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Abstract The task assignment problem is an important
topic in multi-agent systems research. Distributed real-time
systems must accommodate a number of communication
tasks, and the difficulty in building such systems lies in
task assignment (i.e., where to place the tasks). This paper
presents a novel approach that is based on artificial bee
colony algorithm (ABC) to address dynamic task assign-
ment problems in multi-agent cooperative systems. The
initial bee population (solution) is constructed by the ini-
tial task assignment algorithm through a greedy heuristic.
Each bee is formed by the number of tasks and agents,
and the number of employed bees is equal to the num-
ber of onlooker bees. After being generated, the solution
is improved through a local search process called greedy
selection. This process is implemented by onlooker and
employed bees. In greedy selection, if the fitness value
of the candidate source is greater than that of the current
source, the bee forgets the current source and memorizes
the new candidate source. Experiments are performed with
two test suites (TIG representing real-life tree and Fork–Join
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problems and randomly generated TIGs). Results are com-
pared with other nature-inspired approaches, such as genetic
and particle swarm optimization algorithms, in terms of
CPU time and communication cost. The findings show that
ABC improves these two criteria significantly with respect
to the other approaches.

Keywords Task assignment · Swarm intelligence ·
Artificial bee colony algorithm · Multi-agent cooperative
design · NP hard problem

1 Introduction

Task assignment is one of the core steps in effectively
exploiting the capabilities of distributed or parallel comput-
ing systems. The task assignment problem (TAP) is one of
the most important research topics in multi-agent systems
(MAS). It is defined as the allocation of (T) tasks to (A)
agents in a distributed system. General solutions (A*T) exist
for the allocation of tasks to agents; the challenges are prin-
cipally related to identifying optimal allocation of all tasks
while accommodating the design constraints that apply to
the domain of interest. Addressing these challenges is an
NP-hard problem [1–4]. Kartik and Murthy in [5] demon-
strated that the computational complexity of the reliability
problem in distributed systems is NP-hard in a strong sense.
NP-hard problems are difficult to solve, and no polyno-
mial time algorithms have been established to solve them
[6].

Addressing TAP essentially involves assigning a set of
tasks to a set of agents in a distributed system; the objec-
tive is to minimize the communication and task processing
cost among cooperating agents. In other words, approaches
designed to manage TAP (and assign tasks to agents)
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attempt to determine the minimal computational costs in
constrained multi-agent cooperative systems while optimiz-
ing task assignment to allow for the effective and efficient
functioning of distributed systems.

Given the critical importance of task assignment, TAP
has been the subject of extensive research. Allocation
schemes can be classified into the following two categories
[6].

• Exact methods: methods that attempt to identify the
optimal location for a given objective

• Heuristic algorithms: methods that aim to provide
a fast and effective means of obtaining sub-optimal
solutions

The first category (exact methods) includes numerous exact
methods, such as the family of branch and X algorithms
that includes branch and bound algorithm, branch and cut
algorithm, branch and price algorithm, linear programming,
and dynamic programming [6] to name a few. However,
as observed by Jourdan et al. [6], such approaches are
limited in their capabilities to resolve moderately sized
problem instances. When instances become too large for
exact methods, heuristics (particularly meta-heuristic meth-
ods) are often employed [6]. Heuristic approaches have
been studied more extensively than exact methods and
have been demonstrated to provide an effective basis upon
which sub-optimal solutions can be achieved. Examples of
heuristic approaches include evolutionary algorithms (EA),
evolutionary strategies (ES), genetic programming (GP),
scatter search (SS), immune systems (IS), and swarm intel-
ligence (SI), which is central to the approach posited in
this study. Heuristic algorithms generally incur lower com-
putational overhead (computation time) than exact meth-
ods and can be very useful in applications where an
optimal solution is unobtainable within a critical time
limit.

As discussed above, a number of approaches, including
exact methods and heuristic algorithms, have been designed
to address task assignment and scheduling in distributed
systems [5–8, 10–12, 14–21]. SI employs nature-inspired
algorithms in optimization problems [22] and has been
shown to produce significant improvements in performance
in comparison with alternative approaches in simulating
group-based actions. This condition is attributed to the
fact that SI is inspired by the activities of social animals
or insects in nature. As a basis for task assignment in a
multi-agent system, SI has demonstrated the capability to
achieve improved performance in terms of optimization and
accuracy in classifying tasks.

In this paper, we present a novel approach to solve TAP
in a multi-agent system. The approach is based on SI using
the artificial bee colony (ABC) algorithmic approach. The

contributions provided by this proposed novel approach to
task assignment are summarized below.

1. The proposed approach defines TAP in multi-agent
systems and provides a dynamic resource assignment
algorithm based on ABC.

2. Compared with alternative approaches, the proposed
approach has the following benefits and advantages: (1)
memory, (2) multi-character, (3) local search, and (4)
a solution improvement mechanism. To realize these
advantages, we selected the ABC algorithmic approach
to model and solve complex TAP.

3. A design example of CA610 lathe is presented for task
assignment, and the effectiveness of the ABC algorithm
is compared with that of other popular intelligent algo-
rithms through experiments. Computational simulations
and comparative analyses are conducted via testing
through the use of three test suites. The obtained results
support the conclusion that the proposed approach
allows for significant improvements in solving complex
TAPs when compared with alternative methods, includ-
ing other nature-inspired approaches such as genetic
algorithms and particle swarm optimization techniques.

4. An important aspect of the proposed novel SI-based
approach is that it is designed to solve NP-hard
problems.

The remainder of this paper is organized as follows.
Section 2 presents an overview of related research on
TAP and SI, with a focus on ABC approaches. Section 3
introduces a multi-agent cooperative design system. In
Section 4, a dynamic task assignment approach based on
the bee colony principle and the use of the ABC algorithm
is presented. Section 5 presents the experimental results
obtained from tests using three test suites. The last chapter
provides the conclusions and recommendations for future
research.

2 Related work

This section considers task assignment and the approaches
to enable the effective allocation of tasks in dynamic and
complex environments. SI is considered a potential solution
to TAP in dynamic environments, with a focus on the ABC
algorithmic approach. The design of the proposed ABC
approach is discussed in the following sections.

2.1 TAP

Resource distribution is a type of TAP in which multi-
ple agents are required to capture and deliver resources at
a number of pre-defined locations while minimizing the
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average waiting and delivery times for both resources and
clients [6]. Agents in a resource distribution system must (1)
cooperate in dynamic and complex environments, (2) imple-
ment unexpected requests (this may be viewed in terms of
the lack of a priori knowledge related to upcoming requests
for service), and (3) achieve effective performance levels in
a robust system (i.e., accommodate possible failures of indi-
vidual agents). Therefore, multi-agent systems designed for
resource distribution tasks should be scalable, adaptive, and
robust [6].

Many approaches to task assignment and scheduling
in distributed systems have been proposed in literature
[7]; these approaches include heuristic methods, as dis-
cussed by Lo in [8]. In the field of multi-agent coordi-
nation (which includes resource distribution and TAPs),
two methods are commonly used: (a) multi-agent plan-
ning and (b) nature-inspired approaches. The disadvantage
of planning-based systems is that either global informa-
tion is required or agents must communicate extensively;
meanwhile, nature-inspired methods have been demon-
strated to perform successfully and enable the resolution
of both research and real-world problems. A compre-
hensive overview of multi-agent planning is provided in
[9].

An alternative approach initially proposed by Shatz et al.
in [10] employs state space search algorithms (SSAs). The
SSA approach has been subsequently improved by Kartik
and Murthy [5] by using the notion of branch and bound
(BB) search with underestimates and module independence
to reduce the average computational effort required in estab-
lishing optimal task allocation. Although they are useful
for small-scale problems, SSA approaches are limited in
their capability to handle large and complex problems (such
as TAP) and are therefore unsuitable for TAP in general.
Meanwhile, heuristic algorithms can derive near-optimal or
optimal solutions with a reasonable amount of computing
time. Therefore, in recent years, research on TAP has tended
to focus on developing meta-heuristic search algorithms to
address the problem. A number of constructive heuristics
have been proposed for meta-task assignment. Vidyarthi and
Tripathi [11] presented a solution that employs a simple
GA to identify a near-optimal allocation solution. Attiya
and Hamam [12] developed a simulated annealing algorithm
to address TAP; evaluation of the algorithm’s performance
(in comparison with a BB technique) produced satisfactory
results.

Yin et al. [13] proposed a hybrid algorithm that com-
bines particle swarm optimization (PSO) and a hill climbing
heuristic; the researchers claimed that their solution outper-
forms GA in terms of effectiveness and efficiency. Given
the intractable nature of TAP when taken with the constantly
growing demand for distributed computing, exploring other

avenues for developing good heuristic algorithms for TAP
is useful.

With regard to the question “can agents coordinate their
activity using only communication within their local envi-
ronment” De Jong et al. [14] found that research has inves-
tigated nature as a source of inspiration. Hence, learning-
based methods have been proposed. For example, Strens and
Windelinckx [15] considered the combination of planning
with reinforcement learning for multi-robot task allocation.
Examples of documented research that addresses naturein-
spired systems can be found in [16–21]. However De Jong
et al. in [14] noted that “these systems often lack a certain
degree of pragmatism required for real-world applications.”

2.2 SI and ABC approaches

SI is a research area that employs nature-inspired algorithms
in optimization problems [22]. SI research has produced a
number of algorithms that are based on SI; these algorithms
involve modeling the behavior of a range of insects and
animals, including termites, birds, ants, bees, wasps, and
fish [22]. SI is based on models of collective intelligence
in swarms of insects or animals and has been defined as
“the collective behavior of decentralized and self-organized
swarms” [23]. The capability of ant colony optimization
(based on the swarming behavior of ants) and PSO (based
on bird flocks and fish schools) to solve optimization prob-
lems in a number of areas was demonstrated in the 1990s
[22]. A fertile area of research within the general area of
SI is the investigation of bee swarming; ABC is a relatively
recent SI algorithm.

The foraging behavior and learning, memorizing, and
information sharing characteristics of bees have been one
of the most interesting research areas in SI [24]. ABC
algorithms can be viewed in terms of the behavioral char-
acteristics of honey bees, namely, (1) foraging behaviors,
(2) marriage behaviors, and (3) the queen bee concept. A
detailed description of the behavior of bees in nature with
a review and categorization of studies on artificial bee sys-
tems can be found in [24]; for a detailed exposition on the
ABC approach to optimization, one may refer to [22, 24–
28]. The ABC algorithm generally attempts to model the
foraging behavior of honeybee colonies [23].

An enhanced ABC optimization algorithm called interac-
tive artificial bee colony (IABC) was developed for numer-
ical optimization problems by Tsai et al. [28]. In the IABC
approach, an onlooker bee is designed to move directly to
the selected coordinate indicated by an employed bee and
evaluate the fitness values near it (in the original ABC algo-
rithm) in an attempt to reduce computational complexity.
Essentially, IABC is an extension of the ABC algorithm. It
has been tested through the use of five benchmark functions
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in simulated experiments to compare the accuracy/quality of
IABC, ABC, and PSO; its proponents reported that IABC
exhibits superior performance in terms of accuracy when
compared with other methods [28].

A novel use of the ABC algorithm was developed by
[26]. In this approach, the ABC algorithm employs fuzzy
clustering. The algorithm has also been tested against a
range of data sets, including cancer, diabetes and cardio-
vascular datasets obtained from the UCI Library’s database
[29], which contains a collection of classification bench-
mark problems. Successful performance outcomes were
obtained. The results revealed the good performance of the
ABC optimization algorithm when used in conjunction with
fuzzy clustering.

SI involves a social component in that social insect
colonies can be considered dynamic systems that gather
information from the environment and modify behaviors in
accordance with the environmental conditions. While gath-
ering information and setting behavioral patterns (driven by
environmental conditions), individual insects do not per-
form all the tasks as in social insect colonies because of the
existence of specialisms (e.g., the queen as well as drone
and worker bees). Virtually all social insect colonies behave
according to their own division of labor related to their mor-
phology. Bees exist in highly organized colonies with a strict
hierarchical structure. A colony of bees is made up of three
categories of adults: the queen, the drones, and the workers.
Bees are one of the most studied social insects because the
highly developed organizational structure of a bee colony
makes bees a very attractive source of research inspiration.
Bee colonies are in fact communities divided into several
social layers. Communication is interesting as bees commu-
nicate by (1) dancing and (2) producing pheromones. Bees
cooperate to realize various tasks, such as construction and
maintenance of the hive and harvesting of pollen. An inter-
esting survey of algorithms inspired by the behavior of bees
can be found in [22, 30].

The ABC algorithm, which was proposed by Karaboga
[31] and further developed by Karaboga and Basturk [32], is
a relatively new population-based meta-heuristic approach.
ABC is inspired by the intelligent foraging behavior of the
honeybee swarm. Karaboga and Basturk [33] and Karaboga
and Akay [34] compared the performance of the ABC algo-
rithm with that of differential evolution, which has been
claimed by Sun et al. in [35] to be “very successful in solv-
ing the global continuous optimization problem,” PSO, and
evolutionary algorithms according to a set of well-known
test functions. The performance of ABC was also analyzed
under a change in control parameter values. The simula-
tion results showed that the ABC algorithm performs better
than the abovementioned algorithms and can be efficiently
employed to solve multimodal engineering problems with
high dimensionality.

Approaches have been proposed and applied as solutions
to solve combinatorial-type problems [36, 37]. Specifi-
cally, in consideration of TAP, Lale et al. [38] developed
an algorithm based on SI and bee behaviors and with an
ejection chain neighborhood mechanism to solve gener-
alized assignment problems [16]. Yeh and Hsieh [39] in
their paper entitled “Solving reliability redundancy allo-
cation problems using an artificial bee colony algorithm,”
proposed a penalty-guided artificial bee colony algorithm to
solve the reliability redundancy allocation problem (RAP).
Investigations have been conducted on RAP over the past
four decades [39]; Yeh and Hsieh [39] stated that “to the
best of our knowledge, the ABC algorithm can search over
promising feasible and infeasible regions to find the feasible
optimal/near-optimal solution effectively and efficiently.”
Investigations that involved the use of numerical exam-
ples support the conclusion that the penalty-guided ABC
approach performs well in the reliability–redundancy allo-
cation design problems considered in the study; the compu-
tational results compare favorably with those of previously
developed algorithms in literature [39].

This brief overview of the research related to task assign-
ment and resource distribution considered the approaches
to task assignment. The ABC optimization algorithm has
been widely studied and has been successfully applied to
resolve real-world problems. ABC approaches have signif-
icant advantages in terms of memory, multi-character, local
search, and the solution improvement mechanism; hence,
ABC methods are capable of identifying optimal and near-
optimal solutions. However, notwithstanding the efficacy of
the ABC approach in its basic form as discussed above and
in literature, the approach is limited when used to address
TAP. A meta-heuristic optimization approach that employs
a penalty-guided algorithm based on the ABC approach to
solve TAP in a multi-agent cooperative design system is
proposed in this paper.

3 Multi-agent cooperative design system

A multi-agent collaborative design system is essentially
concerned with how a group of intelligent agents can coop-
erate to jointly solve problems. Design is a complex process
of knowledge discovery, in which information and knowl-
edge from a broad and diverse range of sources is processed
simultaneously by a team of designers involved in the
life cycle of a project or product. Complex designs gener-
ally combine automated software components and human
decision makers; hence, providing support for both human
and computational participants in the design process is
imperative.

The general architecture of a multi-agent collaborative
design system is organized as a population of asynchronous
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semi-autonomous agents to enable the integration of design
and engineering tools with human experts and specialists in
an open environment. Each tool (or interface for a human
specialist) can be encapsulated as an agent. These tools
and human specialists are connected by a local network;
they communicate via this network. Each can also com-
municate directly with other agents located in other local
networks through the Internet. Agents exchange design data
and knowledge via a local network (Internet) or the Internet
through the management agent [40]. All agents in the sys-
tem form an agent group, in which three classes of agents
exist: (1) management, (2) tool, and (3) design agents. The
agents are situated on different layers, and the hierarchi-
cal relation limits the authority of the agents within the
group.

The management agent is located on a server and man-
ages the interactions of the entire design group. The action
of the management agent usually shows the inquiry made
and the resultant decision for a particular problem, the con-
trol function, and the supervision functions for the lower-
layer agents. The knowledge in the knowledge base (KB) of
a management agent includes all relevant information (e.g.,
a design agent’s name, address, skills or competencies, his-
torical records for the task being undertaken, and reward
in the group). When an agent is added to or deleted from
the group, the corresponding knowledge of the management
agent is modified.

Tool agents include design and management tools; they
provide assistance to the management agent in the com-
pletion of the system management tasks. Typical tasks
include communication management, task assignment,
database management, knowledge management, collabora-
tion management, and system maintenance. The role and
functions of the various agents that combine to make

up the design system can be summarized as follows
[41].

• The task assignment agent helps design engineers
decompose a large design task into several sub-tasks
and assigns them to suitable design agents.

• The collaborative agent deals with conflict coordina-
tion during the collaborative design process.

• Design tool agents include software packages, such as
AutoCAD, Pro-Engineer, Inventor, MicroStation, and
SolidWorks. They also include a video conferencing
system for a synchronous collaborative design that pro-
vides run-time support.

• Communication agents provide support for the interac-
tion among agents and designers through e-mail, text,
file, image, graph, audio, and video. The exchange of
data and files is based on the file transfer protocol (FTP)
and TCP/IP protocol.

• The process monitor agent monitors the entire design
process via its event monitor and dynamically main-
tains information related to the current prevailing state
of each design agent and the status of current design
sub-tasks. The event monitor is triggered when a design
event occurs, and the correlative message is passed to
relevant and suitable agents.

• The assemble agent checks the assembly constraints for
finished design components. When a constraint viola-
tion is found, this agent asks collaborative and commu-
nication agents to solve problem by coordinating with
design agents.

• The knowledge maintenance and database agents main-
tain the knowledge base and database, respectively.

The collaborative design process is shown in Fig. 1.
When a large design task arrives, the task composition agent

Fig. 1 Collaborative design
process
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helps the design engineer decompose the task into sub-
tasks and sends the subtasks to the collaborative agent. The
collaborative agent then matches the subtasks and design
agents according to the latter’s capability. After processing
by a dynamic task assistant, the design agents and designers
perform their respective assigned design tasks. During the
design process, the communication agent takes charge of the
interaction among agents; the knowledge maintenance and
database agents maintain and update the knowledge base
and database. The process monitor agent monitors the entire
design process. When the assembly agent finds a constraint
violation, it informs the collaborative and communication
agents with the goal of solving the issue through coordina-
tion among design agents. When the design phase is over,
experts evaluate the design result to determine if the design
process is completed or should be restarted [42].

4 Dynamic task assignment process

The task assignment agent employs a method that divides a
design task into a sequence of subtasks and assigns them to
suitable design agents.

4.1 Formal description of task assignment

The formal definition of the task assignment approach
posited in this study is as follows.

Definition 4.1 DAs denotes a design agent, where D is
the type of agent and s is a character string that represents
which group the agent belongs to and its serial number in
the group. For example, DA11 is a design agent with number
1 in group 1.

Definition 4.2 Ts stands for a design task, and c is a char-
acter string that represents the decomposed layer of the
design task and the dependency relation. For example, an
initial design task can be represented as T1. Its subtasks
are T11, T12, . . . , T1n, and the sub-processes of T1i are
T1i1, T1i2, . . . , T1im, i.e., the length of the string denotes the
decomposed depth, and the value expresses the dependency
relation (i).

The dependency relation of design tasks forms a design
task tree.

Definition 4.3 T
j
i denotes that task i is being implemented

by design agent j.

The group members performing task Ti can be deter-

mined by vector
(
T

j1
i , T

j2
i , . . . , T

jk
i

)
and the current tasks

of design agent j by vector
(
T

j

i1, T
j

i2, . . . , T
j
il

)
.

Definition 4.4 The prior relation of a design task is indi-
cated by pair PRIOR (Ts1, Ts2), which means that Ts2 takes
the fulfillment of Ts1 as the starting pre-condition; Ts1 and
Ts2 are the sequences of tasks.

Definition 4.5 The concurrent relation is indicated by
CONCUR (Ti, Tj), which expresses that design tasks Ti

and Tj can be implemented simultaneously.

Definition 4.6 The exclusive relation is indicated by
EXCLUDE (Ti, Tj), which denotes that two tasks

(
TiandTj

)
cannot be performed simultaneously.

Definition 4.7 Event is expressed by E (i).

Table 1 presents the notations used in TAP formulation.
The general formulation of TAP can be described as

follows:

Min
n∑

i=1

m∑
j=1

cij xij (1)

Subject to
n∑

i=1

rij xij ≤ bj ∀j 1 ≥ j ≤ m (2)

m∑
j=1

xij = 1 ∀i 1 ≤ i ≤ n (3)

xij ∈ {0, 1}
∀i 1 ≤ i ≤ n (4)

∀j 1 ≥ j ≤ m.

According to (1) and Table 1, this problem is a 0–1 quadratic
integer programming problem, and its objective function is
the total sum of execution and communication costs. This

Table 1 Notations used in TAP formulation

n number of tasks in set T

m number of agents in set A

bij amount of available resource of agent j

(bj ≥ 0)

rij resource needed if task i is assigned to

agent j (R is a matrix of

size n × m, rij ≥ 0)

cij cost needed if task i is assigned to agent

j (C is a matrix of size n × m, cij ≥ 0)

xij decision variable if task i is assigned to

agent j, xij =1; 0, otherwise (C is a

matrix of size n × m)
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problem is limited by two sets of constraints. The first con-
straint set in (2) means that the task assigned to agent j
cannot exceed the resource capacity of agent j, and the sec-
ond constraint set in (3) ensures that each task is assigned to
only one agent.

4.2 Dynamic task assignment approach based on ABC
algorithm

The proposed approach is presented in this section. After
a description of bee colony initialization, we discuss
the design solution for the proposed resource assignment
approach.

4.2.1 Bee colony initialization

The initial bee colony is constructed using the initial task
assignment algorithm, where the greedy heuristic constructs
a solution as follows.

1. At each step, the next task to be assigned to an agent is
selected.

Step 1: Initialization
1.  A = {agent i}, i = 1,2,...,m; 
2.  T = {task j}, j = 1,2,…,n;

3. jS , j = 1,2,...m ( jS is the set of task assigned to 

agent j);

4.  Construct a list of agents iL for each task i. The agents in 

iL possess the capability to accomplish task i;

Step 2: Select a suitable agent for each task i
For (i=1; i<=n; i++)

1.  Select an agent j from iL ;

2.  Compute the probability according to the resource of 
agent j and the resource required by task i;

i

Ll il

l

ij

j

ij Lj

b
r

b
r

p

3.  The agent with a minimal cost has a high
probability of being selected;

4.  Assign task i to agent j*; 

5.  *)(** jSS
jj

;

6.  i=i+1; 

7.  If 
jsi

jij
rb **

, remove j* from any list;

Step 3: Record assigned task i to agent j
For (i=1; i<=n; i++),

if jsi , then =j;

Return.

Initial Task Assignment Algorithm

2. The agent to whom the selected task will be assigned to
is determined.

3. Steps 1 and 2 are repeated until all tasks have been
assigned to agents.

In the algorithm, probabilistic bias can be implemented to
a probability function. This function is updated at each
iteration with reinforcement by using the features in good
solutions.

4.2.2 Proposed solution design

The ABC algorithm is iterative. A colony of artificial bees
in the ABC algorithm is analogous to its natural counter-
part (a real colony of bees) in that three categories of bees
exist: employed, onlooker, and scout bees. The first half
of the bee colony comprises employed bees, and other half
contains onlooker bees. The ABC algorithm proposed in
this study functions as follows. Initially, all employed bees
are associated with randomly generated food sources (solu-
tions). Iterative processing then occurs; in each iteration,
every employed bee determines a (new) food source in the
neighborhood of its currently associated food source and
evaluates its nectar value (amount), which represents fit-
ness. If the nectar value of the new food source is greater
than the nectar value of the currently associated food source,
then the employed bee moves to this new food source and
leaves the old (current) food source; otherwise, it retains
its old food source. When all employed bees have finished
this process, they share the nectar information relating to
the food sources with the onlooker bees. At this stage, each
of the onlooker bees selects a food source according to
a probability proportional to the nectar value of that food
source.

The ABC algorithm assumes that only one employed bee
exists for every food source (a design parameter for the
entire system). Hence, in the ABC algorithm, the number
of food sources is similar to the number of employed bees.
The employed bee for an abandoned food source becomes
a scout bee. When it finds a new food source, it returns
to being an employed bee. ABC generates a randomly dis-
tributed initial population of SN solutions (food source,
positions, and the reliability) during initialization, and the
SN parameter denotes the population size of the employed
or onlooker bees. Below is a detailed description of the
process.

Each solution Xh(h = 1, 2, · · · , SN) is a d-dimensional
vector, where d is the number of optimization parame-
ters. The population of the positions (solutions) is subject
to repeated cycles [(C = 1, 2 . . . , maximum cycle num-
ber (MCN)] of the search processes for the employed,
onlooker, and scout bees. After building potential solu-
tions, the subsequent task is to evaluate the food source
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(solutions) using the fitness function, which is a common
feature of nature-inspired approaches for optimization. The
design of the fitness function is a crucial feature in ABC
(as in all nature-inspired approaches) and performs a vital
task in determining the optimization function in the ABC
algorithm.

The fitness values are utilized to determine the proba-
bility of the individual bees being selected. In computing
the value of the fitness function, a penalty term is added
to the fitness function to convert the constrained prob-
lem into an unconstrained one. While constructing initial
solutions (in the ABC algorithm), the proposed approach
may produce infeasible solutions. Therefore, an additional
term, which is determined by penalizing the infeasible
solutions with αj (αj > 0), is introduced to the fit-
ness function. The fitness function is formally defined as
follows:

f it (σp)=
m∑

j=1

n∑
i=1

cij xij+(

m∑
j=1

αj max

(
0,

n∑
i=1

rij xij − bj

)
,

(5)

where

σp is the solution for employed bee p
fit(σp) is the fitness function value for employed bee p

σbest is the best solution, and
αj is the cost of using one overloaded capacity of

agent j.

The first term in the fitness function denotes the total cost
of assigning tasks to agents. The second term is defined as
an additional penalty function for minimization. αj repre-
sents the cost of using one overloaded capacity of agent j.
The initial values of αj ’s are set by the user. If a solution is
not feasible, the second term will be positive. Therefore, the
search will be directed to a feasible solution. If the capac-
ity is not exceeded, this term will be zero to ensure that the
solution is not penalized. The parameter can be increased
during the run to penalize infeasible solutions and drive the
search to feasible ones; this condition denotes the adaptive
control of penalty costs.

The solutions for each task are selected using the proba-
bilities established by (6). The probability ph of selecting a
solution Xh is then determined.

ph = f it (σh)

SN∑
i=1

f it (σ i)

(6)

With this scheme, good food sources will obtain more
onlookers than the bad ones. After all onlookers have
selected their food sources, each of them determines a food

source in the neighborhood of his selected food source
and computes its fitness. The best food source among all
the neighboring food sources determined by the onlookers
(associated with a particular food source i itself) will be the
new location of food source i.

Local search for solution improvement After being gener-
ated, a solution is improved through a local search process
called greedy selection. This process is implemented by
onlooker and employed bees. In greedy selection, if the nec-
tar value (fitness) of the candidate source is greater than
that of the current source, the bee forgets the current source
and memorizes the new candidate source. This condition
is achieved by adding to the current value of the selected
parameter the product of a uniform variable within the range
[-1, 1] and the difference in values of the parameter of this
food source and of several other randomly selected food
sources.

We suppose that each solution consists of d parameters
and let Xh = (Xh1, Xh2, K, Xhd) be a potential solution.
To determine a new solution NewXh in the neighbor-
hood of Xh, a solution parameter j and another solution
Xk = (Xk1, Xk2, K, Xkd) are selected randomly. Except
for the value of the selected parameter j, all other param-
eter values of NewXh are similar to Xh, i.e., NewXh =
(Xh1, Xh2, K, Xh,j−1, Zh,j , Xh,j+1, L, Xhd). The value of
the selected solution NewXh is determined with (7) as
follows:

NewXhj = Xhj + u(Xhj − Xkj ), (7)

where u is a uniform variable within the range [-1,1]. If the
resulting value falls outside the acceptable range for param-
eter j, it is set to a corresponding extreme value in that
range.

Solution intensity update The entire process is iterative in
that it is repeated until the termination condition is satisfied.
In the ABC algorithm, providing that a position cannot be
improved further through a predetermined number of cycles,
then that food source is assumed to be abandoned. Assum-
ing that the abandoned source is Xh, the scout bee will look
for a new food source to replace Xh. This operation can be
defined as (8).

X
j
h = X

j

min + rand[0.1]
(
X

j
max − X

j

min

)
j = 1, 2, . . . , d

(8)

Dynamic resource assignment algorithm This section intro-
duces the dynamic resource assignment algorithm that is
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based on the ABC approach. The algorithm involves three
steps as shown below.

Dynamic Task Assignment Algorithm Based on ABC

Step 1: Initialization

1. A = {agent i}, i = 1,2,...,m;
2. T = {task j}, j = 1,2,…,n;
3. Construct the initial bee population (solution) 

hjX as each

bee is formed by the number of tasks and agents; the 
number of employed bees is equal to the number of
onlooker bees;

4. Initiate MCN;
5. Evaluate the fitness value and make the constraints 

satisfactory for each employed bee;
6. Cycle = 1.

Step 2: Task Assignment

While (cycle<MSN),
1. Generate the new population (solution)

hjNewX in the 

neighborhood of hjX for the employed bees using 

Equation (7) and evaluate them;

2. Apply a greedy selection process between hX and 

hNewX ;

3. Calculate the probability values hP of selecting the 

solutions hX by using Equation (6); 

4. Produce new population hjNewX for the onlookers from 

population hjX depending on hP and evaluate it;

5. Apply a greedy selection process between hX and 

hNewX for the onlookers;

6. Determine the abandoned solution for the scout if it exists 

and replace it with a new randomly produced solution hX
for the scout bees using Equation (8);

7. Memorize the best solution achieved so far;
8. Cycle = cycle+1.

Step 3: Complete Task Assignment Processing

1. Each agent is assigned a suitable design task. The agents
perform their respective design tasks.

2. After a design task is completed, the agent submits the 
completed design to the assemble agent. The assemble 
agent checks the assembly constraints for the finished 
design components. When a constraint violation is found, 
the assemble agent will ask the collaborative and 
communication agents to solve the problem through 
coordination among design agents.

5 Experimental results

In this section, a design example and two test suites are
provided to show the performance of the proposed ABC

Fig. 2 CA6140 lathe

algorithm. Figure 2 presents an image of a CA6140 lathe,
and Fig. 3 presents its design sketch. This lathe design is
regarded as an example in this section.

The performance criteria considered to evaluate the qual-
ity of the solutions are (1) the assignment (communication)
cost and (2) amount of CPU time used for the benchmarks.
G (V, E) is utilized to create the task interaction graph (TIG),
where V is a set of n nodes indicating the n tasks to be
executed and E is a set of edges indicating the communi-
cation requirements among these tasks. Each edge (i, j) ∈
E is associated with a communication cost cij . Figure 4
shows an example of a TIG (related to Fig. 3) showing the
communication requirements among six tasks.

Two key factors affect the complexity of the problem.
One factor is the task interaction density (d) of G (V, E)
that quantifies the ratio of the inter-task communication
demands for a TIG. The other factor is the number of tasks
(n) and agents (m). We define d as (9).

d = |E|
r(r − 1)/2

, (9)

where |E| calculates the number of existing communication
demands in the TIG and n(n − 1)/2 indicates the maximal
number of communication demands among n tasks. To be

Fig. 3 Design sketch of CA6140 lathe
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Fig. 4 Example of a TIG

specific, a brief description and the parameter values that
control each algorithm are provided as follows.

1. PSO

(a) The size of the population is equal to twice the
number of tasks.

(b) Inertia weight w is set to 0.9.
(c) c1 = c2 =1.0.

2. GA

(a) Crossover probability = 0.9.
(b) Mutation probability =1/total number of tasks.
(c) Population size = twice the number of tasks.
(d) Elitism is used.
(e) Roulette wheel selection.

3. ABC

(a) The number of employed bees is equal to the
number of onlookers and tasks.

(b) MCN = 1000.
(c) Limit = 20.
(d) αj = 1.

5.1 Test suite 1

With this test suite, TIGs that represent real-life tree and
Fork–Join problems are generated. The structures of the two
TIGs are fixed, and each of them requires a different num-
ber of vertices. The size of the TIGs is varied. The cost of
each node is randomly selected from a normal distribution,
with the mean equal to the specified average computational
cost. The cost of each edge is also randomly selected from
a normal distribution, with the mean equal to the product of
the average computational cost and density d equivalent to
0.1, 0.5, 1.0, 2.0, and 10.0.

Tables 2 and 3 show the results for the two graph struc-
tures in a homogeneous system with 10 agents. The experi-
mental results are presented in Figs. 5, 6, 7, and 8 in bar line
format. Each result is an average of 20 test cases. Algorithm
performance varies depending on the structure of TIGs.
The ABC algorithm outperforms GA and PSO in terms of
task assignment problems; the ABC algorithm achieves the
best solutions with the added benefit of requiring the least
amount of computation time. In fact, the harder the problem
is, the larger the cost difference among the three algorithms.
This condition supports the conclusion obtained from the
testing, which indicates that the proposed ABC algorithm
is more scalable against problem complexity. These results
illustrate that the proposed algorithm is a competent solu-
tion for task assignment problems at both small and large
scales.

5.2 Test suite 2

To analyze the convergence behavior of the proposed algo-
rithm, randomly generated TIGs are considered by using
test suite 2. The value of (m, n) is set to (10, 6) and (20,
12), respectively, to verify the algorithm’s performance at

Table 2 Comparison of results
for the tree-type graph structure PSO GA ABC

Tasks Time (s) Cost Time (s) Cost Time (s) Cost

10 0.00686 272.6592 0.0087 255.0182 0.00594 268.5683

20 0.07005 518.9565 0.08012 551.5127 0.06662 520.7253

30 0.24359 643.2102 0.27793 642.7952 0.21220 630.7668

40 0.63232 809.5605 0.68681 852.3117 0.5943 800.6471

50 1.16437 1029.841 1.33058 1073.758 1.12546 1010.632

60 1.94239 995.8665 2.35439 1046.949 1.87578 991.1036

70 3.06135 1372.893 3.73580 1543.903 2.89821 1320.758

80 4.71566 1267.116 5.86446 1361.481 4.27683 1189.523

90 6.87079 1471.317 8.61721 1474.531 6.05837 1479.064

100 9.72206 160.504 12.3438 1564.47 8.12220 1488.024

Total 28.4294 9941.924 35.2999 10366.73 25.16931 9699.8121
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Table 3 Comparison of results
for the Fork–Join type of graph
structure

Tasks
PSO GA ABC

Time (s) Cost Time (s) Cost Time (s) Cost

10 0.009158 310.571 0.009616 298.7352 0.00711 301.7529

20 0.076923 595.1565 0.08837 557.5495 0.70638 600.0979

30 0.255037 843.3817 0.303572 819.1293 0.20861 802.117

40 0.616758 1168.828 0.7587 1303.026 0.53887 1152.5683

50 16.09478 550.8643 16.26603 573.2727 16.0896 562.746

60 2.089744 1438.425 2.679029 1692.423 1.58284 1504.4828

70 3.298078 2012.21 4.243131 2099.977 2.89638 1998.0596

80 5.017399 2393.497 6.624999 2345.468 5.00008 2400.196

90 7.206502 2263.488 9.568681 2520.966 6.19675 2106.594

100 9.820055 2437.536 13.2184 2950.474 7.00967 2398.075

Total 44.48443 14013.958 53.76053 15161.021 40.2363 13826.69

Fig. 5 Comparison of time
consumed for the tree-type
graph structure
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Fig. 6 Comparison of costs for
the tree-type graph structure

Fig. 7 Comparison of time
consumed for the Fork–Join
type of graph structure
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Fig. 8 Comparison of costs for
the Fork–Join type of graph
structure

Fig. 9 Comparison for (m, n, d) = (50, 8, 0.3)

Fig. 10 Comparison for (m, n, d) = (80, 10, 0.5)

different problem scales. For each pair of (m, n), three dif-
ferent TIGs are generated randomly. The values of the other
parameters are generated randomly; the execution cost is
between 1 and 200, the communication cost is between 1
and 50, and the memory and processing capacity of each
agent varies from 50 to 250. Figure 9 shows the typical con-
vergence behaviors of ABC, PSO, and GA approaches for
instance (m, n, d) = (50, 8, 0.3), and Fig. 10 shows the
same for instance (m, n, d) = (80, 10, 0.5).

The results show that the proposed ABC algorithm has a
clear advantage in terms of convergence. It runs faster than
GA and PSO, and its solution quality is better than that of
GA and PSO on the average. These results also indicate
that the proposed algorithm has an advantage in addressing
the demands of dynamic task assignment because of its sta-
bility, multi-character, and iteration speed. It can combine
global and local search and is able to discover new optimal
solutions over time. It is a potential means to solve TAP.

6 Conclusion

In this study, we considered TAPs in relation to distributed
multi-agent systems. A range of potential approaches to
address the demands and complexity of TAP in multi-agent
systems were analyzed. A novel approach that is based on SI
and employs a honeybee optimization algorithm was devel-
oped. The proposed approach employs the ABC algorithm
to effectively allocate tasks to agents in a system. The algo-
rithm is designed to provide a platform upon which system
design can be achieved. The use of the ABC algorithm to
realize this objective is the focus of the paper.

The proposed approach to task assignment is a modi-
fied version of the basic ABC algorithm initially proposed
by Karaboga [31] and is expected to provide an effective
platform upon which autonomous task assignment can be
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achieved to produce an effective cooperative design. The
results support the conclusion that the proposed approach
allows for more significant improvements in solving com-
plex task assignment problems compared with alternative
methods, including other nature-inspired approaches (e.g.,
GAs and PSO techniques).

Unlike traditional heuristics, approaches that employ the
ABC algorithm incorporate have a number of advantages,
including memory, multi-character, local search, and a solu-
tion improvement mechanism. These attributes provide an
effective basis to enable the discovery of new optimal solu-
tions over time. As demonstrated in the study of Karaboga
and Basturk [32, 33], the optimal solutions produced by
ABC approaches exhibit improved performance when com-
pared with the results obtained by other heuristic meth-
ods. In the current study, the proposed method achieved
the global or near-global solution in each sample problem
tested.

Previous research has identified SI, particularly bee
inspired algorithms, as approaches that have a very promis-
ing potential for modeling and solving complex optimiza-
tion problems. Through the proposed approach, we have
resolved a number of challenges. However, remaining chal-
lenges must be addressed if we are to fully utilize the poten-
tial of bee-inspired algorithms as a solution to optimization
problems in general and TAP in particular. Addressing these
challenges represents the direction of our future work, given
that the potential of the proposed approach offers exciting
opportunities for search and optimization.
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