, our system completes the matching pro-
cess in half-an-hour over 24 threads with an impressive per-
formance speedup of 15.19 times. Same matching request
is executed for the second scenario over the multi-node
Azure VM. The sequential process over the VM takes over
17 hours to complete; however, our system completes the
whole matching process over 24 threads in less than an
hour with an impressive speedup of 22 times. Furthermore,
similar to the previous tasks, the accuracy of the matching
process stays preserved with the same effectiveness throug-
hout the performance speedup (illustrated in Fig. 22b).

Fig. 22 Results from large biomedical ontologies track, task 6
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Fig. 23 Parallel flow for conference track over dual core single-node Azure VM

5.4 Conference track

The conference track consists of mapping generation within
a collection of ontologies describing the domain of orga-
nizing conferences. From trivial string-based correspon-
dence, bridging these ontologies also requires semantic-
based matching. Therefore, to generate bridge ontology we
have used a matching library with String-based, Annotation-
based, Child-based Structural matching, and Synonym-
based matching algorithm which utilizes a static dictionary
file (illustrated in Fig. 23). Due to the smaller size of these

ontologies we have used the A2 (dual core) Azure VM for
evaluation. We have executed 12 different mapping tasks
on cmt, conference, confOf, edas, ekaw, iasted, and sigkdd
ontologies. Results from these tasks are illustrated in Figs.
24 and 25.

5.5 Results summary

In our evaluation, we have used the dataset of real-
world ontologies provided by OAEI’s 2013 campaign.
The key strength of this dataset is its comprehensiveness

Fig. 24 Results from
conference track over dual core
single-node Azure VM part-I
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Fig. 25 Results from conference track over dual core single-node Azure VM part-II

that cannot be achieved in datasets comprised of syn-
thetic and custom-built ontologies. The results from the

matching problems of OAEI’s dataset are summarized in
Table 1. These results provide evidence for four major
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characteristics of our system, described in the following
subsections.

5.5.1 Independent of ontology domain

As stated in the related work section, some of the matching
systems are built specific for ontology domains, particu-
larly systems for matching biomedical ontologies. How-
ever, the longevity and applicability of an ontology match-
ing system increases with its support to a larger set of
ontologies. Therefore, a state-of-the-art ontology match-
ing systems must be independent of ontology domain. The

candidateontologies used in the matching problems eval-
uated by our system are of diverse domains. No change
has been inflicted in the structure of the candidate ontolo-
gies, yet our system scores impressive performance speedup
on all the matching problems. For example, problem of
matching library ontologies and small FMA with small NCI
ontologies are from different domains of knowledge; fur-
thermore, different matching libraries are used for their
mediation. However, due to the ontology subsets generated
based on the type of matching algorithms and independent
nature of the matching tasks, both of the matching problems
score similar performance speedup on the same platform.

Table 1 Result Summary

Matching Domain Platform Speed Precision

problem up

Small cmt-iasted Conference Single-node Cloud VM 1.22 0.57

conference-edas Single-node Cloud VM 1.25 0.81

conference-iasted Single-node Cloud VM 1.39 0.80

confof-edas Single-node Cloud VM 1.11 0.87

confof-iasted Single-node Cloud VM 1.38 0.82

confof-sigkdd Single-node Cloud VM 1.19 1.00

edas-sigkdd Single-node Cloud VM 1.28 0.92

ekaw-iasted Single-node Cloud VM 1.39 0.67

ekaw-sigkdd Single-node Cloud VM 1.23 0.79

iasted-sigkdd Single-node Cloud VM 1.33 0.87

edas-ekaw Single-node Cloud VM 1.11 0.79

edas-iasted Single-node Cloud VM 1.25 0.86

Medium human-mouse Anatomy Single-node Desktop 4.05 0.99

Single-node Cloud VM 5.56 0.99

STW-TheSoz Library Single-node Desktop 4.15 0.67

Single-node Cloud VM 6.38 0.67

FMAs -NCIs Biomedical Single-node Desktop 4.27 0.95

Single-node Cloud VM 6.53 0.95

Large FMAw-SNOMEDs Single-node Desktop 4.76 0.93

Single-node Cloud VM 7.56 0.93

NCIw-SNOMEDs Single-node Desktop 5.31 0.95

Single-node Cloud VM 7.25 0.95

Very FMAw-NCIw Multi-node Desktop 14.75 0.80

Large Multi-node Cloud VM 21.80 0.80

FMAw-SNOMEDl Multi-node Desktop 15.64 0.66

Multi-node Cloud VM 20.91 0.66

NCIw-SNOMEDl Multi-node Desktop 15.19 0.89

Multi-node Cloud VM 21.93 0.89
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5.5.2 Performance-based ontology matching over various
size of matching problems

As described in Table 1, we can classify the matching
problems in four categories: (i) small, containing conference
ontologies track; (ii) medium, containing anatomy, library,
and task 1 (FMA with NCI small fragments) from large
biomedical ontologies track; (iii) large, containing task 3
(FMA-SNOMED small fragments) and 5 (SNOMED-NCI
small fragments) from large biomedical ontologies track
and (iv) very large, containing task 2 (FMA-NCI whole
ontologies), 4 (FMA whole ontology with SNOMED large
fragment), and 6 (NCI whole ontology with SNOMED
large fragment) from large biomedical track. The average
speedup by a category is illustrated in Fig. 26. It is quite
evident from the figure that our system is more benefi-
cial to the ontology matching problems with a medium
to large and very large sizes. Results for the small cate-
gory containing conference track are obtained from a dual
core Azure VM. Although the sequential process does com-
plete the matching process quite efficiently due to the small
nature of the matching problem, yet our system was able
to improve the performance by an average speedup of 1.25
times ( ≈ 20 % more efficient than sequential matching
process).

The medium category was evaluated on a quad-core
Hyper-Threaded desktop and an Azure VM with 8 cores.
The average performance speedup is 4.1 and 5.9 times on
desktop and cloud respectively. Comparing these results
to the average speedup of medium-scale problem of [16],
even with an inferior hardware our system outperforms the
intra-matcher by 5 % on the desktop and 51 % over cloud
platform.

The large category was also evaluated on a quad-core
Hyper-Threaded desktop and an Azure VM with 8 cores.
The average performance speedup is 5.0 and 7.4 on desktop
and cloud respectively. Comparing these results to the aver-
age speedup of the large-scale problem of [16] on a single
node, our system outperforms the intra-matcher by 5.2 % on
desktop and 55 % over the cloud platform.

For the very large category, average speedup has been
calculated over single-node (8 cores), and multi-node (16
and 24 cores). On a single-node the results are quite similar
to single-node large category, i.e., 4.97 and 7.02 times on
desktop and cloud respectively. Our system outperforms the
intra-matcher of [16] by 4.6 % on desktop and 47.78 % over
cloud platform. In case of multi-node platform with dual
nodes (8 cores each), our system completes the matching
process with average speedup of 9.42 and 14.1 on desk-
top and cloud respectively. Comparing these results with
Intra&Inter multi-node matcher of [16] over 16 cores, our
system running over Azure VMs outperforms Intra&Inter
matcher by 12.8 %. Scaling the same matching problem to
3 nodes (8 cores each), our system completes the matching
process with average speedup of 15.16 times on a desktop
and 21.51 times over cloud platform.

5.5.3 Effectiveness-independent performance-gain

As described earlier, ontology matching systems developed
over the years have taken performance into consideration;
however, it is tightly coupled with the effectiveness of
their matching algorithms. On the other hand, methodology
proposed by our system extracts performance-gain with-
out inflicting any changes in the accuracy of the matching
algorithm. From the results, it is clear that the accuracy

Fig. 26 Results summary
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of the matched results remains preserved even when scal-
ing up to multiple cores for parallel matching. In all the
performed evaluations, the effectiveness measures remain
constant even with substantial gain in performance.

5.5.4 Matching library interface

To implement effectiveness-independent performance-gain,
distributor components of our system, decouples the match-
ing library from the performance runtime with the help
of a matching library interface. This approach provides an
additional benefit of plug-n-play matching algorithms and
libraries. In our evaluation, we have used three different
ontology matching libraries with different accuracy mea-
sures, provided to us by different semantic web experts.
For anatomy and library matching problem, same match-
ing library of String, Label, and Child-based algorithms is
used. For large-biomedical tracks, a matching library with
String, Annotation, and Child-based algorithms is used. For
conference matching problems, another library with four
matching algorithms, i.e., String, Annotation, Child, and
Synonym-based matching algorithm is used. This character-
istic of our system provides an exclusive performance-based
ontology matching runtime that can host and execute match-
ing algorithms and libraries, developed by semantic web
experts without worries of accuracy loss or platform-level
maintenance.

6 Conclusion

In this paper, we presented our performance-based ontol-
ogy matching system which implements effectiveness-
independent data-parallel approach for matching. Ontology
matching is a widely used technique for heterogeneity res-
olution among information and knowledge-based systems;
however, size, complexity, and availability of these ontolo-
gies require solutions that are built from a performance
aspect. With the availability of affordable parallelism-
enabled multicore platforms like desktop and cloud, our
system is built to exploit their performance benefits by data
parallelism for ontology matching.

Our system divides the whole matching process into
three stages, i.e., pre-matching, parallel matching, and
post-matching, with each stage designed to contribute in
the overall performance aspect of ontology matching. By
default, ontologies are not scalable structures; therefore,
pre-matching stage converts the candidate ontologies into
smaller, simpler, and scalable resource-based ontology sub-
sets, based on the requirements of matching algorithms.
This method provides the resolution to the scalability chal-
lenge of ontology matching by providing ontology sub-
sets that are distribution friendly. Furthermore, due to the

smaller size, independence and scalable nature of these
subsets, accessing ontology resources is significantly faster
than loading directly from the ontology files. We have
recorded 8 times faster ontology resource loading with 4
times smaller memory footprint working with ontology sub-
sets instead of whole ontologies. These subsets are also
serialized and persisted by our system for reuse. Moreover,
pre-matching stage also acts as an adapter for ontologies
to be plugged into our system. No change is inflicted in
the original structure of candidate ontologies to make them
compatible with parallel matching.

In the parallel-matching stage, ontology subsets gener-
ated by the pre-matching are further used by distributor
components for implementing the three-layer distribution
abstraction. This abstraction constitutes upon independent
matching requests generated for each participating node
by multi-node distributor, and matching jobs and matching
tasks generated by multicore distributor for participating
cores per node. These abstractions are independent in
nature and provide the foundation for data-parallel ontology
matching. This method of distributing the matching process
from grainer level matching request to finer level match-
ing tasks provides a way to improve the performance of
ontology matching. Consequently, over parallelism-enabled
platforms we have recorded a performance speedup of
4.1 to 7.5 times on single-node multicore platforms and
up to 21.5 times on multi-node platforms. Furthermore,
distribution components provide the interface to match-
ing libraries and algorithms. Matching tasks are assigned
with instances of matching algorithms to be executed at
runtime with no change inflicted in the implementation
of the algorithm. This method decouples the performance
aspects of ontology matching from accuracy, providing
an effectiveness-independent approach. We have recorded
no change in the accuracy measures while scaling up
the matching process for data-parallel matching. Matched
results from matched tasks distributed over computing
resources are aggregated to generate the required map-
pings as mediation bridge ontology by the post-matching
stage.

To further contribute in overall performance of the onto-
logy matching process, our system also aligns the execu-
tion of matching algorithms such that the matching space of
every following algorithm execution gets minimized. This
method speeds up the matching process by only matching
the unmatched ontology resources; consequently, avoiding
redundant matching operations.

For benchmarking of our system, we have used OAEI’s
real-world ontology dataset. The evaluation tracks and their
tasks provided by OAEI’s semantic web experts are specif-
ically designed to evaluate the state-of-the-art ontology
matching systems. This dataset includes fourteen ontolo-
gies from diverse domains, different sizes, and complexities.
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Evaluation on such a diverse dataset of ontologies have val-
idated the generic nature of our system, i.e., performance-
based ontology matching process executes regardless of
the type and scope of candidate ontologies. Furthermore,
matching problems for evaluation are classified into differ-
ent sizes, varying from small to very large-scale ontolo-
gies. Although our system provides a small performance
speedup (1.25 times) on smaller ontologies however, it
shows impressive performance-gain where it matters the
most, i.e., in solving medium to large-scale ontology match-
ing problems. For medium scale ontology matching prob-
lems, the average performance speedup is 4.1 and 5.9 times
over single-node desktop and Microsoft Azure VM respec-
tively. For large-scale ontology matching problems, the
average performance speed is 5.0 and 7.4 times over single-
node desktop and Azure VM respectively. For very-large-
scale ontology matching problems, the average performance
speedup is 15.16 and 21.51 times over multi-node desktop
and Azure cloud platform. For further evaluation, our sys-
tem is currently deployed overMicrosoft Azure public cloud
environment and being used by a running instance of a Clin-
ical Decision Support System (CDSS). The interoperability
engine of the CDSS is using our systems performance-
based ontology matching for finding mappings between
biomedical ontologies.

From the recorded results drawn by our system working
with real-world ontologies, it is apparent that our approach
offers a comprehensive solution to the performance chal-
lenges of ontology matching problems. Moreover, our sys-
tem is generic, effectiveness-independent, and aligned with
the use of new generation computing platforms. Due to
the extensive use of ontologies, the size and complexity of
ontology matching problems will increase. From the results,
it is evident that our system performs impressively well
on medium to very large-scale ontology matching prob-
lems. Thus, our proposed system has the required longevity
for future ontology matching problems. We have on-going
research in the area of performance-based ontology match-
ing, with the proposed system as a research outcome. We
have on-going research in the area of performance-based
ontology matching, with the proposed system as a research
outcome. Although our system scores impressively during
evaluation, there are few limitations of the current imple-
mentation. Apparently our system presumes the multi-node
environment to be homogenous, which might not stay true
in the longer run as heterogeneous computing environments
are becoming available with the excessive use of cloud
computing. Furthermore, relationship needs to be identified
between the size of the matching problem and acquisi-
tion of computing resources, such that optimal distribution
slab for matching tasks can be identified automatically.
These two important aspects are among the scope of our
future work.

From the application and usability perspective of our
system, it can greatly benefit semantic web experts,
researchers, and dynamic systems, which rely on ontol-
ogy matching to provide heterogeneity resolution. Due to
the computational complexity and increasing size of these
ontologies, a client has to wait for in-time results. Our sys-
tem provides a resolution to these clients by performing
matching operations in parallel over affordable platforms
for fast results. Our system is built to scale from multi-
core desktops PCs to ubiquitous and affordable distributed
multi-node platforms like clouds for better performance.
Furthermore, semantic-web experts who are focused on
building matching algorithms can integrate their encapsu-
lated algorithms and benefit from the parallel execution
without writing any parallelism code with-in or to com-
plement the matching algorithms. Moreover, due to the
effectiveness-independent data-parallel approach of our sys-
tem, these experts do not have to worry about any accuracy
loss with performance speedup.
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