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Abstract A novel dynamic multi-objective optimization
evolutionary algorithm is proposed in this paper to track the
Pareto-optimal set of time-changing multi-objective opti-
mization problems. In the proposed algorithm, to initialize
the new population when a change is detected, a modi-
fied prediction model utilizng the historical optimal sets
obtained in the last two times is adopted. Meantime, to
improve both convergence and diversity, a self-adaptive
differential evolution crossover operator is used. We con-
ducted two experiments: the first one compares the pro-
posed algorithm with the other three dynamic multiobjective
evolutionary algorithms, and the second one investigates the
performance of the two proposed operators. The statistical
results indicate that the proposed algorithm has better con-
ergence speed and diversity and it is very promising for
dealing with dynamic environment.

Keywords Dynamic multiobjective optimization ·
Forecasting model · Self adaptive differential evolution

1 Introduction

Many real-world industrial applications and scientific
reserch present a time-dependent feature. The dynamic
multi-objective optimization problem (DMOP) is charac-
terized in that either the objective function and constraint
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or the associated parameters or both change over time
with respect to static multi-objective optimization prob-
lem [1]. The difficulties of dealing with a DMOP lie in
how to converge to the new true Pareto-optimal front (PF)
rapidly and find a widely distributed set of the Pareto-
optimal solutions (PS) when a environment change coming.
A great success has been achieved since the evolutionary
algorithms(EAs) were applied to the multi-objective opti-
mization and more approximate optimal solutions widely
distributed can be generated by the multi-objective opti-
mization evolutionary algorithms (MOEAs) [2] compared
to the traditional multi-objective optimization algorithm. So
the dynamic multi-objective optimization evolutionary algo-
rithm(DMOEA) would be promising for the multi-objective
optimization in dynamic environments.

The Dynamic Orthogonal Multi-Objective Evolution-
ary Algorithm(DOMOEA)[3] applies an orthogonal design
method proposed in the previous MOEA to enhance the
fitness of the population during the static stages between
two successive changes of environment. Goh et al. [4] pro-
posed a new coevolutionary strategy that competitive and
cooperative mechanisms are combined to solve MOPs and
extended the strategy to deal with DMOPs. In this algo-
rithm, through the iterative process of competition and
cooperation, the subcomponents are optimized by differ-
ent species subpopulations based on the optimization target
of the particular time, which enabling the coevolutionary
algorithm to handle both the static and dynamic multiobjec-
tive optimization problems. In the work of Wang et al. [5],
during the static stages the static multi-objective optimiza-
tion problem is changed into a two-objective optimization
problem that deal with two re-defined objectives. Simul-
taneously, a new crossover operator and mutation operator
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that are suitable for the changing environment are adopted
in the algorithm. Koo et al. [6] presented a new method
to detect the environment changes, a new prediction strat-
egy known as the predictive gradient, and a new memory
technique suitable for solving DMOPs in a fast changing
environment. The predictive strategy is easy to implement
and solutions updated through the predictive gradient will
remain in the vicinity of the new Pareto-optimal Set and pull
the rest of the population to converge.

Artificial Immune Systems (AIS) inspired by the human
immune system (HIS) have exhibited its adventages in terms
of immune memory, diversity, robustness and other aspects.
Since Coello Coello proposed an artificial immune system
algorithm MISA [7] based on the clonal selection principle
to handle MOPs, some successful multi-objective optimiza-
tion immune algorithms have been proposed afterwards
[8–10]. And the experiment results show that such kind
of optimization techniques is one of the most promising
strategies for dealing with the multi-objective optimization
problem. Moreover, dynamic multi-objective optimization
immune algorithms (DMOIAs) have also attracted a lot
of attention, but few works have been reported at present.
Shang et al. [11] proposed a clone selection algorithm
(CSADMO) based on nonuniform mutation strategy and
distance method to solve two DMOPs. The nonuniform
mutation strategy makes the algorithm search in a large
range in the early evolution and implement the local search
in the latter stage. Zhang [12, 13] researched immune-based
optimization techniques for DMOPs in which the dimension
of the variable or objective space may be time-varying. And
the algorithms has been successfully applied to greenhouse
control and signal simulation. A hybrid dynamic multi-
objective immune algorithm using the linear prediction
model (HDMIO) was proposed to deal with four DMOPs
by Ma et al. [14]. Zhang et al. [15] developed an artifi-
cial immune system to solve time-varying non-linear con-
strained multi-objective problems with changing variable
dimensions. In this algorithm, T-module, B-module, and M-
module are used to create an initial population by using the
history information when the environment changes, search
for the desired non-dominated front of a given environ-
ment, and store temporarily the non-dominated solutions
to help create initial populations for the next environment,
respectively.

In this paper, a well-known static multi-objective
immune algorithm with non-dominated neighbor-based
selection (NNIA) [10], which has been proved to be an
effective algorithm for sloving static MOPs, is extended to
solve DMOPs. Due to the fact that NNIA pays more atten-
tion to the less-crowded regions in the current trade-off front
in the process of crossover, the diversity of the solutions
obtained by NNIA may not be ideal. To remedy this, we
use an improved simple self adaptive differential evolution

crossover operator to improve the diversity of the solution in
this paper. In our new dynamic MOEA (DMOEA), firstly,
in the decision space, to take individuals closer to the PS at
the beginning of a new environment, we propose a modified
prediction model to take full advantage of search infor-
mations in the past two times. Secondly, in the objective
space, to improve the convergence speed and the diversity
of the population, we propose an improved adaptive differ-
ential evolution crossover operator to help the population
evolution.

This paper is structured as following: Section 2 presents
some related theoretical background including dynamic
multiobjective optimization, forward-looking forecasting
model, the original static multi-objective immune algo-
rithm used in this paper, differential evolution crossover
operator and several important terms throughout the paper.
Section 3 presents the details of the proposed dynamic
immune inspired multi-objective algorithm. Section 4 intro-
duces the test instances and performance metics, and then
carried out experiments to evaluate the effectiveness of our
algorithm. Finally, Section 5 outlines some conclusions and
proposes a few future research directions.

2 Related theoretical background

2.1 Dynamic multi-objective optimization

In the case of time changing, the objective functions and
the constrained functions may be related to the time, so
a static multi-objective problem extends to the following
expression:

{
min
x∈X

F(x, t) = (f1(x, t), f2(x, t), . . . , fm(x, t))T

s.t.gi(x, t) ≤ 0(i = 1, 2, · · ·, p), hj (x, t) = 0(j = 1, 2, · · ·, q)

(1)

This is a DMOP, where t represents time. x =
(x1, . . . xl) ∈ � is the decision vector, � is the feasible region
in decision space, F(x, t) represents the set of m objective
functions with respect to t , gi(x, t) and hj (x, t) represent the
inequality and equality constraints, respectively.

When considering minimization problem, a vector x1

is said to dominate vector x2 ( denoted as x1 ≺ x2) if and
only if x1 is partially less than x2, ie,

∀i ∈ {i, ..., k}, x1 ≤ x2 ∧ ∃i ∈ {i, ..., k}, x1 ≤ x2 (2)

For a given DMOP F(x, t), at a certain moment, the
Pareto-optimal set PSt in the decision space is defined as:

PSt = {x ∈ �|¬∃x∗ ∈ �, F(x∗, t) ≺ F(x, t)} (3)
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That means the Pareto-optimal set in the decision space
consists of the decision vectors that can not be dominated
by any other decision vectors.

Accordingly, for a given DMOP F(x, t) and Pareto-
optimal set PSt , at a certain moment, the Pareto-optimal
front PFt in the objective space is defined as:

PFt = {F(x, t) = (f1(x, t), f2(x, t), . . . , fm(x, t))T |x ∈ PS}
(4)

According to the PSt and the PFt whether change over
time, Farina et al. [1] divided the DMOPs into four types:

Type I : The PSt changes over time, the PFt does not
change.

Type II : Both the PS tand the PFt change over time.
Type III : The PSt does not change over time, the PFt

change over time,.
Type IV : Both the PSt and the PFt do not change over

time.

2.2 Summary of related terms

We describe the nomenclature of immunology and the terms
throughout the paper in Table 1.

2.2.1 Antibody and antibody population

To put it simply, as we use the real-valued presentation
like the NNIA, an antibody bi = (bi,1, bi,2, ..., bi,l) is the
coding of a decision variable x in the dynamic multi-
objective optimization. So the antibody population is B =
{b1,b2,...,bn}, bi ∈ �, 1 ≤ i ≤ n.

2.2.2 Dominant population, active population, and clone
population

Based on the defination of domination in the 2.1, a dominant
antibody represents an antibody which cannot be dominated
by any other antibody, that is to say it is a good solution. The

Table 1 The nomenclature of immunology corresponding to
problems

nomenclature of the description corresponding

immunology to problems

Antibody The coding of a decision variable x

Dominant antibody The non-dominated solution

Active antibody The non-dominated solution

with a greater crowding-distance

Proportional Cloning Copy the active population

Recombination Crossover the clone population

Hypermutation Mutate crossover solution

dominant population is denoted as D, a set of all dominant
antibodies.

An active antibody represents a dominant antibody with
greater crowding-distance [16] in the approximate Pareto-
optimal front. Corresponding with the concept in artificial
immune system, an active antibody means a competi-
tive individual or a better solution in the dynamic multi-
objective optimization. The active population is denoted as
A, consisting of active antibodies. So during the evolution,
the antibodies in the active population are more likely to
enter the next generation.

During the evolution, copy the antibodies in the active
population into the clone population, which is denoted as
C, and carry out the genetic operation on C. So more active
antibodies with greater crowding-distance will be evolved
by the cloning operation.

2.2.3 Proportional cloning, recombination,
and hypermutation

According to the interpretation of the terms above, the
genetic operators corresponding to immunology will be
easy to understand. The operation detail of the propor-
tional cloning operator T C acts on the active population
A = (a1, a2, . . . , a|A|)(|A| is the size of A) is as following:

C = T C(A) = T C(a1, a2, . . . , a|A|) = T C(a1) + T C(a2)

+ . . . + T C(a|A|)

= {a1
1 , a2

1 , ..., a
q1
1 } + {a1

1 , a2
1 , ..., a

q2
1 } + ... + {a1

1 , a2
1 ,

..., a
q|A|
1 } (5)

where qi is the cloning number of the active antibody ai . qi

is a self-adaptive value depends on the crowding-distance di

of ai , it is calculated as following:

qi =
⎡
⎢⎢⎢nC × di∑|A|

j=1 dj

⎤
⎥⎥⎥ (6)

where nC is an expectant value of the size of the clone pop-
ulation that is usually set as same as the initial population
size.

And then the recombination operator T R acts on the clone
population C = (c1, c2, . . . , c|C|)(|C| is the size of C) is as
following:

R = T R(C) = T R(c1, c2, . . . , c|C|) = T R(c1) + T R(c2)

+ . . . + T R(c|C|)

= crossover(c1) + crossover(c2) + ... + crossover(c|C|)
(7)
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And the hypermutation operator T R acts on the pop-
ulation R = (r1, r2, . . . , r|R|)(|R| is the size of R) is as
following:

H = T H (R) = T H (r1, r2, . . . , r|R|) = T H (r1) + T H (r2)

+ . . . + T H (r|R|)
= mutate(r1) + mutate(r2) + ... + mutate(r|R|) (8)

2.3 The used static MOEA

We describe the traditional static multi-objective immune
algorithm used in this paper, the NNIA. Firstly, at a certain
moment of t when the DMOPs is not changing, the domi-
nant population, active population and clone population at
the g-th evolution generation are denoted as Dg , Ag , Cg ,
respectively. In NNIA, realize the recombination and the

hypermutation with the simulated binary crossover (SBX)
operator and polynomial mutation respectively. The main
loop of NNIA is shown in Table 2.

2.4 Differential evolution crossover operator

DE is a promising evolutionary optimization method pro-
posed by Storn and Price [17]. It introduces new parameter
vectors by adding a weighted difference vector between
two members in the population to the third member. The
principle is simple and the process can be depicted as Fig. 2.

As shown in the figure above, at the g-th generation, three
different individuals are randomly selected from the pop-
ulation for the i-th individual Xi,g to be crossovered. And
then a new intermediate individual Vi,g is produced. With the
crossover probability CR, Xi,g and Vi,g , the offspring Ui,g+1

is calculated as following:

Uij,g+1 =
{

Vij,g if (rand(0, 1) ≤ CR) or j = jrand

Xij,g if (rand(0, 1) > CR) or j 	= jrand

i = 1, 2, · · ·, N, j = 1, 2, · · ·, D (9)

Owing to the good performance of DE in solving single-
objective optimization problems [17], some researchers have
tried to extend it to MOPs. Abbass was the first to apply DE
to MOPs in the Pareto Differential Evolution algorithm [18].
Many new Multiobjective Differential Evolution Algorithm
being continuously has been published since then [19, 20].

2.5 The forward-looking predictive model

In DMOEA, a DMOP is usually considered as a con-
tinuous combination of unchanged static problems in a
period of time, during which a static MOEA is used to
guide the evolution. The search information of the opti-
mal solutions in the last few moments might be useful
for producing initial population in the new environment.
The original and simplest framework is to save and deal
with optimal solutions of the last time. Deb et al. [21] pro-
posed two re-initialization techniques to replace a portion
of the optimal solutions in the last time: randomly gen-
erate new individuals (DNSGAII-A) or generate mutated
solutions of existing solutions (DNSGAII-B). The hyper-
mutation operator and randomly generate individuals strat-
egy are combined by Zheng [22]. Wei et al. [23] pro-
posed a hyper rectangle search to predict m + 2 initial
solutions (m is the number of objectives) for the next
environment.

The other frameworks are based on the search informa-
tion of the past several times and the information is saved
to help the search process in the new environment. If the

change of the optimal solutions’ location that obtained in the
history moment presents some kind of fixed trend in
the dynamic environment, it seems improtant to store
the optimal solutions in the past several moments to
generate a forward-looking model, which is used for
acclerating the convergence speed. But if the chang-
ing trend is not obvious or stable, the predictive model
will go wrong either. The forward-looking predictive
model based on memory storage is firstly proposed
by Hatzakis and Wallace in [24] to improve the per-
formance of DMOEA. This predictive model utilizes
the optimal solution sets obtained in the past t mo-
ments, that is from 0 moment to t−1 moment, to procude the
intial population of the next moment, that is the t moment.
This model in the two-dimensional space is shown in Fig. 3.

Since then, some researchers have also proposed new
predictive models. Zhou et al. [25] proposed a linear predic-
tive model and four re-initialization methods were proposed
with this model. The initial population at the new moment
obtained by the four re-initialization method is near the
PS location and converage to the true PS more quickly.
Koo et al. [6] proposed a new predictive gradient strategy
which is suitable for solving DMOPs in a rapidly changing
environment.

As Hatzakis and Wallace mentioned [24], the design of
predictive model is very important and it directly affects
the accuracy of the initial solutions at the new moment.
But in most cases, the design depends on the feature of
the dynamic multi-objective problem. The fact that the only
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Table 2 The pseudo code of NNIA

Input : Gmax (maximum number of evolution generations), nD (maximum size of dominant

population), nA (maximum size of active population), nC (size of clone population)

Output: DG max +1(final approximate Pareto-optimal set)

Step1: Initialization : Random generate an initial antibody population B0 with the population size of

nD. Create the initial D0 = �, A0 = �, and C0 = �. Set g = 0.

Step2: Update Dominant Population: Identify the dominant antibodies in Bg . Copy all the dominant antibodies into

the temporary dominant population( denoted by DTg+1). If the size of DTg+1 is not bigger than

nD, let Dg+1 = DTg+1. Otherwise, calculate the crowding-distance values of all individuals in

DTg+1and sort the values in descending order, and put the first nD individuals into Dg+1 finally.

Step3: Termination : If meet g ≥ Gmax, ouput Dg+1 as the solution of the algorithm, Stop. Otherwise, let

g = g + 1, turn to Step 4.

Step4: Nondominated Neighbor Based Selection: If the size of Dg is not bigger than nA, let Ag

=Dg . Otherwise, calculate the crowding-distance values of all individuals in Dg and sort the values in

descending order, and put the first nA individuals into Ag .

Step5: Proportional Cloning: Determine the cloning number of every individual in Ag , and thus get the clone

population Cg

Step6: Recombination and Hypermutation: Apply recombination and hypermutation operation on Cg and denote the

resulting population as C∗
g

Step7: Get the antibody population Bg by combining the C∗
g and Dg turn to Step2.

available information is the optimal solutions obtained in
the past moments makes it diffcult to design a commonly
used predictive model that can be used in different types of
problems.

3 Description of the algorithm

In this section, we describe the main operators used in our
dynamic immune inspired multi-objective algorithm and the
whole flow of the proposed algorithm.

3.1 Environment change detection and modified prediction
mechanism

3.1.1 Environment change detection

The detection operator is used to detect whether the envi-
ronment has changed, or whether the change is big enough
to regard it as a environment change rather than a noise.
In this paper, the environment change detection operator [1]
is calculated by the objective function values of the several
individuals at two consecutive moment. It can be described

Fig. 1 The flowchart of NNIA

Ag Cg C g
’

Dg

Dg+1

g=g+1

Clone Search

Update 

dominant 

population

Select
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Fig. 2 Original DE Model

as following:

ε(t) =

nε∑
j=1

∥∥∥ (fj (X,t)−fj (X,t−1))

R(t)−U(t)

∥∥∥
nε

(10)

where R(t)= (r1, r2, . . . , rm)T and U(t) = (u1, u2, . . . , um)T

are the maximum vector and minimum vector of the objec-
tive function value at the t moment, respectively. m is the
number of objective functions. Variable ri is the maximum
value of the i−th objective function in the population and
variable ui is the minimum value of the i−th objective
function in the population. nε is the number of individuals
chosen to detect the environment change. If the detective
value ε(t) is greater than a predefined value ε̃, it means
that a significant change has taken place, and then the
modified predictive model is used to predict the initial
population. In this paper, nε and ε̃ are set to 5 and 2e-2,
respectively.

3.1.2 Modified prediction mechanism

When the environment changes, we use an improved predic-
tive model to predict the initial population. The improved
predictive model is based on the model proposed by Zhou
et al. [25]. In [25], it is assumed that the PS at the past two
moments is Qt−1and Qt−2, respectively, which are used to

Fig. 3 The forward-looking forecasting model

predict the initial population Qt at the t moment.The whole
predictive model is inspired by the forward-looking predic-
tive model in the Section 2.5 and it is shown in Fig. 4
( left ).

The predictive model in [25] is described as following:

xt = xt−1 + (xt−1 − xt−2) + σ (11)

where xt−1 is an individual in Qt−1, and xt−2 is the individual
in Qt−2 and it is the nearest individual to xt−1 according to
the Euclidean distance:

xt−2 = arg min
y∈Qt−2

‖y − xt−1‖2 (12)

That means the new initial individuals at the new moment
depend on the shortest distance between the two points at
the previous two moments and the predictive model is linear.
Then we add a Gaussian noise σ ∼ N(0, Iδ) to the predicted
locations to increase the possibility of the new initial indi-
ciduals falling on the true PSt at the new moment. Where I

is an identity matrix and δis the standard deviation, which
is calculated by the Euclidean distance of xt−1 and xt−2 as
follows:

δ2 = 1

4n
‖xt−1 − xt−2‖2

2 (13)

where n is the dimensions of the decision variables.
Although the predictive model proposed above can be

commonly used and is particularly applicable for the prob-
lems with PSt linear changing over time. As demonstrated
in [25], when the PSt is nonlinear changing over time,
its performance is poor. Therefore, to make the predictive
model more generic in more types of DMOPs, we propose a
modified predictive model and it is shown in Fig. 4 ( right ).

In the modified predictive model, half of the individuals
are randomly selected to use in the linear formula (11), the
remaining individuals are used in the new model. The new
model expression is as following:

xt =
{
xt−1+(xt−1 − xt−2) + σ if rand() < 0.5

xt−1+rand()∗(xt−1 −xr1
t−2

)+rand()∗(xt−1−xr2
t−2

) otherwise

(14)

where xr1
t−2 and xr2

t−2 are two individuals randomly selected
from Qt−2, rand() returns an uniform random number in
[0, 1]. Selecting two individuals to guide the new predictive
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Predicted point

Predicted direction

Predicted point

Predicted direction

Fig. 4 Original Predictive Model and Modified Predictive Model

individual can prevent the new individual moving toward
the wrong direction when it is only guided by one individ-
ual, just like a PSO based crossover operator. Meanwhile,
in the new model, only half of the individuals are calculated
by distance, which means the computational complexity of
the new model will reduce. It can be observed from the sta-
tistical experimental results in Section 4 that the modified
predictive performs better than the original predictive model
and it can obtain better results.

As the predictive model is based on the history search
information, the model can not work at the early evolution
with deficient information. We use a simple Gussian inter-
ference to generate the initial population. So the predictive
strategy is showed as following:

Qt =
{

Perturbing 20 % of Qt−1 with Gauss noise, if 0 < t < 3

Using the modified prediction model otherwise

(15)

3.2 Modified self-adaptive differential evolution crossover
operator

The parameter F is important in the DE crossover operator.
In the most literatures, there is no discussion about the influ-
ence of parameter F on the performance of multi-objective
differential evolution algorithm, but take the value between
0.5 and 0.9 according to the experience. Qian et al. [26] pro-
posed an adaptive method to make up for the defect above,
the value of F is depend on the crowding distance in dif-
ferent Pareto levels, the sizes of the dominant population
and the size of the whole population. This adaptive method
makes the algorithm focus on the global search to find the
feasible region in the early stage of evolution, and focus on
the local search to speed up the converage speed in the late
stage of evlution. The F is calculated as following:

F = max(

∑k
j=1

∑mj

i=1 |dij − dj | + df∑ |Q| · d + df
, 1 − 2|P |

|Q| , lmin) (16)

where dij is the crowding distance of the i−th solution in
the j−th Pareto level; dj is the average value of crowding

distances of the all solutions in the j−th Pareto level; d is
the average value of crowding distance of the all solutions
in every iteration; |P | is the number of the dominant solu-
tions; |Q| is the number of the population set; the parameter
df represents the Euclidean distance between two boundary
solutions in Q; lmin is the minimu value for F . The results
in [26] showed that the convergence and the diversity of the
algorithm with this differential evolution crossover opera-
tor are significantly improved when dealing with different
static multi-objective problems.

In our algorithm, because the DE crossover operator
is implemented in the non-dominated population consists-
ing of individuals with greater crowding-distance, we can
ignore the influence of boundary solutions on F and pro-
pose a more simple and effective model of F . The new F is
calculated as following:

F =
∑k

i=1 |di − d|∑
k · d

(17)

where di is the crowding distance of the i−th antibody in
the population, d is the average value of crowding dis-
tances of the all antibodies in the population, k is the size
of the population. It can be observed from the compara-
tive trial results in Section 4 that the modified self-adaptive
differential evolution crossover operator can achieve better
results compared with the original self-adaptive differential
evolution crossover operator.

3.3 The whole flow

In this paper, unlike the common strategy for dealing with
the DMOP, at the beginning of a new moment, an environ-
ment change detection operator is used to detect whether
the problem has really changed or not. Then the algorithm
uses the modified forecasting model to get the new initial
population. And finally, NNIA based on the modified self-
adaptive differential evolution crossover is used to solve the
static DMOPs.

The whole flow of the proposed algorithm is shown in
Table 3:
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Table 3 The pseudo code of PDNNIA

Where g is the generation counter, τT is the total num-
ber of generations at t moment. Tmax is the maximum number
of moments, nD is maximum size of dominant Population.
Ag(t) is Active Population with the maximum size of nA.
Cg(t) is Clone Population with the maxmum size of nC. In
PDNNIA, as the general method does, we assume that a
dynamic problem remains unchanged within the t moment.
That is, during the entire period of t moment, there is no
change in the environment and thus a DMOP can be treated
as a static MOP which can be solved by the modified
NNIA which is improved with the modified self-adaptive
differential evolution crossover operator.

The flowchart is shown in Fig. 5.
At the beginning of time t , Environment Change Detec-

tion and Modified Prediction Mechanism are applied to
detect environment change and produce the initial popu-
lation. After obtaining the dominant population Dg(t) and
the active population Ag(t), evolution operators including
proportional cloning, Modified Self-adaptive DE operator
and polynomial mutation are used to guide the popula-
tion to evolve until metg < τT. In the process of forming
the non-dominated population Dg(t), if the number of
non-dominated antibodies is greater than the maximum lim-
itation nD , the algorithm uses the crowding-distance sorting
strategy [16] to select nD antibodies with greater crowding-
distance. Likewise, in the process of forming the active
population Ag(t), if the size of non-dominated population

nD is greater than the limitation size of active population
nA, the algorithm applies the crowding-distance sorting
strategy as above.

4 Experimental results

In this section, we introduce six DMOPs and three met-
rics to test this algorithm and evaluate its performance. As
a comparison, we test three other DMOEAs. And finally,
we conducted two sets of comparative experiments to test
the performance of the two mechanism, that is, the mod-
ified predictive model and adaptive differential evolution
operator.

4.1 Test problems

In the introduction of the DMOP in Section 2.1, we do not
introduct the time t in detail. In fact, the time t is controlled
by the formula as following:

t = 1

nT

⌊
τ

τT

⌋
(18)

where nT and τT are the severity and frequency of the
environment change, respectively. τ represents the current
iterative counter or the current function evaluation counter
and is added from zero to τT . So τT also corresponds to the
total number of iteration or function evaluation when the
environment remains unchanged. As this formula describes,
a large value of nT will cause a small severity of change.
Likewise, a large value of τT will make the frequency of
change slow.

Six different DMOPs are tested in this paper. The
first four problems are DMOP1(FDA1), DMOP2(FDA3)
[1], DMOP3(dMOP1), DMOP4(dMOP2) [4] and they
are two objective functions. The last two problems are
DMOP5(FDA4), DMOP6(FDA5) [1] and they are three
objective functions. The details of all the six test problems
are shown in Table 4.

4.2 Performance metrics

The Generational Distance (GD) [27] and the Spacing
(SP)[28] are used for measuring the convergence and the dis-
tribution of solutions obtained by four algorithms, respec-
tively, and the lower value of GD or SP represents the better
performance. The two metrics are summarized as follows.

Convergence Metric: The Generational Distance (GD)
represents the convergence of the solutions. GDt is calcu-
lated at the last generation of each t moment and is defined
as following:

GDt(At , PFt ) =
∑

v∈At
d(v, PFt )

|At | (19)
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Fig. 5 The flowchart of
PDNNIA

So the mean convergence indicators GD is expressed as
follows:

GD =
∑Tmax

t=1 GDt

Tmax
(20)

Let PFt be a set of uniformly distributed points on the true
Pareto-optimal front at the t moment, and At be the approxi-
mate Pareto-optimal set of dominant antibodies obtained by
DMOEA at the t moment. Where d(v, PFt ) is the minimum
Euclidean distance among all the distances between each
vector v in At and every point in PFt , Tmax is the maximum
number of environmental changes in a run.

Distribution Metric: The Spacing (SP) represents the
distribution of the solutions. SPt is calculated at the last
generation of each t moment and is defined as following:

SPt

√√√√ 1

|At | − 1

|At |∑
i=1

(d − di)2 (21)

where

di = min
j

{
k∑

m=1

∣∣fm(ai) − fm(aj )
∣∣}

(
ai, aj ∈ At ; i, j ∈ {1, 2, . . . , |At |}

)
, d = 1

|At |
|At |∑
i=1

di (22)

So the mean Spacing SP s expressed as follows:

SP =
∑Tmax

t=1 SPt

Tmax
(23)

Let PFt be a set of uniformly distributed points on the true
Pareto-optimal front at the t moment, and At be the approxi-
mate Pareto-optimal set of dominant antibodies obtained by
DMOEA at the t moment. Where d(v, PFt ) is the minimum
Euclidean distance among all the distances between each
vector v in At and every point in PFt , d is the average value
of all di , and k is the number of the objective functions.

4.3 Comparison of different DMOEAs

The other three algorithms that are used to be compared
with PDNNIA are DNSGAII-A [3], CSADMO [9], HDMIO
[10]. In all the four algorithms, the population uses real num-
ber coding and the population size is set to be N =100. In
DNSGAII-A, set the crossover probability pc and the muta-
tion prabability pm to be 1 and 1/n, respectively, where n

is the dimensions of decision variables. In CSADMO, the
clone proportion is set to be 3. In HDMIO the parameters are
set as following: nD = nC =100, nA =20, in the DE, CR=0.1,
F =0.5. In PDNNIA, the parameters are set as following:
nD = nC =100, nA =20, in the DE, CR=0.1. For each DMOP,
we measure the performance of the algorithm in different
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Table 4 The description of
test problems Test Function Definition

DMOP1 (FDA1) f1(x1) = x1

f2(x2, ..., xn) = g · h

g(x2, ..., xn) = 1 + ∑n
i=2 (xi − G(t))2

h(f1, g) = 1 − √
(f1/g)

G(t) = sin(0.5π · t)

where xi ∈ [0, 1], −1 ≤ xi ≤ 1, ∀i = 2, ..., 10

DMOP2 (FDA3) f1(x1) = ∑
xi∈XI

x
F(t)
i

f2(x) = g · h

g(x∐) = 1 + G(t) + ∑
xi∈X∐ (xi − G(t))2

h(f1, g) = 1 − √
(f1/g)

G(t) = |sin(0.5π · t)|
F(t) = 102 sin(0.5π ·t)

where XI = (x1, ..., x5) ∈ [0, 1], X∐ = (x6, ..., x10) ∈ [−1, 1]

DMOP3 (dMOP1) f1(x1) = x1

f2(x2, ..., xn) = g · h

g(x2, ..., xn) = 1 + 9 · ∑n
i=2 x2

i

h(f1, g) = 1 − (f1/g)H(t)

H(x) = 0.75 · sin(0.5π · t) + 1.25

where n = 10, xi ∈ [0, 1]

DMOP4 (dMOP2) f1(x1) = x1

f2(x2, ..., xn) = g · h

g(x2, ..., xn) = 1 + ∑n
i=2 (xi − G(t))2

h(f1, g) = 1 − (f1/g)H(t) G(t) = sin(0.5π · t)

H(x) = 0.75 · sin(0.5π · t) + 1.25

where n = 10, xi ∈ [0, 1]
DMOP5 (FDA4) f1(x1, x2) = (1 + g) · cos(0.5π · x2) · cos(0.5π · x1)

f2(x1, x2) = (1 + g) · cos(0.5π · x2) · sin(0.5π · x1)

f3(x2) = (1 + g) · sin(0.5π · x2)

g(x3, ..., xn) = ∑n
i=3 (xi − G(t))2

G(t) = |sin(0.5π · t)|
where n = 12, xi ∈ [0, 1]

DMOP6 (FDA6) f1(x, t) = (1 + g) · cos(0.5πy1) · cos(0.5πy2)

f3(x, t) = (1 + g) · sin(0.5πy1)

g = G(t) +
n∑

j=3
(xj − G(t))2, G(t) = |sin(0.5πt) |

y1 = x
F(t)
1 , y2 = x

F(t)
2 , F (t) = 1 + 100sin4(0.5πt),

t = 1
nT

⌊
τ
τT

⌋
where n = 12, xi ∈ [0, 1]

environmental change combinations (τT , nT ), that is the τT

can take a value of 15 or 25 and nT can take a value of 5 or
10. We run each algorithm 20 times for each test instance in
each enrivonmental change combination independently. The
algorithms stop when t > 50, i.e., there are 50 environmental

changes in each run. Table 5 shows the means and variances
of GD and SP obtained by the four algorithms, in which M
represents the mean and V represents the variance.

As can be seen from Table 5, for all the six test problems
and in all the environmental change combinations (τT , nT ),
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Table 5 The mean and variance of GD and SP obtained by the four algorithms

DMOPs (τT , nT ) GD SP

DNSGA II-A CSA DMO HD MIO PDNN IA DNSGA II-A CSA DMO HD MIO PDNN IA

DMOP1 (FDA1) (15,10) M 4.96E-02 6.90E-01 1.52E-02 1.12E-02 1.49E-02 1.84E-01 1.21E-02 1.01E-02

V 6.13E-03 5.08E-02 8.19E-04 7.31E-04 9.72E-04 1.87E-02 3.35E-04 4.33E-04

(25,10) M 1.71E-02 1.89E-01 6.50E-03 4.12E-03 7.68E-03 7.26E-02 7.10E-03 5.80E-03

V 1.00E-03 1.37E-02 2.76E-04 3.19E-04 2.80E-04 7.29E-03 1.94E-04 1.77E-04

(25,5) M 6.45E-02 8.21E-01 8.91E-03 7.28E-03 1.51E-02 1.93E-01 8.75E-03 7.22E-03

V 1.01E-02 5.73E-02 3.64E-04 4.41E-04 9.51E-04 3.19E-02 2.99E-04 3.08E-04

DMOP2 (FDA3) (15,10) M 1.36E+00 3.11E+00 5.88E-01 4.34E-01 2.16E-01 2.78E-01 1.88E-01 1.79E-01

V 2.23E-01 3.47E-01 6.73E-02 5.22E-02 5.18E-02 9.21E-02 1.24E-02 1.51E-02

(25,10) M 8.26E-02 2.36E-01 2.61E-02 2.07E-02 3.82E-02 2.40E-02 6.66E-02 5.70E-02

V 1.18E-02 1.39E-02 8.71E-04 1.02E-03 1.15E-02 2.47E-03 1.20E-03 1.59E-03

(25,5) M 1.11E+00 2.24E+00 7.40E-01 4.91E-01 1.57E-01 1.65E-01 1.65E-01 1.45E-01

V 1.49E-01 1.47E-01 9.47E-02 5.13E-02 2.91E-02 4.67E-02 8.74E-03 8.57E-03

DMOP3 (dMOP1) (15,10) M 8.85E-03 2.93E-01 1.43E-02 1.02E-02 2.38E-02 9.71E-02 7.78E-03 7.73E-03

V 8.65E-03 1.25E-01 1.11E-02 5.95E-03 1.87E-02 5.07E-02 2.68E-03 1.74E-03

(25,10) M 4.02E-04 8.10E-02 6.13E-04 5.90E-04 9.12E-03 2.57E-02 3.37E-03 3.51E-03

V 2.53E-05 4.96E-02 4.74E-05 7.19E-05 2.80E-04 2.38E-02 1.05E-04 1.02E-04

(25,5) M 4.16E-04 6.81E-02 6.44E-04 6.10E-04 9.43E-03 1.46E-02 3.65E-03 3.81E-03

V 6.05E-05 4.80E-02 5.80E-05 6.46E-05 1.21E-03 9.40E-03 1.21E-04 1.02E-04

DMOP4 (dMOP2) (15,10) M 1.46E-02 6.03E-02 4.96E-03 3.35E-03 1.01E-02 4.10E-02 6.96E-03 5.75E-03

V 6.20E-04 4.68E-03 1.80E-04 1.70E-04 3.70E-04 4.55E-03 1.68E-04 1.18E-04

(25,10) M 6.28E-03 1.63E-02 2.29E-03 1.46E-03 6.61E-03 1.30E-02 4.60E-03 3.99E-03

V 2.66E-04 1.78E-03 5.87E-05 4.50E-05 1.55E-04 1.47E-03 9.05E-05 6.88E-05

(25,5) M 4.29E-02 2.53E-01 6.07E-03 4.74E-03 1.97E-02 1.14E-01 8.25E-03 6.87E-03

V 4.17E-03 2.89E-02 2.08E-04 2.17E-04 8.59E-04 1.41E-02 2.48E-04 2.08E-04

DMOP5 (FDA4) (15,10) M 4.08E-01 6.05E-01 1.13E-01 9.17E-02 1.24E-01 1.17E-01 9.24E-02 8.63E-02

V 3.17E-02 1.48E-02 5.55E-03 6.61E-03 5.87E-03 2.89E-03 2.06E-03 2.38E-03

(25,10) M 6.10E-02 5.94E-02 2.06E-02 1.81E-02 6.13E-02 6.31E-02 5.63E-02 5.54E-02

V 4.20E-03 3.19E-03 3.48E-04 2.65E-04 1.18E-03 8.78E-04 7.06E-04 5.39E-04

(25,5) M 1.71E-01 3.52E-01 4.12E-02 3.67E-02 7.52E-02 9.27E-02 6.25E-02 6.15E-02

V 8.79E-03 1.12E-02 2.29E-03 1.80E-03 3.05E-03 1.69E-03 1.02E-03 9.57E-04

DMOP6 (FDA5) (15,10) M 2.12E-01 2.88E-01 6.36E-02 5.45E-02 1.19E-01 1.21E-01 9.92E-02 9.70E-02

V 1.09E-02 8.04E-03 1.62E-03 1.66E-03 4.45E-03 2.78E-03 1.40E-03 1.08E-03

(25,10) M 7.66E-02 6.68E-02 2.99E-02 2.67E-02 9.82E-02 9.64E-02 8.94E-02 8.87E-02

V 3.45E-03 3.67E-03 3.27E-04 3.36E-04 1.21E-03 1.09E-03 1.12E-03 9.79E-04

(25,5) M 1.44E-01 2.35E-01 4.05E-02 3.72E-02 1.08E-01 1.14E-01 9.26E-02 9.15E-02

V 6.55E-03 8.51E-03 1.21E-03 1.77E-03 2.52E-03 2.56E-03 1.05E-03 1.32E-03

PDNNIA can get the best means except for DMOP3 and
one environmental change combination of DMOP2, and in
most cases, the smallest variance values are also obtained
by PDNNIA. This means that PDNNIA performs the best
among the four algorithms and has stable performance. The
results obtained by PDNNIA have the best the convergence
and distribution.

The inverted generational distance(IGDt ) [29] reflects
both the convergence and diversity. IGDt is used to

evaluate the performance of the algorithms in all 50 itera-
tions (0 ∼ 49). IGDt is calculated in the last generation of
every time t and is defined as follows:

IGDt (At , PFt ) =
∑

v∈PFt
d(v, At )

|PFt | (24)

Let PFt be a set of uniformly distributed points on the true
Pareto-optimal front at the t moment, and At be the approxi-
mate Pareto-optimal set of dominant antibodies obtained by
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Fig. 6 IGDt obtained by the four algorithms

DMOEA at the t moment. Where d(v, PFt ) is the minimum
Euclidean distance among all the distances between each
vector v in PFt and every point in At , Tmax is the maximum
number of environmental change in a run.

For each test problem, we compare the IGDt obtained
by each algorithm in the whole process of the evolution
with the second environmental change combination,i.e. (τT ,
nT ) =(25,10), and the results are shown in Fig. 6. In the
figure, for convenience, algorithm 1, algorithm 2, algo-
rithm 3 and algorithm 4 represent DNSGAII-A, CSADMO,
HDMIO and PDNNIA respectively.

From Fig. 6, we can see that IGDt obtained by PDNNIA
always maintains the minimum value in the whole pro-
cess of evolution for each DMOP. For DMOP1, DMOP2,
DMOP4 and DMOP5, the proposed algorithm PDNNIA
significantly outperforms the other three algorithms. For
DMOP3 and DMOP6, the performance of PDNNIA as good
as HDMIO and they get the best results together.

4.4 Experiental study on the modified predictive model
and the modified adaptive DE

In the following experiments, we conducted two sets of
comparative experiments to test the performance of the two
modified operators, i.e., the modified predictive model and
adaptive differential evolution operator.

4.4.1 Experiental study on the modified predictive model

The predictive model comes into action at the begining
generation of a new environment that used to predict the ini-
tial population. In this experiment, the modified predictive
model will compare with the other two predictive model,
which are shown in Table 6. In Table 6, the predictive strat-
egy of [25] is the original distance model. The predictive
strategy proposed in this paper is described in Section 3.1.2.
We combine the three preditive models with the same static

Table 6 The description of the
three predictive models Model Description of the predictive model

predictive model 1 The initial population is produced by the predictive strategy of [25].

predictive model 2 The half of the initial polulation is produced by the prediction strategy

of [25] ,the other half is randomly gengerated.

predictive model 3 The predictive strategy proposed in this paper.
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Fig. 7 IGDt obtained by the three algorithms

MOP algorithm, that is the NNIA which based on the mod-
ified self-adaptive differential evolution crossover, and get
three DMOP algorithm, which are denoted as Prediction 1,
Prediction 2 and Prediction 3 respectively. Expect the pre-
dictive model, the other operators and parameters of all the
three algorithms are set as same as those in Section 4.1.

With the three DMOP algorithm testing the six DMOPs
respectively, We use the metric IGDt to evaluate the perfor-
mance of the three predictive model. We run each algorithm
20 times for each test instance in the second enrivonmental
change combination, i.e., (τT , nT ) =(25,10), independently.
There are 50 environmental changes in each run, i.e., Tmax =
50. The results are shown in Fig. 7.

Because the predictive model is based on the historical
information, we only analyze the performance of the three
algorithm when t ≥ 3. When 0 < t < 3, the predictive can
not come into action, so the three algorithms use the same
strategy to initialize the polulation.

We can see from Fig. 7 that, for DMOP1, DMOP2,
DMOP4 and DMOP5, the Prediction 3 algorithm signifi-
cantly outperforms the other two algorithms, this suggests
that the model proposed in this paper is significantly bet-
ter than the other two predictive models. For DMOP3
and DMOP6, the performances of the three predictive
models are almost the same. So we can draw a conclu-
sion that the predictive model proposed in this paper has
advantages in predicting and tracking the environmental
change.

4.4.2 Experiental study on the modified adaptive DE

In this experiment, the modified adaptive DE will com-
pare with the other two DE operator, which are shown in
Table 7. DE1 is the original differential evolution opera-
tor and the parameter F is set to be 0.5. The DE2 is the
adaptive differential evolution operator in [26]. DE3 is the

Table 7 The Description of
the three algorithms Algorithm Description of the algorithm

DE1 The original differential evolution operator(F=0.5).

DE2 The adaptive differential evolution operator in [26].

DE3 The modified simpler adaptive differential evolution operator proposed

in this paper.
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Fig. 8 IGDt obtained by the three algorithms

modified adaptive differential evolution operator proposed
in this paper. Introduce the three DE operator to the same
DMOP algorithm respectively and get three DMOP algo-
rithm, which are denoted as Algorithm 1, Algorithm 2 and
Algorithm 3 respectively. Except the DE operator, the other
operators and parameters of all the three algorithms are set
as same as those in Section 4.1.

With the three algorithms testing the six DMOPs respec-
tively, we run each algorithm 20 times for each test instance
in the second enrivonmental change combination, i.e., (τT ,
nT ) =(25,10), independently. There are 50 environmental
changes in each run, i.e., Tmax = 50. We keep a record of the
IGDt of each time in one run and evalute the average value
of the 50 IGDt , which denoted by IGDt . We figure out the
boxplot of IGDt in 20 independent runs in Fig. 8.

We can see from Fig. 8 that our modified simpler adap-
tive differential evolution operator can obtain a relatively
better values of IGDt with a better stability for the most
problems except for DMOP6. In DMOP6, the algorithm 3
with the DE3 operator obtain the second best result. This
shows that our modified simpler adaptive differential DE is
effective though it is simple.

5 Conclusion

A novel DMOEA based on the improved predictive model
and the modified adaptive differential evolution crossover
operator is proposed in this paper. Two sets of comparative

experiments are conducted to test the performances of the
proposed algorithm and the effectiveness of the two modi-
fied operators. Experimental results show that the proposed
algorithm is effective and generic for all types of DMOPs,
and two modified operators can significantly obtain bet-
ter performances with respect to the original versions. For
the two-objective problems with unchanging PSt and chang-
ingPFtor the three-objective problems with changingPSt and
changingPFt , the superiority of the proposed algorithm is
not very obvious. In the next work, we will analyze which
types of problems our algorithm is particularly applicable
for and modify the algorithm further to improve the per-
formance of the algorithm on these two types of DMOPs
mentioned above.
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