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Abstract The aim of lot sizing problems is to determine
the periods where production takes place and the quanti-
ties to be produced in order to satisfy the customer demand
while minimizing the total cost. Due to its importance on
the efficiency of the production and inventory systems, lot
sizing problems are one of the most challenging production
planning problems and have been studied for many years
with different modelling features. Among these problems,
the capacitated lot sizing problem (CLSP) has received a lot
of attention from researchers. Having motivated from our
earlier study, this study proposes a new hybrid approach
for solving the CLSP with the extension of setup carry-
over. Moreover, the initialization scheme proposed in the
earlier study has also been investigated comprehensively.
Lastly, an experimental study evaluating the solution qual-
ity of the proposed approach is carried out using various
problem instances and promising results are obtained when
compared to the recent results in the literature.
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1 Introduction

Today’s competitive world places a tremendous pressure on
companies to use their resources efficiently and satisfy cus-
tomer requirements on time. Achieving these goals requires
one to deal with a series of production planning problems.
Among these problems, the capacitated lot sizing problem
(CLSP) has received a lot of attention from researchers.
CLSP is a typical example of big bucket models where the
length of a period is long enough to produce more than
one product. The CLSP considers only the quantities and
timings of the production and ignores the sequence of the
products within a period [1]. Different from big bucket
models, small bucket models (i.e. Discrete Lot Sizing and
Scheduling Problem, Proportional Lot Sizing and Schedul-
ing, Continous Setup LotSizing and Scheduling) also deal
with the sequencing decisions. In recent years, a new model
combining the properties of the big bucket and small bucket
models, called CLSP with Setup Carryover (CLSPC) has
emerged. Like big bucket models, the CLSPC allows pro-
ducing more than one product per period and like small
bucket models it carries over the setup state of a prod-
uct from one period to the other. From the solution of the
problem, it is possible to obtain the production quantities
along with the semi-sequencing (i.e. first and last prod-
ucts produced in a period) of the products in a period.
The Capacitated Lot Sizing Problem with Setup Carryover
is the extension of the Capacitated Lot Sizing Problem
(CLSP) which is known for its computational intractabil-
ity. Florian et al. [2] have shown that the general case of
the single-item CLSP is NP Hard. Trigeiro et al. [3] state
that when set-up times are introduced in the multi-item
CLSP, even the feasibility problem becomes NP Complete.
Naturally, it becomes even harder to solve the CLSPC.
Since it is computationally very difficult to find optimal
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solutions to large-scale problems, nearly all earlier studies
employed heuristic approaches. The heuristic approaches
dealing with this problem can be classified as mathemati-
cal programming based approaches (Dillenberger et al. [4],
Sox and Gao [5], Suerie and Stadtler [6], Sahling et al.[7],
Helber and Sahling [8], Lang and Shen [9], Xiao et al.
[10]), metaheuristics (Gopalakrashinan et al. [11], Karimi
et al. [12], Nascimento and Toledo [13]), greedy heuristics
(Haase [14], Haase [15], Karimi and Ghomi [16], Gupta and
Magnusson [17] and hybrid approaches (Gören et al. [1],
Seanner et al. [18]). Table 1 chronologically presents the
studies conducted during the last 20 years based on the
solution approach proposed, type, properties and complex-
ity of the lot sizing problems. It should be noted that the
complexity is given in terms of the number of binary vari-
ables in the mathematical model of the lot sizing problem
considered in the study. Unlike most conventional methods
and some of the metaheuristics (i.e. tabu search, simulated
annealing) which conduct a single directional search, GAs
perform multiple directional searches using a set of can-
didate solutions, require no domain knowledge and use
stochastic transition rules to guide the search (Gen and
Cheng [19]). Different applications of GAs can be found
in literature such as maritime transportation (Kang et al.
[20]), vehicle routing (Ombuki et al. [21]) or grouping
(Korkmaz [22]) problems. However, it is well known that
pure GAs can locate the promising regions for global
optima in a search space, but in a large and complex
solution space, they have difficulty in finding the exact min-
imum/maximum of these optima. Therefore, in this study,
to further improve the performance of GAs in solving the
CLSPC, a new hybrid approach is proposed. This study
can be seen as the continuation of our earlier study Gören
et al. [1] in which Fix-and-Optimize heuristic is embed-
ded into the loop of GA to refine the solutions during the
generations of GA. Different from our earlier study, this
study suggests using a sequential hybridization scheme in
which the GAs and then Fix-and-Optimize heuristic are run
sequentially. By doing so, we hope that the GAs can locate
the promising region where good quality solutions exist and
then the Fix-and-Optimize heuristic further searches this
region for the best solution. Another issue affecting the per-
formance of the meta-heuristics is the choice of the initial
solution/solutions (Mohammadi and Ghomi [23]). If the ini-
tial solution/solutions is/are good enough, the probability
of finding better solutions will increase and the conver-
gence to the near-optimal or optimal solution will be more
quickly. In this study, to further improve the performance
of the proposed heuristic, we used the initialization scheme
introduced in Gören et al. [1] which creates half of the ini-
tial population randomly and the other half using problem
specific information. Encouraged from success of this ini-
tialization scheme in our previous study, in this study we

aimed at using this scheme more effectively. For this pur-
pose, we carried out a comprehensive experimental analysis
to determine the most appopriate portion of the random and
problem-specific part for each problem size.

The remainder of the study is organized as follows. In
the following section, the capacitated lot sizing problem
with setup carryover is defined. The details of the pro-
posed hybrid approach to solve this problem is presented
in Section 3. Section 4 presents the results of experimen-
tal study comparing the proposed approach to the recent
results in literature. Finally, the last section summarizes the
findings of this study and presents some future research
directions.

The Capacitated Lot Sizing Problem with Setup
Carryover (CLSPC)

In this study, to solve the CLSPC the model proposed
by Suerie and Stadtler [6] has been employed under the
following assumptions:

• The planning horizon T is fixed and divided into time
buckets (1, . . . .., T ).

• Several products requiring a unique set-up state are pro-
duced on each resource in each period (property of a big
bucket model).

• The resource consumption to produce a product j on a
resource is fixed.

• Setups incur setup costs and consume setup time. Setup
costs and setup times are sequence independent.

• At most one setup state can be carried over from one
period to the next on the resource, such that no setup
activity is necessary in the second period.

• Single item production is possible (i.e. the conserva-
tion of one setup state for the same product over two
consecutive bucket boundaries).

• A setup state is not lost if there is no production on the
resource within a bucket.

The mixed integer programming model (MIP) with the
inventory and lot size representation is given with the sets,
indices, parameters and variables in the following.

Sets and indices:

j : items j ∈ P = {1, 2, 3, ...P }
t : periods t ∈ T = {1, 2, 3, ...T }

Parameters:

scj setup cost for item j

hjt unit holding cost for item j in period t

Ct amount of resource available in period t

aj time to process one unit of item j

stj setup time of item j

M a large number
djt demand for item j in period t
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Decision Variables:

Ijt Inventory level for item j at the end of period t ,
Xj t Production amount of item j in period t ,
Yjt Binary setup variable (=1, if a setup for item j is

performed in period t , =0 otherwise),
Wjt Binary linkage variable which indicates whether a

setup state for item j is carried from period (t-1) to (t)
(=1) or not (=0),

Qt Single item variable which indicates that resource is
occupied solely by item i in period t (=1) or not (=0).

Min

P∑

j=1

T∑

t=1

(
scjYjt + hj Ijt

)
(1)

s.t.

Ij,t−1 + Xjt − Ijt = djt ∀j ∈ P ; ∀t ∈ T (2)

∑

j∈K

(
ajXjt + stj Yjt

) ≤ Ct ∀t ∈ T (3)

∑

j∈K

Wjt ≤ 1 ∀t ∈ {2, ...., T } (4)

Wjt ≤ Yjt−1 + Wjt−1 ∀j ∈ P, ∀t ∈ {2, ...., T } (5)

Wjt+1 + Wjt ≤ 1 + Qt ∀ t ∈ {1, ...., T − 1} (6)

Yjt + Qt ≤ 1 ∀ t ∈ {1, ...., T − 1} (7)

Xjt ≤ M(Yjt + Wjt ) ∀j ∈ P ; ∀ t ∈ {1, ...., T } (8)

Qt ≥ 0 ∀ t ∈ {1, ...., T − 1} (9)

Wjt ∈ {0, 1} (
Wj1 = 0

)
, Yjt ∈ {0, 1} ∀j ∈ P ; ∀t ∈ T

(10)

Xjt , Ijt ≥ 0 ∀j ∈ P ; ∀t ∈ T (11)

The minimization of inventory holding and setup costs
is given in the objective function (1). The inventory bal-
ance equations are stated in constraints (2). Constraints (3)
show the capacity constraints. Constraints (4) state that at
most one setup state can be preserved from one period to
the next. Constraints (5) ensure that a setup can be carried
over to period t only if either item j is setup in period t-
1 or the setup state is already carried over from period t-2
to t-1. A setup state can only be preserved over two bucket

boundaries, if Qt = 1 in constraints (6), which is only pos-
sible if there is no setup in this period (7). The upper bounds
on the production quantities are expressed in constraints
(8). Finally, the non-negativity conditions on production and
inventory quantities and the binary nature of setup variables
are given by (9) to (11). It is assumed that there are no setup
carryovers in the first period as stated in constraints (10).

2 The proposed hybrid approach

The main idea of the proposed sequential hybrid approach is
to run GAs for a predetermined number of generations and
use the overall best solution as the initial solution for the
Fix-and-Optimize heuristic. The Fix-and-Optimize heuristic
improves the best solution coming from the GAs throughout
the iterations. In doing so, we hope that the GAs will locate
a promising region where good quality solutions exist and
then the Fix-and-Optimize heuristic will refine this region
to obtain the best solution.

The setup
(
Yjt

)
and setup carryover

(
Wjt

)
variables

given in the MIP model are the main elements in the search
of the GAs. The values of these binary variables are stated in
each chromosome. Fixing these values to zeros and ones in
the MIP model results in a linear programming (LP) model
from which the objective function value is easily calculated.
Therefore, each solution visited in the search space is a chro-
mosome and its fitness is the sum of the objective value of
the LP model and fixed setup costs.

2.1 Fix-and-optimize heuristic

Fix-and-Optimize heuristic is a MIP based heuristic in
which a sequence of MIP models is solved over all real-
valued decision variables and a subset of the binary vari-
ables. Note that the number of binary setup and setup car-
ryover variables determines the numerical effort required to
solve the MIP model. In recent years, the Fix-and-Optimize
heuristic has been widely used in lot sizing area. Sahling
et al. [7] employ the Fix-and-Optimize heuristic to solve the
multi level capacitated lot sizing problem with setup times
and setup carryover and they test product, resource and
process oriented decomposition strategies. Lang and Shen
[9] develop Fix-and-Optimize and Relax-and-Fix heuristics
to address the single machine capacitated lot sizing prob-
lem with item substitution options. A new heuristic which
combines the principles of Variable Neighborhood Decom-
position Search and Fix-and-Optimize heuristic is presented
in Seeanner et al. [18] to solve the multi level lot sizing
and scheduling problems. Two different Fix-and-Optimize
heuristics are presented in Xiao et al. [10] to deal with the
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CLSP with sequence-dependent setup times, time windows,
machine eligibility and preference constraints.

The idea in the Fix-and-Optimize heuristic is to sys-
tematically solve a series of sub-problems that are derived
from the model stated in Section 2. In each iteration of the
algorithm, one sub-problem is solved by setting most of the
binary setup and carryover variables to fixed values. This
reduction leads to a limited number of non-fixed binary vari-
ables which are optimized in a given sub-problem. Then
the problem is solved using a standard MIP solver. In the
next iteration, a new sub-problem with a different subset of
fixed binary variables is solved. The solution with respect to
the binary variables is a fixed parameter for the next MIPs
that optimize other binary variables [8]. Therefore, in each
sub-problem the complete set of real-valued decision vari-
ables are considered. The optimization of the model is done
within the MIP solver and therefore the approach is flexible
[7]. The definition of the sub-problem and algorithm are
given in detail in the following sections.

Definition of sub-problems
Simply, a sub-problem can be derived from the model

given in Section 2 by adding the following constraints.

Ykt = Ȳkt ∀(k, t) ∈ PT
f ix
Y,s (12)

Wkt = W̄kt ∀(k, t) ∈ PT
f ix
W,s (13)

The explanations of the parameters used above can be
found in Table 2. Fix-and-Optimize heuristic starts with an
initial solution. This initial solution yields an initial objec-
tive value which is shown by Znew. After initialization, the
algorithm iterates through the ordered set of sub-problems
according to time decomposition either once or until it
reaches a local optimum.

Time decomposition: With respect to the setup and
setup carryover variables, each sub problem k is defined
for a time window of five consecutive periods. For exam-
ple, in one iteration of the Fix-and-Optimize heuristic, three
sub-problems for a problem with 15 periods. (The reader
can refer to Gören et al. [1] for further details on time
decomposition).

The algorithm
The basic structure of the algorithm is outlined in Fig. 1.

The algorithm needs an initial solution to start and goes
through the sub-problems defined by time decomposi-
tion either once (� = �max) or until it reaches a local
optimum.

Each solution to a sub-problem yields an objective value
of Z which is at least as good as the current best solution.
So, a new solution is accepted only if it yields an objective
value lower than the current best solution.

It should be noted that a capacity infeasible solution is
never considered as a candidate for the best solution.

2.2 Genetic algorithms

Chromosome representation
A matrix is used for representing the chromosomes (see

Gören et al. [1]). The setup variables
(
Yjt

)
and setup

carryover variables
(
Wjt

)
are stated in the rows of the chro-

mosomes. The setup and setup carryover variables for each
product in each period are stated in the columns of the
matrix. Thus, a chromosome with the length of the number
of products (P) multiplied by the number of periods (T ) is
obtained.

Proposed Initialization scheme
The initialization scheme generates the chromosomes in

two steps. First, setup variables which take place in the
first row of the chromosomes are generated. Next, setup

Table 2 Additional notation
for the definition of a
sub-problem

Sets:

(k, t) ∈ PT Set of all product-period combinations

PT
opt
Y,s ⊆ PT Set of product-period combinations which binary setup variables

Ykt are optimized in the current sub-problem

PT
opt
W,s ⊆ PT Set of product-period combinations which binary setup carryover

Wkt variables are optimized in the current sub-problem

PT
f ix
Y,s ⊆ PT Set of product-period combinations which binary setup variables

Ykt are fixed in the current sub-problem

PT
f ix
W,s ⊆ PT Set of product-period combinations which binary setup carryover variables

Wkt are fixed in the current sub-problem

Parameters:

Ȳkt Exogenous value of the fixed setup variable Ykt

W̄kt Exogenous value of the fixed setup carryover variable Wkt
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Fig. 1 The outline of the Fix-and-Optimize heuristic

carryover variables in the second row of the chromosomes
are created (Gören et al. [1]). In creating the first rows of
chromosomes, i.e. setup variables, some of them which we
call Smart Part are created by utilizing the information
gained from the LP relaxation of the CLSP with setup times,
and the others called Random Part are created randomly.
The intention is that using problem specific information for
creating the smart part of the initial population will direct
the search towards the search spaces where feasible and
good quality solutions exist. The procedure for creating the
Smart and Random parts of initial population is explained
in Fig. 2. Note that λ shows the number of chromosomes
that are generated using problem specific information. The
results of an experimental study evaluating different levels
of this parameter are given in Section 4. β is another thresh-
old parameter which is used for determining the values of
genes in the chromosomes of the Random Part. Based on
pilot experiments, this parameter is set to 0.5.

Once the setup variables are generated, the products are
prioritized based on descending order of setup costs, next
the setup carryover variables are generated following the
logic given in the pseudo-code below. It must be noted that
the setup carryover variables are generated starting from the
second period (see the constraint (10) in the MIP model). A
setup carryover for a product in the current period can only
be generated if there is a setup and no setup carryover in the
previous period. As can be seen in the pseudo-code below, if
there is a setup variable in the current period, it is eliminated
to attain the feasibility.

i =1 to POP
t =2 to T

j =1 to P (Products are descending order based on
setup costs)

IF Yjt−1 =1 and Wjt−1 =0,
THEN
Set Wjt =1

IF Yjt =1
THEN
Set Yjt =0
ENDIF

ENDIF
BREAK (go to the next period)

Genetic operators
The modified roulette wheel selection operator defined

in Gören et al. [1] is used for selecting the chromosomes
for recombination. The single point crossover and single
bit flip mutation operators are used as the crossover and
mutation operators, respectively. Infeasible chromosomes
that violate the constraints related to the semi-sequencing
of the products in a period (constraints 4, 5, 6, 7) are
repaired and they are put back into the population. More-
over, to reduce the chance of selecting chromosomes that
violate the capacity constraint stated in (3), a very high
penalty cost is added to the fitness function. Elitism is used
as a survival scheme and the search in GAs is terminated
when the total number of generations exceeds a maximum
number.
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Fig. 2 The procedure of creating the initial population

3 Computational results

Computational experiments involve two sets of experi-
ments. First, an extensive experimental study was carried
out to decide the ratio of smart part to random part in the

initial solution by employing three groups of problems (i.e.
small, medium and large size). Second, using these best per-
forming ratios for each problem size, the performance of
the proposed hybrid approach was compared to that of pure
GAs and the latest results reported in the literature, Suerie
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Table 3 Classification of TTM-test set [6]

Phase II Phase III

Class # Items # Periods Class # Items # Periods

1 6 15 7 10 20

2 6 30 8 20 20

3 12 15 9 30 20

4 12 30

5 24 15

6 24 30

and Stadtler [6] and Gören et al. [1]. All computations were
carried out on a PC with Dual Core, 2 GHz microprocessor
and 2 GB RAM. The pure and hybrid GAs were coded in
Visual C++ 2008 Express Edition and all problems were
solved using Concert Technology of Cplex 11.2.

3.1 Benchmark problems

Trigeiro et al. [3] proposed an algorithm (referred to as
TTM, Trigeiro-Thomas-McClain) to solve the CLSP and
generated various test instances to test the performance of
this algorithm. These test instances were generated in three
phases. Phase one involved 70 problem instances which
were used for fine-tuning of the parameters of the TTM
algorithm. In phase two, 141 problem instances were used
to analyze different problem characteristics, and in phase
three, 540 problem instances were generated to test the algo-
rithm. Table 3 gives the classification of these instances
[6]. It should be noted that our experimental study does
not include the problem instances used in phase one since
no results have been reported in the literature for these
instances to carry out a comparative study.

Based on problem complexity, these nine problem classes
have been placed into three groups, small, medium and
large (See Table 4). Note that problem complexity is mea-
sured based on the number of binary variables (number of
periods*number of products).

3.2 Experiments for the initialization strategy

The performances of initialization strategies were investi-
gated on three groups of problems (small, medium, large).

Table 4 Problem sizes

Small Medium Large

� Class 1 � Class 4 � Class 6

� Class 2 � Class 5 � Class 8

� Class 3 � Class 9

� Class 7

Five problem instances from each problem class (see
Table 3) were solved using the pure GAs with the initial
population created by the proposed initialization strate-
gies. As stated earlier, the initial population consists of two
parts: random and smart part. One of the design issues in
these computational studies is to evaluate the effects of the
ratio of smart part to random part on solution quality. The
experimental design used in these computations is given in
Table 5. The other design parameter is the threshold value
(β) used in creating the random part of the initial popula-
tion. Based on some pilot experiments, we set the threshold
value (β) to 0.5 in creating the random part. Throughout
all experiments, the same parameters were used (i.e., com-
bination of population size and number of generations, the
crossover rate and the mutation rate were set to 20/500, 0.9
and 0.011, respectively) and the results of 10 runs using dif-
ferent random seeds were reported. Therefore, 20 instances
for small size problems (200 runs in total), 10 instances for
medium size problems (100 runs in total) and 15 instances
for large size problems (150 runs in total) were solved. It
should be noted that only feasible solutions are taken into
consideration while calculating the average gap.

The gap is calculated based on the formula given in the
following where the lower bounds are taken from the study
of Suerie and Stadtler [6].

Gap = 100 ∗ (heuristic solution − lower bound)

lower bound
(14)

The results of computational experiments are summa-
rized in Table 6. It should be noted that the computational
time is not taken into consideration in comparisons since
nearly the same computational time is observed across all
problem sizes (i.e. small, medium, large).

In Table 6, the results given in parenthesis show the num-
ber of infeasible solutions obtained throughout the runs. It
should be noted that while calculating the average gap only
feasible solutions are taken into consideration.

As seen from the table, using pure random initial pop-
ulation results in large number of infeasible solutions, i.e.,
150 infeasible solutions out of 200 runs and 95 infeasible
solutions out of 100 runs, for small and medium size prob-
lems, respectively. Note that it is not even possible to find a
feasible solution for large size problems.

As stated in Section 3, the initialization scheme
employed in this study suggests creating a smart part in the
initial population by utilizing the information obtained from
the LP relaxation of the CLSP which is the basis of the
CLSPC. The purpose is to use this information to generate
problem specific chromosomes so that the search will be
directed towards the search spaces where feasible and good
quality solutions exist. As seen from Table 6, the results
of experimental studies support our expectation and when
some problem specific information is added into the initial
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Table 5 Experimental design
for the ratio of random part to
smart part

Random Part % Smart Part % Abbreviated

Pure Random initial population 100 0 R

Random initial population+ Smart initial population: 90 10 RS10

Random initial population+ Smart initial population: 80 20 RS20

Random initial population+ Smart initial population : 70 30 RS30

Random initial population+ Smart initial population : 60 40 RS40

Random initial population+ Smart initial population : 50 50 RS

Random initial population+ Smart initial population : 40 60 RS04

Random initial population+ Smart initial population: 30 70 RS03

Random initial population+ Smart initial population: 20 80 RS02

Random initial population+ Smart initial population: 10 90 RS01

Pure Smart initial population: 0 100 S

population generation scheme, GA finds feasible solutions
in nearly all runs for all problem sizes. It is also quite clear
from Table 6 that for all problem sizes, generating some
portion of the initial population randomly creates diver-
sity in the initial population and this further improves the
performance of GAs in solving the CLSPC. When both ran-
domness and problem specific information are included in
the initial population, the ratios of random part to smart part
giving minimum average gap are found as RS02, RS and
RS04 for small, medium and large size problems, respec-
tively. Having observed the same behavior for all problem
sizes we can state that keeping the portion of the smart part
bigger than the portion of the random part improves the
performance of the proposed initialization scheme.

Based on these results, it can be stated that the initial
population generation method using problem specific infor-
mation scheme has high potential to reduce the number

of infeasible solutions in each generation and hence it can
ensure a feasible solution at each run of the GAs. Other
insights gained as a result of these experimental studies are
that generating some part of the initial population randomly
and keeping the smart part larger than random part further
improve the performance of the proposed initialization
scheme.

3.3 Comparative experiments

This section presents the results of the computational studies
comparing the performance of the pure GAs and proposed
sequential hybrid approach to the recent results reported in
the literature. It should be noted that the problem instances
generated in phase two and three (i.e. total of 681 instances)
were used to evaluate the performance of the proposed
sequential hybrid approach and pure GAs (PGA). The

Table 6 Results of Comparative Experiments

SMALL MEDIUM LARGE

Avg. gap Avg. gap Avg. gap Avg. gap Avg. gap Avg. gap

(average of 10 runs) (best of 10 runs) (average of 10 runs) (best of 10 runs) (average of 10 runs) (best of 10 runs)

R 10.11 % 8.64 % 13.65 % 12.92 % * *

(150) (150) (95) (95) (150) (150)

RS10 6.36 % 5.48 % 6.56 % (2) 5.71% 3.04 % 2.87 %

RS20 6.31 % 5.30 % 5.56 % 4.97 % 3.01 % 2.80 %

RS30 6.34 % 5.24 % 5.51 % 5.04 % 3.03 % 2.89 %

RS40 6.38 % 5.36 % 5.49 % 4.98 % 2.97 % 2.83 %

RS 6.29 % 5.45 % 5.25 % 4.80 % 2.99 % 2.81 %

RS04 6.33 % 5.34 % 5.36 % 4.90 % 2.93 % 2.81 %

RS03 6.26 % 5.14 % 5.43 % 4.84 % 2.97 % 2.84 %

RS02 6.17 % 5.28 % 5.30 % 4.89 % 2.97 % 2.82 %

RS01 6.30 % 5.30 % 5.30 % 4.95 % 2.97 % 2.83 %

S 6.20 % 5.34 % 5.26 % 4.88 % 2.97 % 2.83 %

* indicates that no feasible solution is obtained under this initialization scheme
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Table 7 Parameter settings for each problem size

Small Medium Large

Population Size/Generation number 50/200 20/500 100/100

Crossover rate 0.9 0.5 0.9

Mutation rate 0.005 0.003 0.001

experiments were repeated 10 times for every instance and
the solutions with the best and average performance were
recorded. We also carried out some preliminary experiments
and ANOVA to determine the most appopriate GAs
parameters (see Table 7).

To obtain compatible test results for each problem class,
the computational times for the proposed hybrid approach
were set to the average computational time (i.e. the time
calculated based on the computational times of 10 runs) of
the PGA. For instance, the proposed hybrid approach was
run for 58.75 seconds for each run to solve the problem
instances in Class 1 (see Table 8). Moreover, as a result
of some preliminary tests the computational time to solve
each problem using the Fix-and-Optimize heuristic was lim-
ited to 2 seconds. Lastly, based on the experimental studies
presented in earlier section, the ratio of random part to
small part in the initial population of GAs was set to RS02,
RS and RS04, for small, medium and large size problems,
respectively.

When compared to the PGA, the solution quality of the
proposed sequential hybrid approach which uses the Fix-
and-Optimize heuristic after GAs is quite remarkable for
every problem class. As seen in Table 8, the average gaps

obtained by the hybrid approach are much smaller than
those of the PGA. Table 8 also presents the average gaps
reported in Gören et al. [1] and Suerie and Stadtler [6].
Considering the average of ten runs the proposed sequen-
tial hybrid approach outperforms the time decomposition
heuristic of Suerie and Stadtler (2003) for the problem
instances in Classes 7, 8, and 9. Since problem classes 8
and 9 include large size problem instances we might state
that the performance of proposed hybrid approach improves
as problem size increases. However, regarding the compu-
tational time, the proposed hybrid approach requires much
more computational effort than the time decomposition
heuristic.

When compared to the results obtained in Gören et al.
[1], the solution quality of the proposed approach both with
respect to average of ten runs and the best of ten runs shows
a better performance in almost every problem class. This
could be attributed to the two factors. As mentioned ear-
lier, while in Gören et al. [1] Fix-and-Optimize heuristic is
embedded into the GA, in this study, the GAs and Fix-and-
Optimize heuristic are run sequentially. Besides employing
a new hybridization scheme, in this study, we carried out
a comprehensive experimental analysis to determine the
best performing ratios of random to small part in gener-
ation of the initial population. Hence, unlike Gören et al.
[1] in which half of the initial population was created ran-
domly while the other half was created smartly, in this
study, these best performing ratios were used when gener-
ating the initial population. The general conclusion which
can be drawn from this comparative experimental study is
that apart from requiring a long computational time to find
good quality solutions, hybridising the pure GAs with the

Table 8 Computational results

Class Suerie and Stadtler Goren et al. (2012) PGA Proposed sequential approach

(2003) Average of 10 runs Best of Average of 10 runs Best of Average of 10 runs Best of

10 runs 10 runs 10 runs

Avg Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Gap Avg. Gap

Gap Comp. Gap Comp. Gap Gap Comp. Gap

Time Time Time

1 2.53 % 5.2 s 3.09 % 65.94 s 2.45 % 8.39 % 58.75 s 7.19 % 3.02 % 2.68 %

2 2.32 % 8.8 s 2.97 % 44.83 s 2.22 % 8.20 % 72.88 s 7.24 % 2.78 % 2.64 %

3 0.95 % 6.2 s 1.78 % 59.87 s 1.24 % 5.31 % 72.65 s 4.71 % 1.87 % 0.96 %

4 0.72 % 11.8 s 1.67 % 77.13 s 1.19 % 5.13 % 77.13 s 4.66 % 1.56 % 1.15 %

5 0.54 % 9.2 s 1.22 % 98.70 s 0.80 % 3.05 % 98.70 s 2.6 % 1.65 % 1.07 %

6 0.30 % 13.2 s 2.19 % 114.1 s 1.65 % 2.95 % 144.21 s 2.79 % 2.10 % 1.50 %

7 3.14 % 9.2 s 2.25 % 68.66 s 1.73 % 4.87 % 48.91 s 4.12 % 2.10 % 1.71 %

8 2.73 % 12.7 s 1.76 % 100.2 s 1.38 % 2.81 % 99.94 s 2.53 % 1.58 % 1.25 %

9 2.21 % 18.0 s 1.61 % 121.45 s 1.37% 1.95 % 127.74 s 1.75 % 1.54 % 1.29 %
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MIP-based heuristic in a sequential way significantly
improves its performance.

4 Conclusion and future research directions

Lot sizing problems determine when and how many items
(i.e. lot size) of a particular product to produce for a given
horizon. Lot sizing problem is one of the most challeng-
ing production planning problems and solving this problem
optimally has an important effect on the efficiency of the
production and inventory systems.

In this study, we proposed a sequential hybrid approach
for solving the CLSP with the extension of the setup car-
ryover, CLSPC. The proposed approach combines Fix-and-
optimize heuristic with GAs and the hybridization scheme
is a sequential scheme where Fix-and-Optimize heuristic
approach is executed after GAs. To evaluate the perfor-
mances of pure GAs and proposed hybrid approach, we
carried out comparative experiments using benchmark prob-
lems reported in the literature. The results show that the per-
formance of pure GAs improves notably when hybridized
with the Fix-and-Optimize heuristic and the solution quality
of the proposed approach is superior compared to the recent
results in the literature.

As a future research direction, the proposed hybrid
approach can be extended to solve the multi-level capac-
itated lot sizing problems. This study focuses on a deter-
ministic lot sizing problem where demand is assumed to be
known. Another future research direction can be to solve
the stochastic version of this problem using the proposed
hybrid method. The recent trend in lot sizing field is to build
multi objective problems which integrate lot sizing, distribu-
tion and scheduling decisions. Solving these multiobjective
problems using evolutionary approaches such as GAs can
be another interesting future research direction.
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