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Abstract Negative selection algorithms are important for
artificial immune systems to produce detectors. But there
are problems such as high time complexity, large number
of detectors, a lot of redundant coverage between detec-
tors in traditional negative selection algorithms, resulting in
low efficiency for detectors’ generation and limitations in
the application of immune algorithms. Based on the dis-
tribution of self set in morphological space, the algorithm
proposed in this paper introduces the immune optimization
mechanism, and produces candidate detectors hierarchically
from far to near, with selves as the center. First, the self
set is regarded as the evolution population. After immune
optimization operations, detectors of the first level are gen-
erated which locate far away from the self space and cover
larger non-self space, achieving that fewer detectors cover
as much non-self space as possible. Then, repeat the pro-
cess to obtain the second level detectors which locate close
to detectors of the first level and near the self space and
cover smaller non-self space, reducing detection loopholes.
By analogy, qualified detector set will be obtained finally. In
detectors’ generation process, the random production range
of detectors is limited, and the self-reaction rate between
candidate detectors is smaller, which effectively reduces the
number of mature detectors and redundant coverage. The-
oretical analysis demonstrates that the time complexity is
linear with the size of self set, which greatly reduces the
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influence of growth of self scales over the time complex-
ity. Experimental results show that IO-RNSA has better
time efficiency and generation quality than classical nega-
tive selection algorithms, and improves detection rate and
decreases false alarm rate.

Keywords Anomaly detection · Artificial immune
system · Negative selection algorithm ·
Detector generation · Immune optimization

1 Introduction

The negative selection algorithm (NSA) is one of the main
algorithms in artificial immune systems. It simulates the
immune tolerance in T-cell maturation process of biologi-
cal immune system, and achieves effective recognition of
non-self antigens by clearing self-reactive candidate detec-
tors without any prior knowledge. It is widely applied in
the fields of fault diagnosis, intrusion detection, pattern
recognition and etc. [1–8, 24, 29]

Forrest et al. [9] originally established the framework of
negative selection algorithms in 1994, and adopted binary
string representation of antigens (samples) and antibodies
(detectors), and r-contiguous-bit matching method to com-
pute the matching degree between antibodies and antigens,
which is successfully applied in anomaly detection sys-
tem. Balthrop et al. [10] pointed out the vulnerabilities
which exist in the r-contiguous-bit matching algorithm and
presented an improved r-chunk matching mechanism.

For the lack of binary representation in dealing with
numerical data and multi-dimensional data, Gonzalez and
Dasgupta [11] proposed a real-valued negative selection
algorithm (RNSA), which encodes antigens and antibod-
ies in n-dimensional [0,1] space and adopts Minkowski
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distance to compute the matching degree between antigens
and antibodies. Because radiuses of detectors are the same
size and are difficult to accurately determine, there are holes
in the algorithm and the detection rate is not high. Zhou
et al. [12, 13] presented a real-valued negative selection
algorithm with variable-sized detector (V-Detector), which
dynamically determines the detector’s radius by calculating
the distance between the center of the candidate detec-
tor and the closest self antigen. The work also proposed a
method for computing detectors’ coverage rate in non-self
space based on the probability, and obtained better detection
results. Joseph et al. [14] introduced hyper-ellipsoidal detec-
tors in negative selection algorithm, Ostaszewski et al. [15]
introduced super-rectangular detectors, and Zhang et al. [16]
introduced a matrix-based detector model, which all achieve
the original coverage with fewer detectors. Gao et al. [17]
put forward a negative selection algorithm based on genetic
algorithms, which searches optimal detectors by genetic
mechanism. Yang et al. [18] proposed a multi-population
genetic based negative selection algorithm in which the
self set was divided according to features and sub popula-
tions evolved independently, reducing redundant coverage
between detectors. Stibor [19] put forward a classification
method of self detectors, which dynamically adjusted the
radius of self by ROC analysis to balance the detection rate
and the false alarm rate. Chen et al. [20] presented a negative
selection algorithm based on hierarchical clustering of self
set, which preprocessed the self set to increase the efficiency
of detectors’ generation.

How to generate efficient detector set is the key of
negative selection algorithms. The work in [1, 9, 20, 21,
23] pointed out that current problems of negative selection
algorithms are as follows. First, the time complexity is
O(−lnPtp·Ns/(P

′·(1 − P ′)Ns ), where Ptp is the detection
rate, Ns is the size of self set, and P ′ is the self-reaction
rate between detectors. The cost of detectors’ genera-
tion is exponential to the size of self set, the generation
efficiency of mature detectors is low, and the execution
time severely limits practical applications. Second, for a
given detection rate Ptp, the size of required detector set
Nd ≈ ln(1 − Ptp)/ln(1 − P ′) . The number of detec-
tors is large, and there exists a lot of redundant coverage
between detectors, making the detection time much longer.
Third, pathogens are always evolving in the direction of
vulnerabilities. Holes exist more or less in various negative
selection algorithms, resulting in low detection rate.

This paper presents a real-valued negative selection algo-
rithm based on immune optimization (IO-RNSA). The main
contributions are as follows. First, introduces the immune
optimization mechanism. Detectors are not randomly pro-
duced throughout the shape space, but evolved from succes-
sive generations with the self set as the initial population,
which maintains the diversity of detectors and reduces the

redundancy. Second, generates detectors hierarchically, and
limits the random generation range of detectors. The algo-
rithm gives priority to producing detectors of large size
which are distributed in low coverage areas, decreasing the
number of mature detectors. And then the algorithm gen-
erates detectors with small size which are distributed in
the area close to the self space, reducing the number of
vulnerabilities. Third, makes performance analysis of detec-
tors’ generation, and shows effectiveness of the algorithm
through simulations.

The remainder of this paper is organized as follows.
Related work is introduced in Section 2, including two clas-
sical negative selection algorithms RNSA and V-Detector,
and basic concepts of the immune optimization. The idea,
implementation strategies, and theoretical analysis of IO-
RNSA are described in Section 3. The effectiveness of
IO-RNSA is verified in Section 4 through experiments.
Finally, the conclusion is given and further work is proposed
in the last section.

2 Related work

2.1 Basic definitions of RNSA

Immune events occur in the shape space S, and the process
of antibodies recognizing antigens is the process of antibod-
ies matching and binding antigens [2, 9, 22]. The algorithm
discussed in this paper is based on real value. So, S is the
n-dimensional [0,1] space, and antibodies and antigens are
hyper-spheres in the space.

Definition 1 The artificial immune system is expressed
as �AIS = (XAIS, γAIS, GAIS). XAIS is the input to be
detected, which may be network packets, or file signatures.
The input domain can be divided into two mutually exclu-
sive sets, which are a normal set and an abnormal one.
γAIS is the output of �AIS . GAIS represents the nonlinear
function of the relationship between the input and output.

γAIS = GAIS (XAIS) =
{

0 XAIS belongs to selves
1 XAIS belongs to non − selves

(1)

Definition 2 Antigens are represented as the tuple ag =<

x, rs >. x is the location of the sample ag, and is expressed
as x =< x1, x2, . . . , xn >. n is the data dimension, xi ∈
[0, 1](1 <= i <= n) is the normalized value of the ith

attribute of ag, and rs is the variation range of ag. The
antigen set AG = {ag|ag =< x, rs >, rs∈[0, 1]} is the
collection of all the samples in the space.

Definition 3 The self set Self ⊂ AG represents all
the normal samples, and the non-self set Nonself ⊂
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AG represents all the abnormal samples. Then, Self ∩
Nonself = ∅, Self ∪ Nonself = AG.

Definition 4 The training set T rain ⊂ Self is a subset of
Self, and is the priori knowledge of detections.

Definition 5 The structure of detectors is similar to anti-
gens, d =< y, rd >. y is the location of the detector d , and
is expressed as y =< y1, y2, . . . , yn >. yi∈[0, 1](1 <=
i <= n) is the ith position vector of detector d , and rd is the
radius of d . The detector set is expressed as D = {d|d =<

y, rd >, rd∈[0, 1]}.

Definition 6 The affinity between antibodies and anti-
gens is the binding strength between them. For real cod-
ing, it is usually related to the distance between anti-
bodies and antigens. Euclidean distance is adopted in
this paper.

aff inity (ag, d) = dist (ag.x, d.y) =
√∑

n
i=1(xi − yi)2

(2)

In the process of detectors’ generation, if dist (ag.x,

d.y) <= rs + rd , the detector d triggers the immune
self-reaction, and cannot become mature. In the process of
detection, if dist (ag.x, d.y) < rd , the detector d recognizes
the antigen ag as a non-self.

Definition 7 The detection rate DR is the ratio of non-
self samples which are correctly recognized by detectors
to the entire non-selves, and is expressed as (3), where tp
represents the number of non-selves correctly recognized
by detectors, and fn represents the number of non-selves
wrongly recognized.

DR=RDR

(∑
AIS

)
=P (γAIS= 1/XAIS∈Nonself ) = tp

tp+f n

(3)

Definition 8 The false alarm rate FAR is the ratio of self
samples which are wrongly recognized as non-selves by
detectors to the entire selves, and is expressed as (4), where
fp represents the number of selves wrongly recognized by
detectors, and tn represents the number of selves correctly
recognized.

FAR=RFAR

(∑
AIS

)
=P (γAIS= 1/XAIS∈Self )= fp

fp+tn
(4)

In real-valued negative selection algorithms, the detection
mechanism is shown in Table 1.

Table 1 Mechanism of detection

Input: the detector set D, the antigen set to be judged Ag’

Output: tp, fn, fp, tn are the number of antigens which mean
true positive, false negative, false positive, and true negative
Step 1. tp = 0, f n = 0, fp = 0, tn = 0;
Step 2. Select an antigen ag from Ag’ in sequence;
Step 3. Calculate the Euclidean distances between ag and all the
detectors in D. If dist (d.y, ag.x) < rd for at least one detector d

and this antigen ag is non-self, then tp + +; If dist (d.y, ag.x) < rd

for at least one detector d and this antigen ag is self, then fp + +;
If dist (d.y, ag.x) < rd for non-detectors and this antigen ag is
self, then tn + +; If dis(d, agt ) < rd for non-detectors and
this antigen ag is non-self, then fn++.
Step 4. If antigens in Ag’ aren’t all tested, jump to Step 2; if not,
returntp, fn, fp, tn and the process ends.

2.2 RNSA

RNSA adopts detectors with fixed size and the preset num-
ber of detectors as the termination condition [9]. The algo-
rithm randomly generates a candidate detector dnew =<

y, rd >, and then calculates the distance between dnew and
any self ag =< x, rs > in the training set. If the candidate
does not react with any self, put dnew into the detector set
D. This algorithm is expressed in Table 2.

2.3 V-Detector

V-Detector adopts detectors with variable size and the
expected coverage rate as the termination condition [12, 13].
The algorithm randomly generates the center of candidate
detector y in the shape space, and then obtains the minimum
Euclidean distance between y and any self ag=<x,rs>in
the training set. If dist (y, ag.x) > rs , generate a detec-
tor dnew =< y, rd > with y as the center and rd =
dist (y, ag.x) − rs as the radius.

Figure 1 shows the contrasts of RNSA and V-Detector.
Where, the blue area represents selves, the light gray area

Table 2 Procedure of RNSA

Input: the self training set Train,

the number of required detectors maxNum

Output: the detector set D

Step 1. Initialize the self training set Train;

Step 2. Randomly generate a candidate detector dnew . Compute

Euclidean distances between dnew and all the selves in Train.

If dis(dnew.y, ag.x) <= rd + rs for at least one self ag, execute

Step 2; if not, execute Step 3.

Step 3. Add dnew into the detector set D;

Step 4. If the size of D satisfies Nd > maxNum,

return D, and the process ends; if not, jump to Step 2.
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represents vulnerabilities, and the unfilled area represents
detectors. In RNSA, there are many vulnerabilities and the
detection rate is low because the radius of detectors is fixed
and hard to be determined. In V-Detector, due to variable-
sized detectors, detectors with large radius cover most of the
non-self space and detectors with small radius cover holes,
which not only reduces the number of detectors but the num-
ber of holes. As can be seen from Fig. 1, there are general
problems which are also raised by the introduction section
in these two algorithms: low generation efficiency of mature
detectors; large number of detectors and a lot of redundant
coverage resulting in longer detection time; existence of
holes causing low detection rate.

2.4 Immune optimization

Immune optimization mechanism simulates the activation
process of immune cells in the immune response [26, 27],
which is used to solve problems of function optimization,
combinatorial optimization and etc. When immune cells
are stimulated by antigens, clonal proliferation occurs, a
large number of clones are created, and then these cells
differentiate into effector ones and memory ones through
hyper-mutation. During proliferation, effector cells will pro-
duce a large number of antibodies, and then antibodies will
replicate and hyper-mutate to increase their affinities and
reach affinity maturation ultimately in order to eliminate
antigens quickly. Table 3 shows the general flow of the
immune optimization algorithm.

3 IO-RNSA

3.1 Basic idea of the algorithm

In practical problems, it is impossible for normal data to be
distributed randomly in the shape space. They are highly
concentrated, and are located in a very small part of the

Table 3 General flow of the immune optimization algorithm

Step 1. Initialize, and generate the initial

population randomly in the domain;

Step 2. Calculate the affinity and stimulation level of each

antibody in the population. If the termination condition is satisfied,

output the memory set and the process ends; if not, execute Step 3;

Step 3. Select better individuals from the population according

to the stimulation level to be cloned and activated;

Step 4. Make clones to mutate. The lower the affinity of a clone is,

the higher the mutation rate is;

Step 5. Choose best individuals to join the memory

set from the clone collection;

Step 6. Generate new antibodies randomly, update the population,

and execute Step 2.

space [8, 9, 28]. The main idea of the algorithm is as fol-
lows. According to the distribution of self set in shape space,
the algorithm introduces the immune optimization mecha-
nism, and generates candidate detectors hierarchically from
far to near with selves as the center, which decreases the
redundancy between detectors and reduces the detection
holes. The algorithm adopts detectors with variable size, and
expected coverage of non-self space as the termination con-
dition for the process of detectors’ generation. Self set is
regarded as the evolutionary population on which immune
optimization operations will be performed. Then, the algo-
rithm does immune selection operation, clonal proliferation
operation and hyper-mutation operation on this population,
and performs negative selection to obtain detectors of the
first level locating far away from selves in the non-self space
where coverage rate is low. Repeat the process to get detec-
tors of the second level which locate close to the first level
detectors and away from selves but closer than the first
level detectors in the non-self space. The antibody mutation
rate will decrease with the evolution generation increasing.
When detectors are close to selves, detectors have small

Fig. 1 Contrasts of RNSA and
V-Detector
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coverage, reducing detection holes, and when detectors are
far from selves, detectors have large coverage, achieving
that fewer detectors cover as much non-self space as pos-
sible. That is to say, the algorithm produces detectors with
large size in low coverage areas, to be followed with detec-
tors of small size in areas close to self space. By analogy,
the detector set which satisfies conditions will be obtained
finally. Steps of the algorithm are shown in Table 4.

3.2 Comparisons with RNSA and V-Detector

Iris data set is one of the classic machine learning data
sets published by the University of California Irvine (UCI)
[25], which is widely used in pattern recognition, data min-
ing and other fields by researchers. We select data records
of the category “setosa” in the data set Iris as self anti-
gens, select “sepalL” and “sepalW” as the first dimension
attribute and the second dimension attribute of antigens, and
select top 20 records as the self training set. Figures 2 and
3 illustrate the idea of IO-RNSA, and differences between
IO-RNSA and classic negative selection algorithms RNSA
and V-Detector. Filled circles represent self individuals in
the space, and unfilled circles represent detectors. RNSA

Table 4 Steps of IO-RNSA

Input: the self training set Train, expected coverage cexp

Output: the detector set D

t : the evolution generation

n0: sampling times in non-self space, n0 > max(5/cexp , 5/(1 − cexp))

i: the number of non-self samples

m: the number of non-self samples covered by detectors

CD: the candidate detector set CD = {d|d =< y, rd >, rd ∈ [0, 1]}
Step 1. Initialize the self training set Train as the

evolutionary population, t = 1, i = 0, m = 0, CD = ∅;

Step 2. If the mutation rate is less than or equal to rs , return

D and the program ends; if not, perform the immune selection, clonal

proliferation and hyper-mutation to get the mutation population;

Step 3. Fetch an individual dnew in sequence from the mutation

population, if the population is empty, jump to Step 2;

Step 4. Compute distances between dnewand all selves in the training

set Train. If dnew is recognized by at least one self, discard dnew

and jump to Step 3; if not, increasei;

Step 5. Calculate distances between dnew and all detectors in the

set D. if dnew is not identified by any detector, add dnew into

the candidate detector set CD; if not, increase m, and determine

whether the expected coverage cexp is reached. If so, reduce the

mutation rate, increase t , and jump to Step 2;

Step 6. Determine whether the number of non-self samples i r

eaches the sampling times n0. If i = n0, integrate the candidate

detector set CD into D, reset i, m, CD. Jump to Step 3.

produces detectors with fixed size, and V-Detector dynam-
ically produces variable-sized detectors according to the
distance between the center of detectors and the nearest self
antigen. For these two algorithms, there is redundant cov-
erage in non-self space between mature detectors with the
increase of coverage rate. IO-RNSA hierarchically produces
detectors from far to near, and newly-generated candidate
detectors are distributed around those of the last level,
avoiding from repeated coverage with mature detectors and
achieving fewer detectors covering as much non-self space
as possible.

3.3 Immune optimization mechanism

The algorithm introduces the immune optimization mecha-
nism, including immune selection, clonal proliferation and
hyper-mutation. And it adopts the self set as the initial pop-
ulation, and searches in the non-self space to get optimum
detectors.

The immune selection operator chooses part of anti-
bodies to enter the next operation - clonal proliferation
according to the stimulation levels of antibodies. The aim of
negative selection algorithms is to cover all non-self space
with optimum detectors, and it is necessary to cover the area
around each self. Therefore, the algorithm selects all self
individuals as the evolutionary population.

The clone operator simulates the clonal expansion mech-
anism in the immune response. When antibodies identify
foreign antigens, clonal proliferation will occur. The num-
ber of clones for each detector is limited in this paper. Set the
maximum of clones for each detector is cmaxand the mini-
mum of clones is cmin, then the number of clones c(d)for
detectord is calculated as follows.

c(d) = ceil(cmax − (1/t)(cmax − cmin)) (5)

Where, t is the evolution generation. And ceil() is a
function which returns a minimum integer greater than or
equal to the specified expression. The formula shows the
relationship between evolution generation and clone scale.
In the beginning of evolution, detectors are far away from
selves, and the radius of detectors is large. So, the duplica-
tion level of detectors is low, trying to cover larger non-self
space with fewer detectors. In the last stage of evolution,
detectors are close to selves, and the radius of detectors
is small. So, the duplication level is high, giving detectors
more opportunities to fit the self space.

The mutation operator simulates the hyper-mutation
mechanism in the immune response. Antibodies can change
their genes randomly through mutation, and antibodies
with higher affinities will be produced. In this paper, dif-
ferent candidate detectors will be generated in a wider
scope through mutation, and variation ranges of candidate
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Fig. 2 Comparisons of detectors’ generation for RNSA, V-Detector and IO-RNSA (simultaneously generate three detectors)

detectors in each generation are limited in different loca-
tions. The formulas are as follows.

d ′.yi = d.yi + β · N(0, 1)1 <= i <= n (6)

β = √
n/exp(t − 1) (7)

√
n/exp(t) < dist (d ′.y, d.y) <= √

n/exp(t − 1) (8)

Where, d ′ is the newly-generated candidate detector.
N(0,1) is the random variable. β is the mutation rate, adjust-
ing the variation range. n is the data dimension. It is difficult
to compute for the above formulas when randomly gen-
erating new candidate detectors. So, polar coordinates are
adopted. Set the polar diameter is ρ in n-dimensional space,
and the polar angles are θ1θ2, . . . , θn−1. The above formulas
are expressed as follows.

d ′y1 = dy1 + ρ · cos(θ1)

d ′y2 = dy2 + ρ · sin(θ1)cos(θ2)

d ′yn−1 = dyn−1 + ρ · sin (θ1) sin (θ2) . . . cos(θn−1)

d ′yn = dyn + ρ · sin(θ1) sin (θ2) . . . sin(θn−1) (9)

Where, ρ is a random variable in [
√

n/exp(t),
√

n/exp(t-
1)], and θ1θ2, . . . , θn−1 are random variables in [0,360].
Therefore, variation range of candidate detectors in each
generation is limited to a super ring.

At the early stage of detectors’ generation, the mutation
rate is greater, and detectors locate mainly in the area of
non-self space far from selves. After some generations, the
mutation rate decreases, and detectors locate mainly in the
area of non-self space close to selves. New mature detectors
of each generation have different variation ranges, and cover
different regions in non-self space, which reduces redun-
dancy between detectors. When the mutate rate β is less
than or equal to rs , that is to say, when the evolutionary
generation t>=floor(1+log(

√
n/rs)), the population stops

evolving and the coverage of non-self space for mature
detectors has reached the requirement. floor() is a function
which returns a maximum integer less than or equal to the
specified expression.

Adopting Iris data set as well, Fig. 4 shows the process
of detectors’ generation. The navy blue filled circles repre-
sent self individuals in the space. Figure 4a shows variation
ranges of two generations for a self, where the gray area is
the variation range of first generation, and the light blue area
is the variation range of second generation. Mature detectors
of each generation are limited to a certain area. In Fig. 4b,

Fig. 3 Comparisons of detectors’ generation for RNSA, V-Detector and IO-RNSA (to reach the expected coverage 90 %, three algorithms need
408, 56 and 32 detectors respectively)
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Fig. 4 The process of detectors’
generation

the light blue area is coverage of first generation detectors,
and the purple area is coverage of second generation. Detec-
tors of the first level are distributed in the non-self space far
away from selves, and have larger coverage; while detectors
of the second level are distributed in the non-self space close
to detectors of the first level and nearer to selves, and have
smaller coverage.

3.4 Calculation method of coverage in non-self space

The non-self space coverage of detectors is equal to the
ratio of the non-self space volume covered by detectors to
the total volume of non-self space [12]. It is demonstrated
in (10).

P=Vcovered

Vnonself

=
∫
covered dx∫
nonself

dx
(10)

Because of duplicated coverage between detectors, the
equation above cannot be directly calculated. Method of
probability estimation is introduced to calculate the non-
self space coverage of detectors P in this paper. In the
non-self space, the probability of sampling one time which
is covered by detectors obeys the binomial probability
b(1,P), and the probability of sampling ntimes obeys the
binomial probability b(n, P ). If the number of times con-
tinual sampling in the non-self spacei is not larger than n0,

and m√
n0P(1−P)

−
√

n0P
1−P

> Zα , the coverage of non-self

space of detectors reaches P [12, 13]. Zα is a quantile of
the standard normal distribution, and the value of a deter-
mines the precision. m is the number of times sampling in
the non-self space covered by detectors in one round. n0

is the minimal positive integer greater than both 5/P and
5/(1-P), and is a determined value.

Therefore, the algorithm needs to record i and m in the
procedure of detectors’ generation. At first, i =0 and m =0.
When i is less than n0, it belongs to one round. After

sampling randomly in the non-self space, the algorithm
judges if the sample is covered by any detector in D. If
it is not covered, produce a candidate detector using this
sample’s position vector and put it in CD. If it is covered,

calculate if m√
n0P(1−P)

−
√

n0P
1−P

> Zα . If so, the non-self
space coverage of detectors reaches P and stop sampling. If
not, increase i. When i is equal to n0, unite CD into D in
order to alter the non-self space coverage, reset i =0m =0,
and start a new round. After several rounds of sampling, the
detector set D gradually increases, and the non-self space
coverage of detectors becomes greater.

3.5 Performance analysis

Set that the total number of samples in the problem space is
NAg , the size of self set is NSelf , the size of training set is
Ns , and the size of detector set is Nd . The matching prob-
ability between an arbitrary given detector and an antigen
is P ′, which is related with specific matching rules [9, 10].
P(A)is defined as the probability of event A happening.

Theorem 1 The probability of matching an un-described
self for an arbitrary detector which passes self-tolerance
is Pd=(1 − P ′)Ns · (1 − (1 − P ′)NSelf −Ns ). The prob-
ability of correct identification for an arbitrary non-
self is Ptp= 1−(1 − P ′)Nd ·(1−Pd), and the probabil-
ity of being misidentified for an arbitrary non-self is
Pfn=(1 − P ′)Nd ·(1−Pd). The probability of correct identifi-

cation for an arbitrary self is Ptn=(1 − P ′)Nd ·Pd , and the
probability of being misidentified for an arbitrary self is
Pfp= 1−(1 − P ′)Nd ·Pd .

Proof Known from the proposition, the given detector
passes self-tolerance, which means that it does not match
any self in the training set. Let event A be “the given
detector does not match any self in the self set”, and event
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B be “the given detector at least match one self which is un-
described”, then Pd = P(A)P (B). In event A, the number
of times that detectors match selves satisfies the binomial
distribution X ∼ b(NsP

′). So, P (A) = P (X = 0) =
(1 − P ′)Ns . In event B , the number of times which detectors
match un-described selves satisfies the binomial distribu-
tion Y ∼ b(NSelf − NsP ). So,P (B) = 1 − P (Y = 0) =
1 − (1 − P ′)NSelf −N

s . Pd = P (A) P (B) = (1 − P ′)Ns ·
(1 − (1 − P ′)NSelf −Ns ).

Let event E be “the given non-self at least matches one
detector in the detector set”. In event E, the number of
times which non-selves match detectors satisfies the bino-
mial distribution Z ∼ b(Nd · (1 − Pd) P ′). Then,Ptp =
P (E) = 1 − P (Z = 0) = 1 − (1 − P ′)Nd ·(1−Pd) and
Pfn = 1 − Ptp = (1 − P ′)Nd ·(1−Pd).

Let event F be “the given self does not match any
detector in the detector set”. In event F , the number
of times that selves match detectors satisfies the bino-
mial distribution W ∼ b(Nd · PdP ′). Then, Ptn = P

(F ) = P (W = 0) = (1 − P ′)Nd ·Pd ,Pfp = 1 − Ptn =
1 − (1 − P ′)Nd ·Pd . Proved.

In Theorem 1, P ′ is the matching probability between
any given detector and any antigen, which is the self-
reaction rate of a candidate detector. For RNSA and
V-Detector, P ′ is the probability that a candidate detector
falls in the self space. For IO-RNSA, P ′ is the probability
that a candidate detector falls in the intersection between its
random range and the self space. To simplify the discussion,
assume that there are no overlaps between self antigens.

Algorithms of RNSA and V-Detector randomly generate
candidate detectors in the n-dimensional [0,1] space, and
the self-reaction rate of a candidate detector is the ratio of
the self space to the entire shape space.

P ′
1 = VSelf

VS

= Nsr
n
s π

n
2

τ(n
2 + 1)

(11)

In IO-RNSA, when the evolution generation is t , candi-
date detectors which are mutated from an individual d are
limited in the region between two hyper-spheres with the
individual as the center and

√
n/exp(t-1) and

√
n/exp(t) as

the radiuses. Self antigens may intersect with this region,
or not. The self-reaction rate of a candidate detector is the
ratio of the intersection space to the space between the
two hyper-spheres. Suppose that the number of self anti-
gens which satisfy

√
n/exp(t) − rs < dist (d.y, ag.x) <√

n/exp(t − 1) + rs is Nz, Nz < Ns .

P ′
2 = VCross

Vt − Vt+1
≤

Nzr
n
s π

n
2

τ( n
2 +1)( √

n
exp(t−1)

)n
π

n
2

τ( n
2 +1)

−
( √

n
exp(t)

)n
π

n
2

τ( n
2 +1)

= Nzr
n
s( √

n

exp(t−1)

)n −
( √

n

exp(t)

)n (12)

To compare the self-reaction rate of a detector for the three
algorithms, set ζ = P ′

2/P
′
1.

ζ = P ′
2

P ′
1

≤
Nz( √

n
exp(t−1)

)n−
( √

n
exp(t)

)n

Nsπ
n
2

τ( n
2 +1)

= Nz

Ns

(
1

Vt − Vt+1
) (13)

When the data dimension and the evolution generation are
determined, vt and vt+1 can be calculated. If distributions
of self set in the shape space are concentrated, Nz is far less
than Ns . When the evolution generation is small, ζ < 1,
it indicates that the self-reaction rate of IO-RNSA is less
than that of RNSA and V-Detector. Known from [4], the
number of candidate detectors required for generating Nd

mature detectors is Nc = Nd/(1 − P ′)Ns . Therefore, the
smaller the self-reaction rate is, the smaller Nc is, that is,
the smaller the cost of detectors’ generation is.

Set the ratio of the training set size Ns to the self set
size NSelf is f , Pd = (

1 − P ′)Ns · (1 − (1 − P ′)NSelf −Ns ).
Figure 5 is the matlab simulations of Theorem 1. As can
be seen, when Ns is large enough, the effect of f and P ′
on Pd is small. For example, when Ns = 500, Pd < 1 %
and reaches satisfactory values. The false alarm rate
FAR = Pfp and the detection rate DR = Ptp are related to
the self-reaction rate of detectors P ′, the number of mature
detectors Nd , the size of training set Ns and the size of self
set NSelf . As can be seen, the effect of P ′ on Pfp and Ptp is
small. With the increase of Ns and Nd , Pfp also increases.
When Ns is small, Ptp increases with the increase of Nd .
When Ns is large enough, Ptp is small and approaching 0.

3.6 Time complexity analysis

Theorem 2 The time complexity of IO-RNSA is

O(
Nd(Ns+cmax ·n+(1−P ′)·Nd)

1−P ′ ). Where, Nd is the number of
mature detectors, Ns is the size of self set, cmax is the
maximum of clones, n is the data dimension, and P ′ is the
average self-reaction rate of detectors.

Proof IO-RNSA produces mature detectors through the
immune optimization and self-tolerance of generations of
evolutional population. The main time costs are focused in
step 2, step 4 and step 5.

In step 2, the algorithm performs operations of the
immune selection, clonal proliferation and mutation. For a
single individual, the number of calculation times for clone
operation does not exceed cmax , where cmax is a determined
value and can be negligible, the number of calculation times
for mutation operation does not exceed cmax ·n, and the time
complexity is O(cmax ·n).
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Fig. 5 Simulations of Theorem 1

In step 4, the algorithm determines whether a candi-
date detector falls in the self space, and the time com-
plexity is O(Ns). If it is not covered by selves, perform
step 5.

In step 5, the algorithm judges whether a candidate detec-
tor is covered by mature detectors, the number of calculation
times does not exceed Nd , and the time complexity is
O(Nd).
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Table 5 Comparisons of time complexities

Algorithms Time complexities

RNSA O
(

Nd ·Ns

(1−P ′)Ns

)
[11]

V-Detector O
(

Nd ·Ns

(1−P ′)Ns

)
[12, 13]

IO-RNSA O
(

Nd (Ns+cmax ·n+(1−P ′)·Nd )

1−P ′
)

Suppose that in generation t , the number of mature detec-
tors is Ndt , the number of candidate detectors is Nt , the
self-reaction rate of candidate detectors is Pt , and then
Nt = Ndt /(1-Pt). So, the time complexity of generating
mature detectors in generation t is O(Nt · (Ns + cmax ·
n) + (1-Pt) · Nt · Nd) = O(Nt · (Ns + cmax · n) +
Ndt · Nd). Known from Section 3.3, the number of gener-
ations for evolution population is k =floor(1+log(

√
n/rs)).

So, the total time complexity of the algorithm is
O(

∑k
t=1 (Nt · (Ns + cmax · n) + Ndt · Nd)).

Let the average self-reaction of candidate detectors is
P ′, the required number of candidate detectors is N =∑k

t=1 Nt = Nd/(1 − P ′), and the number of mature detec-
tors is Nd = ∑k

t=1 Ndt . So, the total time complexity of
the algorithm is simplified to O(N ·(Ns+cmax ·n)+N2

d )) =
O(

Nd(Ns+cmax ·n+(1−P ′)·Nd)

1−P ′ ). Proved.
RNSA and V-Detector are classical immune algorithms

for detectors’ generation, which are widely applied to pat-
tern recognition, anomaly detection, immune optimization
and other fields. Table 5 lists contrasts of time complexi-
ties of the two algorithms and IO-RNSA. From Table 5, the
time complexity is exponential to Ns in traditional negative
selection algorithms. When the number of selves rises, the
time cost will increase fast even to the point of unbearable.
The time complexity is linear to the size of self set in IO-
RNSA, which greatly lowers the impact on the time cost
with the growth of self set. Therefore, IO-RNSA reduces
the time complexity and enhances detectors’ generation
efficiency.

4 Experiments

This section verifies the effectiveness of IO-RNSA by
experiments. The algorithm chooses two types of data sets
which are widely used in the study of real-valued nega-
tive selection algorithms, including 2-D synthetic data sets
[13] and UCI data sets [25]. 2-D synthetic data sets are
authoritative for performance testing of real-valued nega-
tive selection algorithms [12, 13, 20], which is provided by
the research team of professor Dasgupta in the University
of Memphis. UCI data sets are classical machine learning
datasets, widely used in performance testing and generation
efficiency analysis [12–20]. And the algorithm is compared
with two classical real-valued negative selection algorithms
RNSA and V-Detector.

The experiments used the number of mature detectors
DN, detection rate DR, false alarm rate FAR and the time
of detectors’ generation DT to measure the effectiveness of
algorithms. Because RNSA adopts the default number of
detectors as the termination condition, this paper modified
RNSA to use the expected coverage of non-self space, in
order to make valid comparisons of the three algorithms in
the same experimental conditions.

4.1 2-D synthetic data sets

The data sets contain a plurality of different sub datasets.
In general, Ring, Stripe and Pentagram sub datasets are
selected to test the performance of detectors’ generation for
IO-RNSA. Figure 6 shows distributions of the experimental
data in 2-dimensional space.

The size of self sets for three datasets is 1000. The train-
ing data are points randomly picked up from the self set,
and the testing data are points randomly selected from the
2-dimensional space. Experiments were repeated 20 times
and average values were taken. Experimental results are
shown in Tables 6 and 7, where values in parentheses are
variances. Table 6 lists the contrasts of detection rates and
false alarm rates in three datasets for the algorithm, with

Fig. 6 Distributions of ring, triangle and stripe
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Table 6 Effects of different self radius on the algorithm

Datasets Radius of self rs =0.02 Radius of self rs =0.1 Radius of selfrs =0.2

DR% FAR% DR% FAR% DR% FAR%

Ring 91.56 (1.13) 31.70 (1.87) 81.74 (1.82) 10.22 (2.28) 45.44 (2.75) 0.00 (0.00)

Triangle 92.33 (1.02) 28.42 (1.41) 85.45 (1.77) 10.65 (2.10) 48.72 (2.12) 0.00 (0.00)

Stripe 93.02 (1.06) 30.15 (1.32) 88.61 (1.67) 9.43 (1.92) 49.71 (2.15) 0.00 (0.00)

Table 7 Effects of different sizes of self training set on the algorithm

Datasets Size of training set Ns =100 Size of training set Ns =500 Size of training set Ns =800

DR% FAR% DR% FAR% DR% FAR%

Ring 21.31 (3.23) 72.12 (2.55) 92.11 (1.93) 9.13 (1.86) 97.43 (1.81) 0.00 (0.00)

Triangle 24.49 (2.88) 65.58 (2.43) 94.35 (1.41) 9.01 (1.79) 98.26 (1.25) 0.00 (0.00)

Stripe 27.32 (2.76) 68.24 (2.01) 94.78 (1.53) 8.42 (1.72) 98.36 (1.27) 0.00 (0.00)

Table 8 Experimental parameters

Datasets Records Attributes Type Self Non-self Training Testing

set set set set

Iris 150 4 Real Setosa: Versicolour: Setosa: Setosa:

50 50 25 25

Virginica: Versicolour:

50 25

Virginica:

25

Breast 569 30 Real Benign: Malignant: Benign: Benign:

Cancer 444 239 250 150

Wisconsin Malignant:

Diagnostic 150

Abalone 4177 8 Real, M: 1528 F: 1307 M: 1000 M: 500

Integer I: 1342 F: 500

I: 500

Fig. 7 Comparisons of the
number of detectors for RNSA,
V-Detector and IO-RNSA
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Fig. 8 Comparisons of costs of
detectors’ generation for RNSA,
V-Detector and IO-RNSA

the same expected coverage of 90 %, the same training set
size Ns =400 and different self radiuses. As can be seen,
detection rate and false alarm rate are higher under small
self size, while they are lower under large self size. Table 7
lists the contrasts of detection rates and false alarm rates in
three datasets for the algorithm, with the same expected cov-
erage of 90 %, the same self radius rs =0.05 and different
training set sizes. With the increase of the training set size,
the detection rate gradually raises and the false alarm rate
gradually decreases.

4.2 UCI data sets

Three UCI datasets are selected for the experiments, namely
Iris, Abalone and Breast Cancer Wisconsin Diagnostic.
Experimental parameters are shown in Table 8, where indi-
viduals of self set, non-self set, self training set and testing
set are chosen randomly. The experiments were repeated
20 times and average results were taken. In this section the
algorithm compared with RNSA and V-Detector from these
aspects including the number of detectors, the time cost, the
detection rate and the false alarm rate.

4.2.1 Comparisons of number of detectors

Figure 7 shows the comparisons of the number of mature
detectors on Iris dataset for RNSA, V-Detector and

IO-RNSA. Seen from Fig. 7, with the rise of the expected
coverage, the number of required detectors generated by
the three algorithms increases correspondingly, but the effi-
ciency of IO-RNSA is better than RNSA and V-Detector.
On the Iris dataset, in order to achieve the expected cover-
age 99 %, RNSA needs 11568 mature detectors, V-Detector
needs 1371, and IO-RNSA needs 464 which is significantly
reduced and has decrease of 96.0 % and 66.2 %. IO-RNSA
generates detectors from far to near, improves the coverage
of detectors, and achieves fewer detectors covering as much
non-self space as possible. So, under the same expected
coverage, IO-RNSA requires fewer detectors.

4.2.2 Comparisons of costs of detectors’ generation

Figure 8 shows the comparisons of costs of detectors’ gen-
eration on Breast Cancer Wisconsin Diagnostic dataset for
RNSA, V-Detector and IO-RNSA. Seen from Fig. 8, with
the increase of expected coverage, costs of detectors’ gen-
eration for RNSA and V-Detector sharp rise, and cost for
IO-RNSA grows slowly. When the expected coverage is
99 %, the time cost of detectors’ generation for RNSA is
22560.4 seconds, the time cost for V-Detector is 155.8 sec-
onds, and the time cost for IO-RNSA is 54.4 seconds which
has decrease of 99.8 % and 65.1 %. By the analysis of
Section 3.5, while the distribution of self set is concentrated,
the reaction rate of detectors for IO-RNSA is smaller. So,

Fig. 9 Comparisons of
detection rates and false alarm
rates for RNSA, V-Detector and
IO-RNSA
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the required number of candidate detectors for IO-RNSA is
less, which greatly reduces the time cost of self tolerance.

4.2.3 Comparisons of detection rate and false alarm rate

To further verify the effectiveness of IO-RNSA, detection
rates and false alarm rates for RNSA, V-Detector and IO-
RNSA are contrasted in this section. Abalone dataset is
adopted, and experimental results are shown in Fig. 9. As
can be seen, under the same expected coverage, IO-RNSA
has significantly improved detection rate and lowered false
alarm rate compared with RNSA and V-Detector.

5 Conclusions

High time complexities, large number of detectors and
redundant coverage are major problems in traditional neg-
ative selection algorithms, which limit applications of
immune algorithms. An immune optimization based real-
valued negative selection algorithm IO-RNSA is proposed.
Based on the distribution of self set in morphological space,
the algorithm introduces the immune optimization mech-
anism, and produces candidate detectors hierarchically. In
the process of detectors’ generation, the algorithm limits
the random generation range of candidate detectors. It gives
priority to producing detectors with large size which are dis-
tributed in low coverage areas, decreasing the number of
mature detectors and redundancies Then it produces detec-
tors with small size which are distributed in the area close
to the self space, reducing the number of vulnerabilities.
Theoretical analysis and experimental results show that IO-
RNSA has better time efficiency and generation quality
than classical negative selection algorithms, and is an effec-
tive artificial immune algorithm for generating detectors.
The next step is to continue studying the immune mecha-
nism of NSA, and propose more efficient negative selection
algorithm for dynamic self set.
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