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Abstract In the multi-instance multi-label learning frame-
work, an example is described by multiple instances and
associated with multiple class labels at the same time. An
idea of tackling with multi-instance multi-label problems
is to identify its equivalence in the traditional supervised
learning framework. However, some useful information
such as the correlation between labels may be lost in the
process of degeneration, which will influence the classifica-
tion performance. In E-MIMLSVM+ algorithm, multi-task
learning techniques are utilized to incorporate label cor-
relations, while it is time consuming as well as memory
consuming. Therefore, we propose an improved algorithm.
In our algorithm, the classifier chains method is applied
in E-MIMLSVM+ to incorporate label correlations instead
of multi-task learning techniques. The experimental results
show that the proposed algorithm can reduce time complex-
ity and improve the predictive performance.

Keywords Support vector machine · Multi-instance
multi-label · Classifier chains · Label correlations

1 Introduction

In recent years, multi-instance multi-label learning (MIML)
has attracted a lot of attention in the machine learning
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community. In MIML, an example is described by several
instances and associated with a set of labels [1]. Many
real-world problems can be formalized under the MIML
framework, such as text categorization, scene classifica-
tion, web page classification and gene sequence encoding.
For example, in text categorization, each document is usu-
ally comprised of several paragraphs of sections, each can
be regarded as an instance, while the document can be
assigned to a set of predefined topics; multiple links can be
extracted from a web page where each link is described by
an instance, and thus the web page can be represented by
a set of instances meanwhile the web page may belong to
many classes, such as news page, sports page, soccer page,
etc [2].

The traditional supervised learning (SISL) can be viewed
as a degenerated version of MIML where each example is
represented by an instance and associated with a class label.
Hence, one way to solve MIML problem is to identify its
equivalence in SISL via problem degeneration. Although
this kind of degeneration strategy is feasible, the perfor-
mance of the resultant algorithm may be affected by the loss
of information during the degenerative process [3].

Support Vector Machine (SVM) [4] has been exten-
sively applied in different areas, such as incremental learn-
ing [5], multi-class classification [6], and semi-supervised
classification [7]. The traditional SVM can only solve
single-instance single-label learning problems. In compari-
son, E-MIMLSVM+ is a SVM-based algorithm which can
solve multi-instance multi-label learning problems. Besides,
E-MIMLSVM+ can use the correlations between labels to
improve the classification performance [8]. E-MIMLSVM+
is the improved version of MIMLSVM+. In MIMLSVM+,
a simple degeneration strategy is firstly employed. It decom-
poses the learning of multiple labels into a series of binary
classification tasks. The algorithm constructs an SVM for
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each label. Since the kernel function employed here is
based on several instances instead of a single feature vec-
tor, the well-known multi-instance kernel [9] is adopted.
MIMLSVM+ decomposes the multi-label problem into a
series of independent binary learning tasks. In this way,
the correlation between labels is neglected. To overcome
this drawback, E-MIMLSVM+ incorporates the label cor-
relations by utilizing multitask learning techniques which
consider the SVM training of each label as a task [10,
11]. The kernel-based multitask learning framework [12] is
employed, since MIMLSVM+ is a support vector machine
algorithm. While, E-MIMLSVM+ consumes more time and
memory than MIMLSVM+ since multitask learning simul-
taneously will result in many more instances involved in the
optimization procedure [8].

In this paper, we propose a new SVM approach to MIML
named ECC-MIMLSVM+. Briefly, ECC-MIMLSVM+
employs a degeneration strategy to decompose multi-
ple labels learning into a series of binary classification
tasks. Subsequently, we put forward a novel classifier
chains method which uses the information of label corre-
lation and meanwhile maintains acceptable computational
complexity.

The rest of this paper is organized as follows. Section 2
gives the formal definition of MIML and reviews the related
works. Section 3 presents ECC-MIMLSVM+. Section 4
reports experimental results on two real-world MIML data
sets. Finally, Section 5 concludes the paper.

2 Related works

In the MIML framework, a learning algorithm typically
takes a set of labeled train examples L = {(X1, Y1) ,

(X2, Y2) , . . . , (Xn, Yn)} as input, where Xi ⊆ X is a bag of
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Y (k = 1, 2, . . . , li) associated with Xi . The task of MIML
is to learn a function f : 2x → 2y from a set of MIML
training examples L. The MIML framework can be viewed
as a generalization from the learning frameworks of multi-
instance learning [13], multi-label learning [14, 15], and tra-
ditional supervised learning.

Multi-instance learning [13] or multi-instance single-
label learning (MISL) was proposed by Dietterich et al.
The goal of MISL is to learn a function fMIL : 2x →
{−1, +1} from a set of MISL training examples {(X1, y1),

(X2, y2), . . . , (Xm, ym)} where Xi ⊆ X is a bag of

instances
{
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and yi ∈ {−1, +1} is the binary label of Xi.
Multi-label learning or single-instance multi-label lear-

ning (SIML) is originated from the investigation of text

categorization problems. The goal of SIML is to learn a
function fMLL → x → 2y from {(x1, Y1), (x2, Y2), . . . ,

(xm, Ym)}, where xi ∈ X is an instance and Yi ⊆ Y is a

set of labels
{
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associated with xi .
Zhi-Hua Zhou and Min-Ling Zhang proposed two MIML

algorithms named MIMLBOOST and MIMLSVM [1].
These two algorithms are typically MIML algorithms that
based on degeneration strategy. They transformed MIML
into traditional supervised learning using MISL and SIML
respectively as the bridge. However, useful information
encoded between instances and labels may be lost during the
degeneration process, which may determine the accuracy of
classification.

Zhi-Hua Zhou and Min-Ling Zhang also proposed a
direct MIML algorithm named D-MIMLSVM [16] and a
maximum margin MIML algorithm named M3MIML[17].
They are both MIML algorithms that based on regulariza-
tion. In the theory of linear algebra, regularization refers
to the question that ill-posed problem is usually caused by
a defined set of linear algebra, and this group has a lot
of equations usually derived from the condition number of
ill-posed inverse problems. D-MIMLSVM assumes that the
labels associated with the same example have some related-
ness, and the performance of classifying the bags depends
on the loss between the labels and the predictions on the
bags as well as on the constituent instances [2]. However,
it can only deal with moderate training set sizes because of
the large optimization problem [16]. M3 MIML assumes a
linear model for each class, where the output on one class is
determined by the maximum prediction of all instances with
respect to the corresponding linear model. And then, outputs
on all possible classes are combined to define the margin of
MIML example over the classification system.

Ying-Xin Li and Shuiwang Ji [8] designed a MIML
algorithm for large-scale learning problem named
MIMLSVM+, and its extended algorithm is named
E-MIMLSVM+. MIMLSVM+ simply employs a degene-
ration strategy which decomposes the learning of multiple
labels into a series of binary classification tasks. Different
from traditional SVM, the kernel function used in
MIMLSVM+ is based on a bag of instances instead of a
single feature vector. Theoretically, any kernel defined on
the set of instances [18] can be used to compute the kernel
function. The famous multi-instance kernel [9] is
adopted in MIMLSVM+. As the degeneration strategy
of MIMLSVM+ may lose the information of label cor-
relations, E-MIMLSVM+ incorporates label correlations
by utilizing multitask learning techniques to extend
MIMLSVM+ [10]. For a given label y ∈ Y suppose its
classification function is

fy(X) = 〈
wy, ϕ(X)

〉 + b = 〈
(w0 + vy), ϕ(X)

〉 + b (1)
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Where w0 is used to reflect the commonalities shared
by different learning tasks, vy is the task-specific model
parameter which used to measure the dissimilarity between
task y and other tasks, ϕ(X) is a mapping function, and b is
the offset [8]. Here, multi-instance multitask kernel is used
as follows, which bridges the multi-instance kernel and the
multitask kernel.

Kty(Xi, Xj ) =
(

1

μ
+ δ(t = y)

)
KMIXi, Xj ) (t, y ∈ Y )

(2)

Where t and y denote two different tasks respectively, and
δ(t = y) = 1 if t = y, otherwise δ(t = y) = 0.

In order to avoid this situation in which all the models
fy are forced to be close to a common parameter denoted
by w0, a clustering process to partition the labels into
some subgroups based on the correlations between labels
is considered before its training. Although E-MIMLSVM+
achieves superior performance over other algorithms, it
is time consuming and needs more memory than other
algorithms.

Classifier chains (CC) method which is based on the
binary relevance (BR) method, overcomes the disadvan-
tages of BR and achieves higher predictive performance, but
still retains its important advantages, most importantly is
low time complexity. Still like BR, CC’s models can both be
parallelized and serialized, in addition, there is only a single
binary problem in memory at any time, which own an obvi-
ous advantage over other methods based on a single large
model [19].

3 Proposed method

3.1 The MIMLSVM+ method

Suppose n is the number of training examples. y ∈ y is a
label, Xi is a bag of instances in the training set. For each
label y, let ϕ(Xi, y) be the indicator function defined as:
ϕ(Xi, y) = 1 if y is in Yi which is corresponding to Xi , and
ϕ(Xi, y) = −1 otherwise. Hence the SVM classification
model involves the following optimization problem:

min
wy,by,ξiy

1

2

∥∥wy

∥∥2 + C

n∑
i=1

ξiyτiy

s.t. : φ(Xi, y)
(〈
wy, ϕ (Xi)

〉 + by

) ≥ 1 − ξiy (3)

ξiy ≥ 0 (i = 1, 2, . . . , n) ,

Where 〈·, ·〉 denotes the inner product. ϕ (Xi) is the
function that maps the bag of instances Xi into a higher
dimensional space H. wy and by are the parameters of a

linear discriminant function in H. ξiy is the nonnegative
slack variable in the constraints to permit some training bags
to be misclassified.

∥∥wy

∥∥2 reflects the complexity of the
model [4]. C is a parameter to balance the model complexity
and the accumulative losses of the training bags. τiy is the
amplification coefficient of the loss ξiy to handle the class
imbalance problem and defined as

τiy = 1 + φ (Xi, y)

2
Ry + 1 − φ (Xi, y)

2
, (4)

Where Ry is the imbalance level of label y, and it can
be evaluated by the number of negative bags divided by the
number of positive bags in the training set.

Kernel function is very important in support vector
machine and needs to be predefined [4]. Different ker-
nel function will lead to different support vector machine.
Here the well-known multi-instance kernel is employed and
defined as follows:

KMI

(
Xi, Xj

) = 1

ninj

∑
(xis 0,xis 1)∈Xi

×
∑

(xjz 0,xjz 1)∈Xe
−γ1 ‖xis 0−xjz 0‖2−−γ2 ‖xis 1−xjz 1‖2

j

(5)

Where ni and nj denotes the number of instances in the

bags Xi and Xj respectively.
∥∥xis 0 − xjz 0

∥∥2 is employed
to measure the similarity of visual features (low-level fea-
tures and represented by a local descriptor) between two
instances.

∥∥xis 1 − xjz 1
∥∥2is employed to measure the spatial

distance (the distance between points, lines and surfaces in
three dimensional space) between two instances. γ1 and γ2

are the different weights to combine the visual and spatial
information.

For a given label y and an example X, the resulting
classification model can be defined as

fy (X) = 〈wY , ϕ (X)〉 + by

=
n∑

i=1

aiyφ (Xi, y) KMI (Xi, X) + by (6)

3.2 The improved method: ECC-MIMLSVM+

In order to incorporate the label correlations,
E-MIMLSVM+ introduces multitask learning techniques,
which make the algorithm consume more time and mem-
ory. In this paper we utilize an advanced classifier chains
method, the Ensembles of Classifier Chains (ECC) [19], to
improve MIMLSVM+. Classifier chains method is the well
known binary relevance method for multi-label classifica-
tion, which considers each label as an independent binary
problem.
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Fig. 1 ECC-MIMLSVM+ algorithm

As the ECC is originally designed for SIML problems,
we improve it to adapt to our MIML problems. There-
fore, we first extend each label into a column vector, for

example, we let y′
k = (yk, yk, . . . , yk)

T
d (k = 1, 2, . . . , L)

be the k-th label, where L is the total number of dif-
ferent labels, and d denotes the dimension of feature
vectors. And then we use the new labels above to form
a new training set, in which each training example con-
tains the label information. The specific approach is
that for each label yk(k = 1, 2, . . . , L), add the cor-
responding label vector y′

k to each bag, then we get
X′

i =
[
xi1, xi2, . . . , xin, y

′
1, y

′
2, . . . , y

′
k−1

]
(i = 1, 2, . . . , m),

where xij is an instance of bag Xi , n is the number of
instance in bag Xi , m is the number of examples. There-
fore for each label yk , we can get a set of training data
Sk = {(

X′
i, φ (Xi, yk)

)}
(k = 1, 2, . . . , L), and based on

that we can train the SVMs according to formulation (3).
After the extension of the labels and the training bags, the
ECC method can deal with MIML problems.

In classifier chain models, the order of the chain itself
will normally have an effect on accuracy. Using an Ensem-
ble of Classifier Chains (ECC), each with a random label
order, greatly reduces the risk of these events having an
overall negative effect on classification accuracy at only a
linear time cost with respect to the number of iterations [19].
ECC trains N CC classifiers h1, . . . , hN, and each classifier

is given a random chain order. Using the output
∧
y1, . . . ,

∧
yN

to calculate the confidence vector
∧
w =

[ ∧
w1, . . . ,

∧
wL

]
∈

RL, where L is the total number of different labels,
∧
wj is

the confidence of the j-th label, RL is the output space,

∧
wj = 1

N

N∑
k=1

∧
yj,k (7)

A threshold function can be applied to
∧
W to predict

∧
y:

∧
yj =

{
1 if

∧
wj ≥ t

0 if
∧
wj ≥ t

(8)

Where t is the threshold and is calibrated as follows:

t = arg min
t

∥∥∥∥∥∥
LCARD(S) −

⎛
⎝ 1

N

N∑
i=1

L∑
j=1

1 ∧
wj ≥t

⎞
⎠

∥∥∥∥∥∥
(9)

Where N is the number of test examples. LCARD(S) =
1
N

N∑
i=1

L∑
j=1

yi
j denotes the average number of labels associ-

ated with each example [20].

Table 1 Characteristics of the data set

Data set No. of example No. of class Instances per bag Labels per example(k) Training set size Test set size

Min Max k=1 k=2 k=3

Scene 2000 5 9 9 1543 442 15 1000 1000

Reuters 2000 7 2 26 1701 290 9 1000 1000
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Table 2 Experimental results on the data set

Metric ECC-MIMLSVM+ E-MIMLSVM+ MIMLBOOST MIMLSVM

hamming loss 0.095 ± 0.001 0.222 ± 0.065 0.229 ± 0.022 0.194 ± 0.005

one-error 0.120 ± 0.006 0.316 ± 0.005 0.417 ± 0.009 0.386 ± 0.016

Coverage 0.502 ± 0.017 0.926 ± 0.004 0.960 ± 0.014 1.034 ± 0.003

ranking loss 0.056 ± 0.002 0.173 ± 0.004 0.203 ± 0.005 0.217 ± 0.012

average precision 0.931 ± 0.013 0.792 ± 0.008 0.771 ± 0.012 0.750 ± 0.017

For an unseen bag X, and for each chain order,
we make predictions from the first label of the chain.
Before making the prediction of the j-th label, let X′ =[
x1, x2, . . . , xn,

∧
y1,

∧
y2, . . . ,

∧
yj−1

]
, where

∧
yi is a vector

extended from the prediction of bag Xi on the i-th classifier,

and then we use X′
i to predict the j-th label

∧
yj = fj (X

′).
Finally, we use the predictions to calculate the confidence
vector and achieve the final prediction set Y through a
threshold function.

Figure 1 illustrates the pseudo-code of our proposed
algorithm.

The main idea of our proposed algorithm is that firstly
we modify the MIML training examples to adapt to the ECC
algorithm, secondly use the training process of ECC to train
a classifier chains, and then for each classifier in the classi-
fier chains, we exploit the training process of MIMLSVM+
algorithm. In the process of testing, we should modify
examples in the test set, and use the predicted values to cal-

culate a confidence vector
∧
w, each dimension of the vector

denotes the confidence of a label. Last according to a thresh-

old t and the confidence
∧
wj(j = 1, 2, . . . , L) we can get

the final predicted values.

4 Experiment and argumentation

4.1 Experimental setup

In this section, performance of ECC-MIMLSVM+
is compared with MIML-BOOST, MIMLSVM and
E-MIMLSVM+ on two real-world MIML learning tasks.
The first data set is scene dataset that collected from the

COREL image collection and the Internet. Scene classifi-
cation data contains 2,000 natural scene images. There are
5 possible class labels such as deserted, mountains, sea,
sunset and trees and a set of labels are manually assigned to
each image. Images belonging to more than one class com-
prise over 22 % of the data set and the average number of
labels per image is 1.24 ± 0.44. Each image is represented
as a bag of nine 15-dimension instances.

The second data set is text data which is collected from
the widely studied Reuters-21578 collection [21]. The seven
most frequent categories are considered. After removing
documents whose label sets or main texts are empty, 8,866
documents are retained where only 3.37 % of them are
associated with more than one class label. After randomly
removing documents with only one label, a text catego-
rization data set containing 2,000 documents is obtained.
Around 15 % documents with multiple labels comprise the
resultant data set and the average number of labels per doc-
ument is 1.15 ± 0.37. Each document is represented as a
bag of instances using the sliding window techniques [22],
where each instance corresponds to a text segment enclosed
in one sliding window of size 50. “Function words” on
the SMART stop-list [23] are removed from the vocabulary
and the remaining words are stemmed. Instances in bags
adopt the “Bag-of-Words” representation based on term
frequency [21, 24]. Without loss of effectiveness, dimen-
sionality reduction is performed by retaining the top 2 %
words with highest document frequency [25]. Thereafter,
each instance is represented as a 243-dimensional feature
vector. Table 1 summarizes characteristics of both data sets.

ECC-MIMLSVM+ is compared with E-MIMLSVM+,
MIMLBOOS and MIMLSVM. The parameters of
EMIMLSVM+MIMLBOOST and MIMLSVM are set

Table 3 Experimental results on the Reuters data set

Metric ECC-MIMLSVM+ E-MIMLSVM+ MIMLBOOST MIMLSVM

hamming loss 0.016 ± 0.001 0.033 ± 0.002 0.056 ± 0.001 0.043 ± 0.001

one-error 0.033 ± 0.002 0.060 ± 0.002 0.113 ± 0.003 0.105 ± 0.003

coverage 0.217 ± 0.005 0.278 ± 0.010 0.419 ± 0.005 0.389 ± 0.009

ranking loss 0.009 ± 0.001 0.020 ± 0.003 0.040 ± 0.001 0.033 ± 0.002

average precision 0.979 ± 0.004 0.964 ± 0.003 0.926 ± 0.007 0.934 ± 0.004
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Table 4 Training time of each algorithm on both data sets

ECC-MIMLSVM+ E-MIMLSVM+ MIMLBOOST MIMLSVM

Training (minutes) Scene 19.91 ± 0.28 845.86 ± 15.52 7134.54 ± 34.91 10.48 ± 0.43

Reuters 10.12 ± 0.13 586.41 ± 6.77 4334.04 ± 11.53 5.18 ± 0.13

according to [1, 8] respectively. Particularly, the number
of boosting rounds for MIMLBOOST is set to be 25 and
Gaussian kernel with γ = 0.22 is used to implement
MIMLSVM. The kernel parameters of E-MIMLSVM+ are
γ1 = 10−5 and γ2 = 10−2, and the cluster parameter q is
set to be 0.5. The number of chain labels order is set to be 3
in the ECC-MIMLSVM+. For fair comparison, we employ
the same setting with the same partition of data sets and
report the average performance.

The performance of the four MIML algorithms is eval-
uated according to five popular multi-label metrics: ham-
ming loss, one-error, coverage, ranking loss and average
precision. Briefly, for hamming loss, one-error, coverage
and ranking loss, the smaller value the better perfor-
mance; for average precision, the bigger value the better
performance.

4.2 Experimental results

Tables 2 and 3 show the experimental results of each
compared algorithm with the five metrics and running
time on the scene data and Reuters data respectively.
For hamming loss, one-error, coverage, ranking loss and
running time the smaller value the better performance,
and for average precision the bigger value the better
performance. The best result on each evaluation criterion
is highlighted in boldface. As can be seen from Tables 2
and 3, ECC-MIMLSVM+ performs better than other three
algorithms on both data sets.

Table 4 shows the time consumed in the four compared
algorithm on both data sets. As can be seen from Table 4,
the ECC-MIMLSVM+ is slightly worse than MIMLSVM,
while far superior than MIMLBOOST and E-MIMLSVM+.

5 Conclusions

In this paper, a novel SVM method for MIML problem
named ECC-MIMLSVM+ is proposed. This method con-
siders the connections between labels through classifier
chains method in an ensemble framework (ECC). Experi-
ments on both scene classification and text categorization
show that our method is more efficient and can produce
better performance than other MIML methods.
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