
Appl Intell (2015) 42:566–580
DOI 10.1007/s10489-014-0612-3

Strict approximate pattern matching with general gaps

Youxi Wu · Shuai Fu · He Jiang · Xindong Wu

Published online: 25 November 2014
© Springer Science+Business Media New York 2014

Abstract Pattern matching with gap constraints is one of
the essential problems in computer science such as music
information retrieval and sequential pattern mining. One
of the cases is called loose matching, which only con-
siders the matching position of the last pattern substring
in the sequence. One more challenging problem is con-
sidering the matching positions of each character in the
sequence, called strict pattern matching which is one of
the essential tasks of sequential pattern mining with gap
constraints. Some strict pattern matching algorithms were
designed to handle pattern mining tasks, since strict pattern
matching can be used to compute the frequency of some
patterns occurring in the given sequence and then the fre-
quent patterns can be derived. In this article, we address
a more general strict approximate pattern matching with

Y. Wu (�) · S. Fu
School of Computer Science and Engineering, Hebei University
of Technology, Tianjin, 300130, China
e-mail: wuc567@163.com

S. Fu
e-mail: 15822014723@126.com

X. Wu
e-mail: xwu@cems.uvm.edu

H. Jiang
School of Software, Dalian University of Technology,
Dalian, 116621, China
e-mail: jianghe@dlut.edu.cn

X. Wu
School of Computer Science and Information Engineering,
Hefei University of Technology, Hefei, 230009, China

X. Wu
Department of Computer Science, University of Vermont,
Burlington, VT, 05405, USA

Hamming distance, named SAP (Strict Approximate Pat-
tern matching with general gaps and length constraints),
which means that the gap constraints can be negative.
We show that a SAP instance can be transformed into
an exponential amount of the exact pattern matching with
general gaps instances. Hence, we propose an effective
online algorithm, named SETA (SubnETtree for sAp), based
on the subnettree structure (a Nettree is an extension of
a tree with multi-parents and multi-roots) and show the
completeness of the algorithm. The space and time com-
plexities of the algorithm are O(m×Maxlen×W×d) and
O(Maxlen×W×m2×n×d), respectively, where m, Maxlen,
W , and d are the length of pattern P , the maximal length
constraint, the maximal gap length of pattern P and the
approximate threshold. Extensive experimental results vali-
date the correctness and effectiveness of SETA.

Keywords Approximate pattern matching · Hamming
distance · General gap · Online algorithm

1 Introduction

Pattern matching (also called string matching) is one of
the essential problems in computer science with broad
applications [1, 2]. The most classical pattern matching
algorithm is KMP which was proposed by Knuth [3].
After that, Fischer and Paterson [4] first proposed pat-
tern matching with wildcards (or ‘don’t care’ symbols)
and in their study the number of wildcards between two
consecutive letters is a constant. Manber et al. [5] stud-
ied pattern matching with the gap constraint, which means
that the wildcard is a range, but the pattern has only
one gap constraint. In recent years, researchers have paid
more attention to pattern matching with multiple gap

mailto:wuc567@163.com
mailto:15822014723@126.com
mailto:xwu@cems.uvm.edu
mailto:jianghe@dlut.edu.cn

Strict approximate pattern matching with general gaps 567

constraints, the pattern in this kind of issue can be described
as P = p0[a0, b0]p1...[aj , bj]pj+1...[am−2, bm−2]pm−1,
where aj and bj are the minimal and maximal numbers
that a wildcard can match between pj and pj+1. Pattern
matching with gaps has been applied to many domains.
For instance, Navarro and Raffinot [6] proposed two algo-
rithms which can be used for protein searching. Cole et
al. [7] used the approximate pattern matching approach to
judge whether the pattern string is in the specified text or
dictionary. Crochemore et al. [8] investigated the (CT

m, α)-
approximate matching which can be used in the music
retrieval field. Cantone et al. [9] focused on the parallel-
by-bit approach that can be applied in music information
retrieval and analysis. In sequential pattern mining, Ji et al.
[10] proposed the ConSGapMine algorithm which can mine
minimal distinguishing sequences. Ferreira and Azevedo
[11] proposed the gIL algorithm to mine protein sequences.
Zhang et al. [12] proposed the MPP algorithm to mine
sequential patterns with periodic gap constraints. Zhu and
Wu [13] and Wu et al. [14] proposed state-of-the-art algo-
rithms which have a better performance than that of MPP.
All these researches mentioned above employed a pattern
matching strategy. An illustrative example is given as fol-
lows to show all occurrences of a pattern with gaps in a
sequence.

Example 1 Given pattern P = p0[a0, b0]p1[a1, b1]p2 =
C[0, 2]A[0, 2]G and sequence S = s0s1s2s3s4s5 =
CACAGG.

We know that CA..G is an occurrence which satisfies
pattern P , and there are 5 occurrences like this. To denote
conveniently, we use the subscripts of each character to
represent an occurrence, hence CA..G can be denoted by
< 0, 1, 4 >. Thus, the 5 occurrences of this problem can
be described by < 0, 1, 4 > , < 0, 3, 4 > , < 0, 3, 5 > ,
< 2, 3, 4 >, and < 2, 3, 5 >. Nevertheless, < 0, 1, 5 >

is not an occurrence, because the gap between 1 and 5 is
3, which fails to satisfy the gap constraint [0,2]. We show
all occurrences in Fig. 1. So in the sequential pattern min-
ing task, we say the support of P in S is 5, while in the

0 1 2 3 4 5

Sequence C A C A G G

1st occurrence C A . . G

2nd occurrence C . . A G

3rd occurrence C . . A . G

4th occurrence . . C A G

5th occurrence . . C A . G

Fig. 1 Strict pattern matching with gaps

pattern matching issue, we say the number of occurrences of
P in S is 5. Therefore, pattern matching plays an important
role in sequential pattern mining with gaps, since one of the
essential tasks of sequential pattern mining is to calculate
the support of a pattern.

Sequential pattern mining has very important applica-
tions in real problems. For instance, miners can discover the
common sequential purchasing behaviours for most of the
customers according to the transactional database [15]. A
pattern can be that most of the customers purchased item
A, after a while bought item B, and finally purchased item
C. However, this kind of mining is under the non-negative
gaps, which bounds the purchasing order of the consumers.
Pattern ABC with non-negative gaps fails to be detected in
the sequence containing BAC, but pattern ABC with gen-
eral gaps occurs in the sequence. For example, < 2, 1, 4 >

is an occurrence of pattern C[−1,2]A[0,2]G in sequence
S = CACAGG. Hence sequential pattern mining with gen-
eral gaps is more useful. We know that pattern matching
is one of the essential tasks in pattern mining. Exact pat-
tern matching is an ideal research, since it does not allow
noise, while the approximate pattern matching can solve the
problem. In conclusion, the approximate pattern matching
with general gaps is a more challenging and general issue.
The contributions of this paper are described specifically as
follows:

(1) We propose the problem of Strict Approximate Pat-
tern matching with general gaps and length constraints
(SAP). When the Hamming distance is 0, the prob-
lem is automatically converted to the exact pattern
matching, which is called the SPANGLO problem
[16]. We prove that a SAP instance can be transformed
into exponential SPANGLO instances; therefore, we
cannot use SETS [16] to solve a SAP problem.

(2) To solve a SAP problem effectively, we propose
an effective online algorithm, named SETA, which
applies pruning strategies. In addition, we prove the
correctness and completeness of SETA and analyse
the time and space complexities of SETA, which are
O(Maxlen × W × m2 × n × T) andO(m × Maxlen ×
W × T) respectively, where m, Maxlen, W , and T are
the length of pattern P , the maximal length constraint,
the maximal span of pattern P and the approximate
threshold.

(3) Extensive experimental results on real biological data
show the correctness of the approach of transforming
a SAP instance to an exponential amount of SPAN-
GLO instances, and also validate the correctness and
effectiveness of SETA.

The rest of the paper is organized as follows. Section 2
summarizes the related work. Section 3 presents the

568 Y. Wu et al.

definition of the SAP problem and analyses the method of
transforming the SAP problem into SPANGLO problems.
Section 4 proposes how to create and calculate a subnet-
tree for SAP and proves the correctness of the calculation
method. After this, we propose the SETA algorithm and
analyse the time and space complexities. Finally, we illus-
trate how SETA works. Section 5 validates the correctness
of SETA through vast real biological data. We give the
conclusion of this paper in Section 6.

2 Related work

Example 1 is a kind of strict pattern matching. Another kind
of pattern matching is called loose pattern matching which
only considers the position of the last pattern substring in
the sequence. Since the last pattern substring is p2 = G in
Example 1, and it can match positions 4 and 5 in sequence S,
there are only 2 occurrences in the loose pattern matching.

Because all the gaps of the pattern are no less than 0
in Example 1, bounded by the gap constraints, pj+1 must
appear in the right of pj . The more general gap constraints
can be negative. Thus pj+1 can appear in either the right or
the left of pj . If there is a negative gap in the pattern, then
the pattern is called a pattern with general gaps; when all the
gaps are no less than 0, the pattern is called a pattern with
non-negative gaps. Pattern matching with general gaps was
applied to not only the loose pattern matching [17, 18] but
also the exact pattern matching [16].

The length constraint, which is composed of the minimal
length constraint and the maximal length constraint, refers
to restraining the span of the occurrence, which means the
distance between the minimal value and the maximal value
of the occurrence. For instance, the minimal value and the
maximal value of < 2, 3, 5 > are 2 and 5, respectively. So
the span of < 2, 3, 5 > is 5 − 2 + 1 = 4. There are 3
occurrences of pattern P 1 = C[−1, 2]A[0, 2]G in sequence
S when the minimal and maximal length constraints are 3
and 4 respectively, i.e. < 2, 3, 4 >, < 2, 1, 4 >, and <

2, 3, 5 >. As the spans of < 0, 1, 4 >, < 0, 3, 4 >, and <

0, 3, 5 > are 5, 5, and 6, none of them satisfies the length
constraints.

What we discussed above are all examples of exact pat-
tern matching, i.e. pj must be equal to si . But in real
research, most situations are approximate pattern matching.
Approximate pattern matching contains pattern matching
based on edit distance and on Hamming distance. In this
paper, we focus on the study of approximate pattern match-
ing with Hamming distance; namely, the distance between
the pattern and the substring corresponding to the occur-
rence must be no greater than the given threshold. For
instance, if the given threshold is 1, in Example 1, <

0, 1, 3 > is an approximate occurrence with the Hamming

distance being 1 because s3 = A �= p2 = G. Nevertheless,
< 0, 2, 3 > is still not an approximate occurrence with
the Hamming distance being 1, because the Hamming dis-
tance between < 0, 2, 3 > and the pattern is 2. Of course,
< 0, 1, 4 > is also an occurrence, because the distance
between < 0, 1, 4 > and the pattern is 0, which is less
than the threshold. We can clearly know that if the approxi-
mate threshold is 0 it will convert from approximate pattern
matching to exact pattern matching. Therefore, compared
with exact pattern matching, approximate pattern matching
is more general.

In pattern matching with gaps, there are some special
conditions. One condition is called the one-off condition,
which means that any position in the sequence can be used
at most once. Guo et al. [19] investigated pattern matching
with the one-off condition. The one-off condition has many
different names in sequential pattern mining. Actually,
Ferreira and Azevedo [11], Huang et al. [20] and Lam
et al. [21] all focused on pattern mining with the one-
off condition. Similar to the one-off condition, Ding et al.
[22] researched sequential pattern mining with the non-
overlapping condition, which means that no position in the
sequence can be reused by other pattern substrings. Com-
pared with the one-off condition and the non-overlapping
condition, there is no special condition which means
that any position in the sequence can be used more
than once. Min et al. [23] focused on pattern match-
ing with length constraints. Zhang et al. [12] investigated
sequential pattern mining with periodic gap constraints.
All these researches mentioned above are with no spe-
cial condition. In this article, we also focus on no spe-
cial condition. Table 1 shows the related work in pattern
matching.

Table 1 shows that the main difference between [16] and
our work is that [16] investigated exact pattern matching,
while this study addresses approximate pattern matching,
which is a more general issue. Since a SAP instance can be
transformed into exponential SPANGLO instances, which
was handled in [16], we propose an effective algorithm,
named SETA, which employs effective pruning strategies.
An illustrative example is given to show how to prune effec-
tively in Section 5.4. The following cases show the meaning
of this issue.

3 Problem definition and analysis

3.1 Problem definition

Definition 1 A sequence can be denoted as S =
s0s1. . . si . . . sn−1, where n is the length of S.

∑
represents a

set of characters, such as in the DNA sequence, where
∑

is
{A,T,G,C}.

Strict approximate pattern matching with general gaps 569

Table 1 Comparison of related work

Algorithms Number of Gap Matching Matching Length Special

gaps type type type constraint condition

Manber and Baeza-Yates [5] Single Non-negative Strict matching Exact None No

Bille et al. [24] Multiple Non-negative Loose matching Exact matching – –Note1

Rahman et al. [25] Multiple Non-negative Loose matching Exact matching – –

Bille et al. [26] Multiple Non-negative Loose /Strict matchingNote2 Exact matching –/None –

Fredriksson and Grabowski [17, 18] Multiple General Loose matching δapproximate – –

Guo et al. [19] Multiple Non-negative Strict matching Exact matching Yes One-off

He et al. [27] Multiple Non-negative Strict matching Hamming distance Yes One-off

Min et al. [23] Multiple Non-negative Strict matching Exact matching Yes No

Wu et al. [16] Multiple General Strict matching Exact matching Yes No

This paper Multiple General Strict matching Hamming distance Yes No

Note 1: “–” in the table represents the items we do not take into consideration.

Note 2: This paper designed two algorithms, which research loose pattern matching and strict pattern matching respectively.

Definition 2 A pattern with general gaps can be
denoted as P = p0[a0, b0]p1 . . . [aj−1, bj−1]pj . . . [am−2,
bm−2]pm−1, where m denotes the length of P , aj and bj

are given integers, representing the minimal and maximal
wildcards between pj and pj+1, where aj ≤ bj , and in
addition, aj and bj can be negative.

Definition 3 Given two sequences Q = q0q1. . . qm−1 and
R = r0r1. . . rm−1, if there are k positions at which the cor-
responding characters are different, i.e. qi �= ri(0≤ i < m),
then the Hamming distance between the two strings is
k(0≤ k ≤ m). D(Q, R) is used to denote the Hamming
distance between Q and R.

Definition 4 Given a threshold d , if a group of position
indices I =< i0,. . . ,ij ,. . . ,im−1 > satisfies the following
equations

D(p0p1 · · · pm−1, si0si1 · · · sim−1) ≤ d (1)

ij−1 �= ij (2)
{

minj−1 ≤ ij − ij−1 − 1 ≤ maxj−1, if ij−1 < ij
minj−1 ≤ ij − ij−1 ≤ maxj−1, if ij−1 > ij

(3)

where 0≤ j ≤ m − 1 and 0 ≤ ij ≤ n − 1, then I is an
approximate occurrence of P in S.

Definition 5 An approximate occurrence I satisfies the
length constraint which means that the occurrence is sub-
ject to the following equation

Minlen ≤ imax − imin + 1 ≤ Maxlen (4)

In addition, imax − imin + 1 is the span of occurrence
I , where imax = max(i0, . . . , ij ,. . . , im−1), imin = min(i0,

. . . , ij , . . . , im−1), and Minlen and Maxlen are the two
given integers which are the minimal and maximal length
constraint, respectively.

Definition 6 Let the set T (S, P, d) denote all the approx-
imate occurrences and |T (S, P, d)| denote the length of
T (S, P, d). SAP is to calculate |T (S, P, d)|.

3.2 Theoretical analysis

From Table 1, we know that SPANGLO [16] handles the
exact matching problem, while SAP deals with the approx-
imate matching problem. Given sequence S, pattern P ,
Minlen and Maxlen, apparently, the SPANGLO problem can
be denoted by |T (S, P, 0)|.
Theorem 1 A SAP instance can be transformed into expo-
nential SPANGLO instances.

Proof Let f (S, P, k) = |T (S, P, k)| − |T (S, P, k − 1)| .
We can know that f (S, P, k) denotes the number of occur-
rences whose Hamming distance between the approximate
occurrence and the pattern is k. That is to say, arbitrarily
choose k different positions in pattern P to make the cor-
responding character differ from pj . So there are Ck

m =
m!

k!∗(m−k)! different choices. There are | ∑ | -1 different
choices in each different position. Therefore, f (S, P, k) can
be transformed into Ck

m ∗ (|�| − 1) SPANGLO instances.
Since |T (S, P, d)| is

∑d
i=0f (S, P, i), |T (S, P, d)| can

be transformed into 1+∑d
i=1C

i
m ∗ (|�| − 1) SPANGLO

instances. Hence Theorem 1 is proved.
Wu et al. [16] proposed an effective algorithm, named

SETS, to solve SPANGLO. From Theorem 1, we can
know that SETS fails to solve SAP, since a SAP instance

570 Y. Wu et al.

will be transformed into exponential SPANGLO instances.
Therefore, we have to propose a new algorithm to solve
SAP.

4 Subnettree for SAP

4.1 Subnettree

Definition 7 A Nettree [28] is an extension of a tree,
because it has many concepts similar to a tree, such as the
root, leaf, level, parent, child and so on. Nettree has four
features which are obviously different from a tree.

(1) A Nettree may have n roots, where n ≥1;
(2) Some nodes other than roots in a Nettree may have

many parents;
(2) There may be more than 1 path from a node to its

ancestor node in a Nettree;
(4) The same node label can appear in different levels in a

Nettree. ni
j denotes the node i in the j -th level.

To solve SAP, a subnettree is also employed since we can
confirm the maximal value in the subnettree. So we can deal
with the length constraint. More important is that, through
this approach, an online algorithm is proposed.

Definition 8 A subnettree [16] is composed of three parts,
a central node ni

j , its ancestor nodes A(ni
j), and its

descendant nodes D(ni
j), where the ancestor node refers to

the fact that node nc
b is on the path from node ni

j to a root,
c ≤ i, and 1≤ b < j. Similarly, the descendant node refers
to the fact that node ne

f is on the path from node ni
j to a leaf,

and e < i. Subnettree ni
j is used to represent a subnettree

with a central node ni
j .

From Definition 8, we see that there is only one node
ni

j in the j -th level, and iis the maximal node label in the

subnettree, the maximal ancestor node label of ni
j can be i

and the maximal descendant node label can just be i-1.

Lemma 1 When we create subnettree ni
j according to pat-

tern P , in the following three cases, the subnettree can be
omitted.

Case 1. j is equal to m, and gap bm−1 is less than 0.
Case 2. j is equal to 1, and gap a0 is no less than 0.
Case 3. gap bj−2 is less than 0 or gap aj−1 is no less than

0, where 1 < j < m.

Proof Case 1. When j is equal to m, it indicates that
pm−1 matches with si . Since am−1 is less than
bm−1, if bm−1 is less than 0, then am−1 is also

less than 0. Suppose character sh match with
pm−2, h is greater than i according to gap [am−1,
bm−1]. This is contradictory to the definition of
the subnettree.

Case 2. When j is equal to 1, it indicates that p0 matches
with si . If a0 is no less than 0, then b0 is also
no less than 0. Suppose sh match with p1, his
greater than i according to gap [a0, b0], which is
contradictory to the definition of the subnettree.

Case 3. Similarly, if gap bj−2 is less than 0 or gap aj−1

is no less than 0 (1 < j < m), then position h is
greater than i according to the gap, where h is the
position of character sh, which will match pj−2 or
pj . This is contradictory to the definition of the
subnettree. Therefore the lemma is proved.

To confirm the range of the node labels in the j -th level
of the subnettree, we propose the definitions of the maximal
sibling and the minimal sibling in the j -th level.

Definition 9 The minimal sibling and the maximal sibling
are the minimal and maximal node labels in the k-th level of
the subnettree and denoted by ck and ek, respectively.

Lemma 2 In the process of creating the ancestor nodes of
subnettree ni

j , we create the nodes in the k-th level accord-
ing to the nodes in the k+1-th level, where 1≤ k < j . In
this process, ck and ek can be calculated by (5) and (6),
respectively.

Similarly, in the process of creating the descendant nodes
of subnettree ni

j , we create the nodes in the k-th level
according to the nodes in the k-1-th level, where j < k ≤ m.
In this process, ck and ek can be calculated by (7) and (8),
respectively.

ck =
{

max(0, i−Maxlen+1, ck+1−bk−1 − 1) bk−1 ≥ 0
max(0, i−Maxlen+1, ck+1−bk−1) bk−1 < 0

(5)

ek =
{

min(i, ek+1 − ak−1 − 1) ak−1 ≥ 0
min(i, ek+1 − ak−1) ak−1 < 0

(6)

ck =
{

max(0, i−Maxlen+1, ck−1+ak−2 + 1) ak−2 ≥ 0
max(0, i−Maxlen+1, ck−1+ak−2) ak−2 < 0

(7)

ek =
{

min(i − 1, ek−1 − bk−2 + 1) bk−2 ≥ 0
min(i − 1, ek−1 − bk−2) bk−2 < 0

(8)

Proof First of all, we prove the method of calculating ck

and ek in the ancestor set. Obviously, the minimal sibling ck

is no less than 0. Since ck needs to satisfy the length con-
straint, ck is also no less than i −Maxlen+1. Besides, since
the nodes in the k-th level and k+1-th level correspond with
pk−1 and pk respectively, ck also needs to satisfy gap bk−1.

Strict approximate pattern matching with general gaps 571

According to (2), when bk−1 is less than 0, ck is no less than
ck+1 − bk−1, while bk−1 is no less than 0, ck is no less than
ck+1 − bk−1 − 1. Therefore, ck can be calculated by (5).
Similarly, according to Definition 8, the maximal value of
ek in subnettree ni

j is i and ek also needs to satisfy gap ak−1.
Hence, ek can be calculated by (6).

In the descendant set, the method of calculating ck and
ek is similar to that in the ancestor set. The difference is
that in the descendant set, the nodes in the k-th level are
created according to the nodes in the k-1-th level. So the
values of ck and ek are calculated according to ck−1 and ek−1

respectively. Both of them need to satisfy gap ak−2 and bk−2

respectively. Therefore, ck can be calculated by (7). Since
the maximal value of the descendant nodes in the subnettree
is i − 1, ek can be calculated by (8). Hence Lemma 2 is
proved.

Since there are some paths that can satisfy the length con-
straint and others fail to do so, we propose several concepts
to distinguish the two kinds of path.

Definition 10 Let M be a path from node ni
j to node nc

b,
where 0≤ i < n, 1 ≤ j , 0 ≤ c < n, and 1≤ b.e is the
minimal node label in this path, i.e. e = min(M), if path
M satisfies the length constraint, i.e. Minlen ≤ i − e + 1 ≤
Maxlen, then we say that M is a path with length con-
straint; otherwise, M is a complement path with length
constraint.

Definition 11 NAPS (Number of Ancestor Paths with
Similarity constraint) is the number of paths which are
from an ancestor node nl

k to its central node ni
j with the

Hamming distance d , denoted by NA(ni
j , n

l
k, d). In these

paths, the number of paths that satisfy the length con-
straint is called NAPLC (Number of Ancestor Paths
with Length Constraints), denoted by NC

A (ni
j , n

l
k, d) and

the number of paths that do not satisfy the length con-
straint is called NCAPLC (Number of Complement of
Ancestor Paths with Length Constraints), denoted by
N∼

A (ni
j , n

l
k, d). The initial value of NA(ni

j , n
i
j , d) is set

as follows: if si = pj−1, then the distance between
si and pj−1 is 0, or else is 1. Therefore, if si=pj−1,
then NA(ni

j , n
i
j , 0)=1 and for any d > 0, NA(ni

j , n
i
j , d)

is 0. Otherwise, NA(ni
j , n

i
j , 1) =1, and for any d �=1,

NA(ni
j , n

i
j , d) is 0.

Obviously, NA(ni
j , n

l
k, d) is the sum of NC

A (ni
j , n

l
k, d)

and N∼
A (ni

j , n
l
k, d), i.e.NA(ni

j , n
l
k, d)=NC

A (ni
j , n

l
k, d)+

N∼
A (ni

j , n
l
k, d). Next, we will show how to calculate

NA(ni
j , n

l
k, d), NC

A (ni
j , n

l
k, d), and N∼

A (ni
j , n

l
k, d).

Lemma 3 NA(ni
j , n

l
k, d) is calculated according to (9).

Proof If sl = pk , then the distance between sland pkis 0, or
else is 1. We know that the nodes in the k-th level are created
according to the nodes in the k+1-th level in the ancestor
nodes of the subnettree. Therefore, after adding node nl

k , if
sl = pk , then the distance is not changed, NA(ni

j , n
l
k, d)

is the sum of NA(ni
j , n

rq
k+1, d); otherwise, the distance

increases by 1, hence NA(ni
j , n

l
k, 0) =0 and NA(ni

j , n
l
k, d)

is the sum of NA(ni
j , n

rq
k+1, d-1), where n

rq
k+1 is the qth child

node of nl
k . Therefore Lemma 3 is proved.

Lemma 4 NC
A (ni

j , n
l
k, d) and N∼

A (ni
j , n

l
k, d) can be calcu-

lated according to (10) and (11), respectively.

Proof If the distance between l and i satisfies the
length constraint, then NC

A (ni
j , n

l
k, d)=NA(ni

j , n
l
k, d) and

N∼
A (ni

j , n
l
k, d) =0. Otherwise, we need to consider whether

sl is the same as pk or not, if sl and pk are the
same, NC

A (ni
j , n

l
k, d) and N∼

A (ni
j , n

l
k, d) is the sum of

NC
A (ni

j , n
rq
k+1, d) and N∼

A (ni
j , n

rq
k+1, d), respectively. If sl

and pk are different, then NC
A (ni

j , n
l
k ,0) and N∼

A (ni
j , n

l
k ,0)

are 0, besides, NC
A (ni

j , n
l
k , d) and N∼

A (ni
j , n

l
k, d) should

be the sum of NC
A (ni

j , n
rq
k+1, d-1) and N∼

A (ni
j , n

rq
k+1, d-1),

respectively. Hence Lemma 4 is proved.

NA(ni
j , n

l
k, d) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∑t
q=1NA(ni

j , n
rq
k+1, d)

sl = pk
∑t

q=1NA(ni
j , n

rq
k+1, d − 1)

sl �= pk and d > 0

0 sl �= pk and d = 0

(9)

where n
rq
k+1 and t represent the q-th child node of nl

k and
the number of child nodes of the node nl

k in the subnettree,
respectively.

NC
A (ni

j , n
l
k, d)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

NA

(
ni

j , n
l
k, d

)
Minlen ≤ i − l + 1 ≤ Maxlen

∑t
q=1N

C
A

(
ni

j , n
rq
k+1, d

)
sl =pk and (i−l + 1 > Maxlen or i − l + 1 < Minlen)

∑t
q=1N

C
A

(
ni

j , n
rq
k+1, d−1

)
sl �=pk and (i−l + 1 > Maxlen or i − l + 1 < Minlen) and d > 0

0 sl �=pk and (i−l+1>Maxlen or i−l+1<Minlen) and d =0

(10)

572 Y. Wu et al.

where n
rq
k+1and t represent the q-th child node of nl

k and
the number of child nodes of the node nl

k in the subnettree
respectively.

N∼
A (ni

j , n
l
k, d)=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 Minlen ≤ i − l + 1 ≤ Maxlen
∑t

q=1N
∼
A

(
ni

j , n
rq
k+1, d

)
sl = pk and (i − l + 1 > Maxlen or i − l + 1 < Minlen)

∑t
q=1N

∼
A

(
ni

j , n
rq
k+1, d−1

)
sl �= pk and (i − l + 1>Maxlen or i−l + 1<Minlen) and d >0

0 sl �=pk and (i − l + 1 > Maxlen or i − l+1<Minlen) and d = 0

(11)

where n
rq
k+1 and t represent the q-th child node of nl

k and
the number of child nodes of the node nl

k in the subnettree
respectively.

Definition 12 NRPLC (Number of Root Paths with
Length Constraint) is the number of paths which are from
roots to the central node ni

j with the Hamming distance d

which satisfy the length constraint, denoted by NC
R (ni

j , d).
Similarly, the number of paths which do not satisfy the
length constraint is called NCRPLC (Number of Comple-
ment of Root Paths with Length Constraint), denoted as
N∼

R (ni
j , d).NC

R (ni
j , d) and N∼

R (ni
j , d) can be calculated by

the following equations.

NC
R (ni

j , d) =
∑t

q=1
NC

A (ni
j , n

rq
1 , d) (12)

N∼
R (ni

j , d) =
∑t

q=1
N∼

A (ni
j , n

rq
1 , d) (13)

where n
rq
1 and t represent the q-th rootand the number of

roots in the subnettree, respectively.
Now, we will introduce how to create the descendant

nodes of central node ni
j .

Definition 13 NDPS (Number of Descent Paths with
Similarity constraint) is the number of paths which are
from central node ni

j to its descendant node nl
k with the

Hamming distance d , denoted by ND(ni
j , n

l
k, d). In these

paths, the number of paths that satisfy the length constraint
is called NDPLC (Number of Descent Paths with Length
Constraints), denoted by NC

D(ni
j , n

l
k, d) and the number of

paths that do not satisfy the length constraint is called NCD-
PLC (Number of Complement of Descent Paths with
Length Constraints), denoted by N∼

D(ni
j , n

l
k, d). When we

initialize NDPS, it is different from the method of initial-
izing NAPS. In this definition, no matter whether si is the
same as pj−1 or not, ND(ni

j , n
i
j ,0)=1 and for any d >

0, ND(ni
j , n

i
j , d) =0. The reason is that when si and pj−1

are different, if ND(ni
j , n

i
j , 1) =1, then it will cause the fact

that si and pj−1 are different to be calculated excessively.

Lemma 5 ND(ni
j , n

l
k, d), NC

D(ni
j , n

l
k, d), and

N∼
D(ni

j , n
l
k, d) can be calculated by (14), (15), and (16),

respectively.

Proof Similar to the method of calculating NAPS, NAPLC
and NCAPLC of the ancestor nodes, we know that the
nodes in the k-th level are created according to the nodes
in the k-1-th level nodes in the descendant nodes of the
subnettree. After adding node nl

k , if sl = pk , then
the distance is not changed, ND(ni

j , n
l
k, d) is the sum

of ND(ni
j , n

rq
k−1, d), otherwise, the distance increases

by 1, ND(ni
j , n

l
k ,0)=0, and ND(ni

j , n
l
k, d) is the sum of

ND(ni
j , n

rq
k−1, d − 1), where n

rq
k−1 is the q-th parent node of

node nl
k . Hence, ND(ni

j , n
l
k, d) can be calculated according

to (14).
If l and i satisfy the length constraint, the values of

NDPLC and NCDPLC of nl
k are the value of NDPS

of nl
k and 0, respectively. Otherwise, we need to judge

whether sl and pk are the same or not. If sl and pk

are the same, NC
D(ni

j , n
l
k, d) and N∼

D(ni
j , n

l
k, d) are the

sum of NC
D(ni

j , n
rq
k−1, d) and N∼

D(ni
j , n

rq
k−1, d), respec-

tively; otherwise, both NC
D(ni

j , n
l
k ,0) and N∼

D(ni
j , n

l
k ,0) are

0, and NC
D(ni

j , n
l
k, d) and N∼

D(ni
j , n

l
k, d) are the sum of

NC
D(ni

j , n
rq
k−1, d −1) and N∼

D(ni
j , n

rq
k−1, d −1), respectively.

Therefore Lemma 5 is proved.

ND(ni
j , n

l
k, d) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∑t
q=1ND(ni

j , n
rq
k−1, d)

sl = pk∑t
q=1ND(ni

j , n
rq
k−1, d − 1)

sl �= pk and d > 0
0 sl �= pk and d = 0

(14)

Strict approximate pattern matching with general gaps 573

where n
rq
k−1 and t represent the q-th parent node of node

nl
k and the number of parent nodes of nl

k in the subnettree,
respectively.

NC
D(ni

j , n
l
k, d)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ND

(
ni

j , n
l
k, d

)
Minlin ≤ i − l + 1 ≤ Maxlin

∑t
q=1N

C
D

(
ni

j , n
rq
k−1, d

)
sl = pk and (i − l + 1 > Maxlen or i − l + 1 < Minlen)

∑t
q=1N

C
D

(
ni

j , n
rq
k−1, d − 1

)
sl �= pk and (i − l + 1 > Maxlen or i − l + 1 < Minlen) and d > 0

0 sl �= pk and (i − l + 1>Maxlen or i − l + 1<Minlen) and d = 0

(15)

where n
rq
k−1 and t represent the q-th parent node of node

nl
k and the number of parent nodes of nl

k in the subnettree,
respectively.

N∼
D(ni

j , n
l
k, d)=

⎧
⎪⎪⎨

⎪⎪⎩

0 Minlen ≤ i − l + 1 ≤ Maxlen∑t
q=1N

∼
D(ni

j , n
rq
k−1, d) sl = pk and (i − l + 1 > Maxlen or i − l + 1 < Minlen)

∑t
q=1N

∼
D(ni

j , n
rq
k−1, d − 1) sl �= pk and (i − l + 1 > Maxlen or i−l+1<Minlen) and d > 0

0 sl �= pk and (i − l + 1 > Maxlen or i−l+1<Minlen) and d = 0

(16)

where n
rq
k−1 and t represent the q-th parent node of node

nl
k and the number of parent nodes of nl

k in the subnettree,
respectively.

Lemma 6 If
∑T

d=0NA(ni
j , n

l
k, d) =0, then node nl

k has no

parent. Similarly, if
∑T

d=0ND(ni
j , n

l
k, d) =0, then node nl

k

has no child.

Proof Suppose n
f
g is an ancestor node of nl

k . We know that

the Hamming distance of each path from n
f
g to ni

j is no less

than that of the path from nl
k to ni

j . If
∑T

d=0NA(ni
j , n

l
k, d) =

0, it indicates that in the subnettree, the Hamming distance
of each path from nl

k to ni
j is greater than d . Therefore, the

Hamming distance of each path from n
f
g to ni

j is also greater
than d . Hence, we do not need to calculate the parent of
the ancestor of node nl

k . Similarly, in the process of creating

descendant nodes, if
∑T

d=0ND(ni
j , n

l
k, d) =0, we can safely

prune the sub-tree whose root is node nl
k . Hence, Lemma 6

is proved.

Definition 14 Similar to the concepts of NRPLC and
NCRPLC, NLPLC (Number of Leaf Paths with Length
Constraint) is the number of paths which are from central
node ni

j to the leaves in the m-th level with the Hamming
distance d and which satisfy the length constraint, denoted

by NC
L (ni

j , d), while NCLPLC (Number of Complement
of Leaf Paths with Length Constraint) is the number of
paths which do not satisfy the length constraint, denoted by
N∼

L (ni
j , d). NC

L (ni
j , d) and N∼

L (ni
j , d) can be calculated by

the following equations.

NC
L (ni

j , d) =
∑t

q=1
NC

D(ni
j , n

rq
m , d) (17)

N∼
L (ni

j , d) =
∑t

q=1
N∼

D(ni
j , n

rq
m , d) (18)

where n
rq
m and t represent the q-th leaf and the number of

leaves in the subnettree, respectively.

Definition 15 Suppose M is a path from a root to a leaf
which passes through node ni

j , and besides, the Hamming
distance between the corresponding string of this path in
sequence S and p0p1. . . pm−1 is less than the approximate
threshold d , we can say that M is a root-leaf path with length
and similarity constraints or a root-leaf path for short. We
use NC

T (ni
j , d) to denote the number of root-leaf paths.

574 Y. Wu et al.

Lemma 7 NC
T (ni

j , d) can be calculated as follows.

NC
T (ni

j , d) =
∑d

k=0

∑d−k

e=0
(NC

R (ni
j , k)∗N∼

L (ni
j , e)

+ N∼
R (ni

j , k)∗NC
L (ni

j , e)

+ NC
R (ni

j , k)∗NC
L (ni

j , e)) (19)

Proof A root-leaf path in subnettree ni
j satisfies one of the

following three cases.

Case 1. The sub-path from a root to central node ni
j

satisfies the length constraint and the other sub-
path from ni

j to a leaf fails to satisfy the
length constraint. We can know that there are
NC

R (ni
j , k, Minlen, Maxlen)∗N∼

L (ni
j , e,Minlen,

Maxlen) root-leaf paths in this case.
Case 2. The sub-path from a root to ni

j does not sat-
isfy the length constraint, but the other sub-path
from ni

j to a leaf satisfies the length con-

straint. Similarly, there are N∼
R (ni

j , k, Minlen,

Maxlen)∗NC
L (ni

j , e,Minlen, Maxlen) root-leaf
paths in this case.

Case 3. Both of the sub-paths satisfy the length constraint.
There are NC

R (ni
j , k, Minlen, Maxlen)∗NC

L (ni
j , e,

Minlen,Maxlen) root-leaf paths in this case.

Since the sum of k and e is no greater than the approxi-
mate threshold d , therefore, NC

T (ni
j , d ,Minlen,Maxlen) can

be calculated according to (19).

Theorem 1 |T (S, P, d)| can be calculated as follows.

|T (S, P, d)| =
∑n−1

i=Minlen−1

∑m

j=1
NC

T (ni
j , d) (20)

where n, m, d , and Minlen are the lengths of the sequence
and the pattern, the approximate constraint and the minimal
length constraint, respectively.

Proof Since all the subnettrees have m levels, j can vary
from 1 to m. Since i is the maximal value in subnettree ni

j ,
i must be no less than Minlen-1 according to Definition 5.
We see that i is also no greater than n-1. Each subnettree has
NC

T (ni
j , d) approximate occurrences. Hence, |T (S, P, d)|

can be calculated according to (20). Therefore Theorem 1 is
proved.

4.2 SETA

We give the SETA algorithm as follows:

4.3 Analysis

Apparently, according to Theorem 1, we know that SETA is
a complete algorithm. Next, we will analyse the space and
time complexities of SETA.

Theorem 2 The space and time complexities of SETA are
O(m×Maxlen×W ×d) and O(Maxlen×W ×m2 ×n×d),
respectively, where m, Maxlen, W , and d are the length of
pattern P , the maximal length constraint, the maximal gap
of pattern P and the approximation threshold, respectively.

Proof It is easy to know that the space complexity of SETA
is O(m×Maxlen×W×d), since there are at most m levels in
a subnettree, each level has no more than Maxlen nodes, and
each node has at most W parent (or child) nodes, i.e. W =
max(maxj − minj + 1)(0 ≤ j ≤ m − 1). Besides, there

Strict approximate pattern matching with general gaps 575

1 2 3 4 5

31 2

3 4

0,0 1,0

3 4

5
0,0 1,0

0,0 0,1 0,0 1,0

0,0 1,00,0 0,1

0,0 0,0 1,1 0,0 0,0 1,0

0,2 0,0 0,1 0,0 0,1 0,0 1,1 1,0 0,0 0,1

(A) Subnettree n5
4

0,0 0,1

0,0 1,0
5

1 3

3

5

3 4

2

41 2

0,0 0,00,0 0,1

0,0 0,1 0,0 0,00,0 0,00,0 0,0

0,0 0,1

4

0,1 0,0

0,0 0,0 0,0 0,0 0,1 0,1

(B) Subnettree n5
5

Fig. 2 Some subnettrees

are d+1 groups of space in each node, which store NAPS,
NAPLC, and NCAPLC (or NDPS, NDPLC, and NCDPLC)
in the distance from 0 to d , respectively.

The time complexities of line 7 and line 15 are both O

(1). Since each node has no more than W parent (or child)
nodes and d+1 groups NAPS, NAPLC, and NCAPLC (or
NDPS, NDPLC, and NCDPLC), the time complexities of
line 10 and line 18 are both O(W × d). There are at most
Maxlen nodes in each level, and the times of the loop in line
8 and line 16 at most are O(Maxlen). Similarly, the time
complexities of line 13 and line 21 are both O(Maxlen). The
time complexity of line 22 is O(d2), in general d � m, sod2

is neglected. In conclusion, the time complexity from line 4
to line 23 is O(Maxlen × W × m × d). Therefore, the time
complexity of SETA is O(Maxlen × W × m2 × n × d).

4.4 A running example

An illustrative instance is used to show how the SETA
algorithm works.

Example 2 Given sequence S = ATGGAGAGA, pat-
tern P = A[-2,1]G[0,1]A[-2,1]G[-2,1]A, Minlen= 4
and Maxlen= 5, and threshold d = 1, we calculate
|T (S, P, d, Minlen, Maxlen)|.

Suppose i and j are 5 and 3 in lines 2 and 3, respec-
tively. Since b2 =1 is greater than 0 and a3 =-2 is less than
0, according to line 4, we will create subnettree n5

4 shown
in Fig. 2(A). The left-top, right-top, left-bottom, and right-
bottom values are the node’s NAPLC, NCAPLC, NDPLC,
and NCDPLC, respectively. Since threshold d is 1, each
group has d+1 =2 integers. The first one is the correspond-
ing value with distance 0, while the last one is the value with
distance 1.

Since there are many nodes in the subnettree and the cal-
culating equations for each node are the same, we choose
only one node in each level to illustrate how to calculate its
NAPLC, NCAPLC, NDPLC, and NCDPLC, and the other
nodes are ignored. Since s5 = p3 =“G”, according to
SETA, we know that NC

A (n5
4, n

5
4, 0, LEN) = 1, NC

A (n5
4, n

5
4,

1, LEN) = 0, N∼
A (n5

4, n
5
4, 0, LEN) = N∼

A = 0, and NC
D(n5

4,

n5
4, 0, LEN) = 1, NC

D(n5
4, n

5
4, 1, LEN) = 0, N∼

D(n5
4, n

5
4, 0,

LEN) = N∼
D(n5

4, n
5
4, 1, LEN) =0. Now we will cre-

ate the ancestor nodes of n5
4. Since s4 = p2 =“A”

and 5 − 4 + 1 = 2 is less than Minlen, according to
line 10, NC

A (n5
4, n

4
3, 0, LEN) = NC

A (n5
4, n

4
3, 1, LEN) =

0, N∼
A (n5

4, n
4
3, 0, LEN) =1, and N∼

A (n5
4, n

4
3, 1, LEN) = 0.

Because node n2
2 has 2 child nodes, n3

3 and n4
3, and

Minlen= 4 ≤ 5 − 2 + 1 = 4 ≤ Maxlen = 5,
therefore, NC

A (n5
4, n

2
2, 0, LEN) = 1, NC

A (n5
4, n

2
2, 1, LEN) =

1, N∼
A (n5

4, n
2
2, 0, LEN) = N∼

A (n5
4, n

2
2, 1, LEN) =0. Sim-

ilarly, NC
A (n5

4, n
3
1, 0, LEN) = 0, NC

A (n5
4, n

3
1, 1, LEN) =

1, N∼
A (n5

4, n
3
1, 0, LEN) = N∼

A (n5
4, n

3
1, 1, LEN) = 0. Now

we will create the descendant nodes of n5
4. According

to lines 14 to 20, we know that NC
D(n5

4, n
4
5,0, LEN) =

1, NC
D(n5

4, n
4
5, 1, LEN) = 0, and N∼

D(n5
4, n

4
5,0, LEN) =

N∼
D(n5

4, n
4
5, 1, LEN) = 0. Hence, according to line 22, we

know that NC
T of subnettree n5

4 is 2+1 + 1 + 2 + 1 = 7.
Subnettree n5

5 is shown in Figure 2(B) which is used
to illustrate that SETA is an effective algorithm, since
some nodes, such as n1

2, n4
2, and n5

2, are pruned accord-
ing to line 9 and 17. Besides, since sub-pattern “G[0, 1]A”
satisfies Lemma 1, we also do not create subnettree
n5

2.

Table 2 Real biological sequences

Sequence From Length

S1 Homo Sapiens AX829174 2500

S2 Homo Sapiens AX829174 5000

S3 Homo Sapiens AX829174 10011

S4 Homo Sapiens AL158070 40000

S5 Homo Sapiens AL158070 80000

S6 Homo Sapiens AL158070 167005

S7 Homo Sapiens AB038490 30000

S8 Homo Sapiens AB038490 60000

S9 Homo Sapiens AB038490 131892

576 Y. Wu et al.

Table 3 Results of SETS and SETA

SETS SET A

Sequence P1 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 P1,d=1

S1 1024 889 1113 1492 1479 1013 1396 1949 1085 1295 1770 1412 986 16903

S2 2046 1740 2291 2677 3318 2240 2863 3971 2397 2523 3461 2841 2043 34411

S3 3890 2815 4081 5172 6905 4311 7083 8321 4224 6113 5821 4396 3186 66318

S4 15999 10082 14129 21236 29681 19210 37664 35112 16238 28851 18675 13366 9982 270225

S5 31564 20341 28416 42543 58191 39386 72631 69819 33780 56143 38839 27847 21588 541088

S6 65969 45720 60557 88389 118403 81016 144117 145212 73501 114376 81466 61508 47754 1127988

S7 11628 6782 9571 15949 22680 13918 29550 26915 11801 22604 13019 8752 6403 199572

S8 23245 15294 21369 32093 43139 29085 54114 52438 25327 41967 28706 20331 15708 402816

S9 51459 33572 45587 68692 96131 64206 117659 115680 56550 91688 63418 45788 35737 886167

Similarly, we can compute the number of the occurrences
in all the subnettrees and do not introduce them in detail.
From this example, we can see that SETA is a very effective
algorithm.

5 Experimental results and analysis

5.1 Experimental environment and data

The data used in this paper are real biological sequences
provided by the National Center for Biotechnol-
ogy Information website. Homo Sapiens AX829174,
AL158070 and AB038490 are chosen as our test data
and can be downloaded from http://www.ncbi.nlm.nih.
gov/nuccore/AX829174, http://www.ncbi.nlm.nih.gov/
nuccore/AL158070.11, http://www.ncbi.nlm.nih.gov/
nuccore/AB038490, respectively. To show how the dif-
ferent lengths of sequence affect the running time, we
divide each sequence into 3 segments which are about

25 %, 50 %, and 100 % of the original length, respec-
tively. Therefore, there are 9 sequences shown in Table
2. The source codes of SETA can be obtained from
http://wuc.scse.hebut.edu.cn/nettree/sap/. All experi-
ments are run on a laptop with Intel(R)Core(TM)2
DuoT6670@2.20GHz CPU and 3.0GB of RAM, Windows
7.

5.2 Correctness validation

To validate the correctness of SETA, we choose pat-
tern P 1 =A[-1,2]C[-2,3]G[-3,4]T, Minlen = 4, Maxlen
=10, and threshold d = 1 and calculate the num-
ber of approximate occurrences in the sequences
S1˜S9. According to Theorem 1, this instance can
be transformed into the following 13 instances of
SPANGLO P 1, Q1=C[-1,2]C[-2,3]G[-3,4]T, Q2=G[-
1,2]C[-2,3]G[-3,4]T, Q3=T[-1,2]C[-2,3]G[-3,4]T,
Q4=A[-1,2]A[-2,3]G[-3,4]T, Q5=A[-1,2]G[-2,3]G[-3,4]T,
Q6=A[-1,2]T[-2,3]G[-3,4]T, Q7=A[-1,2]C[-2,3]A[-3,4]T,

Table 4 Running time of SETS and SETA (ms)

SETS SET A

Sequence P1 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 P1, d=1

S1 31 46 16 28 26 34 36 34 34 39 33 36 36 64

S2 46 46 46 84 84 56 82 55 62 53 54 54 53 142

S3 78 93 109 146 132 92 132 96 114 112 146 86 172 203

S4 374 406 421 344 413 456 364 427 364 385 318 347 315 955

S5 764 718 890 676 926 708 703 838 787 736 662 672 707 2206

S6 1701 1653 2324 1457 1646 1420 1594 1569 1379 1617 1517 1397 1518 3987

S7 250 265 230 258 362 272 365 318 237 308 313 278 282 664

S8 562 578 665 522 526 554 563 557 485 784 627 472 537 1364

S9 1264 1216 1201 1065 1329 1175 1396 1203 1127 1317 53 1016 1054 2646

http://www.ncbi.nlm.nih.gov/nuccore/AX829174
http://www.ncbi.nlm.nih.gov/nuccore/AX829174
http://www.ncbi.nlm.nih.gov/nuccore/AL158070.11
http://www.ncbi.nlm.nih.gov/nuccore/AL158070.11
http://www.ncbi.nlm.nih.gov/nuccore/AB038490
http://www.ncbi.nlm.nih.gov/nuccore/AB038490
http://wuc.scse.hebut.edu.cn/nettree/sap/

Strict approximate pattern matching with general gaps 577

The sum of running time of S 3, S 6, and S 9
R

un
ni

ng
 ti

m
e (

s)

Fig. 3 Comparison of the running time

Q8=A[-1,2]C[-2,3]C[-3,4]T, Q9=A[-1,2]C[-2,3]T[-3,4]T,
Q10=A[-1,2]C[-2,3]G[-3,4]A, Q11=A[-1,2]C[-2,3]G[-
3,4]C and Q12=A[-1,2]C[-2,3]G[-3,4]G. We calculate
SPANGLO of the 13 patterns in the 9 sequences using
SETS and SAP of pattern P 1 using SETA. The results are
shown in Table 3. In order to validate the effectiveness of
SETA, Table 4 shows the running time.

As shown in Table 3, the results validate the cor-
rectness of not only Theorem 1 but also SETA. Taking
the longest sequence S6 as an example, the sum of 13
SPANGLO instances using SETS is 1127988, and of SAP
instance using SETA is also 1127988. We have the same
results with the other 8 sequences. Therefore, both Theo-
rem 1 and SETA are correct. On the other hand, when the
length of pattern, the size of alphabet and threshold are 4, 4,
and 1, respectively, a SAP instance can be transformed into
1 + 4∗(4 − 1) = 13 SPANGLO instances. Hence, when one
of d , m or | ∑ | increases, the number of the correspond-
ing SPANGLO instances of a SAP instance will increase
rapidly, especially when d increases, and the correspond-
ing instances will increase exponentially. Therefore, it is
essential to propose an algorithm to deal with SAP.

Table 4 can adequately demonstrate the effectiveness of
SETA. Still taking the longest sequence S6 as an exam-

ple, if we adopt SETS to calculate the running times of
the 13 patterns, the sum of the running times is 20792(ms),
while when we adopt SETA to calculate, the running time
is only 3987(ms), which is about 5 times faster than the
sum of the running times of SETS. As said above, when
one of d , m or | ∑ | increases, SETA is superior to SETS
significantly.

5.3 Effectiveness

We know that Lemma 1 and 6 are two pruning strate-
gies. To show how the two strategies affect the running
time we also propose three algorithms named SETA1,
SETA2, and SETA3. Neither Lemma 1 nor Lemma 6 is
employed in SETA1, while they are employed in SETA2
and SETA3, respectively. We select 5 patterns with
different numbers of negative gaps which are P 2 = G[0, 2]
A[0, 1]C[1, 2]G[0, 2]T[0, 1]C[0, 1]C[0, 2]A[0, 1]C, P 3 =
G[−2, 2]A[−2, 1]C[1, 2]G[0, 2]T[0, 1]C[0, 1]C[0, 2]A[0,

1]C, P 4 = [−2, 2]A[−2, 1]C[−2, 2]G[−2, 2]T[0, 1]C[0,

1]C[0, 2]A[0, 1]C, P 5 = G[−2, 2]A[−2, 1]C[−2, 2]G
[−2, 2]T[−2, 1]C[−2, 1]C[0, 2]A[0, 1]C and P 6 =
G[−2, 2]A[−2, 1]C[−2,2]G[−2,2]T[−2,1]C[−2, 1]C[−2
, 2] A[−2, 1]C. The length constraint and threshold are
Minlen = 11, Maxlen = 16, and d = 1, respectively. Figure
3 shows the sum of the running times of these patterns on
S3, S6, and S9.

We know that P 2, P 3, P 4, P 5, and P 6 have 0, 2, 4, 6,

and 8 negative gaps, respectively. From Fig. 3, we know
that the running time tends to increase along with the
number of negative gaps. Since Lemma 1 prunes the
subnettree according to the pattern, the less the num-
ber of negative gaps is the more effective the strategy
is. Therefore, we can see that SETA2 is more effective
on P 2, but less effective on P 6. The most important
conclusion is that SETA is the most effective algorithm.
The reason is that SETA employs two effective pruning
strategies.

Table 5 Running time for different lengths of patterns(ms)

Sequence m = 4 m = 5 m = 6 m = 7 m = 8 m = 9 m = 10 m = 11

S1 114 127 232 234 346 647 648 839

S2 133 274 335 587 699 953 1285 1692

S3 252 675 784 1141 1542 1893 2954 3647

S4 1053 1764 3155 4326 5687 7647 10769 14350

S5 1696 3644 5909 8427 11613 15321 22321 28112

S6 3283 6884 11796 16577 24599 31404 45773 55217

S7 612 1343 2205 3468 4376 5685 9164 10053

S8 1454 2325 4405 6776 9067 11617 16163 20252

S9 2766 5541 9361 14062 18392 24906 37117 46365

578 Y. Wu et al.

Table 6 Results for different lengths of patterns

Sequence m = 4 m = 5 m = 6 m = 7 m = 8 m = 9 m= 10 m = 11

S1 13890 19590 30401 41570 59717 95448 130785 194842

S2 28553 39430 63455 89074 127091 206747 287104 436800

S3 56201 88956 143164 180591 277684 459567 577332 907282

S4 231248 425279 682651 850517 1527276 2451005 3046075 5482153

S5 469373 837077 1342584 1721961 2987121 4803078 6167334 10729631

S6 966145 1692465 2720641 3500327 5949884 9678170 12464445 21032527

S7 170123 326085 521720 628157 1179502 1876797 2238738 4238587

S8 346278 624062 989769 1248636 2193298 3486644 4388263 7736713

S9 766400 1359543 2202630 2802655 4818598 7879130 10034750 17130517

5.4 Evaluation

In this section, generally, we neglect Minlen and Maxlen;
besides, the threshold is d = 1.

5.4.1 Lengths of pattern and sequence evaluation

To show how the length of pattern affects the results
and running time, we choose pattern P 7=G[-1,3]T[-
1, 3]A[-1,3]G[-1,3]T[-1,3]A[-1,3]G[-1,3]T[-1,3]A[-1,3]G[-
1,3]T whose length is 11 and its sub-patterns; for
instance, if m=4, it indicates that the length of the pre-
fix pattern of P 7 is 4, i.e. G[-1,3]T[-1,3]A[-1,3]G. We
show the running time and results in Tables 5 and 6,
respectively.

From Table 5, we can clearly see that the running
time of SETA is in linear growth with the length of
sequence. For example, when m = 4, the running
times on sequences S7, S8, and S9 are 612, 1454, and
2766 ms, respectively, which are in linear growth with
the length of sequence. We also notice that the running
time grows quadratically with m. Hence, these experimen-
tal results validate the correctness of the time complexity of
SETA.

We can see from Table 6 that, as the length of pattern
increases, the solution of SAP increases rapidly. Especially,
we notice an interesting phenomenon that when m increases
by 2 every time, the solution of SAP will enlarge to about
twice the previous. Taking sequence S1 as an example,
when m = 4, the result is 13890, while when m = 6,

the result increases to 30401 which is 2.2 times the previ-
ous value, and most instances in this table have the same
phenomenon. Besides, a more outstanding phenomenon is
that the solution of SAP is in linear growth with the length
of sequence. We can see from Table 2 that the length of
S2 is twice that of S1, while the result of SAP on S2 is
also about twice that on S1. All other instances in Table 6
also present this phenomenon. Hence the solution of SAP is
about n*W ˆ(m − 1).

5.4.2 Threshold evaluation

In order to show how the threshold affects the
running time and results, we use pattern P 8 =
G[−1, 3]T[−1, 3]A[−1, 3]G[−1, 3]T[−1,3]A[−1,3]G[−1,3]T
[−1,3]A[−1,3]G[−1,3]T, Minlen= 11, Maxlen = 16, and
d = 0, d = 1, d = 2, d = 3, d = 4, and d = 5, respectively.
The running time and results are shown in Tables 7 and 8,
respectively.

We can see from Table 7 that the running time of SETA
is in linear growth with d . Taking S3 as an example, when
d = 2, the running time is 3948 ms, which is about 2 times
that of d = 1. Similarly, the running times of d = 3, d = 4,
and d = 5 are about 3 times, 4 times and 5 times that of
d = 1. Besides, we notice that the running times from d =
0 to d = 1 change significantly. The reason is that when
d = 0, this is exact matching and SETA conducts pruning
according to Lemma 6, which can improve the speed. In
summary, the experiments validate that the running time is
in linear growth with d .

Table 7 Running time for different thresholds (ms)

Sequence d = 0 d = 1 d = 2 d = 3 d = 4 d = 5

S3 537 1943 3984 5761 7542 8596

S6 7829 32202 65725 95489 120745 144255

S9 7683 25341 52796 83851 95832 114505

Strict approximate pattern matching with general gaps 579

Table 8 Results for different thresholds

Sequence d = 0 d = 1 d = 2 d = 3 d = 4 d = 5

S3 12304 280355 3493158 30280999 191689519 889831210

S6 255555 6129133 74497830 614483222 3699685835 16439213944

S9 202185 4907814 60097318 498145227 3003339685 13321967209

From Table 8, we can see that the result of SAP increases
rapidly with d . Taking S3 as an example, when d varies
from 2 to 3, the result increases about 8.7 times. The reason
is that a SAP instance can be transformed into Cd

m SPAN-
GLO instances. Hence, the result of SAP is in exponential
growth with d .

6 Conclusion

In this paper, we propose the SAP problem which is a
strict approximate pattern matching with general gaps and
length constraints. We prove that a SAP instance can be con-
verted to exponential exact matching instances and design
an effective online algorithm, named SETA, which employs
the subnettree structure and adopts many efficient pruning
strategies to deal with SAP online. We analyse the time
and space complexities of SETA, which are O(Maxlen ×
W × m2 × n × d) and O(m × Maxlen × W × d), respec-
tively, where m, Maxlen, W , and d are the length of
pattern P , the maximal length constraint, the maximal gap
length of pattern P and the approximate threshold, respec-
tively. Besides, extensive experimental results validate the
correctness and completeness of SETA, and the contrast
experiments validate the effectiveness of SETA. Finally,
we also illustrate how m, n, and d affect the results and
running time.

In the future, we will focus on mining approximate
sequential patterns with general gaps, especially for larger
sequences [29]. Besides, while this paper focuses on
strict pattern matching without special condition, there
are also types of strict pattern matching with the non-
overlapping condition or the one-off condition which are
worth exploring.

Acknowledgments This research is supported by the National Nat-
ural Foundation of China under grants No. 61229301 and 61370144,
the Program for Changjiang Scholars and Innovative Research Team in
University (PCSIRT) of the Ministry of Education, China, under grant
IRT13059, the Natural Science Foundation of Hebei Province of China
under grant No. F2013202138, and the Key Project of the Educational
Commission of Hebei Province under grant No. ZH2012038.

References

1. Chouvalit K, Veera B (2013) A new linear-time dynamic dictio-
nary matching algorithm. Comput Inform 32(5):897–923

2. Aligon J, Golfarelli M, Marcel P, Rizzi S, Turricchia E (2014)
Similarity measures for OLAP sessions. Knowl Inf Syst
39(2):463–489

3. Knuth DE, Morris JH, Pratt VR (1977) Fast pattern matching in
strings. SIAM J. Comput 6(2):323–350

4. Fischer MJ, Paterson MS (1974) String matching and other prod-
ucts. In: Proceedings of the 7th SIAM AMS complexity of
computation, Cambridge, USA, pp 113–125

5. Manber U, Baeza YR (1991) An algorithm for string matching
with a sequence of don’t cares. Inf Process Lett 37(2):133–136

6. Navarro G, Raffinot M (2003) Fast and simple character classes
and bounded gaps pattern matching with applications to protein
searching. J Comput Biol 10(6):903–923

7. Cole R, Gottlieb L, Lewenstein M (2004) Dictionary matching and
indexing with errors and don’t cares. In: Proceedings of the 36th
ACM symposium on the theory of computing, Chicago, USA, pp
91–100

8. Crochemore M, Iliopoulos C, Makris C, Rytter W, Tsakalidis A,
Trichlas K (2002) Approximate string matching with gaps. Nord J
Comput 9(1):54-65

9. Cantone D, Cristofaro S, Faro S (2009) New efficient bit-parallel
algorithms for the (δ, α)-matching problem with applications
in music information retrieval. Int J Found Comput Sci 20(6):
1087–1108

10. Ji X, Bailey J, Dong G (2007) Mining minimal distinguish-
ing subsequence patterns with gap constraints. Knowl Inf Syst
11(2):259–286

11. Ferreira PG, Azevedo PJ (2005) Protein sequence pattern min-
ing with constraints. In: European conference on principles and
practice of knowledge discovery in databases (PKDD), Porto,
Portugal, pp 96–107

12. Zhang M, Kao B, Cheung D, Yip K (2007) Mining periodic pat-
terns with gap requirement from sequences. ACM Trans Knowl
Discov Data 1(2):7–es

13. Zhu X, Wu X (2007) Mining complex patterns across sequences
with gap requirements. In: Proceedings of the 20th international
joint conference on artificial intelligence (IJCAI), Hyderabad,
India, pp 2934–2940

14. Wu Y, Wang L, Ren J, Ding W, Wu X (2014) Mining sequential
patterns with periodic wildcard gaps. Appl Intell 41(1):99–116

15. Tsai CY, Chen CJ, Chien CJ (2013) A time-interval sequence
classification method. Knowl Inf Syst 37(2):251–278

16. Wu Y, Liu Y, Guo L, Wu X (2013) Subnettrees for strict pat-
tern matching with general gaps and length constraints. J Softw
24(5):915–932

17. Fredriksson K, Grabowski S (2006) Efficient algorithms for pat-
tern matching with general gaps and character classes. In: Interna-
tional conference on string processing and information retrieval,
Glasgow, UK, pp 267–278

580 Y. Wu et al.

18. Fredriksson K, Grabowski S (2008) Efficient algorithms for pat-
tern matching with general gaps, character classes, and transposi-
tion invariance. Inf Retrieval 11(4):335–357

19. Guo D, Hu X, Xie F, Wu X (2013) Pattern matching with wild-
cards and gap-length constraints based on a centrality-degree
graph. Appl Intelligence 39(1):57–74

20. Huang Y, Wu X, Hu X, Xie F, Gao J, Wu G (2009) Mining
frequent patterns with gaps and one-off condition. In: IEEE inter-
national conference on computational science and engineering
(CSE’09), Vancouver, BC, Canada, pp 180–186

21. Lam HT, Mörchen F, Fradkin D (2014) Mining compressing
sequential patterns. Stat Anal Data Min 7(1):34–52

22. Ding B, Lo D, Han J (2009) Efficient mining of closed repetitive
gapped subsequences from a sequence database. In: IEEE 25th
international conference on data engineering (ICDE), Shanghai,
China, pp 1024–1035

23. Min F, Wu X, Lu Z (2009) Pattern matching with indepen-
dent wildcard gaps. In: Proceedings of the 8th international
conference on pervasive intelligence and computing, Chengdu,
China, pp 194–199

24. Bille P, Gørtz I, Vildhøj H, Wind D (2010) String matching with
variable length gaps. In: Proceedings of the 17th international con-
ference on string processing and information retrieval, SPIRE,
Mexico, pp 385–394

25. Rahman S, Iliopoulos C, Lee I, Mohamed M, Smyth W (2006)
Finding patterns with variable length gaps or don’t cares. In: 12th
annual international conference computing and combinatorics,
Taiwan, pp 146–155

26. Bille P, IL Gørtz, Vildhøj HW (2012) String matching with
variable length gaps. Theor Comput Sci 443:25–34

27. He D, Wu X, Zhu X (2007) SAIL-APPROX: An efficient on-
line algorithm for approximate pattern matching with wildcards
and length constraints. In: Proceedings of the 2007 IEEE interna-
tional conference on bioinformatics and biomedicine (BIBM’07),
Silicon Valley, USA, pp 151–158

28. Wu Y, Wu X, Min F, Li Y (2010) A Nettree for pattern match-
ing with flexible wildcard constraints. In: Proceedings of the
2010 IEEE international conference on information reuse and
integration (IRI2010), Las Vegas, USA, pp 109–114

29. Rasheed F, Adnan M, Alhajj R (2013) Out-of-core detection
of periodicity from sequence databases. Knowl Inf Syst 36(1):
277–301

Youxi Wu, born in 1974, Ph.
D., is a Professor of Computer
Science at Hebei University
of Technology. His research
interests include data mining
and intelligent computation.

Shuai Fu, born in 1988, is
a Masters degree candidate
at Hebei University of Tech-
nology. His research interests
include data mining.

He Jiang, born 1980, Ph.D., is
a Ph. D. supervisor and a Pro-
fessor of Computer Science
at Dalian University of Tech-
nology. His research interests
include intelligent computa-
tion and software engineering.

Xindong Wu, is a Yangtze
River Scholar in the School of
Computer Science and Infor-
mation Engineering at the
Hefei University of Technol-
ogy (China), a Professor of
Computer Science at the Uni-
versity of Vermont (USA), and
a Fellow of the IEEE and
the AAAS. He holds a PhD
in Artificial Intelligence from
the University of Edinburgh,
Britain. His research inter-
ests include data mining, Big
Data analytics, knowledge-
based systems, and Web infor-
mation exploration.

	Strict approximate pattern matching with general gaps
	Abstract
	Introduction
	Related work
	Problem definition and analysis
	Problem definition
	Theoretical analysis

	Subnettree for SAP
	Subnettree
	SETA
	Analysis
	A running example

	Experimental results and analysis
	Experimental environment and data
	Correctness validation
	Effectiveness
	Evaluation
	Lengths of pattern and sequence evaluation
	Threshold evaluation

	Conclusion
	Acknowledgments
	References

