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Abstract A novel extension of the growing grid (GG) algo-
rithm is proposed in this paper. The learning behavior of
the traditional GG model is affected by two factors i.e.
similarity between output units and their associated input
vectors, and lateral connections between output units. Based
on the assumption that the more active unit should move
more towards its associated input vector, the constrained
GG emphasizes the effect of the lateral connections between
output units in a grid, and neutralizes the effect on the dis-
tance between the input vector and neighbors of the best
matching unit (BMU). A constrained learning rule is tested
by fifteen data sets, i.e. the square, animal, iris, ionosphere,
sentiment polarity data sets and the fundamental clustering
problem suite (FCPS), which includes ten data sets. Based
on five evaluation measures, i.e. average quantization error,
error entropy, BMU activation rate, average map scope and
topographic error, the performance of GG is improved if the
constrained learning rule is used. In addition, we use the t-
test to test whether or not the proposed models outperform
the traditional GG significantly. Except in some cases, the
experiments conclude that the proposed approach can sig-
nificantly improve the traditional GG model based on five
evaluation criteria for fifteen data sets.
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1 Introduction

This paper proposes a novel growing grid approach, namely
the constrained growing grid (CGG) for organization of
high-dimensional data by using the self-organizing map-
like technique with a constrained learning function. The
self-organizing map (SOM), which is proposed by Teuvo
Kohonen [1], is a powerful clustering algorithm for the
visualization of high-dimensional data. It projects the high-
dimensional data onto a low-dimensional map, usually a
two-dimensional grid of units. The geometric relationship
between units in a grid represents the relationship between
high-dimensional data. In other words, the SOM is able to
abstract the most important data relationships in order for
them to be visualized on a two-dimensional map, which
is a robust tool for various tasks such as data organiz-
ing, machine monitoring, pattern recognition, data min-
ing, image analysis, communication, market segmentation,
cloud resources management, 3-D shape reconstruction etc.
e.g., [2–9].

The SOM depends significantly on certain predefined
parameters including a fixed topological structure, which
may be difficult to decide before learning. This has inspired
the development of many extended SOM-like models such
as growing cell structure (GCS) [10], growing neural gas
(GNG) [11], growing neural gas with utility (GNG-U) [12],
grow when required (GWR) [13], dynamic adaptive self-
organizing hybrid (DASH) [14], self-organizing incremen-
tal neural network (SOINN) [15], local adaptive receptive
field self-organizing map (LARFSOM) [16], and growing
self-reconstruction map (GSRM) [6]. A common goal of
these extended models is to project a data set from a high-
dimensional space onto a low-dimensional space, and keep
its inner structure as faithful as possible. Although these
extended SOM-like models are successful in conquering the
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shortcoming of predefinition for the fixed topological struc-
ture, their non-grid topological feature makes them difficult
to present on a two-dimensional space without information
loss and thus losing the benefits of visualization.

Unlike such non-grid extended SOM-like models, Fritzke
[17] proposed growing grid (GG), which is an incremen-
tal variant of the SOM in terms of the network topology.
GG develops a growing grid structure based on an input
data set without using the predefined topological structure.
Thus, GG modifies the static SOM into a dynamic SOM
and keeps a two-dimensional grid as its topological struc-
ture for visualization. The best matching unit (BMU) of
GG is generally the most active unit and has the greatest
reaction to its associated input vectors from the theoretical
viewpoint of self-organization [18]. However, the learning
function of the traditional GG may not make the BMU the
most active unit during learning, as this goes against the
competitive learning principle [19]. This paper modifies the
original learning function of the GG and proposes the con-
strained growing grid (CGG) to pursue a better performance
than the traditional GG model.

The remainder of this paper is organized as follows.
In Section 2, we briefly review related literature, includ-
ing neural gas (NG), growing cell structure (GCS), grow-
ing neural gas with utility criterion (GNG-U), grow when
required (GWR), dynamic adaptive self-organizing hybrid
(DASH), growing self-reconstruction maps (GSRM) and
other recent related work. Sections 3 and 4 introduce the
growing grid growing process and learning process respec-
tively. In Section 5, we propose the constrained neural
learning algorithm. Section 6 introduces five evaluation
measures used in this paper, which are average quantiza-
tion error (AQE), error entropy, average map scope (AMS),
BMU activation rate (BAR) and topographic error (TE).
Section 7 shows the experiment design and results. Finally,
the conclusion and possible future work are provided in
Sections 8 and 9 respectively.

2 Related work

Due to the deficiency of the SOM, i.e. the need for a
fixed topological structure before learning, several extended
SOM-like neural learning models have been proposed [6,
10–14, 16]. Different modifications of the SOM suggest dif-
ferent enhancements from different viewpoints. For exam-
ple, Martinetz and Schulten [20] proposed the neural gas
(NG) model to alleviate the requirement of prior knowl-
edge about the topological structure of the SOM. Like the
SOM, the NG model defines a fixed number of output units
and a learning rate which decays over time during learning.
Unlike the SOM, the NG model defines the relationships
between output units by connecting the best matching unit

(BMU) and the second best matching unit (SMU) to an input
vector while learning, which is called competitive Hebbian
learning (CHL) [21]. All output units are updated based
on their relative order, which is measured by the distance
compared with other output units, rather than the absolute
distance, to the input vector. Without the topological con-
straint, the NG units act like a gas, and spread throughout
the input space.

The growing cell structure (GCS) is a dynamic neural
model that maintains its units with a triangular connectivity
[10]. GCS starts with three units and increases by one unit
after every predefined period. A new unit is inserted by split-
ting the farthest unit from the unit with the greatest error.
A unit with a low probability density, meaning that few
input vectors are mapped onto it, will be removed, together
with its direct neighbors on the corresponding triangle. The
growing neural gas (GNG) [11] is a neural model apply-
ing the GCS growing mechanism with the CHL topology.
GNG starts with two units and connects an input vector’s
BMU to SMU. At each learning iteration, the age vari-
able of each connection that is directly linked to the BMU
is increased by 1, but the age variable of the connection
between BMU and SMU is initialized to zero. After every
predefined period, a new unit is inserted by splitting the unit
with the highest error in the direct neighborhood from the
unit with the highest error in the whole structure. The unit-
pruning function works through the connection-trimming
function, which removes old connections that exceed a pre-
defined threshold and units which have no neighbors. Both
GCS and GNG have two fixed learning rates which are
applied to BMU and its direct neighbors respectively.

Fritzke [12] proposed the growing neural gas with util-
ity criterion (GNG-U), which is an extension of GNG with
an ability to handle rapid changes of input patterns. The
GNG-U contains all GNG features but employs an extra
unit-pruning function. GNG-U uses the utility of a unit to
evaluate the contribution of this unit to the topological struc-
ture. A utility is an accumulated value, which computes
the difference between the distance to BMU and SMU for
an input vector. In other words, the utility of a unit is the
amount by which the global error is increased if this unit
is removed. Where a unit has small utility this means that
it is not activated frequently, or that it can be replaced by
the SMU with no harm to the model. If the proportion of
biggest error to smallest utility in a model is greater than the
utility-removing threshold, this unit will be pruned.

Marsland et al. [13] argued that a model should grow
because it cannot represent the input vectors well rather than
simply because a fixed predefined period is achieved. They
propose the grow when required (GWR) model to discover
the variation in a data set. GWR starts with two units and
applies a CHL topology. At each iteration, all connections
to the BMU are aged by 1, but the age for the connection
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between BMU and SMU is initialized to zero. A unit is
inserted near to the BMU because the distance to the BMU
for an input vector is greater than the unit-growing thresh-
old. GWR also offers a unit-pruning function, which is
performed through the removal of aged connections.

As selecting the appropriate thresholds for modifica-
tion of the topological structure is a difficult task, Hung
and Wermter [14] proposed the dynamic adaptive self-
organizing hybrid (DASH), which contains a dynamic struc-
ture, hierarchical training, non-stationary data learning and
parameter self-adaption. DASH starts with two units and
stops when all units represent their associated input vec-
tors well, or the number of inputs is too few to build a
sub-map. The recursive learning continues for the individ-
ual unit whose average quantization error does not meet
the requirement of DASH. DASH uses a CHL topology
to connect BMU and SMU for an input stimulus. A con-
nection is trimmed if it is relatively old compared to other
connections and a unit without any connection is removed.
However, if the model has met its quality requirement, the
connection-trimming function is restrained.

Do Rêgo et al. [6] proposed the growing self-
reconstruction map (GSRM), which is extended from the
GNG model for use in the field of three-dimensional shape
reconstruction. GSRM starts with three units randomly cho-
sen from the input vectors. The main difference between
GSRM and GNG is that GSRM uses an extension of the
CHL to update the connections between units. The original
CHL simply builds the connection between BMU and SMU,
but the extended competitive Hebbian learning (ECHL)
builds and removes the connection in order to produce
a triangular two-manifold mesh representation of a three-
dimensional target object. More complete literature reviews
in the field of SOM with a time-varying structure can be
found in [22].

Although many extended SOM-like models have suc-
cessfully used a time-varying structure in order to relieve
the need for a predefined topological structure before the
presentation of input data, their non-grid topological feature
prevents them from being presented on a two-dimensional
space without information loss. Therefore, these non-grid
SOM-like models lose the visualization benefit of the

original SOM, which is its major feature compared with
other clustering techniques.

Unlike such non-grid SOM-like models, growing grid
(GG) is an incremental variant of the SOM in terms of the
network topology [17]. By keeping a grid structure, GG
uses a competitive-based learning technique, which aims to
make the BMU learn more than its neighbors for each input
vector and represent the relationship between input vectors
on a two-dimensional map without information loss. How-
ever, the extent of modification is decided not only by the
geometric relationships between the BMU and its neigh-
bors but also by the distance between the input vector and
its associated output units. Consequently, the BMU may
not always move more towards its associated input vector
because the distance between the BMU and this input vector
is the shortest. Therefore, we propose a constrained learning
function for GG to obey the competitive learning principle
[19, 22, 23].

3 The GG growing process

Like the SOM, GG is a neural clustering approach. More
specifically, GG is a dynamic variant of the SOM. GG con-
tains growing and fine-tuning stages, which use the same
learning process but different learning rates: a fixed learn-
ing rate at the growing stage and a decaying learning rate
over time at the fine-tuning stage. The growing process of
GG is achieved by increasing rows of units or columns of
units in a grid. It starts with 2x2 units in a grid architec-
ture and develops the grid periodically by inserting a whole
set of units in a column or row (Fig. 1). The units grow
from the position between the most frequently activated unit
and its farthest direct neighboring unit (Fig. 1b). Thus, by
keeping a grid structure that is formed by the positional
units, GG inherits from the SOM a method of providing a
two dimensional view effortlessly. The growing frequency
depends on the learning length for the target unit number
as shown in (1). After gt number learning steps, the whole
set of units in a column or row is inserted. Criteria for
stopping growth should be set in order to prevent the grid
from growing indefinitely. Like the SOM, the GG uses the

(a) (b) (c)
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B

Fig. 1 The growing process of the Growing Grid (GG) model. GG
adds a set of units after every gt learning steps as in (1). Units are rep-
resented as circles. Lateral connections between units are represented

as lines. Circle A denotes the most frequently activated unit and Cir-
cle B is the farthest direct neighbor for Circle A. Grey circles are new
units at each growing iteration
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predefined learning length as its natural stop criteria. Unlike
the SOM, which uses two predefined learning lengths for
rough learning and fine-tuning learning respectively, the GG
starts its fine-tuning learning stage once its unit number
achieves a predefined target number of units at the growing
stage [17].

gt = max

(
1, ceil

(
l

U − ut

))
, (1)

where l is the learning length, U is the target unit number, t

is time, and ut denotes the number of units built at time t .

4 The GG learning process

The learning process is the means by which units of the grid
are modified to represent their associated input samples as
faithfully as possible. Like the SOM, GG uses a topologi-
cal structure of units such that adjacent units contain similar
weights so that they self-organize into an ordered map [1].
Based on a current topological structure, units in the output
layer are interconnected with lateral connections. This inter-
connection influences the difference in activation for output
units during learning.

At each learning step, the first core rule is to decide the
best matching unit (BMU) for a current input vector. By
comparison with an input vector, units of current GG topol-
ogy compete against each other. The winner is the BMU,
which is the unit most similar to the input vector and which
represents the input vector best, as in (2). The second core
rule is to make this BMU together with its neighbors, move
towards the input vector. The BMU should then be the unit
with the largest activation value, and units in a neighbor-
hood with close proximity are more active than those units
in a neighborhood that is further away.

‖X(t) − Wb(t)‖ ≤K
j=1

∥∥X(t) − Wj(t)
∥∥ (2)

where ‖ . ‖ is the Euclidean norm, X is the input vector,
W is the output unit vector, t denotes time, K is the total
number of output units in the current topological grid and b

is the BMU.
In Fig. 2, the input vector is represented as circle X. Units

in neighbourhood 1 are more active than those in neighbour-
hood 2. The learning process is a way of making these units
represent input vectors better. In other words, as in the con-
cept of vector quantization, the learning process is a way to
reduce the quantization error. This is carried out by a neigh-
borhood function and learning rate in the update function
of the GG model, as in (3). At the growing stage, the GG

1

2

X

Fig. 2 An example of the neighborhood. The input vector is repre-
sented as circle X. Units in neighborhood 1 are more active than those
in neighborhood 2

model uses a fixed learning rate to represent its associated
input samples quickly. At the fine-tuning stage, the topolog-
ical structure is fixed. The GG model fine-tunes its output

X

C

E

D

B

A' B' C'

A

E'

D'

Fig. 3 An example of the 3×3 GG learning influenced by a current
topological structure. The winner B and it neighbors A, C, D and E

move towards the input vector X and the modified units are shown as
dark circles
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units with a time decaying learning rate in order to pursue a
better representation.

Wj(t + 1) = Wj(t) + α(t)Ab(j, t)(X(t) − Wj(t)), (3)

where t denotes time, α(t) is the learning rate function and
Ab(j, t) is a bell-shaped neighborhood function centered on
the BMU b as (4), X is the input vector, and W is the output
unit vector.

Ab(j, t) = e
−d2

bj /2δ2
t , (4)

where δt is the neighborhood radius at time t and d =∣∣rb − rj
∣∣ is the city-block distance between output units b

and j on the grid.
In Fig. 3, before learning, output units are denoted as

light grey units, such as units A, B, C, D, E, etc. Unit B is
the best matching unit (BMU) because it is the nearest unit
to the input vector X. In this example, only the winner and
its direct neighbors are updated. That is, the winner B and it
neighbors A, C, D and E move towards the input vector X.

5 Constrained neural learning

The GG algorithm is a robust tool for a mapping task but it
has also been proposed as a biological model of topological
map formation. From the viewpoint of biological function,
the competition feature enhances the winning unit’s reac-
tion, while the cooperation feature makes the BMU and its
neighbors work together towards modification of the synap-
tic strengths [24]. The lateral connection of output units is
crucial for self-organization and formation of a topologi-
cally ordered network. The topologically ordered network is
defined and proven by [25, 26] as in (5).

Ab(b1, t)>Ab(b2, t) if ‖X(t)−Wb1(t)‖<‖X(t)−Wb2(t)‖
(5)

where Ab(b, t) is the neighborhood function centered on the
unit b and ‖ . ‖ is the Euclidean norm.

According to the GG algorithm, the update rule (3) forces
each output unit within the defined neighborhood to move
towards the input vector, by the distance between the output
unit and the input vector. However, besides the neighbor-
hood function, this distance also represents the strength of
activation. Compared to its neighbors, the BMU may not
move the most towards the input vector since the BMU
is the closest unit to the input vector. In other words, the
BMU may not always be the most responsive unit to a given
input vector. Although the neighborhood function reduces
this opportunity, it may make output units overactive in the
BMU direct neighborhood.

On the other hand, from a biological viewpoint, neurons
or output units do not change their behavior abruptly but in a
smooth way [27]. The GG adapted methods will make out-
put units go back and forth at the learning stage so that the
cortical column may not spread suitably. Thus, we constrain
the output unit adapted behavior to the area of the input
vector and its associated BMU. The modification of the tra-
ditional GG algorithm is proposed as in (6). As unit b is
the best matching unit, its Euclidean norm or distance to the
input vector X at time t (i.e., ‖X(t) − Wb(t)‖) should be the
shortest among the units. In (6), the activation of neighbors
of the BMU (i.e. unit j , where j ∈ b′s neighbors, j �=
b) is constrained to the proportion of ‖X(t) − Wb(t)‖ to∥∥X(t) − Wj(t)

∥∥. If X(t) �= Wj(t) and j �= b, then
‖X(t)−Wb(t)‖‖X(t)−Wj (t)‖ is less than 1. If X(t) �= Wj(t) and j = b,

then ‖X(t)−Wb(t)‖‖X(t)−Wj (t)‖ equals 1. Therefore, this modification (6)

will guarantee that the BMU will have the strongest acti-
vation to the input vector and there is no influence for the
BMU per se.

Wj(t + 1) =
⎧⎨
⎩

Wj(t)+α(t)Ab(j, t)(X(t)−Wj(t))
‖X(t)−Wb(t)‖
‖X(t)−Wj (t)‖ ,

if X(t) �=Wj(t) ,
Wj (t), otherwise

(6)

where t denotes time, α(t) is the learning rate function,
Ab(j, t) is the neighborhood function centered on the
BMU b.

6 Evaluation measures

In this research, the average quantization error (AQE) [3],
error entropy [28], average map scope (AMS) [23], BMU
activation rate (BAR) and topographic error (TE) [3, 29] are
evaluated for the explanation ability, smooth hyper surface,
border effect, BMU activation and topology preservation of
the GG algorithms respectively.

6.1 Average quantization error

The quantization error, which is also called the distortion
measure for SOM-like models, is suggested by Kohonen as
a measurement used in the vector quantization technique
[3]. The quantization error is defined as the sum of the
Euclidean norm between every input vector and its BMU. A
trained topological structure with a smaller value of quan-
tization error produces a smaller distortion for their input
samples. Thus, a better GG model should have a smaller
quantization error. As the number of output units affects the
quantization error, this paper uses the average quantization
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error (AQE) instead. Given an input vector Xi , the average
quantization error is described as in (7).

AQE = 1

N

N∑
i=1

‖Xi − Wi‖, (7)

where N is the total number of input samples, Xi is the
weight vector of input sample i, and Wi denotes the BMU
of Xi .

6.2 Error entropy

The GG models use their trained grids to represent input
vectors. An ideal SOM-like model should build a smooth
hyper surface and each unit on the surface should be evenly
distributed [3]. Based on this concept, Wu and Takatsuka
[28] proposed a measure, namely error entropy, to evalu-
ate the average distribution of error for units on the map.
Entropy [30], from information theory, is a measure to eval-
uate the uncertainty of variables, which is able to evaluate
the degree of uniformity of the error distribution on the map.
This paper uses the same definition of error entropy as in
the work of Wu and Takatsuka [28] and Hung [23], which is
shown in (8). A map with greater error entropy has a more
even error distribution, producing a smoother surface to rep-
resent input vectors. A unit that does not represent any input
samples is given an error entropy of zero.

ErrorEntropy = −
⎛
⎝ K∑

j=1

ej log2 ej

⎞
⎠

where

{
ej = UQEj

T QE
, if UQEj > 0

ej = 1, if UQEj = 0
, (8)

K is the total number of units, UQEj and TQE mean
the quantization error of unit j and total quantization

error for the map, which are shown in (9) and (10),
respectively.

UQEj =
L∑

i=1

∥∥Xi − Wj

∥∥, (9)

where Wj is the weight vector of unit j , which is the BMU
for input sample i, and L is the total number of input
samples whose BMU is unit j .

T QE =
N∑

i=1

‖Xi − Wi‖, (10)

where Xi is the weight vector of input sample i, Wi is the
weight vector of BMU for input sample i and N is the total
number of input samples.

6.3 Average map scope

One well-known problem of the SOM-like model is a bor-
der effect, whereby units at the border of a trained map do
not represent their associated input samples well compared
with those units inside the map [3, 23]. The border effect
happens because units at the border of the map have fewer
neighbors than those inside the map. Thus, the whole map
does not stretch out enough. The result of this effect is that
input samples whose BMUs are at the border are not repre-
sented well compared with those samples whose BMUs are
inside the trained map. For example, in Fig. 4a and b, each
input sample is illustrated by a small grey dot and each out-
put unit is represented by a circle. The trained map in Fig. 4b
stretches wider than that in Fig. 4a, so the border effect in
Fig. 4a is greater than that in Fig. 4b. Hung [23] proposed
the average map scope (AMS) to evaluate the border effect,
which is also used in this research. AMS is defined as the
average distance of border units to the center of the map as
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Fig. 4 (a) A 6×5 GG with a greater border effect. (b) A 6×5 GG with a smaller border effect
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in (11). A trained map of GG with a smaller border effect
should have a larger average map scope.

Average map scope = 1

B

B∑
i=1

‖Wi − Wc‖, (11)

where B is the total number of border units, Wi denotes the
weight vector of the border unit, Wc denotes the average
weight vector of all units, as shown in (12).

Wc = 1

K

K∑
j=1

Wj, (12)

where K is the total number of units and Wj is the weight
vector of unit.

6.4 The BMU activation rate

As the traditional GG algorithm follows the competitive
learning principle [17], the unit which is closest to the
input vector should be more active than the others. How-
ever, according to the original update rule as shown in (3),
the BMU may not produce the greatest response to the
input stimulus due to the distance between the BMU and
its associated input vector, which is the shortest. Although
the bell-shaped neighborhood function as shown in (4) may
reduce this situation, it is interesting to test whether the
BMU moves more than its neighbors towards their associ-
ated input vector during learning. This test can be done by
the BMU activation rate (BAR), which is shown in (13).

BAR = 1

S

S∑
i=1

r(xi),

r(xi) =
{

1, if the BMU moves the most towards xi

0, otherwise
(13)

where S is the total number of learning steps. The value
of r(xi) equals 1, if the BMU moves the most towards its
associated input vector xi , or otherwise equals 0.

6.5 Topographic error

Like the SOM, one main goal of a GG model is to project
input vectors from a high-dimensional space onto a low-
dimensional space, and faithfully keep their internal struc-
ture. Therefore, nearby input vectors are projected onto
output units, which are located nearby in the output space.
For example, if two input vectors X and Y have a neighbor-
hood relationship, their BMUs (i.e. Wx and WY ) should also
be neighbors. This characteristic of the projection preserves
the topology of data and is a useful evaluation criterion for
the quality of neural clustering [31]. There are several mea-
sures to evaluate topology preservation, such as topographic
product [32], topographic function [33], topographic error

[29] and some other alternatives [34]. Generally speaking,
the tests for topology preservation require huge computa-
tional resources for the calculation of the distances between
all units and the distances between all input vectors. This
research uses topographic error to measure the topology
preservation as this approach reduces the huge computa-
tional burden, as suggested by Kohonen [3]. Topographic
error is defined as the proportion of all data vectors whose
first and second BMUs are not adjacent units (14). The
lower the topographic error is, the better the GG preserves
the topology.

T E = 1

N

N∑
i=1

u(xi),u(xi)

=
{

1, if the 1st and 2nd BMUs are not neighbors
0, otherwise

(14)

where neighbor denotes units with the direct connection
between each other,N is the total number of input samples
and x is the input vector.

7 Experiments

To test the performance of the traditional GG and the pro-
posed constrained growing grid (CGG), we use fifteen data
sets, including a square data set [23], animal data set [35],
iris data set [36], ionosphere data set [37], sentiment polar-
ity data set [38, 39] and the fundamental clustering problem
suite (FCPS) [40], which consists of ten data sets (i.e.,
Atom, Chain Link, Engy Time, Golf Ball, Hepta, Lsun, Tar-
get, Tetra, Wing Nut, Two Diamonds). The whole learning
length includes two stages, i.e. the growing and fine-tuning
stages. The GG model grows its units only at the growing
stage with a fixed and greater learning rate. In the second
phase, the GG model fine-tunes its current topological struc-
ture with a smaller learning rate, which decays over time.
We extend the traditional GG model by two approaches
to test our constrained neural learning rule. The first one,
namely fine-tune CGG, keeps the same learning rule as that
in the traditional GG at the growing stage and constrains
the reaction of non-BMUs to their associated input vectors
only at the fine-tuning stage. Thus we can evaluate the per-
formance of the constrained neural learning rule in a stable
topological structure of GG. The second approach, namely
full CGG, uses the constrained neural learning rule at both
growing and fine-tuning stages. The full CGG realizes a real
winner-take-more neural learning model, in which the best
matching unit has the strongest reaction to its associated
input stimulus.

For comparison, we treat the traditional GG as the bench-
mark model. The traditional self-organizing map (SOM)
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Table 1 The Performance Comparison Evaluated by AQE, error
entropy, BAR, AMS and TE for a square data set

Models AQE Error Entropy BAR AMS TE

SOM 0.315 4.3105 0.05 1.0341 0

CSOM 0.257 4.5489 1 1.1932 0

GG 0.279 4.467 0.182 1.106 0.011

Fine-tune CGG 0.282 4.436 0.632** 1.116 0.021

(0.235) (0.175) (0.000) (0.217) (0.160)

Full CGG 0.256** 4.511 1** 1.234** 0.008

(0.000) (0.181) (0.000) (0.000) (0.052)

The value in bold form denotes a better performance than its bench-
mark. The p-value of t-test is shown in parenthesis.
*denotes that the difference between two models achieves the 0.05
significance level.
**denotes that the difference between two models achieves the 0.01
significance level.

and its constrained version (i.e. CSOM) are also provided.
All growing grid models use the same parameters such as
the learning rate, the learning length and the target unit num-
ber. In this paper, the fixed learning rate at the growing
stage is 0.1 and the initial decaying learning rate at the fine-
tuning stage is 0.005, which are also used in the original
GG paper [17]. The initial decaying learning rate for SOM
models is 0.1. The whole learning length of all models is set
to 200 epochs and the predefined target unit number is set
to 25. Different parameters have been tried and similar con-
clusions have been reached. To obtain more general results,
each model is tested 10 times and the average results are
used for comparison. Finally, a t-test is used to test whether
or not the difference between the proposed CGG and the
traditional GG models is of statistical significance.
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Fig. 5 A convergence comparison of models evaluated by AQE for a
square data set
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Fig. 6 A convergence comparison of models evaluated by error
entropy for a square data set

7.1 The square data set

The square data set is used to demonstrate the ability of
the SOM, constrained SOM, growing grid, fine-tune CGG,
and full CGG to learn from a square data distribution. The
square data set, proposed by Hung [23], uses 900 two-
dimensional input samples from a 3 × 3 grid, which is
between (0, 0) and (3, 3) at intervals of 0.1. Thus, this
data set contains 900 evenly distributed points in a square.
According to the experiments in Table 1, the traditional
GG model outperforms the traditional SOM model, evalu-
ated by criteria of average quantization error (AQE), error
entropy, BMU activation rate (BAR) and average map scope
(AMS). The static SOM model is better than the dynamic
GG model, evaluated by the topographic error criterion. The
constrained SOM is better than the traditional one. The fine-
tune CGG model is better than the traditional GG model
only in the criteria of BAR and AMS. One possible rea-
son is that the effect of the constrained learning rule is
limited when the learning rate is decayed to a very small
value. However, if the constrained learning rule is used at
both growing and fine-tuning stages, our proposed full CGG
model outperforms GG and fine-tune CGG models.

We further use t-test to measure the degree of paired dif-
ference between GG models. Based on the criteria of AQE,
BAR and AMS, the full CGG is significantly better than
GG, which clearly indicates that our proposed model is an
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Fig. 7 A convergence comparison of models evaluated by BAR for a
square data set
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Fig. 8 A convergence comparison of models evaluated by AMS for a
square data set

improvement on the traditional GG model on these criteria.
In terms of the criteria of error entropy and TE, the full CGG
model does not significantly outperform GG, the p-value in
the t-test being greater than 0.05.

It is useful to evaluate different models by their conver-
gence maps. The whole learning length of GG includes the
growing and fine-tuning stages. Generally speaking, all con-
vergence maps in Figs. 5, 6, 7, 8 and 9 are smooth due to
taking the average results of 10 runs. In terms of the TE eval-
uation criterion (Fig. 9), the GG models appear to be slightly
unstable during learning. However, the full CGG model per-
forms better than other GG models in all evaluation criteria
at each learning epoch.

7.2 The animal data set

The square data set contains input vectors which are clearly
separated and thus the algorithms should have a good topo-
logical structure. The famous animal data set used in the
literature [35] to demonstrate the ability of self-organizing
semantic maps is also used in this paper. The animal data set
contains 16 animals with 13 features and forms a 16 by 13
input matrix. Each row uses a schematic description of an
animal, based on the presence (=1) or absence (=0) of some
of the 13 different features. According to the experiments in
Table 2 and Figs. 10, 11, 12, 13 and 14, the traditional GG
model performs better than the traditional SOM model in
all criteria except BAR. The fine-tune CGG model performs
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Fig. 9 A convergence comparison of models evaluated by TE for a
square data set

Table 2 Performance Comparison Evaluated by AQE, error entropy,
BAR, AMS and TE for an animal data set

Models AQE Error Entropy BAR AMS TE

SOM 0.859 3.127 0.739 0.983 0.013

CSOM 0.818 3.134 1 1.009 0.044

GG 0.487 3.462 0.459 1.352 0

Fine-tune CGG 0.457** 3.542** 0.674** 1.331 0.019

(0.000) (0.000) (0.000) (0.109) (0.193)

Full CGG 0.204** 3.553 1** 1.411** 0.082**

(0.000) (0.167) (0.000) (0.000) (0.000)

The value in bold form denotes a better performance than its bench-
mark. The p-value of t-test is shown in parenthesis
*denotes that the difference between two models achieves the 0.05
significance level
**denotes that the difference between two models achieves the 0.01
significance level
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Fig. 10 A convergence comparison of models evaluated by AQE for
an animal data set
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Fig. 11 A convergence comparison of models evaluated by error
entropy for an animal data set
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Fig. 12 A convergence comparison of models evaluated by BAR for
an animal data set
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Fig. 13 A convergence comparison of models evaluated by AMS for
an animal data set

significantly better than the traditional GG model, evalu-
ated by the criteria of AQE, error entropy and BAR. The
constrained SOM and full CGG models outperform their
traditional counterparts in all criteria except TE. In terms of
the TE criterion, all GG models show instability in the con-
vergence process (Fig. 14). The constrained GG models do
not perform better than the benchmark for this criterion.

7.3 The iris data set

The well-known iris data set collects iris flowers of three
species, i.e. setosa, virginica and versicolor, each of which
contains 50 input samples [36]. Each flower is illustrated by
four features, i.e. the length of sepals, the length of petals,
the width of sepals and the width of petals. According to
the experiments in Table 3 and Figs. 15, 16, 17, 18 and 19,
the traditional GG models perform better than the traditional
SOM models in all criteria. The constrained SOM models
perform better than the traditional SOM models in all cri-
teria except TE. The fine-tune CGG models outperform the
traditional GG models, evaluated by the criteria of AQE,
error entropy and BAR. The full CGG models significantly
outperform the traditional GG models in all criteria except
TE.

7.4 The ionosphere data set

The ionosphere data set contains 351 radar samples with 34
continuous attributes and a class label, which builds a 351
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Fig. 14 A convergence comparison of models evaluated by TE for an
animal data set

Table 3 Performance Comparison Evaluated by AQE, error entropy,
BAR, AMS and TE for an iris data set

Models AQE Error Entropy BAR AMS TE

SOM 0.454 3.652 0.127 1.494 0.233

CSOM 0.388 4.127 1 1.659 0.278

GG 0.409 4.174 0.370 1.949 0.093

Fine-tune CGG 0.371** 4.293 0.475** 1.859 0.102

(0.006) (0.112) (0.000) (0.065) (0.090)

Full CGG 0.337** 4.483** 1** 1.987* 0.166**

(0.000) (0.000) (0.000) (0.019) (0.000)

The value in bold form denotes a better performance than its
benchmark. The p-value of t-test is shown in parenthesis
*denotes that the difference between two models achieves the 0.05
significance level
**denotes that the difference between two models achieves the 0.01
significance level

0.3

0.35

0.4

0.45

0.5

20 40 60 80 100 120 140 160 180 200

Epoch

GG

fine-tune CGG

full CGG

Fig. 15 A convergence comparison of models evaluated by AQE for
an iris data set
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Fig. 16 A convergence comparison of models evaluated by error
entropy for an iris data set
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Fig. 17 A convergence comparison of models evaluated by BAR for
an iris data set
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Fig. 18 A convergence comparison of models evaluated by AMS for
an iris data set
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Fig. 19 A convergence comparison of models evaluated by TE for an
iris data set

Table 4 Performance Comparison Evaluated by AQE, error entropy,
BAR, AMS and TE for an ionosphere data set

Models AQE Error Entropy BAR AMS TE

SOM 1.816 4.208 0.605 1.681 0.100

CSOM 1.769 4.429 1 1.804 0.083

GG 1.746 4.549 0.776 1.927 0.072

Fine-tune CGG 1.739 4.503** 0.865** 1.889* 0.078

(0.162) (0.004) (0.000) (0.014) (0.512)

Full CGG 1.710** 4.633** 1** 1.845** 0.079

(0.000) (0.003) (0.000) (0.004) (0.135)

The value in bold form denotes a better performance than its bench-
mark. The p-value of t-test is shown in parenthesis
*denotes that the difference between two models achieves the 0.05
significance level
**denotes that the difference between two models achieves the 0.01
significance level
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Fig. 20 A convergence comparison of models evaluated by AQE for
an ionosphere data set
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Fig. 21 A convergence comparison of models evaluated by error
entropy for an ionosphere data set
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Fig. 22 A convergence comparison of models evaluated by BAR for
an ionosphere data set
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Fig. 23 A convergence comparison of models evaluated by AMS for
an ionosphere data set
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Fig. 24 A convergence comparison of models evaluated by TE for an
ionosphere data set
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Fig. 25 A convergence comparison of models evaluated by AQE for
a sentiment polarity data set

by 34 input matrix [37]. Since the GG model is an unsu-
pervised neural clustering approach, the class label is not
included in this research. According to the experiments in
Table 4 and Figs. 20, 21, 22, 23 and 24, the traditional GG
models perform better than the traditional SOM models and
the constrained SOM models perform better than the tradi-
tional SOM models, evaluated by all criteria. The full CGG
models are significantly better than the traditional GG mod-
els for the criteria of AQE, error entropy and BAR, but
worse for the criteria of AMS and TE. According to the con-
vergence maps in Figs. 20, 21, 22, 23 and 24, the criterion of
TE appear to be unstable during learning for all GG models.

7.5 Sentiment polarity data set

In order to test the proposed approaches in a high-
dimensional data set, a well-known movie review data set is
used. The sentiment polarity data set contains 2000 movie

Table 5 Performance Comparison evaluated by AQE, error entropy,
BAR, AMS and TE for a sentiment polarity data set

Models AQE Error Entropy BAR AMS TE

SOM 4.014 4.459 0.999 2.151 0.246

CSOM 4.007 4.464 1 2.183 0.240

GG 4.039 4.583 0.999 2.616 0.116

Fine-tune CGG 4.031* 4.637* 0.999 2.565 0.103*

(0.015) (0.027) (0.193) (0.076) (0.044)

Full CGG 4.030 4.636** 1* 2.657 0.110

(0.063) (0.000) (0.15) (0.322) (0.108)

The value in bold form denotes a better performance than its bench-
mark. The p-value of t-test is shown in parenthesis
*denotes that the difference between two models achieves the 0.05
significance level
**denotes that the difference between two models achieves the 0.01
significance level
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Fig. 26 A convergence comparison of models evaluated by error
entropy for a sentiment polarity data set
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Fig. 27 A convergence comparison of models evaluated by BAR for
a sentiment polarity data set
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Fig. 28 A convergence comparison of models evaluated by AMS for
a sentiment polarity data set
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Table 6 Description of fundamental clustering problem suite (FCPS)

Two

Atom Chain Engy Golf Hepta Lsun Target Tetra Wing Diamonds

Link Time Ball Nut

Samples 800 1000 4096 4002 212 400 770 400 1070 800

Attributes 3 3 2 3 3 2 2 3 2 2

Table 7 Performance Comparison Evaluated by AQE for FCPS

Two

Models Atom Chain Engy Golf Hepta Lsun Target Tetra Wing Diamonds

Link Time Ball Nut

GG 13.444 0.492 0.523 0.364 0.672 0.317 0.334 0.534 0.319 0.205

Fine-tune 13.190 0.481** 0.505** 0.352** 0.651** 0.320 0.336 0.536 0.314 0.203

CGG (0.091) (0.008) (0.001) (0.000) (0.002) (0.053) (0.511) (0.107) (0.062) (0.421)

Full CGG 10.616** 0.346** 0.474** 0.316** 0.502** 0.268** 0.245** 0.488** 0.270** 0.169**

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

The value in bold form denotes a better performance than its benchmark. The p-value of t-test is shown in parenthesis
*denotes that the difference between two models achieves the 0.05 significance level
**denotes that the difference between two models achieves the 0.01 significance level

Table 8 Performance Comparison Evaluated by Error Entropy for FCPS

Two

Models Atom Chain Engy Golf Hepta Lsun Target Tetra Wing Diamonds

Link Time Ball Nut

GG 4.257 4.237 4.482 4.731 3.371 4.204 4.104 4.441 4.488 4.420

Fine-tune 4.249 4.253 4.529* 4.761* 3.444** 4.175* 4.109 4.447 4.495 4.423

CGG (0.875) (0.552) (0.027) (0.027) (0.013) (0.037) (0.623) (0.734) (0.547) (0.838)

Full CGG 4.563** 4.359* 4.624** 4.748 4.200** 4.503** 4.395** 4.588** 4.711** 4.654**

(0.000) (0.014) (0.000) (0.391) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Table 9 Performance Comparison Evaluated by BAR for FCPS

Two

Models Atom Chain Engy Golf Hepta Lsun Target Tetra Wing Diamonds

Link Time Ball Nut

GG 0.412 0.243 0.226 0.378 0.194 0.147 0.186 0.463 0.196 0.203

Fine-tune 0.620** 0.620** 0.502** 0.621** 0.517** 0.491** 0.505** 0.684** 0.535** 0.448**

CGG (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001)

Full CGG 1** 1** 1** 1** 1** 1** 1** 1** 1** 1**

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
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Table 10 Performance Comparison Evaluated by AMS for FCPS

Two

Models Atom Chain Engy Golf Hepta Lsun Target Tetra Wing Diamonds

Link Time Ball Nut

GG 24.823 1.387 1.873 0.774 2.244 1.485 1.025 1.214 1.192 1.041

Fine-tune 26.552 1.337* 1.794** 0.793** 2.183* 1.468 1.004 1.219 1.189 1.068*

CGG (0.241) (0.016) (0.003) (0.000) (0.020) (0.185) (0.798) (0.547) (0.897) (0.015)

Full CGG 34.104** 1.513** 2.131** 0.827** 2.502** 1.638** 1.620** 1.287** 1.292** 1.123**

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

(a) 2x2 grid (b) 3x3 grid (c) 5x5 grid
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Fig. 30 The convergence maps of growing grid after 0, 20 and 200 epochs for the target data set. A circle denotes an output unit and a grey dot
denotes an input vector

(a) 2x2 grid (b) 3x3 grid (c) 6x4 grid

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Fig. 31 The convergence maps of fine-tune CGG after 0, 20 and 200 epochs for the target data set. A circle denotes an output unit and a grey dot
denotes an input vector
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Fig. 32 The convergence maps of full CGG after 0, 20 and 200 epochs for the target data set. A circle denotes an output unit and a grey dot
denotes an input vector
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Table 11 Performance Comparison Evaluated by TE for FCPS

Two

Models Atom Chain Engy Golf Hepta Lsun Target Tetra Wing Diamonds

Link Time Ball Nut

GG 0.109 0.081 0.136 0.080 0.037 0.200 0.082 0.084 0.044 0.052

Fine-tune 0.099 0.087 0.179** 0.084 0.042 0.169* 0.088 0.100** 0.054** 0.055

CGG (0.301) (0.153) (0.000) (0.424) (0.455) (0.014) (0.312) (0.009) (0.008) (0.312)

Full CGG 0.095* 0.079 0.096** 0.100** 0.088** 0.180 0.029** 0.069* 0.040* 0.071**

(0.031) (0.348) (0.004) (0.002) (0.000) (0.060) (0.000) (0.046) (0.011) (0.000)

reviews extracted from Internet movie database (IMDb,
http://www.imdb.com/) by Pang and Lee [38]. After text
processing in the work of Hung and Lin [39], this data
set contains 3131 attributes and builds a 2000 by 3131
input matrix. According to the experiments in Table 5 and
Figs. 25, 26, 27, 28 and 29, the constrained SOM models
outperform traditional SOM models for all evaluation cri-
teria. The traditional GG models perform better than the
traditional SOM models, evaluated by the criteria of error
entropy, AMS and TE. The fine-tune CGG models perform
significantly better than the traditional GG models, evalu-
ated by the criteria of AQE, error entropy and TE. The full
CGG models outperform the traditional GG models in all
evaluation criteria.

7.6 Fundamental clustering problem suite (FCPS)

The fundamental clustering problem suite (FCPS) contains
ten data sets, which are treated as test beds for neural clus-
tering [40]. A short description of data sets is shown in
Table 6. Based on the criteria of AQE, error entropy and
BAR, except in a few cases, the experiments in Tables 7,
8 and 9 demonstrate that the fine-tune CGG models per-
form better than the traditional GG models. According to the
experiments shown in Tables 7, 8, 9 and 10, the full CGG
models significantly outperform the traditional GG mod-
els, evaluated by the criteria of AQE, error entropy, BAR
and AMS. In terms of the TE criterion, the full CGG mod-
els perform better than the traditional GG models for seven
datasets, which are Atom, Chain Link, Engy Time, Lsun,
Target, Tetra and Wing Nut. Thus, the experiments con-
clude that the proposed full CGG models can significantly
improve the traditional GG model based on five evaluation
criteria. Convergence maps of the traditional GG, fine-tune
CGG and full CGG are shown in Figs. 30, 31 and 32, respec-
tively. From these convergence maps, we can evaluate the
quality of growing maps based on visualization, and show
that the proposed full CGG is more effective than the others
(Table 11).

8 Conclusion

The Growing Grid (GG) is a very useful algorithm for map-
ping a high-dimensional data set onto a low-dimensional
topological map without using the predefined topological
structure before learning. It enforces a non-linear projection,
a non-parametric statistical technique and an unsupervised
competitive learning rule. In this paper, a novel constrained
GG (CGG) is proposed, which emphasizes the effect on the
lateral connections of output units and neutralizes the effect
of the input vectors on the neighbors. The fine-tune CGG
uses the constrained neural learning rule only at its fine-
tuning stage, whereas the full CGG uses the constrained
neural learning rule at both growing and fine-tuning stages.
Fifteen data sets are used and evaluated by five criteria,
which are average quantization error (AQE), error entropy,
BMU activation rate (BAR), average map scope (AMS) and
topographic error (TE). We compare the performance of
the traditional SOM, constrained SOM, GG, fine-tune CGG
and full CGG based on the average results from ten exper-
iments for each evaluation criterion. Except in some cases,
the performance of the traditional GG is improved if the
constrained learning rule is used, and the constrained neu-
ral learning rule used at both growing and fine-tuning stages
outperforms only at the fine-tuning stage. Finally, we use
the t-test to test whether the improvements from our pro-
posed model achieve statistical significance or not. Except
in some cases, our proposed full CGG model significantly
outperforms those models with an original learning rule.
These exceptions may occur due to some GG models ran-
domly building a twisted map at their growing stage, so that
the fine-tune CGG or full CGG cannot produce a significant
improvement.

9 Scope for future work

For future work, the following issues may be considered.
Firstly, our proposed approach could be applied to other
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competitive learning models, such as neural gas (NG),
growing neural gas (GNG), growing neural gas with utility
(GNG-U), grow when required (GWR), dynamic adaptive
self-organizing hybrid (DASH), etc. Secondly, more eval-
uation and application methods may be considered. For
example, the receiver operating characteristics (ROC) curve
could be explored as a recommender system, and other data
sets from different domains may also be utilized for com-
parison. Thirdly, another important issue is how to avoid
building a twisted topological map. This may occur due
to some uncontrollable random parameters. However, such
random parameters should not simply be removed, i.e. ini-
tial random unit weights and random input sample order.
A twist-free mechanism would be a welcome addition in
the field, and is a possible direction for further research.
Fourthly, according to some experiments, it seems diffi-
cult to improve the performance of topological preservation
based on the topographic error (TE) criterion for neural
growing models. The possible reason may be inadequate
learning length for each growing process. As this research
only focuses on the principle of winner-take-more, fur-
ther research could evaluate the relationship between the
learning length and effectiveness of topological preserva-
tion. Fifthly, typical mapping algorithms have online and
offline specifications of algorithms. However, this research
applies only to online growing grid algorithms. In future
work, the proposed constrained neural learning could be
used in offline mapping algorithms and it should be inter-
esting to compare the difference between online and offline
constrained models.
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27. Göppert J, Rosenstiel W (1994) Dynamic extensions of self-
organizing maps. In: International conference on artificial neural
networks, pp 330–333

28. Wu Y, Takatsuka M (2005) The geodesic self-organizing map and
its error analysis. In: Twenty-eighth Australasian conference on
computer science, pp 343–351

29. Kiviluoto K (1996) Topology preservation in self-organizing
maps. In: International conference on neural networks, pp 294-299

30. Shannon CE, Weaver W (1949) In: The mathematical theory of
communication. University of Illinois Press, Urbana

31. Khalilia M, Popescu M (2014) Topology preservation in fuzzy
self-organizing maps, vol 312, pp 105–114



A constrained growing grid neural clustering model 31

32. Bauer H-U, Pawelzik KR (1992) Quantifying the neighborhood
preservation of self-organizing feature maps. IEEE Trans Neural
Netw 3(4):570–578

33. Villmann T, Der R, Hermann M, Martinetz T (1997) Topol-
ogy preservation in self-organizing feature maps: exact defi-
nition and measurement. IEEE Trans Neural Netw 8(2):256–
266

34. Uriarte EA, Martin FD (2008) Topology preservation in SOM.
World Academy of Science. Eng Technol 2:867–870

35. Rauber A, Paralic J, Pampalk E (2000) Empirical evalua-
tion of clustering algorithms. J Inf Organ Sci 24(2):195–
209

36. Fisher RA (1936) The use of multiple measurements in taxonomic
problems. Annu Eugen 7:178–188

37. Sigillito VG, Wing SP, Hutton LV, Baker KB (1989) Classifica-
tion of radar returns from the ionosphere using neural networks.
Johns Hopkins APL Tech Dig 10:262–266

38. Pang B, Lee L (2004) A sentimental education: sentiment analy-
sis using subjectivity summarization based on minimum cuts. In:
the 42nd Annual Meeting of the Association for Computational
Linguistics, pp 271–278

39. Hung C, Lin H-K (2013) Using objective words in SentiWordNet
to improve word-of-mouth sentiment classification. IEEE Intell
Syst 28(2):47–54

40. Ultsch A (2005) Clustering with SOM: U*C. In: Workshop on
Self-Organizing Maps, pp 75–82

Chihli Hung received a PhD
at School of Computing and
Technology from the Uni-
versity of Sunderland, UK
in 2004. He is an associate
professor at the Department
of Information Management,
Chung Yuan Christian Uni-
versity, Taiwan, R.O.C. His
current research interests are
in text mining, intelligence
systems, computational intel-
ligence, and data mining.


	A constrained growing grid neural clustering model
	Abstract
	Introduction
	Related work
	The GG growing process 
	The GG learning process
	Constrained neural learning 
	Evaluation measures
	Average quantization error
	Error entropy
	Average map scope
	The BMU activation rate
	Topographic error

	Experiments
	The square data set
	The animal data set
	The iris data set
	The ionosphere data set
	Sentiment polarity data set
	Fundamental clustering problem suite (FCPS)

	Conclusion
	Scope for future work
	References


