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Abstract Managing the uncertainties that arise in disas-
ters – such as a ship or building fire – can be extremely
challenging. Previous work has typically focused either
on modeling crowd behavior, hazard dynamics, or target-
ing fully known environments. However, when a disaster
strikes, uncertainties about the nature, extent and further
development of the hazard is the rule rather than the
exception. Additionally, crowds and hazard dynamics are
both intertwined and uncertain, making evacuation planning
extremely difficult. To address this challenge, we propose
a novel spatio-temporal probabilistic model that integrates
crowd and hazard dynamics, using ship- and building fire
as proof-of-concept scenarios. The model is realized as
a dynamic Bayesian network (DBN), supporting distinct
kinds of crowd evacuation behavior, being based on stud-
ies of physical fire models, crowd psychology models, and
corresponding flow models. Simulation results demonstrate
that the DBN model allows us to track and forecast the
movement of people until they escape, as the hazard devel-
ops from time step to time step. Our scheme thus opens up
for novel in situ threat mapping and evacuation planning
under uncertainty, with applications to emergency response.

Keywords Dynamic bayesian networks · Evacuation
planning · Crowd modeling · Hazard modeling

J. Radianti · O. -C. Granmo (�) · P. Sarshar · M. Goodwin ·
J. Dugdale · J. J. Gonzalez
Centre for Integrated Emergency Management,
University of Agder Grimstad, Agder Grimstad, Norway
e-mail: ole.granmo@uia.no

J. Dugdale
Grenoble 2 University/Grenoble Informatics Laboratory (LIG),
Grenoble, France

1 Introduction

Evacuating large crowds of people during a fire is a huge
challenge to emergency planners, and ill-conceived evac-
uation plans have resulted in a great number of fatalities
over the years [1]. However, accurately evaluating evac-
uation plans through real world evacuation exercises is
disruptive, hard to organize and does not always give a
true picture of what will happen in the real situation. These
challenges are further aggravated by not fully knowing
how a hazard will evolve or whether a queue along an
escape path will become a bottleneck. Such uncertainty
requires that evacuation plans are dynamically adapted to
the situation at hand, guided by the information presently
available.

A non-anticipative, adaptive and decentralized strategy
which considers queuing theory for managing evacuation
networks has been proposed in previous research [2]. Fur-
thermore, evacuation dynamics for specific groups within
a crowd, such as children, people with reduced mobility
and individuals with disabilities, have been scrutinized in
terms of movement patterns, including walking speed, flow
through doors and stairs, as well as density around exits,
and panic behavior [3–7]. Formal crowd models have pre-
viously been found useful for off-line escape planning in
large and complex buildings as well as industrial sites fre-
quented by a significant number of people [8–13]. In brief,
the focus of previous work has typically been either on
crowd behavior or on hazard dynamics, for fully known
environments.

However, when a disaster strikes, uncertainties about
the nature, extent and evolution of the hazard is the rule
rather than the exception. Additionally, crowd- and hazard
dynamics will be both intertwined and uncertain, making
evacuation planning extremely difficult. To address this
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challenge, we propose a novel spatio-temporal probabilis-
tic model in the form of a Dynamic Bayesian Network
(DBN) [14]. This DBN integrates crowd dynamics with haz-
ard dynamics and explicitly captures the uncertain nature of
such dynamics. Thus, our approach provides a novel solu-
tion to the challenges listed above, not previously addressed
in the literature [2, 15]. Our overall goal is to build an
integrated emergency evacuation model comprising hazard
and threat maps for on-site path planning during crowd
evacuation, when challenged by limited and uncertain
information.

The research reported here is conducted as part of
the SmartRescue project [16], where we are also cur-
rently investigating how to use smartphones for real-time
and immediate threat assessment and evacuation support,
addressing the needs of both emergency managers and
the general public. Smartphones are equipped with ever
more advanced sensor technologies, including accelerom-
eter, gyroscope, GPS, microphone, and camera. This has
enabled entirely new types of smartphone applications that
connect low-level sensor input with high-level events to
be developed. The integrated crowd evacuation- and haz-
ard model reported here is fundamental for the smartphone
based reasoning engine that we envision for threat assess-
ment and evacuation support.

We take as our case studies the emergency evacuation
of passengers from a ship, and evacuation of people from
a three-story building, triggered by a major fire. Manag-
ing uncertainty in such a scenario is of great importance
for decision makers and rescuers. They need to be able
to evaluate the impact of the different strategies available
so that they can select an evacuation plan that ensures
as ideal evacuation as possible. These proof-of-concept
case studies are further extended in the last part of the
paper where we examine large-scale and real-time decision
scenarios.

The paper is organized as follows: Section 2 surveys
the literature on crowd- and evacuation modeling, high-
lighting the novelty of our approach compared to exist-
ing evacuation and crowd models. Section 3 presents the
ship- and building layouts that exemplify the environ-
ments that we address by our approach. We then introduce
our novel integrated hazard- and crowd evacuation model
in Section 4, including the details of the DBN design
for intertwined modeling of hazard- and crowd dynam-
ics, also addressing congestion. In Section 5, we present
and discuss simulation results that demonstrate that the
DNB model allows us to track and forecast the movement
of people until they escape, as the hazard develops
from time step to time step. In this section we also
address the issue of computational scalability. We con-
clude the paper in Section 6 by listing areas for further
investigation.

2 Previous work

As touched upon in the introduction, a plentitude of crowd
modeling approaches have been investigated previously (see
e.g. [17]). In brief, these have been widely scrutinized from
different fields of study. Social-psychological studies are
for instance highly qualitative in their approach [18–21],
while studies based on physics and mathematics introduce
quantitative concepts such as motion, force, and veloc-
ity to model crowd attributes, expressed as mathematical
models [10, 22–28]. Building upon the latter extremes, com-
puter science research provides technology and software for
crowd modeling. Furthermore, abstractions that facilitate
more practical tasks have been introduced, such as design-
ing evacuation routes and exits, managing disaster risks, and
finding the best way to manage crowds [29].

The existing crowd models can be roughly categorized
into macroscopic, microscopic and hybrid models. The
macroscopic models mostly focus on the entire crowd as the
unit of analysis, and tend to observe the crowd as a flow.
Microscopic models are concerned with detailed features
of each entity in a crowd; this is typical of an agent-
based modeling approach (ABM). While physicists aim to
include physical concepts such as the velocity of each agent
(particle), sociologists and psychologists introduce behav-
ioral notions like collective behavior, panic, anxiety, stress,
social attachment, norms, contagious effects, and cogni-
tive processes into each agent. Both approaches have been
influential and are used in computational crowd evacua-
tion models. Although many ABMs now include social
factors, social-psychological effects are often still not fully
taken into account, leaving models unsatisfactory when it
comes to real-world relevance. Indeed, some ABMs are
considered to lack plausible explanations of social prac-
tices, have inadequate validation, or fail to incorporate
group interaction and inter-group dynamics. Hence, despite
the strong focus on modeling low-level details of crowd
behavior in ABMs, certain social-physiological factors are
frequently overlooked or consciously ignored, especially if
they introduce excessive complexity and thus affect model
performance [30].

As opposed to the approaches mentioned above, address-
ing fully known environments, we focus on how to deal with
uncertainties in an unfamiliar environment during the actual
emergency evacuation. Basing our work upon Bayesian net-
works (BNs), the uncertainties that we address include the
scale of the hazard, its location, and the movement of peo-
ple. BNs are widely used practical tools for knowledge rep-
resentation and reasoning under uncertainty, and have been
increasingly adopted for modeling and solving real-world
problems affected by uncertainty. In the emergency man-
agement domain, BNs have for instance previously been
successfully applied for: analysis and decision support in
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maritime scenarios (including maritime accidents); surveil-
lance; obtaining situational awareness; assessing impact
on human fatigue; and risk management. Other important
application areas include modeling and simulation of hazard
scenarios such as fires, floods, collisions, as well as pirate
attacks against offshore platforms. The purpose is to iden-
tify optimal decision policies, including alarm and evacua-
tion strategies, based on maximizing expected utility under
different hazard scenarios [31–37]. This previous research
does not apply DBNs and thus does not fully address the
dynamic nature of hazards and crowds. Although DBNs
recently have been applied to model fire, this approach
focuses mainly on the likelihood of fire spreading from
room to room, while crowd, risk and evacuation factors are
not considered [38]. Indeed, our approach is quite differ-
ent from previous studies since we focus on tracking both
people and hazards on-site, dealing with the uncertainty
that arises when one has to rely on noisy and incomplete
information. In addition, we forecast crowd behavior and
hazard development for the purpose of producing real-time
risk maps, evacuation routes, and dynamically identifying
optimal movement of passengers as the hazard evolves.

3 Scenario and modeling approach

3.1 Ship and building scenarios

We use an onboard ship fire and fire in a three-story build-
ing as application scenarios for our DBN based modeling
approach. Figure 1 shows five different layout configura-
tions for the ship and the three-story building, represented
as directed graphs. The ship layout in Fig. 1a has a sin-
gle exit and consists of compartments, stairways, corridors
and an embarkation area. Nodes A, B and C in the graph
are the compartments, each with doors connecting them
to a corridor. Nodes D1, D2 and D3 represent the corri-
dor, which directly links to the different compartments. E

is an embarkation area (muster or assembly area) where in
an emergency, all passengers gather before being evacuated
and abandoning the ship. Nodes S1 and S2 represent two
stairways. These connect the corridor to the embarkation
area E.

The building layout depicted in Fig. 1c is a model of a
three-story office building and comprises three sections in
each of the two upper floors, and a corridor on the first
floor that leads to a central exit. The building sections where
most people are located during office hours are sections
A2, B2, C2, A1, B1, and C1. Similar to the ship scenario,
D1, D2 and D3 represent the corridor area that will bring
people from the stairways to the exit E. Note that we do
not explicitly model the stairways as specific nodes in this
scenario, but instead represent them as edges that connect

the floors of the building (marked as dashed edges in the
figure).

To further increase the complexity of the scenarios, the
additional layouts in Fig. 1 introduce multiple exit points,
as seen in Fig. 1b, d and e. In the ship fire scenario (b)
people in location S1 can pass on to E1(first exit), while peo-
ple in S2 will be directed to E2 (second exit). Likewise, in
the building layout, two exits are added so that D1 and D3

have access to E1 and E2 respectively, while people in D2

may choose between the two exits. The directed graph edges
specify the possible direction of movement for the victims,
including the option of remaining in one’s current location,
for instance due to congestion in adjacent rooms/stairways,
panic or confusion, debilitating health conditions, or simply
obliviousness to the hazards. These scenarios are designed
to illustrate and clarify the unique aspects of our approach,
and in Section 5.5 we examine how these can be extended
for large-scale and real-time environments.

3.2 Modeling approach

A novel aspect of our approach is that we integrate crowd
with hazard dynamics and model the entire emergency evac-
uation process using a Dynamic Bayesian Network (DBN)
[14]. A DBN integrates concepts from graph theory and
probability theory, and being derived from BNs it can cap-
ture conditional independencies between a set of discrete
random variables, X = (x1, . . . , xn) [39] by means of a
directed acyclic graph (DAG) [40]. If an edge points from
X1 to X2 then X1 is a parent of X2, and accordingly X2

is a child of X1. Each directed edge in the DAG typically
represents a cause-effect relationship. This allows the joint
probability distribution of the variables to be decomposed
based on the DAG as follows, with pai being the parents of
xi in the DAG:

P (x1, . . . , xn) =
n∏

i=1

p (xi | pai) (1)

Equation (1) encodes a traditional BN, which does not
consider phenomena that evolve over time. Thus, with
respect to hazard and crowd modeling, the variables consid-
ered in (1) would represent the state of the current situation.
To capture temporal dynamics, including evolvement of
hazard and crowd, variables are organized as a sequence of
time steps (1 ,. . . , t), Zi:t = (Z1, . . . , Zt ) . This organiza-
tion allows us to forecast both hazard and crowd behavior,
P (Zt+n|Z1:t ), where n > 0 indicates how far into the
future the forecasting is projected [14]. A compact defini-
tion of a DBN consists of the pair (B1, B →) where B1 is a
traditional Bayesian network that defines the prior distribu-
tion of state variables p (Z1). B → is a two step temporal
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Fig. 1 Hypothetical ship layout (a and b) and three-story building layout (c, d and e), represented as directed graphs

BN (2TBN) that defines the transition model P (Zt |Z1−t )

as denoted in (2):

p (Zt |Z1−t ) =
n∏

i=1

p
(
Zi

t |Pa
(
Zi

t

))
(2)

Here, Zi
t is the i-th node at time step t . The random

variables Pa
(
Zi

t

)
are the parents of Zi

t , which can include
variables from a preceding time step. The structure repeats
itself, and the process is stationary, so the DBN parameters
for the steps t = 2, 3 remain the same. Accordingly, the
joint probability distribution for a sequence of length T can
be obtained by unrolling the 2TBN.

p (Zt |Z1−t ) =
T∏

t=1

N∏

i=1

p
(
Zi

t |Pa
(
Zi

t

))
(3)

Note that it is possible to expand a DBN beyond the typ-
ical 2TBN. A kth-order Markov process, or a (k + 1) TBN,
can be formed from a 2TBN ((2) and (3)) by restating the
transition model as P (Zt |Zt−1, Zt−2, . . . Zt−k). However,
in the rest of this paper we use a 2TBN model (see also
Section 4.1 for a further discussion on (k + 1) TBNs).

To clarify how the above foundation can be used as a
basis for capturing hazard- and crowd dynamics, we will
now go through a few selected DBN excerpts. We apply
the SMILE engine for inference and the GeNIe modeling
environment for visualization [41]

For illustration purposes, Fig. 2a contains the DAG for
a subset of the hazard model that we introduce in full
detail in the next section. The DAG excerpt represents
three random variables, Hazard-E, Hazard-S1, and Hazard-
S2, referring to the state of the hazard in the embarkation
area and the two stairways, respectively (cf. Fig. 1). The
edges in the DAG are temporal of first order and indi-
cate cause-effect relationships. Figure 1b also introduces
the actual states the random variables can take, here repre-
senting the major phases of fire. In brief, the DAG show
that the state of a node is decided by the node’s own
state in the previous time step, as well as the state of its
neighbors, also in the previous time step. As an example,
the state of the hazard in location S1 (stairway 1) at time
step t is decided by its state at time step t−1, as well as
the state of the hazard in location E at time step t−1. In
other words, a temporal edge with the tag “1” shows the
dependency of the state of the child node at time step t

on the state of the parent node at time step t−1 (a 2TBN
model).
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(c)(a) (b)

Fig. 2 Excerpts from a DBN modelling hazards, with icon view (a) and bar chart view (b), including an example of the prior probabilities
assigned for Hazard-E in time step t0(c)

Once the DAG has been formed, we need to assign
(un-)conditional probability distributions for each node, in
the form of Conditional Probability Tables (CPTs). For a
DBN, the assignment should be carried out both for t0,
which becomes the prior probabilities, and for t , which
becomes the transition model. As an example, Fig. 2c shows
the prior probabilities for Hazard-E. As can be seen, the
prior probabilities specify that, initially, the hazard state of
location E can either be Dormant, Growing, Developed,
Decaying or BurntOut, with equal probability. Figure 3 pro-
vides insight into CPT based construction of the transition
model. It covers the same node as above (Hazard-E), but
now with three parents Hazard-S1, Hazard-S2, and Hazard-
E, modeling spatio-temporal dynamics from time step t−1

to time step t . As can be seen, each column refers to a spe-
cific parent state configuration, and contains the conditional
probabilities for the given configuration. Note that Hazard-
E also is its own parent since it affects its own state from
time step to time step.

In the same manner, for every single node in the DAG,
the prior probabilities and the CPTs are defined. For a com-
plex DBN, there can be a significant number of probabilities
to specify; however, for the DBN model we introduce in
Section 4, the probability distributions for t0 and t are cal-
culated automatically based on simple templates that are
composed using scripting.

After a DBN has been specified, a number of oppor-
tunities for inference arise. One can for instance calcu-
late the unconditional (or marginal) probabilities of the
node states:

P(B) =
∑

i

P (B|Ai)P (Ai) (4)

Here, Ai, i = 1, . . . , n represents the ith state of the
node, with the formula exemplifying how the conditional
probabilities of a DBN can be transformed into uncondi-
tional probabilities, needed for decision making. Thus, for
the random variable Hazard-E one can obtain the proba-
bility of each possible state for time step t , even though
these probabilities are not explicitly specified as part of the
DBN construction. A main use of BNs and DBNs is to
infer state probabilities after evidence has been observed.
If for instance a growing fire was observed at location S1
at time step t =1, one would like to propagate this infor-
mation throughout the DBN, updating the other probability
distributions accordingly, both for the current, previous, and
following time steps. At the core of this propagation we find
Bayes’ Theorem:

P(A|C) = P(C|A)P (A)

P (C) .

(5)

In brief, Bayes’ Theorem allows us to calculate the poste-
rior probability distribution for a random variable, A, in the
DBN, based on evidence C. Figures 4 and 5 illustrate this
propagation of evidence using the sample DBN from Fig. 2.

Assume that we have entered evidence Growing fire in
time step t =1 for node Hazard-S1. As can be seen in
the figure, this evidence propagates from time step to time
step (x-axis) through the entire network and the state prob-
abilities (y-axis) are updated for the three random variables
involved.

Figure 5 shows how the probability calculations are
carried out in more detail. As seen, marginal probability
distributions, conditioned on evidence, can be obtained for
arbitrary nodes (random variables) in the network through

Fig. 3 CPT of node Hazard-E
at time step t
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Fig. 4 The sample DBN model showing posterior probability distri-
bution when evidence is entered for node “Hazard-S1”

“unrolling” the 2TBN specified in Fig. 2, one time step at
a time. The starting point is the prior probabilities specified
for time step t =0, and from there, time steps are added
iteratively to the network by applying the transition model.
In this way, the dynamics of the state probabilities for each
node can be viewed and analyzed in detail from time step to
time step. Notice how the fully unrolled DBN encompasses
a large number of probabilities, yet it is built from a compact
representation.

4 The Crowd Evacuation Model (CEM)

In this section, we introduce the integrated hazard and crowd
evacuation DBN model. The Crowd Evacuation Model
(CEM) is designed to keep track of the location of people,
how people flow between locations, as well as the corre-
sponding hazard status of the locations, from time step to
time step. As seen in Fig. 6, the CEM consists of a Haz-
ard Model, a Risk Model, a Behavior Model, a Flow Model
and a Crowd Model. Each model encapsulates a DBN and is
subject to the Markov condition, i.e. the state of a variable
of a DBN at time ti depends on its previous state at time

Fig. 6 Macro view of DBN model

ti−1. Based upon the modeling approach introduced in the
previous section, we provide a comprehensive treatment of
CEM, describing each sub-model in detail.

For illustration purposes, we will use the ship layout
from Fig. 1a throughout the section. The other layouts from
Fig. 1 will be introduced in the results section that fol-
lows, and their corresponding DBNs are constructed in the
same manner as exposed presently. Table 1 summarizes the
notation we use for describing the model.

4.1 The hazard sub-model

The hazard sub-model serves as a parent node for the risk
sub-model. As indicated in Fig. 7, this sub-model contains
a variable Hazard X(t) for each location X, representing the
state of the hazard for that location at time step t . In addi-
tion, the sub-model captures the dynamics of the hazard. A
hazard can be any phenomenon with potential to harm life,
health and property. In the present scenario, the sub-model
represents a spreading fire.

The Hazard Model for our particular scenario consists
of nine hazard nodes, each referring to a particular part of
the ship layout from Fig. 1a. Note that the edges in Fig.
7a are so-called temporal edges. These edges have a prop-
erty called ‘order’ (shown as an index) that denotes the
length of the temporal process or time-delay, k > 0, that
characterize the relationship between parent and child in
an unrolled network. A child node can be its own par-
ent, introducing self-loops. The first-order self-loop to/from
Hazard E, for instance, means that a casual relationship has
been established between Hazard Et−1 and the Hazard Et .

Fig. 5 The unrolled network with 10 time steps, after entering evidence for the node “Hazard-S1”
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Table 1 Notation
Notation Description States

Hazard X(t) Hazard status at location X at time step t , e.g. Dormant, Developed, Growing,

Hazard A t1 Decaying, Burnt-out

Risk Level X(t) Risk status at location X at time step t , e.g. Low Risk, Medium Risk,

Risk Level A t1 High Risk

Crowd X(t) Crowd status at location X at time step t , e.g. Empty, Some, Many

Crowd A t1
Behaviour Selection of global evacuation plans, Behavior 1, Behavior 2,

encompassing whole complex Behavior 3, Behavior 4

In X(t) Incoming crowd to locationX at time step t , e.g. Node’s neighbors, e.g. In A has

In A(t1) states: {D1, None}
Out X(t) Outgoing crowd to locationX at time step t , e.g. Node’s neighbors, e.g. Out A has

Out A(t1) states: {D1, None}
Decrease X(t) If crowd in location X at time stept decreases or True, False

not, e.g. Decrease A(t1)

P Probability

Eff Efficiency

Cf Confusion

Similarly, the first-order temporal edge from Hazard E

to Hazard S1 means that Hazard E also depends on the
state of neighbor locations, again in the preceding time
step (Hazard S1 t−1). Although it is possible to design
models with higher temporal order, we here only consider
first order models, as typical in state-of-the-art approaches.
Note that a higher temporal order may be more appro-
priate for symptoms that appear gradually over an exten-
sive period, caused by diseases or psychological problems
[17].

We model fire hazards based on physical fire proper-
ties, abstracting the progressive stages of a fire in terms of

commonly used in fire safety literature [38]: Dormant,
Growing, Developed, Decaying, and Burnt-out. These states
are visualized as a bar chart for node Hazard D2 in Fig. 7a.
Depending on the nature of the barriers separating the loca-
tions, a Developed fire may potentially spread to neighbor-
ing locations, e.g. triggering a transition from Dormant to
Growing in the neighboring location, or a transition in itself
from Growing to Develop. These dynamics are specified as
conditional probability distributions, with the probability of
each node state at the current time step being conditioned on
the state of the node’s temporal and non-temporal parents in
the DBN.

Fig. 7 Overview of the hazard sub model (a), risk sub model, and the behavior sub model (b)
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4.2 The risk sub-model

As illustrated in Fig. 7b, the Risk Model depends on the
Hazard Model. For each location X, the Risk Model con-
tains a variable Risk Level X(t) with three states: Low Risk,
Medium Risk, and High Risk, as portrayed in the bar chart
for the Risk Level D2 node. Again, conditional probability
distributions are used to model dynamics.

The risk nodes are basically modeled as non-temporal
deterministic nodes. Briefly stated, the Risk Model maps the

state of each node in the Hazard Model to an appropriate
risk level, to allow a generic representation of risk, indepen-
dent of the type of hazard being addressed. For illustration
purposes, the dormant fire stage is considered to be Low
Risk, while a fire in the Growing or Burnout stage intro-
duces Medium Risk. Finally, if the fire is Developed we
have High Risk. Accordingly, the Risk Sub Model possesses
nine nodes, one for each location, delineating the risk for
that location. The pseudo code of the Risk Model is shown
below:

Risk levels, in turn, are translated into a Behavior Model,
where optimal response to each possible risk scenario is
defined.

4.3 The behavior sub-model

The Behavior Model is simply a single DBN variable,
Behavior. Each state of this variable maps to a particu-
lar flow graph (global evacuation plan). This variable is
designed for accommodating pre-determined group evacu-
ation plans, with each state referring to a particular plan,
depicted as a bar chart in Fig. 7b. Also observe that the
Behavior node has all of the risk nodes as parents, which
provides each joint risk scenario with a distinct evacuation
plan.

As seen in the figure, the Behavior node for the ship
fire scenario consists of four states: Behavior 1, Behavior 2,
Behavior 3, and Behavior 4. For instance, one particular
flow graph from Fig. 1a could suggest the escape routes:
“A − D1 − S1 − E”, “B − D2 − D1 − S1 − E”, “C − D3 −
S2 − E”, as well as the alternative path “C − D3 − D2 −
D1−−S1−E” for location C. Such paths are selected based
on pre-computed risk assessments, with the purpose of opti-
mizing overall survival rate. To elaborate, for each hazard
scenario, the best plan is calculated through safest path anal-
ysis, after taking the risk level in each location into account.
Note that we study both the ideal evacuation and typical
evacuation of the crowd for each hazard scenario. The pro-
cedure to find the best behavior for each threat configuration
is as follows:

The scheme for calculating the best group evacuation
plan for each hazard scenario is thus simply based on
Dijkstra’s shortest path algorithm, where each node in a par-
ticular escape route is associated with a cost, determined by

the risk level of that node. Note that we also have inves-
tigated how to combine ACO (Ant Colony Optimization)
with CEM, to efficiently find optimal paths for large scale
problems [50, 51].



A spatio-temporal probabilistic model of hazard- and crowd dynamics for evacuation planning in disasters 11

4.4 The crowd sub-model

The Crowd Model, illustrated in Fig. 8a, keeps track of
the amount of people at each location X at time step t.

It also serves as storage for the crowd movement calcula-
tions performed by the Flow Model. Currently, we apply a
rough counting scheme, that for each location keeps track
of whether the location is Empty, contains Some people or
contains Many people, using the variable Crowd X(t). This
is illustrated in the figure for Crowd D2 using a bar chart.

Basically, the CPTs associated with this sub-model
encode that both Empty locations, as well as locations
containing Some people, can receive Some people from
a neighboring location. A location with Many people,
on the other hand, must be unloaded before more peo-
ple can enter. Accordingly, each Crowd node in Fig.
8a has the states Empty, Some and Many. Note that
this approach can easily be extended to more fine gran-
ular counting and flow management, as detailed in a
forthcoming paper.

4.5 The flow sub-model

The Flow Sub Model in Fig. 8b manages the flow of incom-
ing and outgoing people along each edge in the layout
graph from Fig. 1a. The flow management is based on
three mutually supporting variables, associated with each
location X. Figure 8b illustrates a detailed view of the
incoming and outgoing crowd flow between neighbor rooms
A and D1. The pre-selected plan in the Behavior sub-
model will govern the direction of people who are leaving
a hazardous area. In addition, these Outgoing, Incoming

and Decreased node triples are interconnected within each
crowd location. The same structure is valid for all other
interconnected nodes. To elaborate, the nodes In X(t) inter-
leaves incoming flows by alternating between neighbor
locations, while Out X(t) routes the incoming flow into
an outgoing flow by selecting an appropriate destination
location. This allows for probabilistic modeling of queuing
and congestion.

Finally, the variable Decrease X(t) is used to remember
which crowd location should be decreased, after a source-
destination flow has been selected. It is used to calculate
the resulting number of people in location X, based on its
parents In X(t) and Out X(t). In other words, our DBN can
keep track of the actual number of people at each location
by using the DBN as a framework for counting!

The structure in Fig. 8b only reveals a couple of neighbor
nodes, i.e. the flow between Crowd A and Crowd D1. Each
neighboring node along each edge in the layout graph in
Fig. 1a has a similar structure to that portrayed in Fig. 8b,
but the number and the label/states of each node will depend
on the neighboring nodes linking directly to the node. In the
example in Fig. 8b, A only has D1 as a neighbor while D1

has three: A, D2 and S1. Hence, for the Crowd A we have
the following flow structure: In A, Out A and Decrease A,
while for Crowd D2 we have the flow structure: Out D1,
In D1, Out D1, and Decrease D1. Since D1 will be a parent
node for In A and Out A,the id of the room will appear
as one of the states in the node In A,and Out A. In other
words, the possible outcomes for In A and Out A will be
{D 1, None}

Likewise, as shown in Fig. 8b, the node In D1 has
four states {A, D2, S1, None}. The state None means

Fig. 8 The crowd sub-model (a) The link between the behavior and flow sub model (b)
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there is no incoming flow from neighboring nodes.
The probability associated with state A illustrates
that there is a small chance of an incoming crowd
from A to D1 at the beginning of thesimulations.

The states D2 and S1 have probability zero, which
means that no one will arrive along those paths
initially.

The flow model is built as follows:

The above DBN structure allows us to model flows
of incoming and outgoing people for each location. Fur-
thermore, we can model congestion, flow efficiency,
and crowd confusion, simply by specifying appropriate
CPTs. Here, flow efficiency reflects how quickly the evac-
uation process is implemented, and how quickly people
are reacting. In our model, we use reaction probability
to measure efficiency, denoted as Eff in the following.
This is the probability that people actually move at each
time step, instead of waiting. The effect of confusion man-
ifests itself when someone moves. Confusion measures
ability to select the optimal evacuation path, instead of
a sub-optimal path, as governed by local factors such
as smoke, panic, and so on. We use Cf to denote
the probability of selecting the path to follow ran-
domly due to confusion, as opposed to selecting the
optimal path.

To elaborate, flow efficiency measures how quickly a
crowd moves, while confusion captures to what degree a
crowd is able to make optimal path selections. In related
work, the efficiency of an evacuation is typically mea-
sured in terms of “evacuation time”, involving the time
it takes for a person to traverse each egress compo-
nent [44, 45]. Evacuation time is typically formulated
in terms of efficiency, ideal evacuation time, and pre-
movement time (time needed for a person to interpret
the situation after the hazard manifests itself, prior to
escape action):

tt = tpm + ζ tm. (6)

Here, tt is the total evacuation time, tpm is the pre-movement
time, tm is ideal evacuation time for an escape route, and ζ

represents evacuation efficiency. Obviously, tpm varies from
building to building and from hazard scenario to hazard
scenario, depending on factors such as layout complexity
and ability to interpret evacuation instructions. Further-
more, ideal travel time is governed by intricate details

such as how instance corridors and stairways affect move-
ment speed differently. The actual evacuation time is, of
course, seldom ideal, because people may react slowly,
take a wrong turn, pursue a suboptimal route, or become
slowed down by congestion. The density of people along
an escape route, velocity, and flow rate, are among the
determinants of evacuation efficiency. Hence, there is a
need to explicitly model evacuation efficiency ζ . For build-
ing evacuation, efficiency ζ is typically above 1.5. Indeed,
an even higher value of ζ may be needed for a build-
ing with two escape routes, for instance when one of
them is blocked, introducing further confusion. Alterna-
tive approaches to model evacuation efficiency exist [46],
however, all of these deterministic models are limited by
their inability to explicitly address the uncertainty char-
acteristic for real evacuations. To address this weakness,
we have therefore modeled efficiency probabilistically. In
brief, our efficiency parameter is marginalized from a
number of intricate factors, which translates into the prob-
ability of being able to act. Thus, efficiency probability
1.0 represents the ability to carry out evacuation without
delays, while efficiency probability 0.0 means complete
inability to act.

Similarly, the presence of confusion due to stress, anx-
iety, unfamiliarity of the environment, reduced visibility,
and so on, can also hinder evacuation [17]. Such fac-
tors can impair people’s decision-making ability, and are
captured as a generic “confusion” parameter in CEM –
the probability of not making the ideal decision. This
parameter thus allows us to take confusion into account
by marginalizing out details from more detailed psycho-
logical models. Accordingly, we follow the example of
other computational models (e.g. [23]) and capture con-
fusion as a numeric parameter, ranging from 0.0 to 1.0.
In brief, 1.0 represents total confusion, manifested as ran-
dom decisions, while 0.0 means that decisions always
are optimal.



A spatio-temporal probabilistic model of hazard- and crowd dynamics for evacuation planning in disasters 13

5 Simulations, results and discussion

In this section, we evaluate the CEM DBN for numer-
ous scenarios and examine how various degrees of confu-
sion and efficiency affect evacuation performance. Based
on simulations, we obtain insight into criteria for suc-
cessful evacuation in terms of plan execution speed and
ability to execute plans accurately. We then proceed
with evaluating the ship fire scenarios from Fig. 1a and
b, and observe how different parts of the DBN react
to specific fire scenarios, particularly the likelihood of
the hazard spreading to other locations, and how the
crowd evacuation process occurs. In addition, we study
the building scenario in Fig. 1c, focusing on evacua-
tion through a single exit point. We also investigate
model behavior in two-exit building scenarios, as illustrated
in Fig. 1d and e.

5.1 Simulation setup

The purpose of our DBN is calculation of posterior prob-
abilities for monitoring, diagnosing and forecasting, with
an emphasis on crowd- and hazard conditions. To config-
ure simulation scenarios, we introduce fire status for certain
location, at a specific point in time, as evidence in the DBN
(e.g., growing fire at location A at time point t1). Based
on this evidence, information about the state of fire and
crowd propagates throughout the DBN, and thereby cause
the posterior probabilities of other events to iteratively be
recalculated. Note that in the SmartRescue project [16] evi-
dence concerning fire and crowd is obtained from mobile
phone sensors in real-time, capturing the current state of
hazards and crowd. The sensor models that are required to
interpret sensor readings are provided as extensions to the
DBN we propose here.

We have run several simulations based on CEM, tak-
ing advantage of the SMILE C++ library to implement
our procedures for automatic layout based DBN construc-
tion, described in Section 4. The CEM DBN we generate
from the layout in Fig. 1a encompasses 45 chance and 10
deterministic nodes, rolled out as a temporal network con-
sisting of 50 time steps. This means that we have 2,750
nodes linked by 6,865 edges. Likewise, each time step for
the building layout consists of 50 chance nodes and 11
deterministic nodes, linked by 156 edges, which produces
4,575 nodes linked by 11,608 edges in an unrolled net-
work with 75 time steps. Overall, the former model deals
with 4,836,828 parameters in the form of conditional prob-
ability tables, while the latter should handle 18,921,349
parameters, across all nodes in the networks. The corre-
sponding building layout will create 6,100 nodes and 15,508
edges, involving 25,233,524 parameters, with 100 time
steps. Thus, the posterior probability computation of every

single node can be expensive when considering a whole
sequence of time steps in one setting. On the other hand,
for real-time tracking one only needs to process one time
step at a time, merely considering the previous time step
when producing the next one. Furthermore, a sliding win-
dow based approach allows forecasting of the immediate
future. Despite the above indicated complexity, recall that
the entire DBN is still constructed from a small number of
simple templates.

To handle the above-described complexity, we have
applied four different inference algorithms for approximate
inference in DBNs: Adaptive Importance Sampling (AIS)
[42], Estimated Posterior Importance Sampling (EPIS) [43],
Backward Sampling, and Likelihood Sampling. Figure 9
depicts how each sampling scheme provides slightly dif-
ferent estimates of a particular posterior distribution. Apart
from the somewhat noisy results obtained from Likelihood
sampling, the different inference schemes provide similar
output. The more noisy nature of Likelihood sampling can
be explained by less goal-directed sampling, with more
samples being “discarded”.

In terms of execution speed, however, it turns out that
EPIS sampling updates the posterior distributions faster
than AIS and Backward Sampling for the CEM DBNs,
and overall, the inference results obtained from EPIS
sampling were less noisy. Therefore, we selected EPIS
sampling as the main vehicle for further study of our
proposed DBN. Note that in this paper we focus on
forecasting. For real-time tracking, more advanced vari-
ants of the latter algorithms can effectively be applied,
for instance algorithms based on resampling, such as
particle filtering.

5.2 Efficiency and confusion in evacuation

With the introduction of confusion and efficiency in CEM,
we can now study how such factors influence evacua-
tion success. For instance, in accordance with the interim
guidelines for evacuation analyses for new and existing
passenger ships [47], an evacuation should be completed
in less than 60 minutes, captured as 50 time steps in
our model. In our DBN framework, this criterion can be
assessed by monitoring the probability of each location
being Empty as one approaches t =50; and conversely,
the probability of Many people occupying each location is
approaching zero. By varying the probability values both
for the efficiency Eff and confusion Cf across the available
spectrum, we can analyze the impact of these parame-
ters on evacuation. This allows us to identify parameter
value transitions, where evacuation neither is too difficult,
nor too easy, but instead lies in the range that generates
interesting and challenging situations. We undertake this
task presently.
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Fig. 9 Posterior probability of
empty location D1, obtained
through different inference
schemes

5.2.1 Varying the confusion parameter

The plots in Fig. 10 show the behavior of crowds in room
D1, when responding to a hazard in room A at t1, under
different confusion values. The upper plot captures the
probability of the location being Empty. The middle plot
represents the probability of Some people being present,
while the lower plot shows the probability of Many peo-
ple being present. We are here interested in studying how
the confusion parameter, Cf, affects the probability of room
D1 being vacant in approximately 50 time steps. Clearly,
confusion has a large impact on the ability to successfully
evacuate. As can be seen, Cf values of 0.1 and 0.2, respec-
tively leads to 13 and 27 percent of people still left behind
at t50.

Since we seek to model challenging evacuation sce-
narios, we will in the following use a confusion

parameter that allows successful evacuation most of
the time, and proceed with a Cf value of 0.05 –
i.e. a wrong turn is taken 5 percent of the time on
average.

5.2.2 Varying the efficiency parameter

Similarly, the plots in Fig. 11 depict the results for various
efficiency parameter values, Eff. Again, we study response
to a hazard in room A,manifesting itself at time step t1.
Furthermore, the goal is full evacuation of room D1, as an
indicator for successful evacuation. As can be seen, a high
efficiency value means that D1 is quickly filled up due to the
high volume of people arriving from different locations, fol-
lowed by a quick emptying of the location. For the smaller
efficiency values, on the other hand, D1 does not empty in
time.

Fig. 10 The simulation results
of varying Cf from 0.01 to 1
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Fig. 11 The simulation results
of varying efficiency parameters
from 0.01 to 1.0 values

Again, to focus our simulations on the most chal-
lenging settings, we are looking for efficiency values
that allow successful evacuation, but with a small mar-
gin. In Fig. 11, we examine Eff values of 0.2, 0.3, 0.4
and 0.5. In brief, applying Eff values of 0.4 and 0.5
results in almost perfect evacuation, with more or less
the whole crowd being evacuated successfully at t50. An
Eff value of 0.3, on the other hand, should provide a
sufficiently challenging evacuation scenario for evaluation
purposes.

Note that evacuation success is more strongly affected by
the efficiency parameter than by the confusion parameter for
the targeted scenario. Even if we double the confusion prob-
ability from 0.05 to 0.1, the probability of timely escape is
still more than 0.8. In other words, as long as one is able to
act quickly, making a wrong turn can be remedied by retrac-
ing. Of course, larger degrees of confusion would have more

adverse effects, in particular for more complex and large
building layouts. Based on the above reasoning, we proceed
with applying an Eff value of 0.3 and a Cf value of 0.05 in
the remaining experiments.

5.3 Experiment I: Ship fire

We start with studying a fire scenario for the ship lay-
out depicted in Fig. 1a. To challenge the CEM model, we
assume that a fire has started concurrently at locations S2

and A at time step t1. This means that the shortest escape
route from location B and C will be hazardous, and people
should be rerouted through staircase S1. We roll out a 50
time steps CEM to forecast and analyze hazard dynamics,
as well as the behavior of people reacting to the com-
plex fire scenario. The obtained results are presented in
Figs. 12 and 13.

Fig. 12 Inferred probabilistic hazard dynamics for a particular hazard scenario
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Fig. 13 Crowd dynamics with
fire starting in location A and S2

Figure 12 illustrates the development of the hazard prob-
ability distribution for Hazard X(t)={ Dormant, Growing,
Developed, Decaying, Burnout} over time, for the loca-
tions A and B. In brief, the plots summarize the probability
(y-axis) associated with each hazard state for each of the
locations, time step by time step (x-axis). Note how the
development of the fire reflects our initial evidence, where
we can observe when the fire from location A is likely
to spread to neighbors, such as location B in time step
8, or to decay as seen in time step 27. To conclude, our
DBN provides us with a global probabilistic threat picture,
allowing us to assess the current hazard situation, forecast
further development, and relating cause and effect, despite
potentially erroneous, noisy, and/or incomplete information.

In addition to reasoning about hazards, we can also track
and forecast crowd behavior using our DBN. The goal of an
evacuation is to transfer people from unsafe to safe areas.
Figure 13a, b and c show the simulation results of people
moving along the path A − D1 − S1. At t0 we have Many
people in each of the compartments A, B , and C, while cor-
ridors and stairways are Empty. As can be seen from Fig.
13a, it is not before after time step 36 that the probability
that room A is completely vacated starts approaching 1.0.
Furthermore, Fig. 13b and c show that the number of peo-
ple in D1 and S1 increases initially, as people starts arriving
from locations A, B, and C. In general, under the simulated

conditions, where most people follow the optimal plan with-
out panicking, people are able to proceed to the exit area.
Therefore, from time step 36 it is likely that most people
either have evacuated, or succumbed to the hazard.

5.4 Experiment II: Building fire

In this scenario, we consider the three-floor building lay-
out in Fig. 1c, d and e, studying scenarios with one and
two exits. The main goal of the third scenario is to test
how evacuation completion time is affected when the crowd
must pass through a single entry point to the exit area,
as well as when multiple non-overlapping paths leads to
an exit.

5.4.1 Building layout with one exit

Here, we assume that a fire has started simultaneously in
locations C2 on the third floor and in location D1 on the
first floor, with the fires starting to grow at time step t1. The
obtained results are presented in Figs. 14 and 15, focusing
on crowd dynamics and timely evacuation (fire dynamics
are similar to the ship fire case).

Figure 14a, b and c show simulation results for peo-
ple moving along the path C2 − C1 − D3-D2. At t0
we have Many people in each of the building sections
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Fig. 14 Crowd dynamics for building 1(c) - fire starts in C2 and D1 simultaneously

(A2, B2, C2, A1, B1, C1), while corridors are Empty. As can
be seen, bottlenecks appear in the second and first floor,
neither C1, D3, nor D2 becomes completely emptied. It is
even worse in the nodes that directly link to the exit, i.e. D2,
where we have a probability of 0.26 that Some people are
still present at the final time step. This situation is captured
in Table 2:

These results trigger a question: How long does it
take before all people have been successfully evacuated?
In Fig. 15, we expand the number of time steps to 75
(upper plot) and 100 (lower plot) in our DBN, focus-
ing on the bottleneck node D2. We notice that it requires

100 time steps to be able to complete the evacuation,
which would be undesirably high in a real emergency
situation.

This implies that efficiency will be an important factor
in crowd management for timely evacuation, as we have
also seen from the experiments conducted in the first sim-
ulations. It would thus be interesting to see how increased
efficiency can lead to more successful evacuation.

We thus study the effect of slightly increased Eff values,
namely efficiency 0.4 and 0.5. As seen in Figs. 16 and 17,
the increased efficiency leads to almost certain successful
evacuation.

Table 2 Probabilities of D2 =Empty, Some and Many at t10, t50 compare to Ideal (Exp t50)

Node Empty Some Many

t10 t50 Exp t50 t10 t50 Exp t50 t10 t50 Exp t50

C1 0.32 0.82 1 0.38 0.14 0 0.30 0.04 0

D3 0.44 0.77 1 0.38 0.17 0 0.18 0.06 0

D2 0.48 0.65 1 0.37 0.26 0 0.15 0.09 0
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Fig. 15 Simulations of crowd evacuation in D2 with t= 75 and t=100

5.4.2 Building layout with two exits

We now proceed to investigate the two-exit building layout
from Figs. 1d and 1e. With the same hazard configura-
tion as used in the previous subsection, D2 is no longer
on the critical path to the exits, and thus no longer a
potentially crowded node. Bottlenecks can instead appear
in either C1 or D3 due to the hazard in location D1.
Therefore we now look closer at C1. As can be seen
in Fig. 18, the additional exit did not improve evacua-
tion. The reason is that the fire starting in D1 makes it
hazardous to head for exit E1. In other words, the loca-
tion of the hazard has turned the two-exit layout into
a one-exit problem.

Furthermore, increased efficiency also leads to increased
congestion, as also seen in the figure.

The lower plot in Fig. 18 further highlights the dynam-
ics of people entering and leaving C1 in building 1(d).
Here we observe how increased Eff leads to increased
congestion.

5.4.3 Correlation analysis of crowd dynamics

To cast further light on the CEM crowd dynamics, we here
analyse correlation between DBN node states. We use the
building layout in Fig. 1d for this investigation. In particu-
lar, we look at the hazard status of location C1 as well as
the crow inflows from neighbors of location C1 using the
Pearson correlation coefficient.

The results are presented as correlation matrices in Fig.
19. Here red color means a strong positive correlation, and
shades of red (yellow and orange) indicate degree of mod-
erate positive correlation. Furthermore, solid blue means
a strong negative correlation, while lighter shades of blue
indicates degree of moderate negative correlation. White
colored cells means insignificant correlation (significance
level alpha=0.05)

A number of findings can be gathered from the corre-
lation matrices. First of all, a developed and a decaying
fire correlates negatively with people being present, while
a burnt out location is strongly correlated with the location

Fig. 16 Simulations of crowd evacuation from building 1(c) in D2 with Eff = 0.4
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Fig. 17 Crowd dynamics in C1
for building 1(d) and (e); each
with Eff value of 0.4

Fig. 18 (upper) Comparing
Crowd Dynamics in C1 =Empty
based on building layouts 1(c),
1(d) and 1(e); (lower) Highlights
efficiency effects for time slices
t0 − t20 in building 1(d)

Fig. 19 a Correlation matrix for
crowd state and hazard state in
location C1 nodes. b Correlation
matrix for crowd state of
location C1 and Inflow C1 from
neighboring locations

(b)(a)

also being empty. Furthermore, we observe that a crowded
location blocks inflow from neighboring locations, while
inflow from neighboring locations correlates with presence
of people.

5.5 Scalability considerations

It is well known that the conditional probability tables
(CPTs) associated with each node in a discrete Bayesian
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network CPT grows exponentially with the number of par-
ents. Although some of the CEM nodes possess as many
as five parents, we support network configuration through
automatic construction of CPTs through template-based
composition.

Furthermore, it is possible to learn the CPTs from train-
ing data. One promising approach that we have adopted is
generating training data for fire dynamics using the Fire
Dynamics Simulator (FDS) [48]. The simulator focuses on
smoke and heat transportation during fire, based on com-
putational fluid dynamics. In all brevity, FDS can produce
output such as heat release rate, visibility and obscuration,
layer-based temperature measurements, thermocouples-
based temperature measurements, heat fluxes, thermal
radiation, and numerous other statistical outputs. This
allows us to automatically generate extensive amounts
of training data for parameter learning in the Bayesian
network.

When it comes to scalable inference, in addition
to the sampling based approaches we employ in this
paper, we are also investigating template based decom-
position of Bayesian networks, with approximate prop-
agation of virtual evidence, represented as likelihood
ratios [49]. Finally, we have previously investigated
how to combine ACO (Ant Colony Optimization) with
CEM, to efficiently find optimal paths for large scale
problems [50, 51]. When integrated with the Behav-
ior Model of the DBN, the DBN supports dynamically
adjusting escape plans that take into account present
uncertainty.

6 Conclusions and further work

In this paper we have proposed a spatio-temporal proba-
bilistic model of hazard and crowd dynamics in disasters,
with the intent of supporting real-time evacuation planning
by means of situation tracking and forecasting.

In brief, a Dynamic Bayesian Network is used for
modeling and inference, with a focus on forecasting
flow of people and hazard development. The resulting
Crowd Evacuation Model (CEM) allows us to keep track
of, and predict, the location of people and the haz-
ard status, from time step to time step, dealing with
incomplete, erroneous, and noisy information, as well as
the intertwined relationship between crowd and hazard
dynamics.

We are currently developing generic location templates
and approximate inference schemes that allow large-scale
models to run on smartphones. These generic templates
are calibrated using realistic fire data from a fire dynamics
simulator. Furthermore, we build explicit models for con-
fusion and efficiency, breaking these down into multiple

interacting factors. We also intend to investigate how a col-
lection of smartphones can form a distributed sensing and
computation platform. This involves distributed schemes
for tracking, forecasting and planning; allowing the CEM
schemes to run seamlessly in the smartphone network.
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