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Abstract Recently, supervised topic modeling approaches
have received considerable attention. However, the rep-
resentative labeled latent Dirichlet allocation (L-LDA)
method has a tendency to over-focus on the pre-assigned
labels, and does not give potentially lost labels and common
semantics sufficient consideration. To overcome these prob-
lems, we propose an extension of L-LDA, namely super-
vised labeled latent Dirichlet allocation (SL-LDA), for doc-
ument categorization. Our model makes two fundamental
assumptions, i.e., Prior 1 and Prior 2, that relax the restric-
tion of label sampling and extend the concept of topics. In
this paper, we develop a Gibbs expectation-maximization
algorithm to learn the SL-LDA model. Quantitative exper-
imental results demonstrate that SL-LDA is competitive
with state-of-the-art approaches on both single-label and
multi-label corpora.
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1 Introduction

Recently, considerable attention has been focused on topic
modeling approaches [8]. The original goals of such meth-
ods were (1) to obtain a brief description of document
collection for basic tasks [1] such as classification, cluster-
ing, and dimension reduction, and (2) to use the concept
of latent topics to capture the semantics behind documents.
Latent Dirichlet allocation (LDA) [5] is acknowledged as
the most successful topic model. It simulates the generative
process of a corpus, where each document is composed of
latent topics, and each topic is described by a multinomial
distribution over words. To control the capacity of the model
parameters and avoid the over-fitting problem, a Dirichlet
prior is given over all topics beyond the corpus.

Most approaches to topic modeling are unsupervised, and
LDA is no exception. Unsupervised LDA neglects super-
vised information, resulting in some significant messages
being wasted. For document classification tasks [5, 6, 14],
LDA commonly acts as an upstream method for dimension
reduction before various classifiers are executed, e.g., LDA
with support vector machines (SVMs). Intuitively, some dis-
criminative features must be lost when LDA transforms the
original word distribution into the latent topic distribution.

The investigation of supervised LDA models faces the
challenge of incorporating supervision into the learning
procedure. Recently, some modifications have been devel-
oped (e.g., supervised LDA (sLDA) [4], discriminative
LDA (DiscLDA) [12] and maximum entropy discrimina-
tion LDA (MedLDA) [23, 24] for single-label classification;
labeled LDA (L-LDA) [15], Dirichlet process with mixed
random measures (DP-MRM) [11], Prior-LDA (Pr-LDA),
and Dependency-LDA (Dep-LDA) [17] for multi-label
classification).
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To the best of our knowledge, L-LDA was the first
supervised LDA model that could be applied to multi-
label corpora. L-LDA defines a 1-1 correspondence between
labels and topics, and constrains each document to its pre-
assigned label set. The empirical results reported in [15]
show that, under certain conditions, L-LDA can achieve
performance that is competitive with state-of-the-art dis-
criminative methods, e.g., SVMs [13]. However, it suffers
from two problems: (1) L-LDA is over-focused on pre-
assigned labels for each document, resulting in worse per-
formance for corpora with small cardinality values (i.e., the
average number of labels per document), and even degen-
erating to the mixture of unigrams model for single-label
corpora; (2) from a generative perspective, L-LDA lacks a
mechanism to capture potentially lost labels and common
semantics.

In this paper, we consider these two problems, and then
propose a Supervised L-LDA (SL-LDA) model for both
single- and multi-label document categorization. Our model
makes two fundamental assumptions beyond those used
in L-LDA: Prior 1 provides a label threshold to high-
light the pre-assigned labels, instead of restricting them;
Prior 2 extends the topics concept to cover the seman-
tics of lost labels and common topics. We develop a Gibbs
Expectation-Maximization (Gibbs-EM) algorithm to infer
the SL-LDA model. Naturally, as a supervised model, SL-
LDA can directly predict the response labels for the test
documents.

Extensive experiments are conducted to evaluate the
proposed SL-LDA model. Several traditional approaches
are chosen as performance baselines, including: 1) for the
single-label case, four LDA-based approaches, i.e., LDA-
SVM, sLDA, DiscLDA, and MedLDA; 2) for the multi-
label case, three supervised LDA models, i.e., L-LDA,
Pr-LDA, and Dep-LDA, and the state-of-the-art discrimina-
tive algorithm SVMs [13, 21]. The empirical results show
that SL-LDA achieves a performance level that is com-
petitive with the state-of-the-art methods. Some important
notation used in this paper is summarized in Table 1.

The remainder of this paper is organized as follows.
Section 2 describes the proposed SL-LDA model in detail.
Section 3 presents the parameter estimation and inference
methods for SL-LDA. In Section 4, we introduce some
related studies on supervised topic models. Sections 5 and
6 present and discuss the empirical results for single- and
multi-label corpora, respectively. Finally, our conclusions
and suggestions for future work are given in Section 7.

2 Proposed model

This section introduces the novel SL-LDA model. We begin
by reviewing the L-LDA model.

Table 1 Notation descriptions

Notation Description

D number of documents

K total number of topics

Kt number of labels

Kh number of hidden topics in SL-LDA

V number of words−→
�d the topic presence/absence indicator w.r.t document d

θ∗ the label threshold in SL-LDA−→
θd the multinomial distribution of topics w.r.t document d

� the multinomial distribution of topics w.r.t all documents
−→α the Dirichlet prior for each

−→
θd−→

φk the multinomial distribution of words w.r.t topic k

� the multinomial distribution of words w.r.t all topics−→
β the Dirichlet prior for each

−→
φk

yd the pre-assigned label set for document d

Kd the value of |yd |

2.1 L-LDA

L-LDA [15] is a supervised topic model for describing
labeled corpora. Similar to LDA, L-LDA represents docu-
ments as multinomial distributions over topics, where each
topic is represented by a multinomial distribution over
words. Additionally, L-LDA defines a 1-1 correspondence
between the labels (tagged by human-being) and topics.
Each document d is constrained to be described by its
pre-assigned label set yd ⊆ {1, 2, · · · , Kt }.

L-LDA is formalized as follows: For each topic k, gen-
erate the topic-word distribution

−→
φk , drawn from Dirichlet

prior
−→
β . However, for each document d, L-LDA restricts

the multinomial distribution
−→
θd to topics within yd . Towards

this requirement, the topic presence/absence indicator
−→
�d =(

l1, l2, · · · , lKt

)
is generated via a Bernoulli distribution

ηk , where lk ∈ {0, 1}. Define yd = {
k|�d,k = 1

}
. The

document-label projection matrix Ld [15] is used to project
the topic Dirichlet prior −→α to a presence topic prior −→αd =
(αd,l1 , αd,l2 , · · · , αd,lKd

)T . Then, the topics and words can
be sampled as in the traditional LDA model.

In summary, L-LDA assumes the following generative
process for a labeled corpus W:

1. For each topic k

(a) Choose
−→
φk = (

φk,1, φk,2, · · · , φk,V

)T

∼ Dirichlet
(−→

β
)

2. For each document d in the corpus W

(a) For each topic k

(i) Choose �d,k ∈ {0, 1} ∼ Bernoulli (ηk)
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(b) Choose −→αd = Ld × −→α
(c) Choose

−→
θd = (θd,l1 , θd,l2, · · · , θd,lKd

)T ∼
Dirichlet

(−→αd

)

(d) For each of the Nd words wd,n

(i) Choose a topic zd,n ∈ {
yd,1, yd,2,

· · · , yd,Kd

} ∼ Multinomial
(−→
θd

)

(ii) Choose a word wd,n from p
(
wd,n|

zd,n, �
)
, a multinomial probability con-

ditioned on the topic zd,n

2.2 SL-LDA

In reviewing the L-LDA model, we found that it suffers
from two problems in terms of supervised tasks. First, the
assumption that constrains each document to be sampled
from its own label set yd is too strong for corpora with
small cardinality. For single-label corpora, in particular, L-
LDA will degenerate to the simple mixture of unigrams
model. This undermines the advantage of capturing the
latent semantics of topic modeling, and leads to worse clas-
sification performance. Second, because L-LDA defines a
1-1 correspondence between labels and topics, its number
of topics is equivalent to the true number of labels in the
corpus. From a generative perspective, L-LDA ignores the
hidden labels (i.e., lost labels), which might be neglected
during manual processing. More importantly, this frame-
work of L-LDA lacks a mechanism to cover the common
semantics. For example, the words “news” and “report”,
which express common semantics in newsgroup collections,
might occur in most documents. In the context of L-LDA,
such common words are forcibly assigned a pre-defined
label. Unfortunately, these words are less discriminative, so
this is harmful to the classification.

To overcome these problems, we propose a novel super-
vised model. SL-LDA makes two fundamental assumptions
beyond those of L-LDA, namely Prior 1 and Prior 2. The
aim of Prior 1 is to relax the restriction of label sam-
pling. Following the intuition that a document involves a
wide range of labels, but that only the main labels will
be tagged (e.g., given a document d with label proportion
[0.1, 0.2, 0.2, 0.5], its label set might be manually given as
yd = {4}), Prior 1 supposes that each document d sam-
ples from all labels and gives the dominant weights, i.e.,
the label threshold θ∗, for labels in yd . Under this assump-
tion, SL-LDA will never degenerate to a simpler model.
Prior 2 extends the concept of topics to handle the prob-
lem of semantic loss. It assumes that each document d is
represented by K topics, consisting of Kt observed labels
and Kh hidden topics. The hidden topics are used to cover
the potentially lost labels and common semantics, which are
represented by the common words. Consequently, less dis-
criminative common words, such as “news” and “report”

in newsgroup collections, contribute to the hidden top-
ics rather than the pre-defined labels. Although Prior 2
seems straightforward, it provides significant benefits to
classification tasks.

Note that in the structure of SL-LDA the observed labels
and hidden topics are on the same level. Thus, in this paper,
we do not differentiate between the concepts of “label” and
“topic”. Prior 1 and Prior 2 are summarized as follows:

– Prior 1: each document d samples from all topics; the
labels in yd are given dominative proportions, defined
by θ∗.

– Prior 2: there are a total of K topics, consisting of Kt

observed labels and Kh hidden topics.

Formally, SL-LDA generates the topic-word distribution−→
φk as in L-LDA. For each document d, it first samples
the topic presence/absence indicator

−→
�d under the observed

labels, and then generates the document-topic distribution−→
θd via the following conditional function:

f un(−→α , yd, θ∗, Kd) =
⎧
⎨

⎩

θd,i = θ∗
Kd

i ∈ yd

∼ Dir ′(−→α , yd) otherwise

(1)

where θ∗ ≤ 1. For each document d,
∑

i∈yd
θd,i = θ∗

and θd,i = θd,j , ∀i, j ∈ yd .; Dir ′(−→α , yd) is a pseudo-
Dirichlet distribution with the following Probability Density
Function (PDF)1:

Dir ′(−→α , yd) =



(∑
k /∈yd

αk

)

(1 − θ∗)
∑

k∈yd
αk × ∏

k /∈yd

 (αk)

∏

k /∈yd

θ
αk−1
k .

∑

k /∈yd

θk = 1 − θ∗.

where 
 (x) is the Gamma function.
The generative process of SL-LDA can be summarized

as follows:

1. For each topic k

(a) Choose
−→
φk = (

φk,1, φk,2, · · · , φk,V

)T ∼
Dirichlet

(−→
β

)

2. For each document d in the corpus W

(a) For each existing topic k

(i) Choose �d,k ∈ {0, 1} ∼ Bernoulli (ηk)

(b) Choose
−→
θd = (θd,1, θd,2, · · · , θd,K)T ∼

f (−→α , yd, θ∗, Kd)

1In fact, Dir ′(−→α , yd) is a pseudo-PDF, because
∫ ∞
−∞ Dir ′(−→α , yd) =

1 − θ∗. Here, it is used to sample the absence topic components in
−→
�d .
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(c) For each of the Nd words wd,n

(i) Choose a topic zd,n ∈ {k1, k2, · · · ,

kK} ∼ Multinomial
(−→
θd

)

(ii) Choose a word wd,n from p
(
wd,n|

zd,n, �
)
, a multinomial probability con-

ditioned on the topic zd,n

Discussion of parameter θ∗ The parameter θ∗ is a crucial
threshold function that determines the degree of atten-
tion of the marked labels. We suggest the tuned interval
θ∗ ∈ [0.5, 0.8] following the intuition that: (1) a document
is assigned a label (labels), provided that at least 50 %
is focused on this label (labels); (2) a document is over-
focused on the marked label (labels) if θ∗ approaches 1.

In Sections 5.2.3 and 6.4, we study θ∗ experimentally.
The results show that the optimum performance is achieved
when θ∗ is within the suggested interval.

2.3 Evidence for SL-LDA

Given the parameters � and � , the joint probability of the
labeled corpus W and a set of topic assignments −→

z is:

P
(
W,

−→
z |�, �

) =
D∏

d=1

K∏

k=1

V∏

v=1

θ
Nd,k

d,k φ
Nk,v

k,v

(θd,k = θ∗

Kd

, if k ∈ yd) (2)

where Nd,k is the number of times that the topic k occurs in
document d; and Nk,v is the number of times that the word
v has been assigned to topic k.

SL-LDA places a Dirichlet prior over �:

P
(
�|−→β

)
=

K∏

k=1



(∑V

v=1 βv

)

∏V
v=1 
 (βv)

V∏

v=1

φβv−1
v (3)

and a pseudo-Dirichlet prior over �:

P
(
�|−→α ) =

D∏

d=1



(∑

k /∈yd
αk

)

(1 − θ∗)
∑

k∈yd
αk × ∏

k /∈yd

 (αk)

∏

k /∈yd

θ
αk−1
k (4)

Given the hyper-parameters −→α and
−→
β , we obtain the

evidence for a labeled corpus W by combining (2), (3)
and (4):

P (W |�, �) =
∑

z

⎛

⎝C∗
D∏

d=1



(∑

k /∈yd
αk

)

∏
k /∈yd


 (αk)

∏
k /∈yd



(
αk + Nd,k

)



(∑

k /∈yd

(
αk + Nd,k

))

K∏

k=1



(∑V

v=1 βv

)

∏V
v=1 
 (βv)

∏V
v=1 


(
βv + Nk,v

)



(∑V

v=1

(
βv + Nk,v

))

⎞

⎠ (5)

where variable C∗ is defined, for simplification, as follows:

C∗ = (θ∗)
∑D

d=1
∑

k∈yd

Nd,k

∏D
d=1 K

∑
k∈yd

Nd,k

d

(
1 − θ∗)

∑D
d=1

∑

k /∈yd

Nd,k

3 Estimation and inference

In this section, we describe the process of parameter estima-
tion and inference with respect to SL-LDA.

3.1 Estimation for hyper-parameters

We develop a Gibbs-EM algorithm to learn the hyper-
parameters −→α and

−→
β in SL-LDA. Gibbs sampling [2,

19] is a popular method for approximate learning in high-
dimension models. It imitates the high-dimension probabil-
ity distribution given by the stationary state of Markov chain
Monte Carlo (MCMC) chains. We first use Gibbs sam-
pling to approach the expectation of topic assignments −→

z :

E
[
P

(−→
z |W, −→α ,

−→
β

)]
, and then maximize the likelihood

of (5) to estimate the hyper-parameters. Repeating this pro-
cedure until convergence, we obtain the optimized values of
−→α M and

−→
β M . The Gibbs-EM algorithm is summarized as

follows:

1. Initialize topics −→
z 0 and hyper-parameters −→α 0 and

−→
β 0

2. For i=1,2,· · ·
(a) E-step: sample for −→

z i from P
(−→

z |W, −→α ,
−→
β

)
by

Gibbs sampling.

(b) M-step: maximize log P
(
W,

−→
z

i |−→α ,
−→
β

)
w.r.t −→α i

and
−→
β i using the fixed point method

Until convergence

In the E-step, we sample each topic assignment zt

alternately from the distribution determined by all other
topic assignments. Define the symbol z̃t as a set of topic
sequences that excludes the current variable zt . The condi-
tional probability for zt is then:

P
(
zt = k∗|z̃t , W, −→α ,

−→
β

)
∝

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

θ∗
Kd

× N¬k∗,wt
+βwt

N¬k∗+
V∑

v=1
βv

if k∗ ∈ ydt

(1 − θ∗) × N¬dt ,k
∗+αk∗

N¬dt +
∑

k �=ydt

αk
× N¬k∗,wt

+βwt

N¬k∗+
V∑

v=1
βv

else
(6)

where wt is the word corresponding to zt ; dt is the document
containing wt ; and variables with the subscript “¬” should
have 1 subtracted, e.g., N¬k∗ = Nk∗ − 1.
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The M-step uses the fixed point method. Using the
samples −→

z obtained in the E-step, we update the hyper-
parameter αi+1

k as follows:

αi+1
k = αi

k

×
∑D

d=1

(
�

(
Ni

d,k + αi
k

)
− �

(
αi

k

))

∑D
d=1

(

�

(
∑

k �=yd

(
Ni

d,yd
+ αi

k

))

− �

(
∑

k �=yd

αi
k

))

(
Ni

d,k = 0, if k ∈ yd

)
(7)

and for βi+1
v

βi+1
v = βi

v

×
∑V

v=1

(
�

(
Ni

k,v + βi
v

)
− �

(
βi

v

))

∑D
d=1

(
�

(
Ni

k + ∑V
v=1 βi

v

)
− �

(∑V
v=1 βi

v

))

(8)

where �(x) is the Digamma function, i.e., the logarithmic
derivative of the Gamma function.

Consistency over multiple runs In terms of multiple runs,
the results of Gibbs sampling might be inconsistent because
of the random sampling procedure [9]. This problem per-
sists in our model, but it is almost insignificant for the
classification tasks described here. Note that the topics in
SL-LDA are composed of observed labels and hidden top-
ics. Given a set of training data, the observed labels are
fixed, so they must be consistent. However, because the hid-
den topics are used to collect common words, they should
contribute to the classification regardless of whether they
are consistent.

3.2 Inference for unlabeled documents

Let d ′ be a document from the testing corpus W ′ and U ={−→
z , −→w }

be a stationary MCMC state for the training corpus
W .

We employ Gibbs sampling to infer the unlabeled doc-
ument d ′ by estimating the posterior distribution of topic

assignments [7]: P

(
z′|−→w d ′ , U, −→α M

,
−→
β

M
)

, where −→w d ′ is

the vector of d ′, and −→α M
,
−→
β

M
are obtained during the

parameter estimation procedure. As the test document is
unlabeled, the update rule is as follows:

P

(
z′

t = k∗|z̃′
t ,

−→w d ′ , U, −→α M
,
−→
β

M
)

∝

N¬d ′,k∗ + αM
k∗

N¬d ′ + ∑K
k=1 αM

k

× Nk∗,w′
t
+ N ′¬k∗,w′

t
+ βM

w′
t

Nk∗ + N ′¬k∗ + ∑V
v=1 βM

v

(9)

where w′
t is the t-th word in wd ′ ; N ′

k∗,v is the number of
times that v has been generated by topic k∗.

Finally, the topic distribution of document d ′ is estimated
as follows:

θd ′,k = Nd ′,k + αM
k∑K

i=1

(
Nd ′,i + αM

i

) (10)

where N∗
d ′,i is the number of times that topic i has occurred

in document d ′.

4 Related work

4.1 Topic model

A number of variants of LDA have been developed for
supervised cases. Representative single-label corpora mod-
els include sLDA [4], which captures document labels as
a classification response, DiscLDA [12], where documents
are associated with labels and topic mixtures, and MedLDA
[23, 24], which combines maximum margin technology and
LDA. In terms of multi-label corpora, L-LDA [15] was the
first supervised topic model. The authors of [17] developed
the equivalent Flat-LDA, and further extended this model to
Pr-LDA and Dep-LDA via observations of label frequency
and label dependency, respectively. Other modifications for
multi-label corpora include DP-MRM [11] and Partially
LDA [16].

The proposed SL-LDA builds upon the L-LDA model
by introducing a topic threshold θ∗ and extending the con-
cept of topics. In a sense, DiscLDA also extends the topics,
as it represents documents by labels and topic mixtures.
However, DiscLDA appears to be more complicated than
our model. Several models that consider common topics
have been explored, e.g., the Cluster-based Topic Model
[3] and Multi-Grain Cluster Topic Model [20]. However,
as unsupervised models, these cannot be directly applied to
classification.

The state-of-the-art Pr-LDA and Dep-LDA models can
also be deemed as extensions of L-LDA. Pr-LDA assumes
that there is a corpus-wide distribution with respect to the
label occurrence frequency in the corpus. A document’s
topic priors are generated by this frequency distribution,
instead of using the same prior. Based on Pr-LDA, Dep-
LDA further introduces a topic level beyond the label level
to capture label dependency. Although these two models
have significantly improved multi-label document classifi-
cation [17], the two problems of L-LDA still exist. More
importantly, these models (particularly Dep-LDA) are com-
plex and contain too many parameters. In terms of their
application to different corpora, tuning the parameters might
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be time-consuming. In contrast, our model involves a sim-
pler construction and fewer parameters, and so is straight-
forward and can be easily controlled. Another advantage of
SL-LDA is that it can be applied to both single- and multi-
label corpora. This leads to better scalability in practice.

4.2 Computational complexity

We now discuss the computational complexity of training
various supervised topic models. In the original papers,
these models were trained using different inference algo-
rithms, and so we provide a descriptive comparison. The
traditional LDA model is used as the baseline.

As SL-LDA does not change the basic construction of the
traditional LDA model, its complexity will be the same as
that of LDA. All single-label models perform extra compu-
tations, e.g., calculating the normalization factor in sLDA,
learning the transition matrix in DiscLDA, and solving the
dual problem in MedLDA. In terms of multi-label models, it
is clear that L-LDA is as efficient as LDA, but Pr-LDA and
Dep-LDA must compute the upper-topic distribution over
the labels. In particular, proper inference using Dep-LDA is
time-consuming, because it repeatedly computes the expen-
sive Gamma function. Thus, we argue that the proposed
SL-LDA model is more efficient than most of these related
supervised topic models. Empirical tests are reported in the
following sections.

5 Evaluation on single-label setting

For a single-label corpus (Kd = 1), we evaluate both
the text modeling and document classification performance
of SL-LDA. Experiments are run on the balanced News-
groups2 collection, which consists of 19,997 documents in
20 related categories (i.e., Kt = 20 ). By convention, we
remove stop words in the standard list3 and words that occur
only once in the corpus.

In the experiments, the parameter θ∗ is tuned to a value
in the set {0.5, 0.6, 0.7, 0.8}. Other parameters are set as fol-
lows: 1) hyper-parameters −→α and

−→
β are initialized to 50/K

and 0.1, respectively; 2) maximum number of iterations is
50, and the termination precision is 1 × 10−4; 3) Gibbs
sampling uses a burn-in of 500 iterations in the E-step.

5.1 Text modeling

We conducted a simple text modeling experiment to exam-
ine the topic structures given by SL-LDA. We fitted the

2http://people.csail.mit.edu/jrennie/20Newsgroups/
3http://mallet.cs.umass.edu

SL-LDA model to the Newsgroups corpus, where θ∗ = 0.5
and Kh = 5.

Table 2 lists the 10 most frequent words over 20 observed
labels and 5 hidden topics. This result is similar to that
given by DiscLDA [12], where words that occurred in the
labeled rows are significantly cross-referenced with their
corresponding labels, and words in the hidden topics show
no obvious preference to any class.

5.2 Classification performance

For single-label corpus, SL-LDA assigns each testing docu-
ment d a label y∗

d by:

y∗
d = arg max

k=1,2,··· ,Kt

(θd,k) (11)

Following previous studies [12, 23], we evaluated SL-
LDA in terms of binary- and multi-class document clas-
sification. Several existing supervised topic models were
chosen as performance baselines, i.e., LDA-SVM, sLDA,
DiscLDA, and MedLDA. Average scores were obtained
from 20 runs, and pairwise t-tests between SL-LDA and
the baselines were conducted at the 5 % significance level.
As in [22], an indicator •/◦ is used to denote whether SL-
LDA was found to be statistically superior/inferior to the
compared algorithm.

5.2.1 Binary classification

The binary-class (Kt = 2) classification experiments were
performed on two subgroups of Newsgroups, i.e.,
alt.atheism and talk.religion.misc, following the design
described in [12, 23].

For the LDA-SVM, we used the Gibbs-EM algorithm to
fit the upstream LDA model, and employed the celebrated
LibSVM4 as the downstream classifier. We used a radial
basis function as the kernel, and optimized its parameters
via the grid search method. The public codes of sLDA5 and
MedLDA6, were employed for dependable results. Their
parameters were determined according to the discussions in
the corresponding publications. The DiscLDA results were
taken from the original paper, as we could not obtain its
primary implementation.

Table 3 lists the results for different topic numbers K. We
can see that SL-LDA attains a competitive level of perfor-
mance, and is statistically superior to other models in most
cases. Our model obtains better scores for relatively small
K, and achieves the highest score of 0.819 when K=15. As

4http://www.csie.ntu.edu.tw/∼cjlin/libsvm/
5http://www.cs.princeton.edu/∼blei/topicmodeling.html
6http://www.ml-thu.net/∼jun/software.html

http://people.csail.mit.edu/jrennie/20Newsgroups/
http://mallet.cs.umass.edu
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.cs.princeton.edu/~blei/topicmodeling.html
http://www.ml-thu.net/~jun/software.html
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Table 2 The most frequent words over artificial assigned labels and hidden labels

Topic The most frequent words

Alt.atheism atheism; alt; sgi; god; writes; livesey; article; morality; wpd; solntze

Comp.graphics graphics; comp; de; image; fi; bit; berlin; alt; files; computers

Comp.os.ms.windows.misc windows; comp; misc; win; file; program; oracle; files; unix; system

Comp.sys.ibmpc.hardware ibm; sys; pc; hardware; drive; comp; austin; port; card; software

Comp.sys.mac.hardware mac; comp; sys; hardware; apple; drive; problem; monitor; system; mhz

Comp.windows.x windows; comp; window; server; mit; motif; text; sun; code; program

Misc.forsale forsale; misc; sale; du; computers; nyx; usenet; rec; distribution; sender

Rec.autos uiuc; rec; autos; car; cars; ux; writes; illinois; reston; usenet

Rec.motorcycles motorcycles; rec; bike; article; org; writes; sender; mitre; ride; rider

Rec.sport.baseball baseball; rec; sport; year; game; cubs; writes; team; rochester; hit

Rec.sport.hockey hockey; game; sport; rec; team; play; year; players; games; season

Sci.crypt sci; crypt; key; clipper; security; encryption; alt; org; chip; privacy

Sci.electronics electronics; sci; audio; input; pin; signal; circuit; work; copy; data

Sci.med sci; med; food; disease; medical; people; alt; energy; writes; misc

Sci.space space; sci; launch; shuttle; digex; henry; mission; orbit; access; article

Soc.religion.christian rutgers; christian; god; religion; church; soc; geneva; jesus; igor; aramis

Talk.politics.guns guns; gun; politics; talk; stratus; people; government; alt; writes; weapons

Talk.politics.mideast soc; culture; talk; politics; mideast; turkish; israel; jewish; israeli; greek

Talk.politics.misc misc; politics; talk; alt; writes; people; article; clinton; government; legal

Talk.religion.misc talk; religion; misc; alt; writes; abortion; article; apple; god; frank

Hidden topic 1 washington; power; air; speed; test; heat; boeing; article; clock; plastic

Hidden topic 2 sun; send; list; request; requests; group; community; ebay; groups; tools

Hidden topic 3 state; ohio; mps; zaphod; sei; cc; cis; club; magnesium; apr

Hidden topic 4 purdue; option; station; redesign; ecn; human; colostate; capability; committee; freedom

Hidden topic 5 att; arizona; cb; princeton; uchicago; uchinews; linac; writes; uwm; convenient

K becomes larger, SL-LDA performs sightly worse than the
state-of-the-art MedLDA, e.g., by 0.09 for K=25 and 0.02
for K=35. We believe this is because larger values of K bring
too many hidden topics for binary-class settings, resulting in
reduced performance. In Summary, our model can provide
higher performance with fewer topics, i.e., with less compu-
tational expense. This characteristic is quite meaningful in
practice.

5.2.2 Mutli-class classification

The multi-class classification experiments considered the
full Newsgroups collection. We compared SL-LDA with
LDA-SVM, sLDA, and MedLDA. All three benchmark
models were set up as for the binary-class experiment.

The experimental results are given in Table 4. Clearly,
SL-LDA achieves the top scores for all K, and is also

Table 3 The performance (averaged score± standard deviation) for binary-class cases; •/◦ means whether SL-LDA is statistically supe-
rior/inferior to the compared algorithm

Topics SL-LDA LDA-SVM sLDA MedLDA DiscLDA

5 0.786±0.013 0.672±0.035• 0.621±0.039• 0.762±0.018• 0.800± ∗ ∗∗
10 0.819±0.004 0.692±0.016• 0.636±0.027• 0.782±0.009• 0.800± ∗ ∗∗
15 0.807±0.006 0.682±0.012• 0.642±0.021• 0.792±0.005 0.800± ∗ ∗∗
20 0.792±0.005 0.692±0.008 0.667±0.016• 0.802±0.008 0.800± ∗ ∗∗
25 0.795±0.003 0.696±0.009• 0.689±0.011• 0.804±0.005 0.800± ∗ ∗∗
30 0.797±0.004 0.673±0.007• 0.703±0.008• 0.809±0.004 0.800± ∗ ∗∗
35 0.799±0.002 0.652±0.007• 0.682±0.006• 0.801±0.005• 0.800±∗ ∗ ∗
Bold entries denote the best scores
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Table 4 The performance (averaged score± standard deviation) for multi-class cases; •/◦ means whether SL-LDA is statistically superior/inferior
to the compared algorithm

Topics SL-LDA LDA-SVM sLDA MedLDA

30 0.806±0.008 0.609±0.028• 0.506±0.016• 0.796±0.012•
40 0.816±0.004 0.626±0.034• 0.472±0.029• 0.797±0.011•
50 0.827±0.007 0.663±0.016• 0.498±0.011• 0.793±0.014•
60 0.824±0.011 0.654±0.032• 0.536±0.009◦ 0.806±0.013

70 0.828±0.008 0.691±0.009 0.607±0.018• 0.802±0.009

80 0.840±0.009 0.686±0.043• 0.609±0.018• 0.809±0.009

90 0.836±0.005 0.678±0.025• 0.589±0.014• 0.801±0.008•
100 0.839±0.016 0.679±0.018 0.595±0.026• 0.822±0.015◦
110 0.838±0.009 0.702±0.014• 0.611±0.017• 0.809±0.012

Bold entries denote the best scores

statistically superior to the other models in most cases.
Compared with LDA-SVM and sLDA, SL-LDA yields
significant improvements, scoring around 0.2 higher than
LDA-SVM and 0.3 higher than sLDA. More importantly,
SL-LDA outperforms the state-of-the-art MedLDA by about
0.02.

5.2.3 Study on parameter θ∗

In this section, we examine the label threshold θ∗. Figure 1
illustrates the binary-class results with different values of
θ∗. We can clearly observe that the performance at values
of 0.5 and 0.6 is better in than the other cases. The multi-
class cases (Fig. 2) exhibit a similar trend, with 0.5 and 0.6
dominating the performance. These results conform to the
discussions in Section 2.2.

5.3 Running time

We now examine the time efficiency of SL-LDA on a
3.1GHz Intel Core i5 2400 CPU. To ensure a fair compari-
son, two public models, i.e., sLDA and MedLDA, were used
as baselines.

Fig. 1 The evaluation of parameter θ∗ on binary-class case

Figure 3 shows that SL-LDA is more efficient than
sLDA. As reported in [24], we found that sLDA is quite
time-consuming. This is mainly because the normalization
factor strongly couples the topic assignments of all the
words. SL-LDA is also faster than MedLDA, which needs
to solve an extra dual problem during training.

6 Evaluation on multi-label setting

In this section, we evaluate the performance of SL-
LDA for multi-label (Kd > 1) document classifica-
tion. The parameter θ∗ is tuned using values in the set
{0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8}, and the other parame-
ters are set as for the single-label case.

6.1 Metric

The multi-label classification problem requires more met-
rics than the single-label case. In this experiment, we
employ several popular metrics [18] to evaluate SL-LDA.

Fig. 2 The evaluation of parameter θ∗ on multi-class corpus
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Fig. 3 The training time (seconds in log2-scale) in terms of different
number of topics for multi-class classification

Assume that the test corpus W ′ consists of D′ docu-
ments. For each document d, yd and y∗

d denote the true
and estimated label set, respectively, where yd, y∗

d ⊆
{1, 2, · · · , Kt }.

6.1.1 Rank-based metric

The estimated rank of label k for document d is denoted by
rd (k). We introduce three rank-based metrics, for each of
which smaller values imply better classification.

Ranking loss This measures the number of times that irrel-
evant labels are ranked higher than relevant labels:
Rnk − Loss =

1

D′
D′∑

d=1

× 1

|yd | |yd |
∣
∣{(ki , kj

) : rd (ki ) > rd
(
kj

)
,
(
ki , kj

) ∈ yd × yd

}∣∣

(12)

where yd is the complement of yd .

One error This measures how many times the top-ranked
label is not in the true label set:

One − Err = 1

D′
D′∑

d=1

δ

(

argmin
k=1,2,··· ,Kt

rd (k)

)

(13)

where

δ (k) =
{

1 k /∈ yd

0 otherwise

Margin Measures the difference in ranking between the
top-ranked irrelevant label and the lowest-ranked relevant
label:

Margin = 1

D′
D′∑

d=1

∣
∣
∣∣
∣
argmin

k∈yd

rd (kk) − argmax
k∈yd

rd (kk)

∣
∣
∣∣
∣

(14)

6.1.2 Binary prediction metric

The two binary prediction metrics used in our experiments
are the Macro-F1 and Micro-F1 scores. Larger Macro-F1
and Micro-F1 scores denote better performance.

We define the Recall, Precision and F1-score for a docu-
ment d as follows:

Recall (d) =
∣∣yd ∩ y∗

d

∣∣

|yd |
Precision (d) =

∣∣yd ∩ y∗
d

∣∣
∣∣y∗

d

∣∣

F1 − score (d) = 2 × Recall (d) × Precision (d)

Recall (d) + Precision (d)
(15)

After computing the F1-scores for all the test documents,
the Macro-F1 metric is obtained by averaging all of the indi-
vidual F1-scores. The Micro-F1 considers the full testing
corpus as a large document. It can be directly computed
using (15).

6.2 Datasets

Yahoo! Arts and Health 7 These two corpora are from the
Yahoo! Collection. Arts consists of 7,741 documents and 19
unique labels, and Health contains 9,109 documents and 14
unique labels. The cardinality of both datasets is relatively
small, i.e., 1.7 (Arts) and 1.6 (Health), and about 55% of the
documents have only a single label.

Following the preprocessing steps in [10], we randomly
sampled 1,000 documents from each dataset, ensuring that
each label appeared at least once, to form the training data.
The remaining documents were used as the test data. This
process was repeated 5 times to give 5 available training/test
splits.

RCV1-v2 [13] The RCV1-v2 dataset is another popular
benchmark for multi-label document classification. It con-
sists of over 800,000 documents with 103 labels. In our
experiment, we used the original training set from the
LYRL2004 split [13], which contains 23,149 documents
assigned by 101 labels. We selected 30,000 documents at
random from the LYRL2004 test split to form the test data.
This procedure was repeated 10times, giving 10 training/test
splits. The cardinality of RCV1-v2 is about 3.1, larger than
that of the Yahoo! subdirectories.

6.3 Classification performance

Several existing approaches were compared with SL-LDA,
including L-LDA [15], Pr-LDA, Dep-LDA [17], and Tuned-
SVMs (T-SVMs) [13]. We implemented the in-house codes

7http://www.kecl.ntt.co.jp/as/members/ueda/yahoo.tar.gz

http://www.kecl.ntt.co.jp/as/members/ueda/yahoo.tar.gz
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Table 5 The Experiment results (averaged score± standard deviation) on Ranking Loss (top section), One Error (middle section) and Margin
(bottom section); •/◦ means whether SL-LDA is statistically superior/inferior to the compared algorithm

SL-LDA L-LDA Prior-LDA Dep.-LDA T-SVMs

Arts 0.145±0.002 0.194±0.008• 0.149±0.005• 0.146±0.004• 0.159±0.005•
Health 0.073±0.003 0.104±0.009• 0.092±0.008• 0.075±0.007 0.102±0.012•
RCV1-v2 0.012±0.001 0.053±0.004• 0.031±0.002• 0.013±0.001 0.013±0.001
Arts 0.445±0.006 0.482±0.013• 0.474±0.011• 0.459±0.009• 0.458±0.004◦
Health 0.244±0.003 0.336±0.018• 0.332±0.009• 0.241±0.003◦ 0.246±0.004•
RCV1-v2 0.059±0.009 0.196±0.058• 0.129±0.023• 0.069±0.013 0.061±0.019•
Arts 3.52±0.013 5.14±0.011• 3.73±0.031• 3.88±0.022• 4.17±0.009
Health 1.42±0.007 2.11±0.018• 1.91±0.026• 1.49±0.015• 2.09±0.009•
RCV1-v2 2.98±0.026 13.49±0.098• 8.92±0.057• 2.86±0.028 2.89±0.042•
Bold entries denote the best scores

for these three supervised LDA models. All parameters were
set according to the discussions in the original papers. We
implemented T-SVMs using LibSVM and the parameters
in [13]. Each approach was executed 20 times on each
training/test split (i.e., a total of 100 times for Arts and
Health and 200 times for RCV1-v2), and pairwise t-tests
between SL-LDA and the baselines were conducted at the
5 % significance level.

In the early experiments, we found the performance to
be stable while the number of topics K was slightly larger
than the true number of labels, but to decrease for signifi-
cantly larger values of K. We argue that this is reasonable,
because, intuitively, a large K will exaggerate the effect of
hidden topics. In this section, we report the results for the
two Yahoo! datasets and the RCV1-v2 dataset with K = 100
and K = 240, respectively.

6.3.1 Rank-based performance

SL-LDA outputs the distribution of topics for each unla-
beled document. Thus, we can directly rank the existing
label k for document d , i.e., rd (k). The experiment results
are given in Table 5: our model performs well in terms of
both numerical results and statistics.

Among the supervised LDA models, SL-LDA performs
much better than L-LDA and Pr-LDA, and achieves com-
petitive performance with the state-of-the-art Dep-LDA.

The difference between L-LDA and SL-LDA is signifi-
cant. The difference between Pr-LDA and SL-LDA is also
large, except for the Yahoo! Arts dataset. We believe this
is because of the small size and low label density of
this dataset. SL-LDA also outperformed the state-of-the-art
Dep-LDA on 5/6 scores across the Yahoo! datasets and on
2/3 evaluation metrics across the larger RCV1-v2 dataset.
Although SL-LDA is simpler than Dep-LDA, it attains
better performance in terms of rank-based metrics.

SL-LDA also achieved higher scores than T-SVMs
for 8/9 metrics across all three datasets. These results
demonstrate that SL-LDA is competitive with the state-of-
the-art discriminative method.

6.3.2 Binary prediction performance

To compute the binary prediction metrics, we must trans-
form the label ranking of each test document d into its
estimated label set y∗

d , which consists of the top N ranked
documents. Here, we set N equal to the cardinality of each
dataset.

The binary prediction results are listed in Table 6. We can
see that SL-LDA is statistically superior to the other meth-
ods, and attains better performance. In most cases, SL-LDA
outperforms the other supervised LDA models in terms of
both Macro-F1 and Micro-F1 across all three datasets. For
the simpler models, SL-LDA scores about 0.09-0.11 higher

Table 6 The Experiment results (averaged score± standard deviation) on Macro-F1 (top section) and Micro-F1 (bottom section); •/◦ means
whether SL-LDA is statistically superior/inferior to the compared algorithm

SL-LDA L-LDA Prior-LDA Dep.-LDA T-SVMs

Arts 0.518±0.008 0.428±0.013• 0.472±0.008• 0.499±0.009• 0.499±0.009
Health 0.712±0.009 0.614±0.033• 0.635±0.017• 0.711±0.021• 0.702±0.007
RCV1-v2 0.831±0.005 0.539±0.018• 0.603±0.013• 0.828±0.008 0.829±0.0011•
Arts 0.478±0.004 0.384±0.017• 0.448±0.011• 0.473±0.007• 0.485±0.004
Health 0.695±0.006 0.583±0.006 0.614±0.008• 0.683±0.008• 0.668±0.011•
RCV1-v2 0.792±0.007 0.506±0.023• 0.562±0.015• 0.786±0.012• 0.801±0.007

Bold entries denote the best scores
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Fig. 4 The evaluation of parameter θ∗ on Yahoo! Arts collection

than L-LDA and about 0.04-0.08 higher than Pr-LDA on
the Yahoo! datasets, and achieves greater improvements
across the larger RCV1-v2 dataset. In particular, SL-LDA
outscores the state-of-the-art Dep-LDA by about 0.005-
0.02. Regarding T-SVMs, we can see that the proposed
model scores slightly lower on the RCV1-v2 dataset (simi-
lar results have been reported in [13]). However, our method
outperforms T-SVMs on 3/4 metrics across the smaller
Yahoo! datasets(an improvement of around 0.02 in Macro-
F1 across Yahoo! Arts and 0.03 in Micro-F1 across Yahoo!
Health). These results indicate that SL-LDA is competitive
with state-of-the-art approaches.

6.4 Study on parameter θ∗

We now study the effect of parameter θ∗ in the multi-label
setting. Two datasets are used: 1) Yahoo! Arts collection
(which has a small cardinality of 1.7); and 2) RCV1-v2
collection (which has a larger cardinality of about 3.1). As
different metrics exhibit similar trends, we only use the

Fig. 5 The evaluation of parameter θ∗ on RCV1-v2 collection

Fig. 6 The training time (seconds in log10-scale) for multi-label
classification

ranking loss to compare different values of θ∗ across the two
datasets.

The experimental results for the Yahoo! Arts collection
are shown in Fig. 4. It is clear that higher performance is
obtained when θ∗ = 0.5 or 0.6. Larger values tend to degrade
the performance. The trend for the Yahoo! Arts collection is
very similar to that of the single-label corpus in Section 5.
This is because Yahoo! Arts contains fewer labels, and about
half the documents are tagged with only a single label.

The results for the RCV1-v2 collection (Fig. 5) are some-
what different, with larger values of θ∗ tending to improve
performance. The peak score is obtained for a value of
θ∗ = 0.75. Because documents in RCV1-v2 contain an
average of around three labels, a higher weighted propor-
tion of pre-assigned labels are needed to describe a labeled
document.

Clearly, the experimental results also conform to the dis-
cussions in Section 2.2. However, in addition to the multi-
label settings, we suggest that a small/large value of θ∗
should be applied for datasets with small/large cardinality.

6.5 Running time

Finally, we compared the time efficiency of SL-LDA with
that of two state-of-the-art approaches, i.e., Dep-LDA and
T-SVM, for multi-label classification. Pr-LDA was not cho-
sen, because it was deemed to be a special case of Dep-LDA.

Figure 6 shows the running time of different approaches
for the Yahoo! Arts8 and RCV1-v2 collections. Clearly, SL-
LDA9 is more efficient than Dep-LDA and T-SVMs. For

8Results for the Yahoo! Health collection are very similar.
9We set K = 100 for Yahoo! Arts and K = 240 for RCV1-v2.
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the smaller Yahoo! Arts dataset, SL-LDA is slightly faster
than Dep-LDA, but the efficiency gap widens for the RCV1-
v2 dataset. This is because Dep-LDA adds a label layer to
the model, and its computational complexity is sensitive to
the number of labels. The slowness of T-SVMs is mainly
because of the parameter optimization process. In contrast,
SL-LDA has few parameters, and is therefore faster than T-
SVMs in this step. Following our discussion on the choice of
θ∗, we can quickly determine an appropriate value. Thus, we
argue that SL-LDA is more efficient in practice than Dep-
LDA and T-SVMs.

7 Conclusion

In this paper, we have suggested a novel supervised model
for document classification, including both single-label and
multi-label settings. Based on the L-LDA model, SL-LDA
relaxes the restriction of label sampling, and extends the
topics concept to capture lost labels and common semantics.
These modifications significantly improve the classifica-
tion performance. We developed a Gibbs-EM algorithm
to estimate and infer our model. A series of evaluation
experiments were conducted, and the results show that:
(1) in single-label cases, SL-LDA outperforms LDA-SVM,
sLDA, DiscLDA, and the state-of-the-art MedLDA in most
instances; (2) SL-LDA significantly outperforms L-LDA
and Pr-LDA, and, more importantly, is competitive with the
state-of-the-art Dep-LDA and SVMs.

In the future, we intend to: (1) develop online approaches
for large-scale multi-label corpora; (2) investigate collec-
tions that contain many labels; (3) apply our model to some
other applications, e.g., summarization and filtering.
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