
Appl Intell (2015) 42:369–388
DOI 10.1007/s10489-014-0592-3

Adaptive differential evolution with directional
strategy and cloud model

Jin Gou · Wang-Ping Guo · Feng Hou · Cheng Wang ·
Yi-Qiao Cai

Published online: 16 October 2014
© Springer Science+Business Media New York 2014

Abstract Recently, many studies have focused on differ-
ential evolution (DE), which is arguably one of the most
powerful stochastic real-parameter optimization algorithms.
Prominent variants of this approach largely optimize the
DE algorithm; however, almost all the DE algorithms still
suffer from problems like difficult parameter setting, slow
convergence rate, and premature convergence. This paper
presents a novel adaptive DE algorithm by constructing a
trial vector generation pool, and dynamically setting con-
trol parameters according to current fitness information. The
proposed algorithm adopts a distributed topology, which
means the whole population is divided into three subgroups
with different mutation and crossover operations used for
each subgroup. However, a uniform selection strategy is
employed. To improve convergence speed, a directional
strategy is introduced based on the greedy strategy, which
means that an individual with good performance can evolve
rapidly in the optimal evolution direction. It is well known
that the faster an algorithm converges, the greater the prob-
ability of premature convergence. Aimed at solving the
local optimum problem, the proposed algorithm introduces

J. Gou (�) · W.-P. Guo · F. Hou · C. Wang · Y.-Q. Cai
College of Computer Science and Technology,
Huaqiao University, Xiamen 361021, China
e-mail: goujin@gmail.com

W.-P. Guo
e-mail: winboy1988@gmail.com

F. Hou
e-mail: ted329868324@hqu.edu.cn

C. Wang
e-mail: wangcheng@hqu.edu.cn

Y.-Q. Cai
e-mail: yiqiao00@163.com

a new mathematical tool in the selection process, called
the membership cloud model. In essence, the cloud model
improves the diversity of the population by randomly gen-
erating cloud droplets. Experimental results from executing
typical benchmark functions show high quality performance
of the proposed algorithm in terms of convergence, stabil-
ity, and precision. They also indicate that this improved
differential evolutionary algorithm can overcome the short-
coming of conventional differential evolutionary algorithms
of low efficiency, while effectively avoiding falling into a
local optimum.

Keywords Differential evolution · Dynamic adjustment
strategy · Directional strategy · Membership cloud model

1 Introduction

Since its introduction in 1995 by Storn and Price [22], the
differential evolution (DE) algorithm has been used as a
simple yet powerful search technique for solving complex
nonlinear and non-differentiable continuous functions. It
belongs to the class of stochastic optimization algorithms,
which are used to find the best-suited solution to a problem
by minimizing an objective function, which is a mapping

from a parameter vector
⇀

X ∈ �D to �, within the given
constraints and flexibilities.

Starting with a population initialized randomly, the DE
algorithm uses simple mutation and crossover operators
to generate new candidate solutions, and adopts a one-to-
one competitive scheme to determine whether the offspring
should replace their parents in the next generation [19].
Owing to its ease of implementation and simplicity, DE
has attracted much attention from researchers all over the
world, resulting in many variations of the basic algorithm

mailto:goujin@gmail.com
mailto:winboy1988@gmail.com
mailto:ted329868324@hqu.edu.cn
mailto:wangcheng@hqu.edu.cn
mailto:yiqiao00@163.com

370 J. Gou et al.

with improved performance. The strategies of the vari-
ants often represent varying search capabilities in different
search phases of the evolution process.

Most of the approaches to improve the standard
DE algorithm mainly concentrate on four aspects: the
structure and size of the population, associated con-
trol parameter setting, trial vector generation, and hybrid
strategies. Of these, control parameter setting and trial
vector generation directly affect the search accuracy
and convergence speed of the DE algorithm, which is
why associated control parameter setting is generally con-
sidered together with the trial vector generation strat-
egy. Qin et al. [21] developed a self-adaptive DE
(SaDE) algorithm for constrained real-parameter optimiza-
tion, in which both the trial vector generation strategy
and the associated control parameter values are gradu-
ally self-adapted according to the learning experience.
This algorithm performs much better than both the tradi-
tional DE algorithm and several state-of-the-art adaptive
parameter DE variants, such as the ADE [32], SDE [18],
and JDE [2] algorithms. In [19], a self-adaptive DE algo-
rithm, called SspDE, is proposed with each target indi-
vidual having its own trial vector generation strategy,
scaling factor F, and crossover rate CR, which gradually
self-adapt from previous experience in generating promis-
ing solutions. Mallipeddi et al. [17] employed an ensem-
ble of mutation strategies and control parameters in their
DE algorithm (called EPSDE), in which a pool of dis-
tinct mutation strategies coexists with a pool of values
for each control parameter throughout the evolution pro-
cess competing to produce offspring. In [7], the authors
designed a heterogeneous distributed algorithm (HdDe)
by proposing a new mutation strategy, GPBX-α, and par-
allel execution in two separate islands using the classic
DE/rand/1/bin algorithm. Wang and Zhao [27] presented
a DE algorithm with a self-adaptive population resizing
mechanism based on JADE [34], called SapsDE. This
algorithm gradually self-adapts NP according to previous
experience in generating promising solutions and enhances
the performance of DE by dynamically choosing one
of two mutation strategies and tuning control parameters
in a self-adaptive manner. Many hybrid strategies exist
that improve the efficiency of the DE algorithms. For
the unconstrained global optimization problems, a novel
optimization model is proposed, called clustering-based
differential evolution with 2 multi-parent crossovers (2-
MPCs-CDE) [16], hybridizing DE with the one-step k-
means clustering and 2 multi-parent crossovers. Yildiz [31]
developed a novel hybrid optimization algorithm called
hybrid robust differential evolution (HRDE) by adding
positive properties of Taguchis method to the DE algo-
rithm to minimize the production cost associated with
multi-pass turning problems.

Although these prominent variants of the DE algorithm
largely optimize the DE process, almost all of them still suf-
fer from problems such as difficult parameter setting, slow
convergence rate, and premature convergence. Thus, this
paper presents a novel adaptive DE algorithm that adopts a
dynamic adjustment strategy including a directional strategy
and cloud model, which we call ADEwDC. In the ADEwDC
algorithm, the whole population is divided into three sub-
groups with each group dynamically selecting its trial vector
generation from a constructed mutation and crossover pool
according to its own convergence degree. The proposed
algorithm realizes parameter control adaptively by referring
to current fitness information. By introducing evolutionary
direction [37], the convergence speed of the DE algorithm
is further improved. The directional strategy is based on
a greedy strategy, which means that individuals with good
performance can evolve rapidly in the optimal evolution
direction. These good individuals are selected according to
their fitness, and the optimal direction is chosen accord-
ing to the disparity between the target and trial vectors in
the fitness space. However, the possibility of the algorithm
falling into a local optimum is increased because of the rapid
decline in population diversity. Thus, after further analy-
sis, the ADEwDC algorithm improved the diversity of the
population by employing the cloud model [13] in each gen-
eration. The characteristics of the cloud model, including
randomness and stability, are included in the entire cloud
droplet group, where randomness maintains the diversity of
the population, while stability preserves the performance of
excellent cloud droplets [14]. In other words, the proposed
algorithm improves the convergence speed of the popula-
tion, while at the same time, increasing the diversity and
stability of the group. Computational experiments and com-
parisons show that ADEwDC overcomes the shortcomings
of slow convergence rate and low efficiency in conventional
DE algorithms, effectively avoids falling into a local opti-
mum, and overall performs better than many state-of-the-art
DE variants [4], such as JDE and JaDE, when applied to the
optimization of benchmark global optimization problems.

The rest of the paper is arranged as follows. Section
2 introduces the traditional DE algorithm. In Section 3,
the proposed ADEwDC algorithm is described in detail.
The experimental design and results are presented and
discussed in Section 4. Finally, the paper is concluded
in Section 5.

2 The DE algorithm

Scientists and engineers from many disciplines often have
to deal with the classic problems of search and opti-
mization [4]. The DE algorithm is a simple population-
based, stochastic parallel search evolutionary algorithm

Adaptive differential evolution with directional strategy and cloud model 371

for global optimization and is capable of handling non-
differentiable, nonlinear, and multimodal objective func-
tions [9, 26]. In the DE algorithm, the population consists
of real-valued vectors with dimension �D , which equals
the number of design parameters. The size of the popula-
tion is adjusted by parameter NP . The initial population

is uniformly distributed in the search space

[
⇀

Xmin,
⇀

Xmax

]
,

where
⇀

Xmin = (
xmin,1, xmin,2, xmin,3, . . . , xmin,D

)
and

⇀

Xmax = (
xmax,1, xmax,2, xmax,3, ..., xmax,D

)
. Each compo-

nent is determined as follows:

x0
i,j = xmin,j + rand · (

xmax,j − xmin,j

)
(1)

where xi,j denotes the j th component of the ith individual,
0 denotes the initialized subsequent generation, and rand is
a uniformly distributed random number between 0 and 1,
which is instantiated independently for each component of
the ith vector.

The traditional DE algorithm works through a simple
cycle of stages, including mutation, crossover, and selec-
tion. Mutation and crossover are applied to each indi-
vidual to produce the new population, followed by the
selection phase, where each individual of the new popu-
lation is compared with the corresponding individual of
the old population, and the better of the two is selected
as a member of the population in the next generation. A
brief description of each of the evolutionary operators is
given below.

Mutation In the DE literature, a parent vector from the
current generation is called the target vector, a mutant vec-
tor obtained through the differential mutation operation is
known as the donor vector, and finally an offspring formed
by combining the donor with the target vector is called a
trial vector. There are many mutation strategies to generate

donor vector
⇀

V
g

i , of which the most commonly used oper-
ator and one with the simplest form is ′DE/rand/1/bin′,
which is expressed as:

⇀

V
g

i = ⇀

X
g

ri
1
+ F ·

(
⇀

X
g

ri
2
− ⇀

X
g

ri
3

)
(2)

where
⇀

X
g

ri
1
,
⇀

X
g

ri
2
,
⇀

X
g

ri
3

are sampled randomly from the current

population in the gth generation. Indices ri
1, ri

2, and ri
3 are

mutually exclusive integers randomly chosen from the range
[1, NP], and which also differ from the index of the ith tar-
get vector, meaning ri

1 �= ri
2 �= ri

3 �= i ∈ {1, 2, 3, ..., NP }.
⇀

X
g

ri
2

− ⇀

X
g

ri
3

is a differential vector, and F is a real-valued
mutation scaling factor that controls the amplification of the
differential variation.

Crossover After mutation, a binary crossover opera-

tion is applied to form the trial vector,
⇀

U
g

i =(
u

g

i,1, u
g

i,2, u
g

i,3, . . . , u
g

i,D

)
, to enhance the potential diver-

sity of the population by exchanging the components of

the donor vector
⇀

V
g

i and target vector
⇀

X
g

i according to the

given probability, defined as CR. Each component of
⇀

U
g

i is
generated by the scheme outlined as:

u
g
i,j =

{
v

g
i,j if (rj ≤ CR)||j = ri

x
g

i,j otherwise
(3)

where i denotes the ith individual, j denotes the j th dimen-
sion, g indicates the gth generation, rj ∈ [0, 1] is the j th

evaluation of a uniform random number generator. CR is the
crossover constant in the range [0, 1], where zero means no
crossover. ri ∈ (1, 2, 3, ..., D) is a randomly chosen index

that ensures trial vector
⇀

U
g

i gets at least one element from

the donor vector
⇀

V
g

i , which is instantiated once per genera-
tion for each vector. Otherwise, no new parent vector would
be produced and the population would remain unchanged.
If the value of any dimension of the newly generated trial
vector exceeds the pre-specified upper and lower bounds, it
is set to the closest boundary value.

Selection To keep the population size constant over sub-
sequent generations, one-to-one greedy selection between
a parent and its corresponding offspring is employed to

decide whether the trial individual
⇀

U
g

i should replace the

target vector
⇀

X
g

i as a member of the next generation accord-
ing to their fitness values. For minimization problems, the
one-to-one selection scheme is formulated as:

⇀

X
g+1

i =

⎧⎪⎪⎨
⎪⎪⎩

⇀

U
g

i if

(
f

(
⇀

U
g

i

)
≤ f

(
⇀

X
g

i

))

⇀

X
g

i if

(
f

(
⇀

U
g

i

)
> f

(
⇀

X
g

i

)) (4)

where f (
⇀

X) is the objective function to be minimized. From
the above description, if and only if the trial vector yields a
better cost function value compared with its corresponding
target vector in the current generation, it is accepted as the
new parent vector in the next generation; otherwise, the tar-
get is once again retained in the population. As a result, the
population either improves or remains the same in terms of
fitness status, but never deteriorates.

The iterative procedure is terminated when any one of the
following criteria is met: an acceptable solution is obtained,
a state with no further improvement in the solution is
reached, control variables have converged to a stable state,
or a predefined number of iterations have been executed.
Our proposed algorithm adopts a similar main framework as

372 J. Gou et al.

the traditional DE algorithm, but employs different strate-
gies in the process of evolution.

3 Adaptive differential evolutionary algorithm
with directional strategy and cloud model

Based on the conventional DE algorithm, the Adaptive Dif-
ferential Evolutionary Algorithm with Directional Strategy
and Cloud Model, ADEwDC for short, constructs a trial
vector generation pool to effect the dynamic adjustment
strategy. The whole population is divided into three sub-
groups, with each subgroup selecting a different trial vector
generation strategy from the pool according to its own con-
vergence degree. In each iteration, the control parameters
are dynamically set based on the fitness of the individual
compared with the optimal one in the whole group, with
the specific value obtained by control parameter gener-
ation. To improve the convergence rate, the evolutionary
direction is introduced, and ADEwDC chooses the best indi-
viduals to evolve in the optimal evolution direction, which
is defined according to the evolution potential. To avoid pre-
mature convergence, ADEwDC utilizes the cloud model to
increase the diversity of the whole population, and proposes
the learning operator with cloud model by applying forward
and reverse cloud generators, defined as MCG. The spe-
cific operations of ADEwDC are discussed in detail in this
section.

3.1 Dynamic adjustment strategy

The self-adapting strategy is an important research area
for DE algorithms [36], of which there are many promi-
nent variants. However, the performance of DE is sen-
sitive to the choice of mutation strategy and associated
control parameters [17]. In other words, different muta-
tion strategies with different parameter settings at different
stages of the evolution may be more appropriate than a
single mutation strategy with unique parameter settings.
Therefore, as opposed to self-adaptation [8], this paper
implements dynamic adjustment by adopting a distributed
topology [7] and constructing a trial vector generation
pool. This means that different mutation and crossover
operations, chosen from the mutation and crossover oper-
ator pool are used for each subgroup, although a uni-
form selection operation is adopted. Meanwhile, the con-
trol parameters for mutation and crossover obtain their
values adaptively based on the fitness space, particularly
from information of the marked optimal individual in
the population.

Since mainly mutation and crossover in ADEwDC are
used to obtain the optimal value, which exceeds the over-
all performance of the parent generation, rapidly, this paper

constructs a mutation and crossover operator pool to gen-

erate the donor vector P⇀
V

g =
(

⇀

V
g

1 ,
⇀

V
g

2 ,
⇀

V
g

3, . . . ,
⇀

V
g

NP

)

using the following variants:

1) DE/rand/1/bin

vg
i,j =

{
x

g

r1,j
+ F1 ·

(
x

g

r2,j
− x

g

r3,j

)
if (rj ≤ CR||nj = j)

x
g

i,j otherwise

(5)

2) DE/rand/2/bin

vg
i,j = x

g
r1,j

+ F1 ·
(
x

g
r2,j

− x
g
r3,j

)
+ F2 ·

(
x

g
r4,j

− x
g
r5,j

)
if (rj ≤ CR||nj = j)

= x
g

i,j otherwise

(6)

3) DE/target-to-best/1/bin

vg
i,j = x

g
i,j + F1 ·

(
x

g
gbest,j − x

g
i,j

)
+F2 ·

(
x

g
r1,j

− x
g
r2,j

)
if (rj ≤ CR||nj = j)

= x
g
i,j otherwise

(7)

4) DE/target-to-best/2/bin

vg

i,j = x
g

i,j + F1 ·
(
x

g

gbest,j − x
g

i,j

)
+ F2 ·

(
x

g

r1,j
− x

g

r2,j

)
+F3 ·

(
x

g

r3,j
− x

g

r4,j

)
if (rj ≤ CR||nj = j)

= x
g

i,j otherwise

(8)

5) DE with a neighborhood-based scheme

5.1) Neighborhood vector

⇀

L
g

i = ⇀

X
g

i +α1 ·
(

⇀

Xnbest − ⇀

X
g

i

)
+β1 ·

(
⇀

X
g

r1 − ⇀

X
g

r2

)
(9)

5.2) Population vector

⇀

G
g

i = ⇀

X
g

i +α2·
(

⇀

Xgbest − ⇀

X
g

i

)
+β2 ·

(
⇀

X
g

r1 − ⇀

X
g

r2

)
(10)

5.3) Component of donor vector

vg
i,j =

{
ω · g

g

i,j + (1 − ω) · l
g

i,j if (rj ≤ CR||nj = j)

x
g
i,j otherwise

(11)

where r1 �= r2 �= r3 �= r4 �= r5 �= i ∈ {1, 2, 3, ..., NP },
j denotes the j th component, F1, F2, F2, α1, α2, β1, β2 are
all scaling factors to control the scale of the differential
vectors, ω is a weighting factor applied to the information
of the neighborhood and global population, and CR is the

Adaptive differential evolution with directional strategy and cloud model 373

crossover rate to determine the source of each dimension of
the offspring.

Of the five variants given above, since DE/target-to-
best/1/bin and DE/target-to-best/2/bin rely on the best solu-
tion found, they usually have a faster convergence speed
and perform well when solving unimodal problems. How-
ever, these algorithms are more likely to be trapped in a
local optimum and to converge prematurely when solv-
ing multimodal problems. DE/rand/1/bin and DE/rand/2/bin
usually demonstrate slow convergence speed with superior
exploration capability. Therefore, they are usually better
suited to solving multimodal problems. By including a
neighborhood-based scheme [3, 5], different variants are
employed to evolve individuals and set parameters, as dis-
cussed in the next section. Obviously, these five donor
vector strategies constitute a strategy candidate pool with
diverse characteristics.

In this paper, the distributed topology is simplified by
dividing the population into three subgroups, while the
selection criteria are strengthened by defining a variable,
called the convergence degree.

Definition 1 Convergence degree is the average value of
the accumulative fitness of each individual in the subgroup
as the standard for determining the specific mutation and
crossover operation. It is defined as:

f its = F its�/np; (12)

where the accumulative fitness F its� =
np∑
i=1

f

(
⇀

X
g

i

)
, s

denotes the number of subgroups, and np denotes the
number of individuals in each subgroup. Considering the
stability of the algorithm, the subgroup with the maxi-
mum convergence degree generates the donor vector by
DE/rand/1/bin or DE/rand/2/bin, the one with the mini-
mum degree uses DE/target-to-best/1/bin or DE/target-to-
best/1/bin, and the remaining ones choose their variant
randomly.

ADEwDC makes full use of the historical optimal infor-
mation of the population and the fitness of each indi-
vidual to set the control parameters, referred to as PSO.
The ultimate evolution goal of the current individual
can be regarded as the current group optimal individ-
ual with the optimal fitness, and this forms the impor-
tant theoretical basis for setting the control parameters.
With reference to the relevant papers, the scaling fac-
tors F, α, β take values in [0.1, 1] [19], the weighting
factor ω is restricted to the range [0.05, 0.95] [5], and
CR takes a value in [0.1, 0.9] [17]. Thus, integrating the
above discussion, the dynamic adjustment strategy is given
as follows.

At this point, ADEwDC generates the same number of
individuals as in the parent generation, that is, the donor

vector space P⇀
V

g =
(

⇀

V
g

1 ,
⇀

V
g

2 ,
⇀

V
g

3, . . . ,
⇀

V
g

NP

)
.

3.2 Design of evolutionary direction

DE belongs to the class of stochastic optimization algo-
rithms with randomness and unpredictability, leading to the
arbitrariness of the offspring and the fact that good char-
acteristics of parental individuals cannot be fully passed to
the next generation. However, living things are not passive
victims of their environment in nature and human society.
Instead, they struggle to fit into the environment by con-
stantly adjusting the evolutionary direction. Therefore, this
paper adopts an indicative directional propagation strategy
to alter the blindness of conventional DE and improve the
convergence rate of the DE algorithm before the selection
process.

374 J. Gou et al.

Definition 2 Evolutionary direction is a description of the
direction vector from the current individual to its offspring

for any individual
⇀

X
g

i in the population Pg, such that ∀⇀

X
g

i ∈
Pg. It is defined as:

DR

(
⇀

X
g

i

)
=

⎧⎨
⎩

−−−−−−→
⇀

X
(g−1)′

i

⇀

X
g

i while(g > 1)

rand direction else

(13)

where
⇀

X
g

i = off spring

(
⇀

X
(g−1)′

i

)
,
⇀

X
(g−1)′

i ∈ P(g−1), and

⇀

X
g

i ∈ Pg.
In the current population, the evolutionary direction of

individual
⇀

X
g

i depends on itself and its corresponding par-

ent in the previous generation of population
⇀

X
(g−1)′

i , shown

in the previous equation as

−−−−−−→
⇀

X
(g−1)′

i

⇀

X
g

i . The evolutionary
directions of individuals in the first generation are selected
randomly, and the optimal evolution direction is described
below.

Definition 3 Optimal evolution direction DRopt (Pg) is
selected from the evolutionary orientation of the whole pop-
ulation through a series of specific operations, which is the
best evolution direction. It is described as:

DRopt (Pg) = Θs

(
DR

(
⇀

X
g

i

))
(14)

where
⇀

X
g

i ∈ Pg and f

(
⇀

X
g

i

)
≥ f

(
⇀

X
(g−1)′

i

)
, and Θs

denotes the selection operation on the evolution direction.
ADEwDC defines the directional strategy as follows:

Select the top n individuals with the maximum fitness in
the donor vector space as generated in the previous subsec-
tion. Select the top m optimal evolution directions. Then,
evolve the selected individuals along the selected directions
and shape the progeny space with n · m individuals, where
n · m > NP .

There are many criteria for selecting the optimal evolu-
tion direction, and the overall requirement is to improve the
fitness of an individual after evolving along the selected ori-
entation. In fact, the ultimate evolution goal of the current
individual can be regarded as the current group optimal indi-

vidual
⇀

Xgbest , which has the optimal fitness of the whole
population, f g

min for a minimization problem. Thus, the goal

vector is defined as

−−−−−−−−−→
⇀

X
(g−1)′

i

⇀

X
g

gbest , and the motion vector as−−−−−−→
⇀

X
(g−1)′

i

⇀

X
g

i . Then, ADEwDC defines evolution potential as
the factor used to choose the optimal directions.

Definition 4 Evolution potential ∇DR is defined as the
disparity between the goal vector and the motion vector in
the fitness space, defined as:

∇
DR(

⇀

X
g

i)
=

[
f (

⇀

X
g

i)−f

(
⇀

X
(g−1)′

i

)]/[
f

(
⇀

X
g

gbest

)
−f

(
⇀

X
(g−1)′

i

)]

(15)

Therefore, the optimal evolution direction based on max-
imum evolution potential is defined as:

DRopt ep(Pg) = DR

(
⇀

X
g

i

)
where j = arg max

j
∇

DR(
⇀

X
g

i)

(16)

The directional evolution strategy is given by the follow-
ing algorithm.

From the optimal individuals and optimal evo-
lution directions, the trail vector space P⇀

U
g =(

⇀

U
g

1,
⇀

U
g

2 ,
⇀

U
g

3, . . . ,
⇀

U
g

n·m
)

is constructed, providing

choices for the new generation.

3.3 Specific application of cloud model

By introducing the evolutionary direction, the convergence
speed of the DE algorithm is improved further; however,
the possibility of the algorithm falling into a local optimum
rises markedly because of the rapid decrease in population
diversity. To improve the diversity of the population, we
introduce the cloud model [13], which describes individuals
of the population through expectation Ex, entropy En, and
hyper-entropy He.

Definition 5 Membership cloud [11] Let U denote a quan-
titative domain composed of precise numerical variables,
with C the qualitative concept on U . If the quantitative
value x ∈ U is a random realization of qualitative con-
cept C, the confirmation of x on C can be denoted as

Adaptive differential evolution with directional strategy and cloud model 375

μ(x) ∈ [0, 1], which is a random number with stable
tendency.

μ : U → [0, 1]
∀x ∈ U, x → μ(x)

(17)

The distribution of x on U is called a cloud, x is called a
cloud droplet, and the cloud consists of a series of cloud
droplets.

The cloud droplets have a certain randomness, which
maintains the diversity of individual stocks thereby avoiding
a search for local extreme values, and stability character-
istics, which protect the population of a more outstanding
individual and thus the overall situation of extreme adaptive
positioning. The membership cloud describes a concrete
concept through expectation Ex, entropy En, and hyper-
entropy He. Expectation Ex expresses the point that is most
able to represent the domain of the concept and is the most
typical sample of this concept to quantify. Entropy En rep-
resents the granularity of a concept that can be measured
(the larger the entropy is, and the larger the granularity is,
the more macro is the concept). It reflects the range of the
domain space that can be accepted by the specific concept.
Hyper-entropy He describes the uncertain measurement of
entropy. It can be used to express the relationship between
randomness and fuzziness.

As a specific kind of cloud, the normal cloud model
has been proven to be universal [12], based on the nor-
mal distribution and Gauss membership function. Regarding
probability, the normal distribution is the most commonly
used form, which is described by expectation E and variance
D. In fuzzy set theory, the bell-shape membership func-

tion μ(x) = e
−(x−a)2

2b2 is also the most common membership
function used in fuzzy sets. The normal cloud, described
below, combines the characteristics of the two with an
additional expansion.

Definition 6 Normal Cloud Model [14] Let U be the uni-
verse of discourse and Ã be a qualitative concept in U .
If x ∈ U is a random instantiation of concept Ã, satisfy-
ing x ∼ N(Ex, En′2) and En′2 ∼ N(En, He

2), and the
certainty degree of x belonging to concept Ã satisfies

μ = e
− (x−Ex)2

2(En′)2 (18)

then the distribution of x in universe U is called a normal
cloud.

Knowledge is usually the association between concepts
in the real world, between which the cause and effect
relationship can be described by the membership cloud
generator (MCG), including both a forward and reverse gen-
erator (for more information, see [11]). With the associated

numerical characteristics, that is, Ex, En and He, the forward
cloud generator can generate cloud drops (x, μ), where x

is the quantity values and μ is the membership degree of
x [10]. The reverse cloud generator is the other conver-
sion model that can convert quantity numbers to a quality
concept. It can convert accurate data (x1, x2, ..., xn) with
membership degrees (μ1, μ2, ..., μn) to a quality cloud con-
cept expressed as numerical characteristics (Ex, En, He)

[10]. The MCG based on cloud theory is summarized below.

Based on our analysis, ADEwDC incorporates the cloud
model into the selection operation to remedy the diversity of

376 J. Gou et al.

population, and presents a novel operator called the learning
operator with cloud model.

Definition 7 Learning operator with cloud model View
the current population I λ as a cloud defined using
CloudM(Ex, En, He), the eigenvalue calculated by the
reverse normal cloud generator rCG(Pλ) to describe the
overall information owned by it. For each individual
in the suboptimal population, ∀di ∈ I λ−e, generate a
new individual using the forward normal cloud generator
fCG(Ex, En, He, (λ − e)), then the learning operator with
cloud model is defined as:

∀di ∈ I λ−e, ∃dc ∈ Υ λ−e
Cloud : di → dc,

Υ λ−e
Cloud = f CG(Ex, En, He, (λ − e)) (19)

where λ denotes the parents’ individuals space and e means
the individuals selected from trail vector space. That is, part
of the subgeneration is selected directly from the trial vec-
tor space, with count e, and the rest is generated randomly
by the learning operator with cloud model according to the
feature information about the known population.

The specific application of the cloud model is summa-
rized below.

Thus far, we have introduced each part of ADEwDC:
the dynamic adjustment strategy is used in the muta-
tion and crossover process, while the design of the
evolutionary direction and specific application of the
cloud model are both applied in the selection pro-
cess. The overall framework of ADEwDC is presented
next.

3.4 ADEwDC

The proposed ADEwDC employs the dynamic adjustment
strategy (see Section 3.1), the directional strategy (see
Section 3.2), and the cloud model (see Section 3.3), intro-
duced previously. In this section, we first present the overall
framework of the proposed algorithm, and then analyze its
discipline holistically.

3.4.1 Framework of the algorithm
3.4.2 Discipline of the algorithm

The main framework of ADEwDC is taken from the tra-
ditional DE algorithm, but with changed mutation and
crossover strategies and an improved selection mechanism.
As with the classical DE algorithm, the proposed algorithm
defines a donor vector and a trial vector, where the former
is the result of the mutation and crossover operation, while
the latter is the result of directional evolution. The next gen-
eration may come from the parent generation, donor vector
space (Algorithm 2), or trial vector space (Algorithm 3), but
most new individuals must be generated by the cloud model
(Algorithm 5).

a) Dynamic adjustment strategy ADEwDC constructs
a mutation and crossover pool to realize the dynamic
adjustment strategy, including DE/rand/1/bin, DE/rand/
2/bin, DE/target-to-best/1/bin, DE/target-to-best/2/bin,
and DE with neighborhood-based scheme variants. It
then defines the strategies to select the evolution opera-
tors (Definition 1) and set the control parameters (Algo-
rithm 1) based on the constructed topology, which are
summarized as the donor vector generation (Algorithm 2).

b) Design of evolutionary direction The evolutionary
direction is determined based on the theory that the
individuals are not passive in joining the environment,
but struggle to fit into the environment by constantly
adjusting the direction of evolution. This algorithm
defines the optimal direction (Definition 3) with evolu-
tion potential (Definition 4), and synthesizes the trial
vector generation(Algorithm 3).

c) Specific application of cloud model The cloud model
is a useful mathematical tool with randomness and a
stability tendency, which is employed to record the
eigenvalues of the parent generation using the reverse
cloud generator and generate cloud droplets randomly
for most of the filial generation using the forward
cloud generator (Definition 4). The specific operation
is described by Algorithm 5.

d) Selection strategy The next generation consists of two
parts: some are directly selected as offspring from the
vector space, consisting of the parent population, the
donor vector space, and the trial vector space, whereas

Adaptive differential evolution with directional strategy and cloud model 377

the greater part is generated by the MCG (Algorithm 4)
based on the cloud model to compensate for the loss of
population diversity, and which is described as:

Pg+1 = Θe
s

(
Pg ∪ P⇀

V
g ∪ P⇀

U
g

)
∪ Υ λ−e

Cloud (20)

where Θe
s means selecting e individuals from the spe-

cific vector space.

ADEwDC utilizes the dynamic adjustment strategy to
select evolutionary variants and set control parameters based
on the constructed topology. In fact, the subgroup with
the maximum f its evolves with a slow convergence speed
and superior exploration capability, while the minimum
one evolves with a fast convergence speed and superior
exploitation capability. Furthermore, each individual in the
same subgroup sets its control parameters based on the gap
between its fitness and the best fitness of the population. In
short, this algorithm has good adaptability.

Furthermore, ADEwDC designs an evolutionary direc-
tion to improve the convergence rate, introduces the cloud
model to ensure good diversity of the population, and
applies the special selection strategy to balance the perfor-
mance of the whole group. A series of experiments were
carried out to confirm the effectiveness of ADEwDC as
reported in the next section.

4 Experimental setup and results

To validate the ADEwDC algorithm, we selected several
categories of global minimization benchmark functions to
evaluate the proposed algorithm against other DE variants.
These benchmark functions provide a balance between uni-
modal and multimodal functions, and were chosen from the
set of 13 classic benchmark problems [30] that have fre-
quently been used in the literature [25, 38]. The following
problems were used:

(1) Rastrigin function:

f1(X) = 10 · D +
D∑

i=1

[
x2
i − 10 · cos(2Πxi)

]

with global optimum X∗ = 0 and f (X∗) = 0 for
−5 ≤ xi ≤ 5.

(2) Sphere function :

f2(X) =
D∑

i=1

x2
i

with global optimum X∗ = 0 and f (X∗) = 0 for
−100 ≤ xi ≤ 100.

378 J. Gou et al.

0 5 10 15 20 25 30 35 40 45 50
−0.5

0

0.5

1

1.5

2

n>m

n=m

n<m<2n

m=2n

m>2n

0 5 10 15 20 25 30 35 40 45 50
−0.5

0

0.5

1

1.5

2

2.5

3

e=20% NP

e=40% NP

e=50% NP

e=60% NP

e=65% NP

e=70% NP

e=75% NP

e=80% NP

Fig. 1 Influence of the number of top individuals (n), the number of top directions (m), and the number of remaining individuals (e) when
optimizing the Rastrigin function with ADEwDC

(3) Rosenbrock function :

f3(X) =
D−1∑
i=1

(
100(x2

i − xi+1)
2 + (xi − 1)2

)

with global optimum X∗ = (1, 1, ..., 1) and f (X∗) =
0 for −100 ≤ xi ≤ 100.

(4) Ackley function :

f4(X) = −20 ·e
−0.2

√
1
D

D∑
i=1

x2
i −e

1
D

D∑
i=1

cos(2�xi) +20+e

with global optimum X∗ = 0 and f (X∗) = 0 for
−32 ≤ xi ≤ 32.

(5) Griewank function :

f5(X) =
D∑

i=1

x2
i

4000
−

D∏
i=1

cos

(
xi√
i

)
+ 1

with global optimum X∗ = 0 and f (X∗) = 0 for
−600 ≤ xi ≤ 600.

Experiment 1 used a two-dimensional (2D) f1 to explore
the impact of the relevant parameters of Algorithm 6,
while experiment 2 used the same test function to show
the distribution of individuals in the solution space of
each generation and verify its convergence. Experiment

3 used a 2D f2, f3, f4, f5 to explain the effectiveness
of ADEwDC, compared with the conventional DE algo-
rithm, DE/rand/1/bin. Next, ADEwDCf was evaluated on
the CEC2013 benchmark problem set [15], as well as the
CEC2005 benchmarks [23] in Experiment 4. In this paper,
we compare ADEwDC with the following state-of-the-art
DE algorithms: SHADE [24], CoDE [28], EPSDE [17],
JADE [34], and dynNP-jDE [1] (an improved version of
jDE [2]). Our comparisons were done with dimensions D =
30 to analyze the effectiveness of the ADEwDC algorithm
comprehensively. Finally, ADEwDC was used to solve the
CEC2013 benchmark problems with dimensions D = 50 to
prove its universality and robustness.

All experiments were executed on the following system:

– OS: Windows 7 Professional
– CPU: Intel(R) Xeon(R) CPU E5620 @ 2.40GHz

2.40GHz
– RAM: 12.0GB
– Language: Matlab
– Compiler: Microsoft Visual C++ 2012

4.1 Experiment 1 - related parameter settings

To investigate the relevant parameter settings, we uti-
lized a 2D f1 as the test function to explore the influence

Table 1 Average best solution of all the experimental results varying n and m with a fixed e when optimizing the Rastrigin function with
ADEwDC over 10000 trials

Case n > m n = m n < m < 2n m = 2n m > 2n

Avg. value 1.81e−07 2.43e−07 1.99e−04 1.97e−04 1.11e−08

Adaptive differential evolution with directional strategy and cloud model 379

Table 2 Average best solution of all the experimental results varying e with fixed values of n and m when optimizing the Rastrigin function with
ADEwDC over 10000 trials

e 20 %NP 40 %NP 50 %NP 60 %NP 65 %NP 70 %NP 75 %NP 80 %NP

Avg. value 1.63−03 1.14e−04 3.15e−04 1.70e−08 1.36e−03 2.69e−03 4.27e−03 5.41e−03

of parameters in Algorithm 6, with the function
described as:

f (x1, x2) = 20 + x2
1 + x2

2 − 10(cos 2πx1 + cos 2πx2).

There are many local minima in the region of the
value distribution of this function, and thus it is a good
test case for measuring the effect of the relevant param-
eter settings. In this experiment, the number of top indi-
viduals (n) and the number of top directions (m) in
step 2.3 of Algorithm 6 were observed, as well as the
number of remaining individuals (e) from step 2.4 of
Algorithm 6.

First, keeping the same e, we set n > m, n = m, n <

m < 2n, m = 2n and m > 2n as five cases. This experi-
ment was repeated 10,000 times, and we randomly selected
the set of experimental results shown in Fig. 1a. Then we
calculate the average best solution of all the experimental
results, which are shown in Table 1.

Then, keeping the same n and m, set e = 20 % NP, e =
40 % NP, e = 50 % NP, e = 60 % NP, e =
65 % NP, e = 70 % NP, e = 75 % NP and
e = 80 % NP as eight cases. This experiment was also
repeated 10,000 times, and we randomly selected the set
of experimental results shown in Fig. 1b, and then calcu-
late the average best solution of all the experimental results
in Table 2.

Based on the above analysis, ADEwDC achieves rela-
tively good results when the number of top directions (m)
is more than twice the number of top individuals (n), and
the number of remaining individuals (e) is 60 % of the
population size. In fact, n satisfies:

{
m > 2n

n · m > NP
⇒ n · m > 2n2 > NP ⇒ n >

√
1

2
· NP

(21)

−5 −4 −3 −2 −1 0 1 2 3 4 5

−5

−4

−3

−2

−1

0

1

2

3

4

5

−5 −4 −3 −2 −1 0 1 2 3 4 5

−5

−4

−3

−2

−1

0

1

2

3

4

5

−5 −4 −3 −2 −1 0 1 2 3 4 5

−5

−4

−3

−2

−1

0

1

2

3

4

5

−5 −4 −3 −2 −1 0 1 2 3 4 5

−5

−4

−3

−2

−1

0

1

2

3

4

5

−5 −4 −3 −2 −1 0 1 2 3 4 5

−5

−4

−3

−2

−1

0

1

2

3

4

5

−5 −4 −3 −2 −1 0 1 2 3 4 5

−5

−4

−3

−2

−1

0

1

2

3

4

5

Fig. 2 Distribution of individuals in each generation while computing the minimum of the Rastrigin function

380 J. Gou et al.

4.2 Experiment 2 - convergence analysis

As defined above, the 2D Rastrigin function was also used
in this experiment, although it was applied to verify the
convergence of Algorithm 6.

The initial population consisted of 40 points, 20 times
the dimension recommended by Price [20], distribution
randomly in the region between [−5, 5] and [−5, 5]. Mean-
while, n = 5, m = 12, ensure n · m > NP and m > 2n,
then e = 24, which is 60 % of the population size. The dis-
tribution of the initial population is shown in Fig. 1a. The
fitness function is the function value of the concrete points
in the area. From the test results shown in Fig. 2a–f, we can
see that after the evolution of 12 generations, the individuals
distribution converges well. We listed the individuals of the

2nd , 4th, 8th, 11th, 12th generations on the region as shown
in Fig. 2b–f, respectively.

To further verify the convergence of ADEwDC, it was
compared with the standard DE, sDE for short, with
DE/rand/1/bin (with F = 0.5, CR = 0.3 in our exper-
iments). The results of evolving 15 generations shown in
Fig. 3 were randomly selected from 50 trial runs. In the
search procedure for the optimal solution, we used the
distribution area of all the points to represent the search
space, changes in which are illustrated in Fig. 3a. Obvi-
ously, the search space of ADEwDC tends to zero much
faster than that of sDE, after evolving only five or six
generations. We plot the best individual for each evolu-
tionary generation, as well as its abscissa and ordinates
in Fig. 3b–d, respectively. In Fig. 3, it can be seen that

0 5 10 15
−10

0

10

20

30

40

50

60

70

80

90

The Generations for Evolution

T
h
e
 S

e
a
r
c
h
in

g
 S

p
a
c
e
 f
o
r
 e

a
c
h
 g

e
n
e
r
a
ti
o
n

ADEwDC

sDE

0 5 10 15
−1

0

1

2

3

4

5

6

7

The Generations for Evolution

T
h
e
 d

is
tr

ib
u
ti
o
n
 o

f
O

p
ti
m

a
l
V

a
lu

e
 f
o
r
 e

a
c
h
 g

e
n
e
r
a
ti
o
n ADEwDC

sDE

0 5 10 15
−1.5

−1

−0.5

0

0.5

1

The Generations for Evolution

T
h
e
 d

is
tr

ib
u
ti
o
n
 o

f
a
b
s
c
is

s
a
 f
o
r
 e

a
c
h
 g

e
n
e
r
a
ti
o
n

ADEwDC

sDE

0 5 10 15
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

The Generations for Evolution

T
h
e
 d

is
tr

ib
u
ti
o
n
 o

f
o
r
d
in

a
te

 f
o
r
 e

a
c
h
 g

e
n
e
r
a
ti
o
n

ADEwDC

sDE

Fig. 3 Changes in the search space and the optimal value in each generation, comparing ADEwDC with the standard DE

Adaptive differential evolution with directional strategy and cloud model 381

ADEwDC converges to the optimal solution much faster
than sDE.

Overall, the results of experiment 2 show that ADEwDC
can effectively reduce the search space and rapidly con-
verge to the optimal solution, which is consistent with the
directional strategy. In the course of evolution, excellent
individuals evolve along the optimal evolution directions,
enabling the entire population to obtain the optimal value
easily and quickly.

4.3 Experiment 3 - effectiveness analysis

In this experiment, ADEwDC was used to optimize the 2D
f2, f3, f4, f5 to investigate the effectiveness of the algo-
rithm compared with the standard DE algorithm (sDE).

The results of evolving 50 generations for each function,
shown in Fig. 4, were randomly selected from 100 trial
runs.

For the Ackley and Griewank functions, the results by
ADEwDC are better than those by sDE in terms of both con-
vergence speed and accuracy, as clearly shown in Figs. 4c
and (d). For the Sphere and Rosenbrock functions, as shown
in Fig. 4a and b, ADEwDC converges faster than sDE and
obtains the desired optimal solution. To illustrate the effec-
tiveness of ADEwDC further, in Table 3 we list one full trial
result, randomly selected from the 100 experimental results
for each function.

From all the test results, we find that ADEwDC converges
to the optimal solution quickly and has good robustness. In
contrast, sDE is more likely to fall into a local optimum

0 5 10 15 20 25 30 35 40 45 50
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

The Generations for Evolution

T
h
e
 O

p
ti
m

a
l
V

a
lu

e
 o

f
S

p
h
e
r
e

ADEwDC

sDE

0 5 10 15 20 25 30 35 40 45 50
−100

0

100

200

300

400

500

600

The Generations for Evolution

T
h
e
 O

p
ti
m

a
l
V

a
lu

e
 o

f
R

o
s
e
n
b
r
o
c
k

ADEwDC

sDE

0 5 10 15 20 25 30 35 40 45 50
−2

0

2

4

6

8

10

12

14

The Generations for Evolution

T
h
e
 O

p
ti
m

a
l
V

a
lu

e
 o

f
A

c
k
le

y

ADEwDC

sDE

0 5 10 15 20 25 30 35 40 45 50
−2

0

2

4

6

8

10

12

The Generations for Evolution

T
h
e
 O

p
ti
m

a
l
V

a
lu

e
 o

f
G

r
ie

w
a
n
k

ADEwDC

sDE

Fig. 4 Comparison of the standard DE and the proposed algorithms while computing the minimum of f2,f3,f4,f5

382 J. Gou et al.

Table 3 Comparison of the standard DE algorithm and ADEwDC when computing the minimum of f2, f3, f4, f5

Function Algorithm 1st 2nd 4th 8th 12th

Sphere ADEwDC 16.5860 1.7209 0.0223 3.9371e − 08 2.4060e − 13

sDE 16.5860 16.5860 16.5860 2.2757 2.2757

Rosenbrock ADEwDC 1.2202e + 06 134.2504 1.4721 0.0040 1.9321e − 06

sDE 1.2202e + 06 4.7175e + 04 4.7175e + 04 14.8713 14.8713

Ackley ADEwDC 16.6727 4.0396 0.1190 1.3502e − 04 1.7969e − 07

sDE 16.6727 10.3736 9.4391 8.3671 3.5868

Griewank ADEwDC 5.4584 1.0759 0.0464 3.7112e − 04 3.7112e − 04

sDE 5.4584 4.1087 3.3114 0.8975 0.5499

Function Algorithm 16th 20th 30th 40th 50th

Sphere ADEwDC 1.8366e − 19 3.7332e − 27 2.5965e − 40 4.1011e − 55 4.8661e − 69

sDE 0.9714 0.6566 5.3771e − 04 1.0916e − 04 1.6398e − 06

Rosenbrock ADEwDC 2.6971e − 07 5.1569e − 09 1.3818e − 11 2.7095e − 14 9.4291e − 19

sDE 6.1316 6.1316 6.1316 3.7630 0.8860

Ackley ADEwDC 2.5507e − 10 5.5511e − 13 8.8818e − 16 8.8818e − 16 8.8818e − 16

sDE 3.5868 1.9990 0.3055 0.0027 0.0027

Griewank ADEwDC 5.6048e − 10 4.9405e − 14 0 0 0

sDE 0.3601 0.0719 0.0719 0.0119 0.0119

as shown in Fig. 5. Moreover, 1.0 × 10−3 is defined as
the acceptable level, which means that the run is judged to
be successful if a solution obtained by an algorithm falls
between the acceptable level and the actual global optimum
[33]. And we compare the frequency of premature conver-
gence and the average value of all the test results between
ADEwDC and sDE in Table 4.

Generally, the payoff for increasing diversity is a slower
(although more efficient) convergence speed. Neverthe-
less, Table 4 indicates that ADEwDC is not at the cost
of the convergence speed to obtain the diversity of the
solutions; conversely, it improves the diversity with MCG
(Algorithm 4), maintaining a good convergence rate at
the same time which has been confirmed in the previous
content [6, 35].

From the above experimental results and analysis, it can
been seen that compared with the standard DE algorithm,
Algorithm 6 has a faster convergence rate, obtains more
accurate optimization results, and has better robustness. In
short, ADEwDC is more effective than the standard DE
because of the cloud model, which enhances the population
diversity and prevents the algorithm from falling into a local
optimum.

4.4 Experiment 4 - competitiveness analysis

In this section, we evaluate the performance of ADEwDC
on the CEC2013 benchmark problem set [15], com-
pared with SHADE [24], CoDE [28], EPSDE [17], JADE

[34] and dynNP-jDE [1]. Then, using the CEC2005
benchmarks [23], ADEwDC is compared with SHADE to
verify its validity and accuracy further. For each com-
parative algorithm, we used the control parameter values
suggested in the cited papers. ADEwDC was executed on
the same system as that given for the previous experiments,
while comparative data for SHADE were taken from its orig-
inal paper [24]. The source programs for CoDE, EPSDE,
and JADE were based on code received from the original
authors. The number of dimensions was set to D = 30
and the maximum number of objective function calls per
run was calculated as D × 10, 000 (that is, 300,000) when
comparing ADEwDC with the other algorithms. Meanwhile,
NP = 100, n = 8, m = 20, and e = 60. Finally, we
executed ADEwDC on the CEC2013 benchmarks with the
number of dimensions set to D = 50 as a high-dimensional
case to prove its universality and robustness.

4.4.1 Experiment on the CEC2013 benchmarks

In this experiment, we performed our evaluation follow-
ing the guidelines of the CEC2013 benchmark competition
[15]. The search space was set as [−100, 100]D for all
the selected problems, the results of which are shown in
Table 5. In the table, the mean and standard deviation of
the error (difference) between the best fitness values found
in each run and the optimal value are shown. The +, −, ≈
indicate whether a given algorithm performed significantly
better (+), significantly worse (−), or not significantly

Adaptive differential evolution with directional strategy and cloud model 383

0 5 10 15 20 25 30 35 40 45 50
−20

0

20

40

60

80

100

120

140

160

180

The Generations for Evolution

T
h

e
 O

p
ti
m

a
l
V

a
lu

e
 o

f
S

p
h

e
r
e

ADEwDC

sDE

0 5 10 15 20 25 30 35 40 45 50
−200

0

200

400

600

800

1000

The Generations for Evolution

T
h

e
 O

p
ti
m

a
l
V

a
lu

e
 o

f
R

o
s
e

n
b

r
o

c
k

ADEwDC

sDE

0 5 10 15 20 25 30 35 40 45 50
−2

0

2

4

6

8

10

12

The Generations for Evolution

T
h

e
 O

p
ti
m

a
l
V

a
lu

e
 o

f
G

r
ie

w
a

n
k

ADEwDC

sDE

0 5 10 15 20 25 30 35 40 45 50
−1

0

1

2

3

4

5

6

7

8

The Generations for Evolution

T
h

e
 O

p
ti
m

a
l
V

a
lu

e
 o

f
G

r
ie

w
a

n
k

ADEwDC

sDE

Fig. 5 Optimal individuals of f2,f3,f4,f5 in each generation computed by ADEwDC and sDE, showing that ADEwDC has better robustness than
sDE

different better or worse (≈) compared to ADEwDC accord-
ing to the Wilcoxon rank-sum test, which is a nonparametric
alternative to the two-sample t-test based solely on the
order of the observations from the two samples (significance
threshold p ≤ 0.05) [29]. Functions f1 ∼ f5 are unimodal,
while f6 ∼ f20 are multimodal. f21 ∼ f28 are composite
functions combining multiple test problems into a complex
landscape [15].

The best result for each benchmark function is high-
lighted in Table 5, while Table 6 shows the statistical
ranking according to the respective performance of the DE
algorithms. The algorithms are ranked based on the aver-
age best solution in each row of Table 5, and the final rank
of the algorithms is determined by the average rank calcu-
lated according to problem feature in each column. From
Table 6, we see that SHADE, ADEwDC and JADE achieve

Table 4 The frequency
of premature convergence
and the average best solution
when computing the minimum
of f2,f3,f4,f5 with ADEwDC
and sDE

Algorithm Sphere Rosenbrock Ackley Griewank

ADEwDC Frequency 0 0 0 0

Average 1.73e−30 3.14e−24 8.86e−16 0.00e+00

sDE Frequency 97 99 99 100

Average 4.37e−03 2.09e−02 5.94e−02 1.33e−02

384 J. Gou et al.

Ta
bl

e
5

C
om

pa
ri

so
n

of
A

D
E

w
D

C
an

d
st

at
e-

of
-t

he
-a

rt
D

E
al

go
ri

th
m

s
w

hi
le

co
m

pu
ti

ng
th

e
m

in
im

um
of

th
e

be
nc

hm
ar

k
fu

nc
ti

on
s

in
C

E
C

20
13

.F
or

al
lp

ro
bl

em
s,

di
m

en
si

on
al

it
y

w
as

se
tt

o
D

=
30

,
an

d
th

e
m

ax
im

um
nu

m
be

r
of

ob
je

ct
iv

e
fu

nc
ti

on
ev

al
ua

ti
on

s
to

D
×

10
,
00

0
=

30
0,

00
0.

A
ll

re
su

lt
s

ar
e

av
er

ag
ed

ov
er

51
tr

ia
ls

A
D

E
w

D
C

SH
A

D
E

C
oD

E
E

PS
D

E
JA

D
E

dy
nN

P-
jD

E

F
M

ea
n(

St
d)

M
ea

n(
St

d)
M

ea
n(

St
d)

M
ea

n(
St

d)
M

ea
n(

St
d)

M
ea

n(
St

d)

f
1

0.
00

e+
00

(0
.0

0e
+0

0)
0.

00
e+

00
(0

.0
0e

+0
0)

≈
0.

00
e+

00
(0

.0
0e

+0
0)

≈
0.

00
e+

00
(0

.0
0e

+0
0)

≈
0.

00
e+

00
(0

.0
0e

+0
0)

≈
0.

00
e+

00
(0

.0
0e

+0
0)

≈
f

2
1.

89
e+

03
(3

.6
4e

+0
3)

9.
00

e+
03

(7
.4

7e
+0

3)
−

9.
78

e+
04

(4
.8

1e
+0

4)
−

1.
37

e+
06

(5
.3

9e
+0

6)
−

7.
67

e+
03

(5
.6

6e
+0

3)
−

9.
52

e+
04

(4
.0

9e
+0

4)
−

f
3

1.
80

e+
06

(2
.3

6e
+

06
)

4.
02

e+
01

(2
.1

3e
+0

2)
+

1.
08

e+
06

(3
.0

3e
+

06
)+

1.
75

e+
08

(5
.3

9e
+0

8)
−

4.
71

e+
05

(2
.3

5e
+0

6)
+

1.
71

e+
06

(2
.5

4e
+0

6)
≈

f
4

1.
00

e−
03

(2
.3

0e
−0

2)
1.

92
e−

04
(3

.0
1e

−0
4)

+
8.

18
e−

02
(1

.0
9e

−0
1)

−
8.

08
e+

03
(2

.5
6e

+0
4)

−
6.

09
e+

03
(1

.3
3e

+0
4)

−
4.

76
e+

01
(4

.7
5e

+0
1)

−
f

5
0.

00
e+

00
(0

.0
0e

+0
0)

0.
00

e+
00

(0
.0

0e
+0

0)
≈

0.
00

e+
00

(0
.0

0e
+0

0)
≈

0.
00

e+
00

(0
.0

0e
+0

0)
≈

0.
00

e+
00

(0
.0

0e
+0

0)
≈

0.
00

e+
00

(0
.0

0e
+0

0)
≈

f
6

0.
00

e+
00

(0
.0

0e
+0

0)
5.

96
e−

01
(3

.7
3e

+0
0)

−
4.

16
e+

00
(9

.0
0e

+0
0)

−
9.

27
e+

00
(1

.3
3e

+0
0)

−
2.

07
e+

00
(7

.1
7e

+0
0)

−
1.

19
e+

01
(1

.6
6e

+0
0)

−
f

7
5.

57
e+

01
(1

.2
4e

+0
1)

4.
60

e+
00

(5
.3

9e
+0

0)
+

9.
32

e+
00

(6
.3

7e
+0

0)
+

5.
88

e+
01

(4
.2

9e
+0

1)
−

3.
16

e+
00

(4
.1

3e
+0

0)
+

2.
62

e+
00

(1
.5

9e
+0

0)
+

f
8

2.
08

e+
01

(0
.0

0e
+0

0)
2.

07
e+

01
(1

.7
6e

−0
1)

+
2.

08
e+

01
(1

.1
8e

−0
1)

≈
2.

09
e+

01
(5

.3
2e

−0
2)

−
2.

09
e+

01
(4

.9
3e

−0
2)

−
2.

10
e+

01
(3

.9
8e

−0
2)

−
f

9
2.

61
e+

01
(3

.8
9e

+0
0)

2.
75

e+
01

(1
.7

7e
+0

0)
−

1.
45

e+
01

(2
.9

0e
+0

0)
+

3.
50

e+
01

(4
.2

1e
+0

0)
−

2.
65

e+
01

(1
.9

6e
+0

0)
−

2.
20

e+
01

(5
.1

2e
+0

0)
+

f
10

5.
41

e−
02

(6
.8

7e
−0

2)
7.

69
e−

02
(3

.5
8e

−0
2)

−
2.

71
e−

02
(1

.5
0e

−0
2)

+
1.

02
e−

01
(5

.6
5e

−0
2)

−
4.

04
e−

02
(2

.3
7e

−0
2)

+
3.

63
e−

02
(2

.3
4e

−0
2)

+
f

11
3.

89
e−

02
(8

.3
3e

−0
1)

0.
00

e+
00

(0
.0

0e
+0

0)
≈

0.
00

e+
00

(0
.0

0e
+0

0)
≈

1.
95

e−
02

(1
.3

9e
−0

1)
≈

0.
00

e+
00

(0
.0

0e
+0

0)
≈

0.
00

e+
00

(0
.0

0e
+0

0)
≈

f
12

4.
77

e+
01

(1
.4

4e
+0

1)
2.

30
e+

01
(3

.7
3e

+0
0)

−
3.

98
e+

01
(1

.2
1e

+0
1)

≈
4.

94
e+

01
(9

.2
8e

+0
0)

−
2.

29
e+

01
(5

.4
5e

+0
0)

+
4.

07
e+

01
(8

.8
1e

+0
0)

−
f

13
8.

59
e+

01
(2

.8
6e

+0
1)

5.
03

e+
01

(1
.3

4e
+0

1)
+

8.
04

e+
01

(2
.7

4e
+0

1)
≈

7.
68

e+
01

(1
.7

2e
+0

1)
+

4.
67

e+
01

(1
.3

7e
+0

1)
+

7.
10

e+
01

(1
.7

2e
+0

1)
+

f
14

2.
59

e−
01

(6
.8

7e
−0

1)
3.

18
e−

02
(2

.3
3e

−0
2)

+
3.

60
e+

00
(4

.0
9e

+0
0)

−
3.

99
e−

01
(6

.0
0e

−0
1)

−
2.

86
e−

02
(2

.5
3e

−0
2)

+
9.

39
e−

03
(1

.4
0e

−0
2)

+
f

15
3.

19
e+

03
(6

.1
1e

+0
2)

3.
22

e+
03

(2
.6

4e
+0

2)
−

3.
36

e+
03

(5
.3

1e
+0

2)
−

6.
75

e+
03

(7
.6

0e
+0

2)
−

3.
24

e+
03

(3
.1

7e
+0

2)
−

4.
39

e+
03

(4
.7

2e
+0

2)
−

f
16

4.
74

e−
01

(0
.0

0e
+0

0)
9.

13
e−

01
(1

.8
5e

−0
1)

−
3.

38
e−

01
(2

.0
3e

−0
1)

≈
2.

48
e+

00
(2

.8
8e

−0
1)

−
1.

84
e+

00
(6

.2
7e

−0
1)

−
2.

32
e+

00
(2

.8
3e

−0
1)

−
f

17
3.

04
e+

01
(1

.3
3e

−0
2)

3.
04

e+
01

(3
.8

3e
−1

4)
≈

3.
04

e+
01

(1
.1

7e
−0

2)
−

3.
04

e+
01

(2
.5

1e
−0

2)
≈

3.
04

e+
01

(1
.9

5e
−1

4)
≈

3.
04

e+
01

(1
.7

8e
−0

3)
≈

f
18

8.
06

e+
01

(0
.0

0e
+0

0)
7.

25
e+

01
(5

.5
8e

+0
0)

+
6.

69
e+

01
(9

.2
3e

+0
0)

+
1.

37
e+

02
(1

.1
2e

+0
1)

−
7.

76
e+

01
(5

.9
1e

+0
0)

−
1.

35
e+

02
(1

.2
4e

+0
1)

−
f

19
1.

47
e+

00
(1

.8
8e

−0
1)

1.
36

e+
00

(1
.2

0e
−0

1)
+

1.
61

e+
00

(3
.5

8e
−0

1)
−

1.
84

e+
00

(2
.0

0e
−0

1)
−

1.
44

e+
00

(8
.7

1e
−0

2)
≈

1.
27

e+
00

(1
.0

9e
−0

1)
+

f
20

1.
07

e+
01

(9
.7

4e
−0

1)
1.

05
e+

01
(6

.0
4e

−0
1)

+
1.

06
e+

01
(6

.6
9e

−0
1)

≈
1.

30
e+

01
(6

.3
3e

−0
1)

−
1.

04
e+

01
(5

.8
2e

−0
1)

+
1.

13
e+

01
(4

.1
4e

−0
1)

−
f

21
3.

00
e+

02
(0

.0
0e

+0
0)

3.
09

e+
02

(5
.6

5e
+0

1)
−

3.
02

e+
02

(9
.0

2e
+0

1)
−

3.
05

e+
02

(8
.0

6e
+0

1)
−

3.
04

e+
02

(6
.6

8e
+0

1)
−

2.
94

e+
02

(8
.2

9e
+0

1)
≈

f
22

2.
11

e+
02

(8
.4

7e
+0

2)
9.

81
e+

01
(2

.5
2e

+0
1)

+
1.

17
e+

02
(9

.9
6e

+0
0)

+
3.

09
e+

02
(1

.1
2e

+0
2)

−
9.

39
e+

02
(3

.0
8e

+0
1)

−
1.

03
e+

02
(2

.5
7e

+0
1)

+
f

23
3.

61
e+

03
(7

.7
9e

+0
2)

3.
51

e+
03

(4
.1

1e
+0

2)
+

3.
56

e+
03

(6
.1

2e
+0

2)
≈

6.
74

e+
03

(8
.2

0e
+0

2)
−

3.
36

e+
03

(4
.0

1e
+0

2)
+

4.
36

e+
03

(4
.6

1e
+0

2)
−

f
24

2.
09

e+
02

(9
.2

8e
+0

0)
2.

05
e+

02
(5

.2
9e

+0
0)

+
2.

21
e+

02
(9

.2
8e

+0
0)

−
2.

91
e+

02
(7

.0
8e

+0
0)

−
2.

17
e+

02
(1

.5
7e

+0
1)

−
2.

04
e+

02
(4

.2
2e

+0
0)

+
f

25
2.

54
e+

02
(0

.0
0e

+0
0)

2.
59

e+
02

(1
.9

6e
+0

1)
−

2.
57

e+
02

(6
.5

5e
+0

0)
−

2.
99

e+
02

(3
.2

9e
+0

0)
−

2.
74

e+
02

(1
.0

6e
+0

1)
−

2.
55

e+
02

(7
.9

1e
+0

0)
≈

f
26

2.
00

e+
02

(4
.4

1e
+0

1)
2.

02
e+

02
(1

.4
8e

+0
1)

−
2.

18
e+

02
(4

.4
8e

+0
1)

−
3.

56
e+

02
(6

.4
9e

+0
1)

−
2.

15
e+

02
(4

.1
1e

+0
1)

−
2.

00
e+

02
(3

.0
6e

−0
3)

+
f

27
9.

15
e+

02
(0

.0
0e

+0
0)

3.
88

e+
02

(1
.4

8e
+0

1)
+

6.
20

e+
02

(1
.0

1e
+0

2)
+

1.
21

e+
03

(7
.4

2e
+0

1)
−

6.
70

e+
02

(2
.4

0e
+0

2)
+

3.
90

e+
02

(9
.1

2e
+0

1)
+

f
28

3.
00

e+
02

(0
.0

0e
+0

0)
3.

00
e+

02
(0

.0
0e

+0
0)

≈
3.

00
e+

02
(0

.0
0e

+0
0)

≈
3.

00
e+

02
(0

.0
0e

+0
0)

≈
3.

00
e+

02
(0

.0
0e

+0
0)

≈
3.

00
e+

02
(0

.0
0e

+0
0)

≈
+

13
7

1
9

10

−
10

11
22

13
10

≈
3

10
5

6
8

Adaptive differential evolution with directional strategy and cloud model 385

Table 6 Statistical ranking of ADEwDC and state-of-the-art DE algo-
rithms while computing the minimum of the benchmark functions in
CEC2013

Unimodal Multimodal Composite functions

1 SHADE ADEwDC dynNP-jDE

2 ADEwDC JADE SHADE

3 JADE CoDE ADEwDC

4 CoDE dynNP-jDE JADE

5 dynNP-jDE SHADE CoDE

6 EPSDE EPSDE EPSDE

the best performance on unimodal problems. The good
performance of JADE on the unimodal functions is consis-
tent with previous results [28]. For the basic multimodal
functions, ADEwDC performs relatively well, although for
several of the problems including f13, f18, JADE and CoDE
perform particularly well. For the complex, composite func-
tions, the best performer is dynNP-jDE (possibly owing to
its population size reduction strategy), followed by SHADE,
ADEwDC, JADE, CoDE and EPSDE. Finally, based on the
statistical data given in the bottom three rows of Table 5,
ADEwDC achieves better performance than CoDE, EPSDE
and JADE, and similar performance to dynNP-jDE, but does
not surpass the performance of SHADE on these 28 prob-
lems. Still, ADEwDC is better suited to multimodal prob-
lems than SHADE. This is probably because the dynamic
adjustment strategy gives ADEwDC extensive adaptabil-
ity, which has advantages in dealing with multimodal
problems.

4.4.2 Experiment on the CEC2005 benchmarks

To verify the validity and accuracy further, we com-
pared ADEwDC with SHADE on the CEC2005 benchmarks
[23]. CEC2005 provides many classic benchmark functions,
which have been tested by many original authors of algo-
rithms. Functions f1 ∼ f5 are unimodal, while the others
are multimodal. f6 ∼ f12 are basic functions, f13 ∼ f14 are
expanded functions, and f15 ∼ f25 are hybrid composition
functions. For this experiment, comparative data were once
again taken from [24].

In Table 7, it is shown that ADEwDC performs very
well with multimodal problems, especially on the basic and
hybrid composition functions, which coincides with the pre-
vious experimental analysis. Overall, ADEwDC is slightly
better than SHADE. For the expanded functions, ADEwDC
achieves similar performance to SHADE. Nonetheless,
ADEwDC does not perform as well on the unimodal prob-
lems, especially for f4, f5, which is also consistent with
the previous analysis. Generally, ADEwDC is ideal for
multimodal optimization problems.

Table 7 Comparison of ADEwDC and SHADE while computing the
minimum of benchmark functions in CEC2005. For all problems, we
set the dimensionality D = 30, and the maximum number of objective
function evaluations D × 10, 000 = 300, 000. All results are averaged
over 25 trials

ADEwDC SHADE

F Mean(Std) Mean(Std)

f1 0.00e+00(0.00e+00) 8.05e−18(1.27e−17)≈
f2 0.00e+00(2.66e−05) 2.53e−17(9.74e−18)≈
f3 6.31e−03(5.38e−03) 1.18e+04(8.43e+03)−
f4 3.90e+02(3.09e+02) 8.45e−10(7.03e−09)+
f5 2.35e+03(1.62e+03) 1.18e−03(8.87e−03)+
f6 0.00e+00(1.99e+00) 2.79e−01(1.02e+00)−
f7 1.72e−02(2.53e−02) 9.88e−03(6.98e−03)≈
f8 2.00e+01(0.00e+00) 2.03e+01(3.69e−01)−
f9 2.81e+01(5.47e+00) 0.00e+00(0.00e+00)+
f10 5.63e+01(1.06e+01) 2.36e+01(3.47e+00)+
f11 2.26e+01(3.06e+00) 2.66e+01(1.93e+00)−
f12 4.18e+02(3.00e+02) 1.60e+03(2.34e+03)−
f13 3.51e+00(1.10e+00) 1.36e+00(9.64e−02)+
f14 1.21e+01(2.40e−01) 1.24e+01(2.55e−01)−
f15 3.05e+02(2.35e+02) 3.58e+02(9.34e+01)−
f16 2.91e+02(1.87e+02) 7.40e+01(8.82e+01)+
f17 1.96e+02(1.33e+01) 9.20e+01(6.89e+01)+
f18 8.46e+02(1.56e+01) 9.02e+02(1.82e+01)−
f19 8.44e+02(1.88e+00) 9.05e+02(1.07e+01)−
f20 8.39e+02(1.22e+00) 9.04e+02(1.07e+01)−
f21 5.00e+02(0.00e+00) 5.03e+02(3.00e+01)−
f22 7.90e+02(1.58e+02) 8.78e+02(1.33e+01)−
f23 5.53e+02(1.63e+01) 5.38e+02(4.03e+01)+
f24 2.41e+02(2.73e+01) 2.00e+02(0.00e+00)+
f25 2.10e+02(3.76e−01) 2.09e+02(1.46e−01)≈

+ 9

− 12

≈ 4

4.4.3 High dimensional experiment on the CEC2013
benchmarks

We also executed ADEwDC on the CEC2013 benchmarks,
setting the number of dimensions D = 50 as a high-
dimensional case to prove the universality and robustness
of the proposed algorithm. The maximum number of objec-
tive function calls per run was set as D × 10, 000 (that
is, 500,000). From Table 8, it can clearly be seen that
ADEwDC is also suitable for high-dimensional problems,
especially for multimodal optimization functions, which
is consistent with our previous experimental analysis and
conclusions.

386 J. Gou et al.

Table 8 ADEwDC applied to the CEC2013 benchmarks, with dimensionality D = 50, and maximum number of objective function evaluations
D × 10, 000 = 500, 000. The results of this high-dimensional test confirm the universality and robustness of ADEwDC, with all results averaged
over 51 trials

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

Best 0.00e+00 6.64e−02 1.60e+07 3.76e+04 0.00e+00 0.00e+00 4.93e+01 2.09e+01 3.19e+01 0.00e+00

Mean 0.00e+00 3.19e−01 5.14e+07 4.40e+04 0.00e+00 0.00e+00 6.06e+01 2.11e+01 3.88e+01 3.32e−02

Std 0.00e+00 3.14e−01 7.10e+07 5.00e+03 0.00e+00 0.00e+00 5.99e+00 5.56e−02 4.68e+00 2.35e−02

f11 f12 f13 f14 f15 f16 f17 f18 f19 f20

Best 6.66e+01 9.65e+01 2.58e+02 1.39e+03 5.63e+03 2.45e−01 1.11e+02 1.24e+02 1.08e+01 1.79e+01

Mean 9.65e+01 1.13e+02 3.11e+02 2.68e+03 6.40e+03 4.90e−01 1.29e+02 1.46e+02 1.72e+01 2.04e+01

Std 2.19e+01 1.64e+01 3.29e+01 8.81e+02 7.97e+02 2.54e−01 1.99e+01 1.63e+01 5.25e+00 1.50e+00

f21 f22 f23 f24 f25 f26 f27 f28

Best 8.36e+02 1.22e+03 6.74e+03 2.42e+02 2.50e+02 2.00e+02 7.88e+02 4.00e+02

Mean 8.36e+02 2.46e+03 9.36e+03 2.56e+02 2.70e+02 2.00e+02 8.72e+02 4.00e+02

Std 1.64e+02 9.76e+02 2.06e+03 2.69e+01 1.02e+01 5.71e+01 2.21e+02 0.00e+00

5 Conclusions and future work

A novel adaptive DE algorithm with directional strategy
and cloud model was presented in this paper. The DE
algorithm is known to be an efficient and powerful opti-
mization algorithm, which is used widely in scientific and
engineering fields. Considering that most DE algorithms
still suffer from a number of problems such as difficult
parameter setting, slow convergence rate, and premature
convergence, the proposed algorithm utilizes a dynamic
adjustment strategy to select evolutionary variants and
set control parameters based on the constructed topology,
adopts a directional strategy to evolve outstanding individ-
uals and improve the convergence speed of the algorithm,
and maintains the diversity of the population by employing
the cloud model. Results of the experiments confirm that
ADEwDC achieves good performance in terms of conver-
gence, stability, and precision, which greatly contributes
to overcoming the low efficiency in conventional DE algo-
rithms. Meanwhile, ADEwDC effectively avoids falling into
a local optimum. Our future work involves strengthening
the theoretical analysis of ADEwDC, further improving its
accuracy and stability, and generalizing it to solve constraint
and multi-objective optimization problems in practical
applications.

Acknowledgments This work was supported by the National
Natural Science Foundation of China (No. 61103170, 51305142,
61305085), the Program for Prominent Young Talent in Fujian
Province University (No. JA12005), and the Promotion Program for
Young and Middle-aged Teachers in Science and Technology Research
at Huaqiao University (No. ZQN-PY211).

References

1. Brest J, Mauec MS (2008) Population size reduction for the
differential evolution algorithm. Appl Intell 29(3):228–247

2. Brest J, Greiner S, Boskovic B, Mernik M, Zumer V (2006)
Self-adapting control parameters in differential evolution: a com-
parative study on numerical benchmark problems. IEEE Trans
Evol Comput 10(6):646–657

3. Cai YQ, Wang JH (2013) Differential evolutionwith neighborhood
and direction information for numerical optimization. IEEE Trans
Cybern 43(6):2202–2215

4. Das S, Suganthan PN (2011) Differential evolution: A survey of
the state-of-the-art. Evol Comput 15(1):4–31

5. Das S, Abraham A, Chakraborty UK, Konar A (2009) Differen-
tial evolution using a neighborhood based mutation operator. IEEE
Trans Evol Comput 13(3):526–553

6. Ding JL, Liu J, Chowdhury KR, Zhang WS, Hu QP, Lei J (2014)
A particle swarm optimization using local stochastic search and
enhancing diversity for continuous optimization. Neurocomputing
137:261–267

7. Dorronsoro B, Bouvry P (2011) Improving classical and decen-
tralized differential evolution with new mutation operator and
population topologies. IEEE Trans Evol Comput 15(1):67–
98

8. Eiben AE, Hinterding R, Michalewicz Z (1999) Parameter control
in evolutionary algorithms. IEEE Trans Evol Comput 3(2):124–
141

9. Gao XZ, Wang XL, Ovaska SJ (2009) Fusion of clonal selection
algorithm and differential evolution method in training cascade-
correlation neural network. Neurocomputing 72(10–12):2483–
2490

10. Gao Y (2009) An optimization algorithm based on cloud model.
In: 2009 international conference on computational intelligence
and security, pp 84–87

11. Li DY, Du Y (2005) Artificial intelligence with uncertainty (in
Chinese). National Defense Industry Press, Beijing

12. Li DY, Liu CY (2005) Study on the universality of the normal
cloud model. Eng Sci 3(2):18–24

Adaptive differential evolution with directional strategy and cloud model 387

13. Li DY, Meng HJ, Shi XM (1995) Membership clouds and
membership cloud generators (in chinese). J Comput Res Dev
32(6):15–20

14. Li DY, Liu CY, Gan WY (2009) A new cognitive model: Cloud
model. Int J Intell Syst 24(3):357–375

15. Liang JJ, Qu BY, Suganthan PN, Hernández-Dı́az AG (2013)
Problem definitions and evaluation criteria for the cec 2013 special
session on real-parameter optimization. Tech. rep., Computational
Intelligence Laboratory, Zhengzhou University, Zhengzhou China

16. Liu G, Li YX, Nie X, Zheng H (2012) A novel clustering-based
differential evolution with 2 multi-parent crossovers for global
optimization. Appl Soft Comput 12(2):663–681

17. Mallipeddi R, Suganthan PN, Pan QK, Tasgetiren MF (2011) Dif-
ferential evolution algorithm with ensemble of parameters and
mutation strategies. Appl Soft Comput 11(2):1679–1696

18. Omran MGH, Salman A, Engelbrecht AP (2005) Self-adaptive
differential evolution. Proceedings part I international conference,
CIS 2005. Springer Berlin Heidelberg, pp 192–199

19. Pan QK, Suganthan PN, Ling W, Liang G, Mallipeddi R (2011)
A differential evolution algorithm with self-adapting strategy and
control parameters. Comput Oper Res 38(1):394–408

20. Price KV (1999) An introduction to differential evolution. In:
Corne D, Dorigo M, Glover F (eds) New ideas in optimization.
McGraw-Hill, Ltd., UK, pp 79–108

21. Qin AK, Huang VL, Suganthan PN (2009) Differential evo-
lution algorithm with strategy adaptation for global numerical
optimization. IEEE Trans Evol Comput 13(2):398–417

22. Storn R, Price K (1997) Differential evolution - a simple and
efficient adaptive scheme for global optimization over continuous
spaces. J Glob Optim 11(4):341–359

23. Suganthan PN, Hansen N, Liang JJ, Deb K, Chen YP, Auger A,
Tiwari S (2005) Problem definitions and evaluation criteria for
the cec 2005 special session on real-parameter optimization. Tech.
rep., Nanyang Technological University

24. Tanabe R, Fukunaga A (2013) Success-history based parameter
adaptation for differential evolution. In: 2013 IEEE congress on
evolutionary computation (CEC)

25. Vafashoar R, Meybodi MR, Azandaryani AHM (2012) Cla-de: a
hybrid model based on cellular learning automata for numerical
optimization. Appl Intell 36(3):735–748

26. Varadarajan M, Swarup KS (2008) Differential evolutionary algo-
rithm for optimal reactive power dispatch. Electr Power Energy
Systs 30(8):435–441

27. Wang X, Zhao SG (2013) Differential evolution algorithm with
self-adaptive population resizing mechanism. Math Probl Eng
2013(2013):1–14

28. Wang Y, Cai Z, Zhang Q (2011) Differential evolution with com-
posite trial vector generation strategies and control parameters.
IEEE Trans Evol Comput 15(1):55–66

29. Wilcoxon F (1945) Individual comparisons by ranking methods.
Biometrics Bulletin 1(6):80–83

30. Yao X, Liu Y, Lin G (1999) Evolutionary programming made
faster. IEEE Trans Evol Comput 3(2):82–102

31. Yildiz AR (2013) Hybrid taguchi-differential evolution algorithm
for optimization of multi-pass turning operations. Appl Soft Com-
put 13(3):1433–1439

32. Zaharie D (2003) Control of population diversity and adapta-
tion in differential evolution algorithms. In: Matousek R, Osmera
P (eds) 2003 9th international conference on soft computing,
pp 41–46

33. Zhan ZH, Zhang J, Li Y, Shi YH (2011) Orthogonal learning parti-
cle swarm optimization. IEEE Trans Evol Comput 15(6):832–847

34. Zhang JQ, Sanderson AC (2009) Jade: adaptive differential evo-
lution with optional external archive. IEEE Trans Evol Comput
13(5):945–958

35. Zhang JZ, Ding XM (2011) A multi-swarm self-adaptive and
cooperative particle swarm optimization. Eng Appl Artif Intell
24(6):958–967

36. Zhao SZ, Suganthan PN, Das S (2011) Self-adaptive differential
evolution with multi-trajectory search for large-scale optimization.
Soft Comput 15(11):2175–2185

37. Zhao ZQ, Gou J, Wang J (2010) Directional evolutionary algo-
rithm based on fitness gradient of individuals (in chinese). Pattern
Recognit Artif Intell 23(1):29–37

38. Zheng YJ, Ling HF, Xue JY (2014) Ecogeography-based opti-
mization: Enhancing biogeography-based optimization with eco-
geographic barriers and differentiations. Comput Oper Res
50:115–127

39. Zhu CM, Ni J (2012). Cloud model-based differential evolution
algorithm for optimization problems. In: 2012 6th international
conference on internet computing for science and engineering, pp
55–59

Jin Gou received the B.E.
degree and M.E. degree in
computer science and tech-
nology from Fuzhou Uni-
versity, China in 1999 and
2002. He received the Ph.D.
degree in Computer Science
and Technology from Zhejiang
University, China in 2006.
Currently, he is an Associate
Professor at Huaqiao Univer-
sity, China. His research inter-
ests include knowledge fusion
and artificial intelligence.

Wang-Ping Guo received the
graduate degree in computer
science and technology from
Huaqiao University, China in
2012. Currently, he is a gra-
duate student at Huaqiao Uni-
versity, China. His research
interests include artificial in-
telligence and evolutionary
computation.

Feng Hou received the gradu-
ate degree in computer science
and technology from Huaqiao
University, China in 2012.
Currently, he is a graduate stu-
dent at Huaqiao University,
China. His research interests
include artificial intelligence
and data mining.

388 J. Gou et al.

Cheng Wang received the
Ph.D. degree in mechanics
from Xi’an jiaotong Univer-
sity, China in 2012. Cur-
rently, he is a lecturer at
Huaqiao University, China.
His research interests include
signal processing and data
mining.

Yi-Qiao Cai received his
Ph.D. degree from Sun Yat-sen
University, Guangzhou, China,
in 2012. In 2012, he joined
Huaqiao University, Xiamen,
China, where he is currently
a Lecturer with the College of
Computer Science and Tech-
nology. He is now inter-
ested in differential evolution,
multi-objective optimisation,
and other evolutionary compu-
tation techniques.

	Adaptive differential evolution with directional strategy and cloud model
	Abstract
	Introduction
	The DE algorithm
	Mutation
	Crossover
	Selection

	Adaptive differential evolutionary algorithm with directional strategy and cloud model
	Dynamic adjustment strategy
	Design of evolutionary direction
	Specific application of cloud model
	ADEwDC
	Framework of the algorithm
	Discipline of the algorithm

	Experimental setup and results
	Experiment 1 - related parameter settings
	Experiment 2 - convergence analysis
	Experiment 3 - effectiveness analysis
	Experiment 4 - competitiveness analysis
	Experiment on the CEC2013 benchmarks
	Experiment on the CEC2005 benchmarks
	High dimensional experiment on the CEC2013 benchmarks

	Conclusions and future work
	Acknowledgments
	References

