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Abstract Class imbalances have been reported to compro-
mise the performance of most standard classifiers, such as
Naive Bayes, Decision Trees and Neural Networks. Aim-
ing to solve this problem, various solutions have been
explored mainly via balancing the skewed class distribution
or improving the existing classification algorithms. How-
ever, these methods pay more attention on the imbalance
distribution, ignoring the discriminative ability of features
in the context of class imbalance data. In this perspec-
tive, a dissimilarity-based method is proposed to deal with
the classification of imbalanced data. Our proposed method
first removes the useless and redundant features by feature
selection from the given data set; and then, extracts rep-
resentative instances from the reduced data as prototypes;
finally, projects the reduced data into a dissimilarity space
by constructing new features, and builds the classification
model with data in the dissimilarity space. Extensive exper-
iments over 24 benchmark class imbalance data sets show
that, compared with seven other imbalance data tackling
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solutions, our proposed method greatly improves the per-
formance of imbalance learning, and outperforms the other
solutions with all given classificationalgorithms.
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1 Introduction

A data set is imbalanced if the examples of one class out-
numbers those of the others. In practice, the imbalance issue
is often encountered by numerous real-world machine learn-
ing applications, such as text classification [13, 80, 81],
speech recognition [46], software defect prediction [32, 34,
35, 61], and bioinformatics and biomedical decision making
[48, 76].

The skew class distribution of imbalance data hinders the
performance of most standard classification algorithms that
work well on data sets with even class distribution, such
as Naive Bayes, IB1, C4.5 [30, 74], Logistic Regression
[70], Neural Networks and Support Vector Machines [30].
Therefore, the imbalance data problem has attracted much
attention of the authoritative machine learning and data min-
ing workshops such as AAAI’2000, ICML’2003 and ACM
SIGKDD’2004, and a number of imbalance data dealing
with methods have been proposed in the data level and the
algorithm level.

The data level solutions concentrate on two points: 1)
rebalancing the imbalanced class distribution by sampling
or creating new examples, such as random undersampling
(RUS) [41], random oversampling (ROS) [42], and syn-
thetic minority over-sampling technique (SMOTE) [8]. It’s
worth noting that there are still some issues with these solu-
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tions, such as some important information may be discarded
by undersampling, and duplications and uncertainties intro-
duced by oversampling might lead to overfitting and new
problems; 2) feature selection [11, 34, 47, 69, 71, 72, 81] is
used to avoid overfitting for the high dimensional imbalance
data set. However, feature selection just reduces the dimen-
sionality via removing the unimportant and useless features
rather than enhances the discriminant ability of features in
essence.

The algorithm level solutions primarily focus on explor-
ing some suitable and robust classification algorithms for
dealing with the imbalance learning problems, including
one-class learning [64, 70, 75], ensemble learning meth-
ods [6, 33, 68], and cost-sensitive analysis [14]. But there
are some issues with these methods, for instance, one-class
learning fails to build a classifier when the features lack dis-
criminant ability; too much computation time is consumed
by ensemble learning methods, and an appropriate cost
matrix needs to be determined beforehand by cost-sensitive
analysis, etc.

In an imbalance problem, the most obvious characteris-
tic is the skewed class distribution. Nevertheless, theoretical
and experimental studies presented in [3, 30, 73] indicate
that the skewed data distribution is not the only factor that
influences the performance of a traditional classification
algorithm in identifying rare events. Simultaneously, small
sample size, high dimensionality and the problem complex-
ity will hinder the learning performance as well, because
it is difficult to build a good classification model over the
high degree of features with limited samples. Essentially,
a classification model is built based on the relationship
between features and classes. When the imbalance data is
high dimensionality and small size, the features are lack
of the discriminant ability for classes, and further lead to
the degradation in classification performance, specially on
the minority class. Nevertheless, the existing solutions pay
more attention on re-balancing the skewed class distribution
or algorithm adaption but less on studying how to improve
the discriminate ability of features in the imbalance data
sets.

In order to build a better classification model for imbal-
ance learning problems, it is necessary to construct new
features with high discriminant ability instead of original
features. Fortunately, Pekalska and Duin [17, 63] have pre-
sented a dissimilarity-based representation method which
can improve the discriminant ability of features via pair-
wise dissimilarities between examples, because it not only
captures the statistical information but also preserves the
structural information of data sets. This dissimilarity-based
representation method is originally proposed to depict the
characteristics of unstructured or incomplete data sets,
recently, it has been successfully applied to describe struc-
tural data sets and is capable of building good classifiers

[58, 59, 62, 63], especially in pattern recognition. Inspired
by these work, we believe that dissimilarity-based represen-
tation can be employed for handling the imbalance learn-
ing problems as well, although there is no research work
on applying this method to solve the imbalance learning
problems.

Based on the dissimilarity-based representation, the orig-
inal data set is projected into the dissimilarity space, in
which general classifiers are trained, i.e. the dissimilarity-
based classification algorithm (DBC) [59]. The DBC pri-
marily consists of tree parts, they are prototype selection,
dissimilarity transformation and classification. Taking into
account that those redundancy and useless features (such
as noise or irrelevant features) in an imbalance data set
might affect the quality and efficiency of prototype selection
and dissimilarity transformation of DBC, we proposed an
expanded dissimilarity-based classification method (EDBC)
for solving the imbalance learning problems, in which
feature selection is carried out beforehand to filter those
unimportant features out of the original data sets. In our
experimental study, three feature selection methods, three
prototype selection methods and two distance measures
are employed for accomplishing dissimilarity transforma-
tion on 24 imbalanced data sets; seven state-of-art solutions
(RUS, ROS, SMOTE, Bagging, Boosting, MetaCost and
EM1vs1) are compared with our proposed method EDBC in
terms of AUC suggested in Refs. [25, 26] under five stan-
dard classification algorithms (Naive Bayes, Random For-
est, IB1, Multilayer Perceptron and Logistic Regression).
The experimental results show that our proposed method
EDBC greatly improves the performance of classifiers on
the imbalance data sets and stands out in comparison with
the other solutions.

The rest of this paper is organized as follows:
Section 2 reviews the previous research work related
with the conventional DBC method. Section 3 presents
the expanded dissimilarity-based imbalance classification
method. Section 4 reports the experimental procedure and
analyzes the results. Finally, Section 5 summarizes the study
and draws the conclusion.

2 Previous work

In the past decades, the issues of the imbalance learning
problem have been discussed and reviewed [2, 7, 9, 22, 25,
30, 40]. These methods can be grouped into two categories:
in data level and in algorithm level.

The data level methods focus on adjusting the original
imbalanced class distribution via sampling or generation
of new examples or reducing the dimensionality of the
high dimensional imbalance data sets by feature selection.
More popular solutions that use various types of sampling
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methods were explored to alter the skew class distribution.
Random under-sampling [41] randomly deletes some exam-
ples of the majority class, meanwhile it also removes some
information important for afterwards classification. Ran-
dom over-sampling [42] replicates the minority class exam-
ples. Since over-sampling makes exact copies of the minor-
ity class examples, the duplication leads to overfitting. To
overcome this problem, synthetic minority over-sampling
technique (SMOTE) [8] was proposed to over-sample the
minority class by creating new synthetic minority examples.
For the high dimensional imbalance data set, to avoid over-
fitting, feature selection [11, 34, 71, 72, 81] is confirmed
to be more important than the choice of the classification
algorithm.

The algorithm level methods concentrate on the mod-
ification of the existing classification algorithms to suit
for dealing with the imbalance learning problems, includ-
ing cost-sensitive learning, recognition-based learning
and ensemble learning. 1) Cost-sensitive learning [45]
approaches to minimize the total misclassification cost via
adjusting the misclassification cost for each class. MetaCost
[14] is one classical algorithm of this kind, which makes
an arbitrary classification algorithm cost-sensitive via wrap-
ping a cost-minimizing procedure around. 2) Recognition-
based learning [64], Ripper [70, 75] and auto association
[29] provide the discrimination model created on the exam-
ples of the target class alone. They have been proved to be
particularly useful on extremely unbalanced data sets com-
posed of a high dimensional noisy feature space. 3) Ensem-
ble learning is often employed to reduce the variance and
bias through summarizing the results of many classification
algorithms on the imbalanced data. Representatively, Bag-
ging [6] produces an aggregated predictor to strengthen the
classification ability of one base classification algorithm via
generating multiple versions of a classification algorithm.
Boosting [40] aims to identify the accurate weights for all
training examples by iteratively adjusting them according
to the classification results. Chawla et al. [10] proposed to
combine the SMOTE method with Boosting in order to bal-
ance the skewed class distribution and then learn better and
broader decision regions for the minority class. Addition-
ally, a novel coding-based multiclass algorithm [68] was
presented to convert the imbalanced binary class problem
into a balanced multi-class problem and then build a binary
classification algorithm on each pair of two classes with the
one-against-one coding scheme.

From the solutions mentioned above, we know that
the existing solutions pay more attention on adjusting the
skewed class distribution or exploring new algorithms but
less on improving the discriminant ability of features for
imbalance learning. In fact, if the original features are lack
of discriminant ability, then it is not powerful enough to
only carry out feature selection. Alternatively, replacing the

original features, Pekalska et al. [63] proposed that the dis-
similarities to a subset of the examples in the historical data
are more effective for representing a data set, because it
not only reserves the statistical information but also cap-
tures the geometry and structure information of the data
set. Duin et al. [17] first introduced the relational discrim-
inant analysis method in view of a proximity description
of data. After that, Duin and Pekalska [52, 57, 58, 62, 63]
demonstrated that dissimilarity-based representation can
improve classification performance and provided the frame-
work of the DBC method consisted of prototype selection,
dissimilarity transformation and classification. To optimize
the DBC method, Kim et al. [37–39] proposed to use
prototype reduction schemes for improving the quality of
prototype selection. In the recent years, the DBC method
has been recognized and widely applied in various fields of
real word, such as detecting the seismic signals [49], face
recognition [50] and medical image computing [67], etc.
However, there is no research work on applying this method
for solving the imbalance learning problem. To build a
good classifier, we employ the dissimilarity-based method
to classify the imbalance data sets.

3 Dissimilarity-based imbalance data classification
method

In this section, we first provide an overview of the proposed
method in Section 3.1, and then respectively state each step
of the proposed expand algorithm in detail, involving feature
selection in Section 3.2, prototype selection in Section 3.3
and dissimilarity transformation in Section 3.4.

3.1 Overview of the proposed method

In the traditional way of imbalance learning, the classifiers
are built in the original feature space. However, an alter-
native way is to construct classification models on dissim-
ilarity representations, in which each example is described
by pairwise dissimilarity relations between examples in
original data sets and the representative examples. This
way becomes especially useful when the original data is
described by many features or when experts cannot formu-
late the attributes explicitly, because they are able to provide
a dissimilarity measure which can be considered as a con-
nection between perception and higher-level knowledge,
being a crucial factor in the process of human recognition
and categorization [18, 21].

The original dissimilarity-based classification algorithm
(DBC) consists of prototype selection, dissimilarity trans-
formation and classification. Using this method to classify
the imbalance data sets, the redundancy and irrelative fea-
tures in the data sets may compromise the performance of
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prototype selection methods and even disturb the dissim-
ilarity transformation, finally results in bad classification
performance. Aiming to further alleviate the disturbance
of useless features on prototype selection and dissimilar-
ity transformation of the dissimilarity-based classification
algorithm, we expand the original DBC method with fea-
ture selection as the expanded dissimilarity-based Classi-
fication algorithm (EDBC), which consists of two parts:
Model Construction and Classification. Figure 1 shows the
details.

1. Model Construction
For a given historical imbalance data set, an impor-

tant feature subset to the target concept is firstly
selected (i.e. Feature Selection), and then the data is
reduced via reserving these selected features only (i.e.
Data Reduction). Secondly, the representative examples
are selected from the reduced data for each class and a
prototype set is obtained (i.e. Prototype Selection), and
the reduced data is projected into the dissimilarity space
via computing the dissimilarity between examples of
the reduced data and the prototype set (i. e. Dissimilar-
ity Transformation). Finally, the classification model is
constructed by a specific classification algorithm on the
dissimilarity-based imbalance data set.

2. Classification
For a new imbalanced data set, with the feature

subset and the prototype set selected in Model Con-
struction, its dimensionality is reduced and the cor-
responding dissimilarity-based data set is created via
computing dissimilarities between examples in proto-
type set and training data. Finally, the classification
model built in the Model Construction is employed to
classify the dissimilarity-based imbalance data set.

3.2 Feature selection

When learning imbalance problems, some redundancy and
useless features existed in the imbalance data sets may hin-
der the generalization ability of the given learning algorithm

[79]. It is inadequate to handle the high dimensional imbal-
ance data sets only via employing the sampling techniques
and adapted algorithms, Putten and Someren [69] carried
out the experiments on the high dimensional imbalance data
sets in the CoIL Challenge 2000 project, and they draw the
conclusion that the feature selection is much more impor-
tant than the selection of the classification algorithm, which
contributes to avoiding over fitting.

In the preparation stage, the purpose of employing the
feature selection [23] is to filter those irrelative and redun-
dancy features, in order to alleviate and even avoid the curse
of dimensionality, reduce storage and memory require-
ments, increase mining accuracy, and even enhance the
comprehensibility of the classification results. According to
the evaluation process of feature selection, the feature selec-
tion strategy can be divided into three types, they are filter,
wrapper and embedded. The wrapper and embedded fea-
ture selection methods evaluate the feature subset depending
on the performance of the special classification algorithm.
Although they can get a valid feature subset supporting
for the classification algorithm, they lack of generalization
and efficiency due to the high complexity and the strong
dependence on the classification algorithm. On the contrary,
filter methods are independent to the classification algo-
rithm, they get the feature subset via scoring the correlation,
χ2, the information gain and the symmetrical uncertainty
between features with lower complexity and reduce the
possibility of over fitting.

Aiming to offset the pernicious effects from the useless
features on the afterward prototype selection and dissimilar-
ity transformation process, rather than improve the classi-
fication algorithm performance directly, so the filter-based
feature selection methods are chosen to expend the origi-
nal DBC method. For solving the class imbalance learning
problems, some popular filter-based metrics have been sys-
temically studied and compared with each other [11, 19, 34,
71, 72, 77, 81], in this paper, we adopt three classical fea-
ture selection methods to improve the dissimilarity-based
classification algorithm, they are correlation-based Feature
Selection (CFS) [24], FCBFS [78] and FAST [66].

Fig. 1 The framework of the
proposed method
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CFS [24] evaluates the worth of a subset of attributes by
considering the individual predictive ability of each feature
along with the degree of redundancy between them. Subsets
of features that are highly correlated with the class while
having low intercorrelation are preferred.

FCBFS [78] is a fast filter method which can identify
relevant features as well as redundancy among relevant
features without pairwise correlation analysis, in which
the symmetrical uncertainty attribute evaluator is used to
evaluate the correlation between features.

FAST [66] is a clustering-based feature selection method
with high efficiency and effectiveness. It first adopts
the efficient minimum-spanning tree clustering method to
divide the features into clusters, and then select the most
representative features that are strongly related to the target
concept as the feature subset. The clustering-based strategy
of FAST has a high probability of producing a subset of
useful and independent features.

3.3 Prototype selection

In the DBC method, prototypes, which are the representa-
tive examples characterizing the typicality of a class, are
selected as the references for dissimilarity transformation.
Aiming to get such a prototype set, a number of methods
have been investigated, such as the random selection meth-
ods RandomC [60] and KCentres [16], the mode seeking
methods ModeeSeek [12] and LinProg [5], and the feature
selection methods FeaSel [27], KCentres-LP and EdiCon
[57].

Of these methods, random selection [51, 52, 56, 60] is
first proposed and it is the most simple methods for pro-
totype selection, because it just needs to sample randomly
with replacement for the specified times (the number of
prototypes needs to be extracted). Furthermore, it has been
validated to have the capability of working well whenever
it is implemented globally or separately for each class.
Pekalska, et al. [57] carried an extensive experimental com-
parisons of some available prototype selection methods in
the dissimilarity-based classification algorithm, they sug-
gested that a systematic prototype selection method may be
better than random selection and discovered that KCentres
performs well in general.

Apart from random selection and KCentres, the
clustering-based Jarvis-Patrick clustering (JPC) algorithm
[31, 53] is a good choice to be used for selecting prototypes
from the imbalance data set in the proposed EDBC algo-
rithm. JPC is good at dealing with noise, outliers, clusters
of different sizes, shapes and densities. High-dimensional
data is particularly good at finding tight clusters of strongly
related examples. In the JPC algorithm, the shared nearest
neighbor (SNN) similarity is used to measure the prox-
imity between examples instead of direct similarity, such

as distance measures and correlation coefficient. The SNN
similarity is useful since it addresses some problems that
occur with direct similarity. At the same time, the SNN
similarity takes into account the context of an example via
the number of shared nearest neighbors, so it can handle
the situation in which an example happens to be rela-
tively close to another example but belongs to a different
class.

The prototypes are diverse with different prototype selec-
tion methods. Assume there are i classes in imbalance data
set: ω1, ω2, ..., ωi . Let Dt be a training set and let Di be
the training data consisted of examples belong to the class
ωi . Each method selects R examples for the prototype set
P. The above algorithms are all applied to each class sep-
arately, then ri examples are chosen such that R = ∑

ri .
The detailed prototype selection procedures are described as
follows:

1. Random Selection (RC). Random selection of ri exam-
ples from the training data set Di of class ωi and get
the representation set Ri with replacement, the final
representation set R = ∑

Ri .
2. KCentres (KC). This algorithm is applied to each class

ωi . It tries to choose ri examples from the class ωi . The
algorithm proceeds as below:

(1) Randomly select an initial set Ri =
{pi

1, p
i
2, ..., p

i
ri} consisted of ri examples from

the ith training data set Di ;
(2) For each x ∈ Di , find its nearest neighbor in Ri .

Let Jj , j = 1, 2, ..., ri , be a subset of Di con-
sisting of examples that owns the same nearest
neighbor pi

j in Ri ;
(3) For each Jj find its center cj , that is the exam-

ple for which the maximum distance to all other
examples in Jj is minimum, that is the radius of
Jj ;

(4) For each center cj , if cj �= pi
j , then pi

j is replaced
by cj in Ri . If an replacement is done, then return
to (2) step, otherwise stop the iteration. The final
representation set R consists of all sets Ri .
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3. Jarvis-Patrick clustering (JPC). For each class ωi , it
works as follows:

(1) Compute the SNN similarity between two points
of ωi with Algorithm 1, and connect those pairs of
examples with nonzero SNN similarity, finally the
SNN similarity graph is obtained;

(2) Sparsify the SNN similarity graph via cutting
down the links between examples whose SNN
similarity is smaller than the given threshold;

(3) Find the connected components (clusters) of the
sparsified SNN similarity graph.

(4) Select the centers of clusters to create the proto-
type set Ri for the class ωi . The final prototype set
R consists of all sets Ri .

In the clustering process of KC and JPC, the Euclidean
distance [54] is used to measure the proximity between
examples as default option. Practically, there are many other
proximity measures, such as Jaccard coefficient, cosine
similarity, the extended Jaccard coefficient, Dynamic Time
Warping (DTW) [4, 65] and Optimal Subsequence Bijection
(OSB) [43], etc. Noting that, the type of proximity measure
should fit the type data. For many types of dense, con-
tinuous data, metric distance measures such as Euclidean
distance are often used. For the sparse, asymmetric data,
it is more suitable to employ the cosine, Jaccard mea-
sures and the extended Jaccard coefficient. DTW and OSB
are appropriate to be used for measuring the proximity of
examples in time series. Besides, for searching similar web
pages, V. Loia, et al. [55] proposed a proximity fuzzy C-
means (P-FCM) incorporating a measure of similarity or

dissimilarity as user’s feedback on the clusters, in which
the Euclidean distance is used within the standard FCM
algorithm.

Furthermore, Andy and Matthew [44] proposed that the
(i,j) element of the proximity matrix produced by Ran-
dom Forest can used to represent the similarity between
examples i and j, they regarded the examples in the same ter-
minal nodes as the similar observations. However, the issues
are that some examples may be misclassified into wrong
terminal nodes when building Random Forest to be used for
each class, and it is difficult to use this method for each
class.

Aiming to select the representative examples for each
class, the simple and valid proximity measure is preferred.
In this paper, the EDBC algorithm is proposed to solve the
structural binary imbalance data sets, which are often con-
sisted of dense and continues attributes, so the Euclidean
distance is employed to measure the proximity between
examples in the cluster-based prototype selection methods
KC and JPC.

3.4 Dissimilarity transformation

In the dissimilarity transformation showed in Fig. 2, the
reduced data is projected into the dissimilarity space via
pairwise dissimilarity relations between examples in the
reduced data and the prototype set, where the metric dis-
tance measure is often employed to represent the dissimilar-
ity between examples.

Assuming that D = {x1, x2, ..., xn} is the reduced data
consists of n examples, where xi = {ai1, ai2, ..., aim, ci}
is the ith example with m + 1 attributes (m independent

Fig. 2 The procedure of
dissimilarity transformation
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attributes and the class attribute); P = {p1, p2, ..., pr}
denotes the prototype set of r representative examples,
where pi = {a′

i1, a
′
i2, ..., a

′
im, c′

i} is the ith prototype
selected from the reduced data D. Then the dissimilarity-
based data D̂ = {x̂1, x̂2, ..., x̂n} can be obtained as follows:

1. D̂ consists of n examples and each example x̂i =
{âi1, âi2, ..., âir , ci} is described with r attributes;

2. For the example x̂i , âij is the dissimilarity between the
example xi and the prototype pj , it is computed by

âij = dis(xi, pj ) = (

m∑

k=1

|aik − a′
jk|l)

1
l .

Where l is a positive integer, it can be 1, 2, ..., ∞.
l = 1. Manhattan distance (Hamming distance, City

block, taxicab and L1 norm) .
l = 2. Euclidean distance (L2 norm) are often used

for measuring the dissimilarity of dense, continuous
data.

l = ∞. Supremum (Lmax or L∞ norm) distance.
This is a the maximum difference between any attribute
of the examples.

A distance measure d is called a metric when it fulfills the
following conditions:

· Reflectivity: d(x, x) = 0.
· Positivity: d(x, y) > 0 if x is distinct from y.
· Symmetry: d(x, y) = d(y, x).
· Triangle inequality: d(x, y) < d(x, z) + d(z, y) for

every z.

As Pekalska, et al. [60] suggested that, reflectivity and
positivity are crucial to define a proper dissimilarity mea-
sure. It is unacceptable when a dissimilarity measure is
zero for two different objects, since it would violate the
compactness hypothesis [1, 15], which states that objects
that are similar, are also close in their representations.
Besides, it is difficult to interpret the negative dissimilarities
between examples. Therefore, in the dissimilarity trans-
formation, the metric Euclidean distance and Manhattan
distance based on sums of differences between measure-
ments are adopted to measure the dissimilarity between
examples. After dissimilarity transformation, the reduced
imbalance data set is projected into the dissimilarity space,
in which the classification model is built on the imbalance
data sets.

3.5 Complexity of the proposed method

The proposed EDBC consists of feature selection, prototype
selection, dissimilarity transformation and classification,
thus its complexity depends on the sum of the complexity of
the method adopted in each step mentioned above.

Supposing an historical imbalance data set D with n
instances and m features, then the complexity of each step
in EDBC algorithm is listed as below:

(i) Complexity of feature selection
Since the feature selection is employed to improve

the quality of prototype selection and dissimilar-
ity rather than effect the classification algorithm
directly, the filter-based feature selection methods are
selected to expend the dissimilarity-based classifica-
tion algorithm. The filter-based feature selection aims
to remove those redundancy and irrelative features.
In the process of feature selection, the computation
overhead is taken on evaluating the correlation
between each feature and the target feature, and
that between features, thus the complexity of feature
selection is TFS = O(m2).

(ii) Complexity of prototype selection
When using different methods to select r proto-

types, their complexity are diverse. Random selection
method just proceeds sampling with replacement for
r times and then obtains the r prototypes, its com-
plexity is TRC = O(r). Prototype selection with
KCentres method is accomplished by iterative clus-
tering for t times until the r centers become fixed,
its complexity is TKC = O(r · n · t). When apply-
ing Jarvis-Patrick clustering to select prototypes, its
computation overhead is mainly taken on the calcu-
lation of the dissimilarity between examples, thus its
complexity is TJPC = O(n2).

(iii) Complexity of dissimilarity transformation
In the process of dissimilarity transformation, the

primary task is to project the reduced data set into
the dissimilarity space via computing the dissimi-
larity between each examples in the reduced data
and r prototypes, so the complexity of dissimilarity
transformation is TDT = O(n · r).

Summarizing the complexity of feature selection, proto-
type selection, dissimilarity transformation and classifica-
tion, we can achieve the total complexity of the proposed
EDBC algorithm TEDBC = TFS + TPS + TDT + TC , that is
TEDBC = O(m2) + O(r)/O(r · n · t)/O(n2) + O(n · r) +
O(C(n, r)), in which TPS and TC respectively denotes the
complexity of prototype selection and classification on the
reduced data, and TC = O(C(n, r)).

According to the basic principle of each other imbalance
solutions, we could deduce that the complexity of RUS is
TRUS = O(Cmin) + O(C(n′, m)), n′ = 2Cmin, the com-
plexity of ROS is TROS = O(Cmax) + O(C(n′, m)), n′ =
2Cmax , the complexity of SMOTE in which the minor-
ity class is over-sampled by creating ”synthetic” exam-
ples rather than by over-sampling with replacement is
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TSMOT E = O(SMOT E(k, n′, t)) + O(C(n′, m)), n′ =
2Cmax , in which k is the number of nearest neighbors in
minority class and t denotes the iterations, and the com-
plexity of Bagging, Boosting, MetaCost and EM1vs1 all
depends on the iterations of ensemble learning, which can
be represented as TEnsemble = O(t · C(n, m)).

Since RUS, ROS and SMOTE just proceed the random
sampling of majority and minority class with replacement or
generation of new minority examples, without further com-
putation, their complexity may be lower than that of the
proposed EDBC algorithm. On the contrary, those ensem-
ble learning methods are accomplished via repeated iter-
ation analysis, which are very time-consuming, so their
computational complexity will be far higher than that of the
proposed EDBC algorithm.

4 Empirical study

In this section, we carry out the extensive experiments
on the public imbalance data sets in order to validate
the effectiveness of our proposed EDBC algorithm. At
first, we introduce the statistical information of the empir-
ical imbalance data sets in Section 4.1. Secondly, we
design the contents of experiments so as to comprehen-
sively analyze the performance of EDBC in Section 4.2.
Thirdly, we set the available methods for each step of
EDBC in detail in Section 4.3. Fourthly, we described the
detailed experimental process in Section 4.4. Finally, we
analyze and discuss the experimental results correspond-
ing to the investigations proposed in experimental design in
Section 4.5.

4.1 Data sets

For the purpose of evaluating the performance and effec-
tiveness of the proposed method EDBC and allowing other
researchers to confirm our experimental results, we collect
24 binary imbalanced data sets for classification, in which
half of the data sets are available from UC Irvine Machine
Learning Repository [20] from different areas (biology,
medicine and software engineering), and the rest are soft-
ware defect prediction data sets in the form of some metrics
derived of software source codes.

Table 1 shows the detailed statistical information of these
data sets. I, F respectively denotes the number of instances
and the number of features. Cmin, Cmaj and IR respec-
tively represents the number of examples in the minority
class, the number of examples in the majority class and the
imbalance ratio with the meaning of how skewed the class
distribution of each data sets is, which is calculated from the
ratio of the corresponding Cmaj and Cmin of each data set
and. Aiming to confirm the effectiveness of our proposed

EDBC algorithm on the imbalance data sets, the imbal-
ance ratio of 24 empirical data sets we collected are greater
than 3.

4.2 Experimental design

In the experiment, two investigations are conducted to eval-
uate the classification performance of our proposed EDBC
algorithm.

(1) Investigation 1: Can the EDBC algorithm improve
imbalance learning with conventional classification
algorithms?

This investigation aims to explore whether the
EDBC algorithm can improve the imbalance learning
performance with the conventional classification algo-
rithms and how the improvement on imbalance classi-
fication performance with EDBC compared with other
imbalance handling methods. Aiming to achieve this
purpose, we respectively compare the performance of
each given classification algorithm with the proposed
EDBC algorithm to that on the original empirical data
sets and those with other popular imbalance solutions.

(2) Investigation 2: What and how factors will affect the
performance of EDBC as the imbalance ratio alters?

This investigation aims to learn what factors impact
the performance of EDBC and how the performance of
EDBC will be affected by each factor as the imbalance
ratio changes.

In the proposed EDBC algorithm, there are four
factors that may affect its classification performance.
They are the determinations of feature selection meth-
ods, prototype selection methods, number of proto-
types and dissimilarity measures. When observing the
effect from each factor, it is advisable to compare
the differences in classification performance of the
EDBC algorithm with various settings of one factor
under the condition of keeping other factors fixed.
And so on, we can obtain the effect from all fac-
tors on EDBC when solving the imbalance learning
problems.

4.3 Experimental setup

In this section, we individually setup the methods adopted
in each step of EDBC, they are feature selection methods,
prototype selection methods and the number of prototypes,
the distance measures in dissimilarity transformation and
the classification algorithms.

(1) Feature selection methods
In the process of feature selection, three representa-

tive feature selection methods were applied to choose
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Table 1 Summary of 24
imbalanced binary data sets ID Data I F Cmin Cmaj IR

1 abalone9-18 731 9 42 689 16.4

2 ant1.3 115 64 20 95 4.75

3 ant1.4 163 64 38 125 3.29

4 ant1.5 266 64 32 234 7.31

5 ant1.7 681 64 165 516 3.13

6 camel1.4 720 64 134 586 4.37

7 camel1.6 791 64 170 621 3.65

8 ecoliIM 336 8 77 259 3.36

9 ecoliIMU 336 8 35 301 8.6

10 ecoliOM 336 8 20 316 15.8

11 glassNW 214 10 51 163 3.2

12 hepatitis 155 20 32 123 3.84

13 ivy1.4 209 64 15 194 12.93

14 ivy2.0 294 64 37 257 6.95

15 jedit4.2 344 64 48 296 6.17

16 new-thyroid 215 6 35 180 5.14

17 synapse1.0 139 64 15 124 8.27

18 tomcat6.0 732 64 77 655 8.51

19 vehicleVAN 846 19 199 647 3.25

20 vowelZ 990 14 90 900 10

21 xalan2.4 634 64 108 526 4.87

22 xerces1.2 291 64 43 248 5.77

23 xerces1.3 302 64 65 237 3.65

24 yeastCYT-POX 483 9 20 463 23.15

those important features from the raw training data,
they were the classical correlation-based feature selec-
tion CFS, the correlation-based filter solution FCBFS
and the clustering-based feature subset selection algo-
rithm FAST.

(2) Prototype selection methods
In the process of prototype selection, three pro-

totype selection methods are employed to select
the representative examples, including the random
sampling for each class (RC), the KCentres (KC) and
the Jarvis-Patrick Clustering (JPC).

In the process of prototype selection, the number of
prototypes determines the dimensionality of the new
imbalance data mapped in dissimilarity space. Too
small, a much lower dimensionality will lead to over-
fitting; too large, it will increase the complexity of
computation and introduce some similar prototypes,
on the contrary.

As suggested by Pekalska, et. al [57], the number of
prototypes should be in the range of 3 − 10 % of train-
ing data. Meanwhile, considering a trade off between
classification performance and computation complex-

ity, we set the numbers of selected prototypes to be
r = LogI (I is the number of instances)[36] and
r = 20 for each training data.

(3) Distance measures
In the process of dissimilarity transformation,

Euclidean distance and Manhattan distance are utilized
to compute the pairwise dissimilarity between exam-
ples in the reduced imbalance data set and the set of
prototypes.

(4) Classification algorithms
After the dissimilarity transformation, the classifi-

cation models are built on the new imbalance data sets
in the dissimilarity space. In the dissimilarity classi-
fication, five traditional classification algorithms are
applied to construct the classification model on each
imbalance data set, involving the probability-based
Naive Bayes (NB), the instance-based nearest neigh-
bor (IB1) [30, 74], the tree-based Random Forest (RF)
[36], the network-based Multilayer Perceptron (MLP)
[25, 28, 30] and the linear-based Logistic Regres-
sion (LR) [70], which have been implemented in
WEKA.
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4.4 Experimental process

In the experimental process, we employ the EDBC algo-
rithm on each binary imbalanced data set with all com-
binations generated by three kinds of prototype selec-
tion methods, three types of feature selection methods,
two classical metric distance measures and five tradi-
tional classification algorithms. The details of our exper-
imental process is described in Procedure Experimental
Process.

Aiming to further validate the effectiveness of the
proposed EDBC algorithm, we additionally apply seven
popular imbalance handling methods to learning on the
empirical data sets and then acquire their performance
on each data set for the subsequent comparison with
EDBC. The seven imbalance solutions are random under
sampling (RUS), random over sampling (ROS), syn-
thetic minority over-sampling technique (SMOTE), Bag-
ging, Boosting, cost-sensitive learning (MetaCost) and
EM1vs1.

For evaluating the performance of the proposed EDBC
algorithm and other imbalance solutions, the 5 × 10 cross-
validation strategy is realized in the experimental process.
For each 10-fold cross-validation, one raw imbalance data
was randomly divided into 10 equal folds and EDBC is
trained on the rest of the nine folds and tested on the spec-
ified fold for each fold. Aiming to obtain reliable and sta-

ble classification performance, the 10-fold cross-validation
strategy is repeated for 5 times and examples are randomly
ordered for each iteration. The average AUC of 50 itera-
tions is used as the measure for evaluating the classification
performance of EDBC on the imbalance data sets.

4.5 Experimental results and analysis

In this section, we first present the results of performance
comparison between our proposed method EDBC and other
existing imbalance solutions in Section 4.5.1, as a response
to the question proposed in Investigation 1, and then we
analyze the impact of employing different setting for each
step on the performance of the proposed EDBC algorithm in
Section 4.5.2 with the intend to answer the question raised
by Investigation 2.

4.5.1 Performance comparison

For each given classification algorithm, we extensively
compared its classification performance with EDBC and
that with other seven imbalance data handling methods
(RUS, ROS, SMOTE, Bagging, Boosting, MetaCost and
EM1vs1) in terms of AUC. Tables 2-6 shows the details
of comparison results for Naive Bayes, Random For-
est, IB1, Multilayer Perceptron and Logistic Regression,
respectively.
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Table 2 The AUC values of different imbalance data handling methods with Naive Bayes

Data EDBC Bench RUS ROS SMOTE Bagging Boosting MetaCost EM1vs1

abalone9-18 0.96 0.98 0.76 0.76 0.75 0.76 0.82 0.73 0.73

ant1.3 0.82 0.67 0.69 0.67 0.67 0.71 0.61 0.66 0.73

ant1.4 0.71 0.57 0.53 0.56 0.58 0.58 0.57 0.46 0.58

ant1.5 0.81 0.78 0.77 0.79 0.74 0.79 0.71 0.75 0.78

ant1.7 0.76 0.78 0.77 0.78 0.77 0.77 0.74 0.75 0.77

camel1.4 0.69 0.72 0.71 0.72 0.72 0.72 0.69 0.68 0.71

camel1.6 0.68 0.69 0.68 0.68 0.69 0.68 0.65 0.57 0.68

ecoliIM 0.99 0.88 0.92 0.92 0.93 0.92 0.95 0.90 0.88

ecoliIMU 0.95 0.92 0.94 0.93 0.94 0.94 0.93 0.91 0.91

ecoliOM 1 0.93 0.99 1 1 0.99 0.97 0.96 0.98

glassNW 0.99 0.74 0.93 0.94 0.94 0.95 0.95 0.93 0.92

hepatitis 0.95 0.65 0.87 0.89 0.88 0.89 0.86 0.87 0.85

ivy1.4 0.81 0.57 0.61 0.55 0.54 0.71 0.56 0.77 0.71

ivy2.0 0.80 0.79 0.79 0.78 0.80 0.79 0.72 0.77 0.77

jedit4.2 0.80 0.74 0.74 0.73 0.73 0.74 0.71 0.72 0.74

new-thyroid 1 0.79 1 1 1 1 1 1 0.99

synapse1.0 0.78 0.72 0.73 0.72 0.72 0.79 0.70 0.76 0.80

tomcat6.0 0.79 0.78 0.80 0.78 0.78 0.79 0.72 0.78 0.79

vehicleVAN 0.93 0.99 0.82 0.82 0.82 0.82 0.94 0.76 0.76

vowelZ 0.99 1 0.98 0.98 0.98 0.98 0.97 0.96 0.93

xalan2.4 0.73 0.72 0.72 0.73 0.73 0.73 0.69 0.71 0.72

xerces1.2 0.70 0.68 0.68 0.67 0.68 0.69 0.64 0.66 0.67

xerces1.3 0.71 0.61 0.62 0.62 0.61 0.62 0.63 0.55 0.62

yeastCYT-POX 0.84 0.94 0.84 0.83 0.79 0.83 0.82 0.78 0.80

Average 0.84 0.78 0.79 0.79 0.78 0.80 0.77 0.77 0.78

�Bench - the classification performance without any imbalance handling solution.

Table 2 shows the classification performance of Naive
Bayes on each imbalance data set with different imbalance
data handling methods. From it we observe that, 4 out of 8
imbalance data handling methods can improve the perfor-
mance of Naive Bayes, and EDBC performs best. Compared
with SMOTE and EM1vs1, the performance of Naive Bayes
has been improved by EDBC by 7.69 %; compared with
RUS and ROS, the performance of Naive Bayes has been
improved by EDBC by 6.33 %; compared with Bagging, the
performance of Naive Bayes has been improved by EDBC
by 5 %; and compared with Boosting and MetaCost, the per-
formance of Naive Bayes has been improved by EDBC by
9.09 %.

Table 3 shows the classification performance of Random
Forest on each empirical imbalance data set with differ-
ent imbalance handling methods. From this table, we could
find that 4 out of 8 imbalance handling methods improved
the performance of Random Forest, in which both EDBC
and Bagging are the best methods with the same aver-
age AUC. Furthermore, comparing the proposed EDBC

algorithm with the other six imbalance solutions, the clas-
sification performance of Random Forest with EDBC is
improved by 3.70 % compared to that with RUS, ROS and
MetaCost, by 6.33 % compared to that with Boosting, by
2.44 % compared to SMOTE and by 1.2 % compared to
EM1vs1, respectively.

Table 4 reveals the classification performance of IB1 on
each imbalance data set with 8 different imbalance handling
methods. From it we can observe that, 7 out of 8 imbalance
handling methods greatly increased the performance of IB1
on the imbalance data sets, in which the proposed EDBC
algorithm ranks the first place with the highest classification
performance on average. Relatively, the classification per-
formance of IB1 with EDBC is higher by 18.57 % than that
with ROS, by 15.28 % than that with RUS, by 16.90 % than
that with SMOTE and MetaCost, by 11.69 % than that with
Bagging, by 12.16 % than that with Boosting and by 9.21 %
than that with EM1vs1, respectively.

Table 5 discloses the classification performance of Mul-
tilayer Perceptron on each imbalance data set with different
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Table 3 The AUC values of different imbalance data handling methods with Random Forest

Data EDBC Bench RUS ROS SMOTE Bagging Boosting MetaCost EM1vs1

abalone9-18 0.83 0.78 0.79 0.79 0.80 0.83 0.82 0.81 0.82

ant1.3 0.82 0.69 0.69 0.66 0.69 0.71 0.66 0.68 0.70

ant1.4 0.71 0.64 0.6 0.63 0.65 0.67 0.58 0.62 0.68

ant1.5 0.81 0.73 0.75 0.77 0.77 0.80 0.73 0.76 0.78

ant1.7 0.76 0.78 0.78 0.77 0.79 0.81 0.77 0.78 0.80

camel1.4 0.72 0.72 0.70 0.71 0.74 0.75 0.71 0.72 0.75

camel1.6 0.69 0.72 0.70 0.71 0.71 0.76 0.71 0.72 0.75

ecoliIM 0.99 0.94 0.94 0.95 0.94 0.95 0.95 0.93 0.93

ecoliIMU 0.94 0.90 0.92 0.90 0.91 0.93 0.93 0.91 0.93

ecoliOM 0.98 0.94 0.96 0.94 0.96 0.98 0.95 0.96 0.98

glassNW 0.99 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.96

hepatitis 0.90 0.85 0.86 0.87 0.88 0.91 0.85 0.87 0.84

ivy1.4 0.81 0.76 0.79 0.72 0.78 0.81 0.68 0.75 0.82

ivy2.0 0.80 0.76 0.75 0.74 0.77 0.80 0.72 0.78 0.81

jedit4.2 0.79 0.75 0.76 0.75 0.75 0.80 0.75 0.75 0.79

new-thyroid 1 0.99 0.99 1 0.99 1 0.99 0.99 0.99

synapse1.0 0.78 0.65 0.68 0.68 0.70 0.75 0.69 0.69 0.74

tomcat6.0 0.79 0.78 0.77 0.77 0.79 0.82 0.74 0.78 0.81

vehicleVAN 0.96 0.99 0.99 0.99 0.99 1 0.99 0.99 0.98

vowelZ 1 1 1 1 1 1 0.94 1 1

xalan2.4 0.73 0.72 0.71 0.71 0.72 0.74 0.70 0.72 0.75

xerces1.2 0.71 0.71 0.67 0.70 0.72 0.72 0.62 0.74 0.70

xerces1.3 0.72 0.73 0.75 0.74 0.75 0.77 0.73 0.73 0.75

yeastCYT-POX 0.89 0.82 0.84 0.84 0.82 0.93 0.85 0.84 0.88

Average 0.84 0.81 0.81 0.81 0.82 0.84 0.79 0.81 0.83

imbalance solutions. From the table we observe that, all the
imbalance data handling methods can improve the classifi-
cation performance of Multilayer Perceptron on the imbal-
ance data sets, among which our proposed EDBC algorithm
ranks the first with the highest AUC. Individually, the clas-
sification performance of Multilayer Perceptron with EDBC
is increased by 7.5 % compared with RUS, Boosting and
EM1vs1, by 8.86 % compared with ROS and MetaCost, by
10.26 % compared to SMOTE and by 4.88 % compared to
Bagging.

Table 6 uncovers the classification performance of Logis-
tic Regression with 8 different imbalance learning handling
methods. From it we observe that, 6 out of 8 imbalance
data handling methods increased the performance of Logis-
tic Regression, where EDBC ranks the first again with the
best classification performance. By comparison, the classi-
fication performance of Logistic Regression with EDBC has
been improved by 13.16 % for RUS and ROS, by 11.69 %
for SMOTE, Boosting and MetaCost, by 8.86 % for Bagging
and by 10.26 % for EM1vs1, respectively.

To sum up, our proposed EDBC algorithm has a capabil-
ity of building a more effective classification model when
solving the imbalance learning problems. Besides, com-
pared with other seven imbalance data handling methods, it
is always the most outstanding of all.

For the purpose of validating whether our proposed
EDBC algorithm significantly outperforms the other solu-
tions with all classification algorithms, the Wilcoxon
signed-rank test was conducted under the significance level
0.05. The alternative hypotheses are that for each classi-
fication algorithm, the EDBC method is superior to the
compared methods.

The p-values of the hypotheses are all significantly lower
than 0.05 except Random Forest. This means that the EDBC
algorithm is significantly superior to the other methods with
four classification algorithms Naive Bayes, IB1, Multilayer
Perceptron and Logistic Regression. When using Random
Forest as the classification algorithm, both of EDBC and
Bagging are the best imbalance solutions and there is no
significant differences between them.
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Table 4 The AUC values of different imbalance data handling methods with IB1

Data EDBC Bench RUS ROS SMOTE Bagging Boosting MetaCost EM1vs1

abalone9-18 0.76 0.57 0.66 0.57 0.65 0.68 0.71 0.57 0.75

ant1.3 0.82 0.65 0.63 0.66 0.66 0.72 0.73 0.65 0.71

ant1.4 0.71 0.57 0.54 0.57 0.57 0.54 0.54 0.60 0.54

ant1.5 0.81 0.62 0.63 0.61 0.62 0.70 0.63 0.65 0.67

ant1.7 0.75 0.65 0.66 0.64 0.64 0.69 0.67 0.65 0.69

camel1.4 0.69 0.57 0.58 0.57 0.58 0.61 0.59 0.58 0.62

camel1.6 0.68 0.57 0.59 0.57 0.59 0.64 0.64 0.56 0.65

ecoliIM 0.97 0.82 0.85 0.83 0.84 0.90 0.89 0.84 0.91

ecoliIMU 0.95 0.75 0.83 0.74 0.81 0.89 0.84 0.82 0.92

ecoliOM 0.97 0.88 0.91 0.88 0.91 0.97 0.98 0.88 0.99

glassNW 0.96 0.93 0.94 0.93 0.94 0.97 0.97 0.93 0.96

hepatitis 0.91 0.71 0.76 0.71 0.74 0.77 0.72 0.74 0.76

ivy1.4 0.81 0.52 0.65 0.52 0.54 0.71 0.67 0.53 0.73

ivy2.0 0.73 0.60 0.62 0.61 0.62 0.65 0.65 0.59 0.69

jedit4.2 0.79 0.62 0.61 0.62 0.63 0.65 0.67 0.63 0.68

new-thyroid 1 0.99 0.99 0.99 0.99 1 0.99 0.99 0.99

synapse1.0 0.78 0.49 0.54 0.49 0.50 0.57 0.53 0.59 0.58

tomcat6.0 0.79 0.65 0.66 0.65 0.67 0.69 0.67 0.66 0.75

vehicleVAN 0.96 0.92 0.93 0.92 0.92 0.96 0.97 0.92 0.96

vowelZ 1 1 0.99 1 1 1 1 1 1

xalan2.4 0.73 0.59 0.61 0.59 0.60 0.65 0.62 0.59 0.66

xerces1.2 0.71 0.61 0.57 0.61 0.60 0.60 0.58 0.61 0.61

xerces1.3 0.69 0.65 0.65 0.65 0.64 0.69 0.68 0.66 0.67

yeastCYT-POX 0.88 0.76 0.79 0.76 0.8 0.85 0.87 0.80 0.84

Average 0.83 0.70 0.72 0.70 0.71 0.75 0.74 0.71 0.76

To provide an overall performance evaluation of all given
imbalance handling methods, we rank these solutions for
each classification algorithm according to the average AUC
of 24 imbalance data sets separately, the best performing
algorithm getting the rank of 1, the second best rank 2..., as
shown in Table 7. In case of ties, the same rank is assigned
like both of RUS and ROS ranking 3rd, Bench, SMOTE and
EM1vs1 all ranking 5th. From this table we observe that
our method EDBC ranks the first place with the minimum
average rank. It means that the proposed EDBC method
markedly improves the performance of the standard classi-
fication algorithms on the imbalance learning problems and
surpasses all the other existing solutions.

4.5.2 Sensitivity analysis

As well known that, the kernel of EDBC algorithm consists
of feature selection, prototype selection, dissimilarity trans-
formation, so the the methods employed in feature selection
and prototype selection, the number of prototypes and the

dissimilarity measure adopted in dissimilarity transforma-
tion are the crucial influence factors for the classification
performance of EDBC.

In this section, we respectively analyze and discuss the
effect from each factor on the proposed EDBC algorithm.
The details of each factor are illustrated in Figs. 3, 4,
5, and 6, where X-axis denotes the imbalance ratio of
each empirical data set and Y-axis represents the classi-
fication performance AUC of EDBC with one specified
factor.

1 Sensitivity Analysis of Feature Selection Methods.
Figure 3 shows the effect from four features selec-

tion strategies on the classification performance of the
proposed EDBC algorithm for each given classifica-
tion algorithm as the imbalance ratio altering. From the
figure we observe that:

(i) For each given classification algorithm, the clas-
sification performance of EDBC is significantly
affected by different feature selection methods.
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Table 5 The AUC values of different imbalance data handling methods with Multilayer Perceptron

Data EDBC Bench RUS ROS SMOTE Bagging Boosting MetaCost EM1vs1

abalone9-18 0.87 0.89 0.89 0.86 0.83 0.90 0.87 0.90 0.89

ant1.3 0.82 0.56 0.64 0.56 0.57 0.67 0.65 0.67 0.65

ant1.4 0.71 0.56 0.57 0.61 0.6 0.63 0.58 0.61 0.61

ant1.5 0.81 0.75 0.75 0.73 0.75 0.77 0.75 0.75 0.75

ant1.7 0.78 0.75 0.75 0.75 0.75 0.77 0.76 0.76 0.75

camel1.4 0.74 0.67 0.67 0.65 0.66 0.70 0.68 0.69 0.68

camel1.6 0.69 0.66 0.67 0.67 0.66 0.72 0.68 0.68 0.69

ecoliIM 0.99 0.96 0.95 0.95 0.95 0.96 0.94 0.95 0.93

ecoliIMU 0.99 0.94 0.93 0.94 0.91 0.94 0.92 0.93 0.93

ecoliOM 1 0.99 0.98 0.97 0.98 0.98 0.97 0.99 0.99

glassNW 0.99 0.96 0.96 0.95 0.95 0.97 0.97 0.95 0.96

hepatitis 0.94 0.79 0.85 0.83 0.85 0.89 0.84 0.85 0.82

ivy1.4 0.85 0.54 0.72 0.75 0.72 0.84 0.75 0.55 0.80

ivy2.0 0.84 0.65 0.74 0.72 0.72 0.78 0.74 0.73 0.76

jedit4.2 0.79 0.71 0.70 0.72 0.72 0.75 0.73 0.72 0.73

new-thyroid 1 1 1 1 1 1 0.99 1 1

synapse1.0 0.78 0.61 0.65 0.63 0.62 0.68 0.66 0.68 0.69

tomcat6.0 0.83 0.74 0.77 0.76 0.75 0.81 0.74 0.77 0.79

vehicleVAN 0.99 1 1 1 1 1 1 1 0.99

vowelZ 1 0.99 0.99 1 1 1 1 0.98 1

xalan2.4 0.76 0.67 0.70 0.68 0.70 0.74 0.70 0.70 0.72

xerces1.2 0.71 0.66 0.75 0.62 0.57 0.65 0.62 0.62 0.62

xerces1.3 0.72 0.68 0.71 0.66 0.69 0.70 0.70 0.69 0.68

yeastCYT-POX 0.99 0.85 0.78 0.88 0.81 0.85 0.86 0.85 0.76

Average 0.86 0.77 0.80 0.79 0.78 0.82 0.80 0.79 0.80

Generally, FAST performs best of all feature selec-
tion methods, while there is no significant improve-
ment and even a little degradation on the clas-
sification performance of EDBC using CFS and
FCBFS for feature selection. It means that the fast
clustering-based feature subset selection method
(FAST) is able to find a feature subset that is
most relative to the class concept from each imbal-
ance data set, which is conducive to improve
the afterward prototype selection and dissimilarity
transformation.

(ii) From the fluctuation trend of the classification per-
formance of EDBC with different feature selection
methods, we find that the effect of feature selec-
tion on EDBC is very significant when IR < 16
and it is getting stable and weaker as IR increases.
Although, FAST significantly outperforms other
feature selection methods within EDBC for all
given classification algorithms when IR < 16,
the differences in the performance of EDBC with
all feature selection methods also become not so

obvious as IR creases. That means it is difficult
to select those salient features from the extremely
imbalance data set with the given feature selection
methods.

(iii) Compared to the situation without feature selection
(nonFS), the classification performance of EDBC
using FAST for feature selection is increased by
11 % for Naive Bayes, 12 % for Random Forest,
23 % for IB1, 6 % for Multilayer Perceptron and
7 % for Logistic Regression, respectively.

From above analysis on the effect from different
feature selection methods, we have summarized that
feature selection plays a critical role in the proposed
method EDBC, especially the FAST method. Addi-
tionally, it is necessary to adopt a more valid feature
selection method for the the extremely imbalanced
data sets.

2 Sensitivity Analysis of Prototype Selection Methods.
Figure 4 displays the effect from three prototype

selection methods RC, KC and JPC within EDBC on
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Table 6 The AUC values of different imbalance data handling methods with Logistic Regression

Data EDBC Bench RUS ROS SMOTE Bagging Boosting MetaCost EM1vs1

abalone9-18 0.89 0.94 0.93 0.95 0.93 0.94 0.84 0.93 0.93

ant1.3 0.82 0.53 0.58 0.51 0.55 0.56 0.63 0.55 0.54

ant1.4 0.71 0.51 0.56 0.50 0.51 0.56 0.57 0.59 0.61

ant1.5 0.81 0.63 0.67 0.62 0.68 0.75 0.70 0.68 0.71

ant1.7 0.79 0.77 0.74 0.76 0.77 0.78 0.75 0.76 0.76

camel1.4 0.76 0.71 0.69 0.71 0.71 0.72 0.67 0.68 0.69

camel1.6 0.72 0.67 0.67 0.67 0.68 0.69 0.67 0.65 0.67

ecoliIM 0.99 0.95 0.94 0.95 0.95 0.95 0.87 0.93 0.90

ecoliIMU 0.96 0.92 0.90 0.91 0.92 0.91 0.88 0.91 0.90

ecoliOM 0.99 0.96 0.96 0.95 0.95 0.97 0.94 0.97 0.99

glassNW 0.99 0.96 0.95 0.96 0.96 0.97 0.97 0.95 0.94

hepatitis 0.94 0.88 0.81 0.88 0.85 0.85 0.87 0.80 0.82

ivy1.4 0.81 0.62 0.67 0.56 0.61 0.83 0.75 0.75 0.82

ivy2.0 0.83 0.64 0.62 0.65 0.64 0.71 0.69 0.64 0.69

jedit4.2 0.80 0.64 0.57 0.63 0.67 0.65 0.66 0.64 0.63

new-thyroid 1 1 1 1 1 1 0.97 1 1

synapse1.0 0.78 0.57 0.59 0.58 0.59 0.59 0.63 0.64 0.67

tomcat6.0 0.83 0.70 0.65 0.69 0.74 0.73 0.69 0.72 0.67

vehicleVAN 0.99 0.99 0.99 0.99 1 1 0.99 0.99 0.99

vowelZ 1 1 0.99 1 1 1 1 0.99 1

xalan2.4 0.76 0.72 0.70 0.72 0.72 0.73 0.68 0.72 0.68

xerces1.2 0.71 0.52 0.58 0.52 0.54 0.61 0.64 0.56 0.63

xerces1.3 0.72 0.57 0.61 0.57 0.56 0.65 0.70 0.59 0.65

yeastCYT-POX 0.99 0.86 0.83 0.86 0.86 0.84 0.83 0.84 0.79

Average 0.86 0.76 0.76 0.76 0.77 0.79 0.77 0.77 0.78

the classification performance of EDBC as the imbal-
ance increases. From the figure we observe that:

(i) The classification performance of EDBC is sig-
nificantly affected by different prototype selection
methods, in which RC and JPC within EDBC
achieve the similar classification performance as

imbalance increases and both of them are superior
to KC on all imbalance data sets.

(ii) When IR < 16, the performance of EDBC with
RC and JPC fluctuates widely and tends towards
stability as IR increases. On the contrary, the per-
formance of EDBC with KC is relatively stable and
worse overall.

Table 7 Rank of all imbalance handling methods with different classification algorithms

Classification algorithm EDBC Bench RUS ROS SMOTE Bagging Boosting MetaCost EM1vs1

Naive Bayes 1 5 3 3 5 2 8 8 5

Random Forest 1 5 5 5 4 1 9 5 3

IB1 1 8 5 8 6 3 4 6 2

Multi-Layer 1 9 3 6 8 2 3 6 3

Logistic Regression 1 7 7 7 4 2 4 4 3

Average Rank 1 6.8 4.6 5.8 5.4 2 5.6 5.8 3.2
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Fig. 3 The sensitivity analysis
of four feature selection methods
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(iii) Compared to KC, the classification performance
of EDBC with RC and JPC is averagely increased
by about 12 % for Naive Bayes, 11 % for

Random Forest, 15 % for IB1 and Logistic
Regression and 14 % for Multilayer Perceptron,
respectively.

Fig. 4 The sensitivity analysis
of three prototype selection
methods
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Fig. 5 The sensitivity analysis
of two numbers of prototypes
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In summary, KC is not suitable for clustering on
imbalance data sets, because KC cannot handle non-
globular clusters or clusters of different sizes and

densities and the data sets containing outliers method,
which is the nature of the imbalance data set. While
RC proceeds the stratified sampling as the class

Fig. 6 The sensitivity analysis
of two dissimilarity measures

4 6 8 10 12 14 16 18 20 22 24

0.6

0.8

1

IR

AU
C

NB

4 6 8 10 12 14 16 18 20 22 24

0.6

0.8

1

IR

AU
C

RF

4 6 8 10 12 14 16 18 20 22 24

0.6

0.8

1

IR

AU
C

IB1

4 6 8 10 12 14 16 18 20 22 24

0.6

0.8

1

IR

AU
C

MLP

4 6 8 10 12 14 16 18 20 22 24

0.6

0.8

1

IR

AU
C

LR

Euclidean Manhattan



A dissimilarity-based imbalance data classification algorithm 561

distribution and JPC can compensate the disadvantages
of KC, so RC and JPC are very appropriate for selecting
the representative examples from imbalance data sets.
Furthermore, the advantages of RC and JPC become
more and more obvious as IR increases.

3 Sensitivity Analysis of the Numbers of Prototypes.
Figure 5 shows the impact of the number of proto-

types r = LogI and r = 20 on the classification perfor-
mance of EDBC for different classification algorithms.
From it we find that, i) the classification performance
of EDBC with different numbers of prototypes has the
similarity trend as IR increases; ii) When r = 20, the
classification performance of EDBC is averagely higher
than that when r = LogI by 5 % for all classification
algorithms but Random Forest and iii) when IR > 16,
the difference between two conditions does not become
significant.

It means that the classification performance of
EDBC will be degraded with only a few prototypes,
because it is difficult to distinguish the examples pro-
jected into the dissimilarity space referring a few poor
prototypes. Additionally, it also implies that EDBC
is not so sensitive to the number of prototypes as
IR increases. In the practice, taking the computa-
tional complexity and classification performance into
account, only if the number of prototypes lies in the
rational range 3-10% of the data size as suggested by
Pekalska, et. al [57], the EDBC algorithm will obtain a
stable and approving classification performance.

4 Sensitivity Analysis of Dissimilarity Measures
Figure 6 illustrates the effect from two distance mea-

sures (Euclidean distance and Manhattan distance) on
the classification performance of the proposed EDBC
algorithm. From the figure we observe that:

(i) The classification performance of EDBC with
Euclidean distance as the dissimilarity measure is
superior to that with Manhattan distance. It means
that Euclidean distance reflects the real distance
between two points, and even profits the construc-
tion of classification model in the dissimilarity
space. While Manhattan distance is the sum of
the lengths of the projections of the line segment
between two points, which maybe lead to overlap-
ping of multiple points in the dissimilarity space,
e.g. there are many pathes with the same Man-
hattan distance between two points. It is difficult
for EDBC to distinguish those overlapped points
in the dissimilarity space via pairwise Manhattan
distance.

(ii) The classification performance of EDBC with
Euclidean is more volatile than that with Manhat-
tan distance when IR < 16, and it tends to stabilize

as IR increases. Meanwhile the proposed method
EDBC with Euclidean distance outperforms that
with Manhattan distance by 6 % for Naive Bayes,
8 % for Random Forest, 9 % for IB1, 7 % for Multi-
layer Perceptron and 10 % for Logistic Regression
on average, respectively. As IR increases, the dif-
ferences between the performance of EDBC with
both dissimilarity measures become not so obvious.
It implies that the effect from dissimilarity mea-
sure on the classification performance of EDBC
dies away due to the highly imbalanced class
distribution.

Generally, Euclidean distance is more suitable to be
used for dissimilarity transformation for EDBC than
Manhattan distance.

5 Conclusions

The imbalance learning problem is one challenge of data
mining domain. Skewed class distribution often degrades
the performance of most traditional classification algo-
rithm, such as Naive Bayes, IB1, C4.5, Logistic Regres-
sion, Neural Networks and Support Vector Machines, etc.
A number of solutions have been proposed for improv-
ing the imbalance classification performance, but they paid
more attention on how to rebalance the skewed class dis-
tribution and how to find a more suitable classification
algorithm, ignoring how to improve the discriminant ability
of features in order to increase the performance of tra-
ditional classification algorithms on imbalance data sets,
essentially.

In this perspective, we have proposed an expanded
dissimilarity-based classification algorithm (EDBC) for
classifying the imbalance data sets, which proceeds as
below:

1. Remove the useless and redundancy features from the
original imbalance data via feature selection, aiming to
mitigate the effect on the quality of afterward prototype
selection and dissimilarity transformation;

2. Select some representative examples for each class
from the reduced data, and then produce a prototype
set;

3. Project the reduced data into the dissimilarity space
through computing the dissimilarity between examples
in the reduced data and the prototype set;

4. Construct the classifier on the new data set in the
dissimilarity space.

Different from the existing imbalance data handling
methods, the proposed EDBC resolves the imbalance learn-
ing problems fundamentally via enhancing the discriminant
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ability of features with the help of the dissimilarity-based
representation. For the purpose of confirming the effective-
ness and the efficiency of the proposed EDBC algorithm,
we have carried out an extensive empirical study on 24
benchmark imbalance data set, evaluated the performance
of EDBC algorithm in terms of AUC and compared it
with other commonly used imbalance solutions, including
Random under-sampling, Random over-sampling, SMOTE,
Bagging, Boosting, MetaCost and EM1vs1 with five tradi-
tional classification algorithms Naive Bayes, Random For-
est, IB1, Multi-Layer Perceptrons and Logistic Regression
over 24 imbalanced data sets.

Firstly, we have compared the average performance
of each given classification algorithm with the proposed
EDBC algorithm and that with each other imbalance han-
dling method. The classification performance on the imbal-
ance problems has been increased by EDBC by 5 − 9.09 %
for Naive Bayes, 1.2 − 6.33 % for Random Forest, 9.21 −
18.57 % for IB1, 4.88-10.26 % Multilayer Perceptron and
8.86 − 13.16 % for Logistic Regression, respectively. The
comparison results shows that our proposed EDBC can
greatly increase the performance of all given classifica-
tion algorithms and outperform other imbalance solutions,
overall.

Secondly, we also have analyzed and discussed the sen-
sitivity from the determination of methods employed at
each step for our proposed EDBC algorithm, they are fea-
ture selection methods, prototype selection methods, the
number of prototypes and dissimilarity measures. Through
comparative analysis on the classification performance of
EDBC on the imbalance data sets, we have achieved a sum-
mary for EDBC that FAST is the best choice for feature
selection, random selection and Jarvis-Patrick clustering
algorithm are more effective for prototype selection with
a rational number of prototypes (3 − 10 % of training
examples) and Euclidean distance is more suitable for mea-
suring the dissimilarity between examples in dissimilarity
transformation.

Moreover, we have supplied the computational com-
plexity of the proposed EDBC algorithm and compared
it with other imbalance handling method. The compari-
son results show us that the complexity of the proposed
EDBC algorithm may be a little higher than that of RUS
and ROS, but it is significantly lower than that of each
ensemble learning method. It means that the proposed
expanded dissimilarity-based classification method can
improve the imbalance learning performance effectively and
efficiently.
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