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Abstract In the last two decades, small strain shear modu-
lus became one of the most important geotechnical param-
eters to characterize soil stiffness. Finite element analysis
have shown that in-situ stiffness of soils and rocks is much
higher than what was previously thought and that stress-
strain behaviour of these materials is non-linear in most
cases with small strain levels, especially in the ground
around retaining walls, foundations and tunnels, typically
in the order of 10−2 to 10−4 of strain. Although the best
approach to estimate shear modulus seems to be based in
measuring seismic wave velocities, deriving the parameter
through correlations with in-situ tests is usually consid-
ered very useful for design practice.The use of Neural
Networks for modeling systems has been widespread, in
particular within areas where the great amount of available
data and the complexity of the systems keeps the problem
very unfriendly to treat following traditional data analysis
methodologies. In this work, the use of Neural Networks
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and Support Vector Regression is proposed to estimate
small strain shear modulus for sedimentary soils from the
basic or intermediate parameters derived from Marchetti
Dilatometer Test. The results are discussed and compared
with some of the most common available methodologies for
this evaluation.
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1 Introduction

Maximum shear modulus, G0, has been increasingly intro-
duced in stiffness evaluations for design purposes, for the
last 10-15 years. At the present moment, one of the best
ways for measuring it is to evaluate compression and shear
wave velocities and thus obtain results supported by the-
oretical interpretations. The advantages of this approach
are widely known, mainly because test readings are taken
through intact soil in its in-situ stress and saturation levels,
thus practically undisturbed, and also dynamic stiffness can
be close to operational static values [1, 2]. However, the use
of seismic measures implies a specific and more expensive
test and so, many atempts have been made to correlate other
in-situ test parameters, such as those obtained by Standard
Penetration Test (SPT) [3], Piezocone Test (CPTu) [4] or
Marchetti Dilatometer Test (DMT) [5–7], with G0, using
cross calibrations (e.g., seismic or triaxial among others).

The DMT is one of the most appropriate tests for this task
(although some relations can be settled using SPT or CPTu)
since it uses a measurement of a load range related with
a specific displacement, which can be used to deduce the
highly accurate stress-strain relationship (ED), supported by
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the Theory of Elasticity. Moreover, the type of soil can be
numerically represented by the DMT Material Index, ID ,
while in situ density, overconsolidation ratio (OCR) and
cementation influences can be represented by the lateral
stress index, KD , allowing for high quality calibration of
the basic stress-strain relationship [7]. The purpose of this
work is to estimate G0 from the DMT basic and interme-
diate parameters using neural networks and Support Vector
Regression.

The present paper is organized as follows: In Section 2
an overview of the most important correlations used in this
subject is reported, in order to get a clear view of the
problem context. In Section 3 the data set is presented,
as well as the methodology used for the experiments on
this subject, its results and subsequent discussion. As usual,
the last section will be used for conclusions and final
remarks.

2 Maximum shear modulus (G0) prediction by DMT

Marchetti dilatometer test or flat dilatometer, commonly
designated by DMT, has been increasingly used and it is
one of the most versatile tools for soil characterization,
namely loose to medium compacted granular soils and soft
to medium clays, or even stiffer if a good reaction system
is provided. The test was developed by Silvano Marchetti
[5] and can be seen as a combination of both Piezocone
and Pressuremeter tests with some details that really makes
it a very interesting test available for modern geotechnical
characterization [7]. The main reasons for its usefulness on
deriving geotechnical parameters are related to the simplic-
ity (no need of skilled operators) and the speed of execution
(testing a 10 m deep profile takes around 1 hour to com-
plete) generating quasi-continuous data profiles with high
accuracy and reproducibility.

In its essence, dilatometer is a stainless steel flat blade
(14 mm thick, 95 mm wide and 220 mm length) with a
flexible steel membrane (60 mm in diameter) in one of its
faces. The blade is connected to a control unit on the ground
surface by a pneumatic-electrical cable that goes inside the
position rods, ensuring electric continuity and the transmis-
sion of the gas pressure required to expand the membrane.
The gas is supplied by a connected tank/bottle and flows
through the pneumatic cable to the control unit equipped
with a pressure regulator, pressure gauges, an audio-visual
signal and vent valves. The equipment is pushed (most
preferable) or driven into the ground, by means of a CPTu
rig or similar, and the expansion test is performed every 20
cm. The (basic) pressures required for lift-off the diaphragm
(P0), to deflect 1.1 mm the centre of the membrane (P1) and
at which the diaphragm returns to its initial position (P2 or
closing pressure) are recorded. Due to the balance of zero

pressure measurement method (null method), DMT read-
ings are highly accurate even in extremely soft soils and, at
the same time the blade is robust enough to penetrate soft
rock or gravel (in the latter, pressure readings are not pos-
sible), supporting safely 250 KN of pushing force. The test
is found especially suitable for sands, silts and clays where
the grains are smaller (typically 1

10 to 1
5 ) compared to the

membrane dimension [8].
Four intermediate parameters, Material Index (ID),

Dilatometer Modulus (ED), Horizontal Stress Index (KD)
and Pore Pressure Index (UD), are deduced from the basic
pressures P0, P1 and P2, having some recognizable physical
meaning and some engineering usefulness [5], as it will be
discussed below. The deduction of current geotechnical soil
parameters is obtained from these intermediate parameters
covering a wide range of possibilities. In the context of the
present work, besides the basic pressures, only ED , ID and
KD have a physical meaning on the determination of G0, so
they will be succinctly described as follows [7]:

1. Material Index, ID: Marchetti [5] defined Material
Index, ID , as the difference between P1 and P0, basic
measured pressures normalized in terms of the effective
lift-off pressure. The ID parameter is one of the most
valuable indexes deduced from DMT due to its abil-
ity to identify soils throughout a numerical value that
can be easily introduced in specific formulae for deriv-
ing geotechnical parameters. In a simple form, it could
be said that ID is a “fine-content-influence meter”[7],
providing the interesting possibility of defining dom-
inant behaviours in mixed soils, usually very difficult
to interpret when only grain size is available, thus it
may be associated to an index reflecting an engineering
behaviour.

2. Horizontal Stress Index, KD : The horizontal stress
index [5] was defined to be comparable to the at rest
earth pressure coefficient, K0, and thus its determina-
tion is obtained by the effective lift-off pressure (P0)
normalized by the in-situ effective vertical stress. KD is
a very versatile parameter since it provides the basis to
assess several soil parameters such as those related with
state of stress, stress history and strength, and shows
dependency on several factors namely cementation
and ageing, relative density, stress cycles and natural
overconsolidation resulting from superficial removal,
among others. The parameter can be regarded as a K0

amplified by penetration effects [5] and displays a typi-
cal profile very similar in shape to OCR profiles, giving
useful information not only about stress history but also
on the presence of cementation structures [7]. Since
undrained shear strength of fine soils can be related
and obtained via OCR and the relation between K0 and
the angle of shearing resistance is well stated by soil
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Table 1 Sample WDS (PsS) statistical measures rounded to 4 significant digits

Values ID ED KD G0

min 0.05070 (0.05070) 0.3644 (0.3644) 0.9576 (0.9576) 6.430 (12.71)

max 8.814 (8.814) 94.26 (85.00) 24.61 (24.61) 529.2 (110.6)

median 0.5700 (0.2192) 13.44 (4.372) 3.575 (3.136) 77.91 (34.51)

mean 0.9134 (1.063) 18.83 (9.963) 4.916 (3.808) 92.52 (38.81)

std 1.074 (1.946) 18.83 (13.08) 3.608 (2.791) 69.61 (19.37)

mechanics theories, this parameter is also used with
success in deriving shear strength.

3. Dilatometer Modulus, ED : Stiffness behaviour of soils
is generally represented by soil moduli, and thus the
base for in-situ data reduction. Theory of Elasticity is
used to derive dilatometer modulus, ED [5] , by con-
sidering that membrane expansion into the surrounding
soil can be associated to the loading of a flexible circu-
lar area of an elastic half-space, and thus the outward
movement of the membrane centre under a normal
pressure (P1 − P0) can be calculated. In short, ED

is a parameter that includes both Young modulus (E)
and Poisson’s coefficient (ν) and can be expressed as
follows:

ED = E

1 − ν2
= 34.7(P1 − P0) (1)

Generally speaking, soil moduli depend on stress his-
tory, stress and strain levels drainage conditions and
stress paths. The more commonly used moduli are

constrained modulus (M), drained and undrained com-
pressive Young modulus (E0 and Eu) and small-strain
shear modulus (G0), this latter being assumed as purely
elastic and associated to dynamic low energy loading.

Maximum shear modulus, G0, is indicated by several
investigators [2, 7, 9] as the fundamental parameter of the
ground. If properly normalized, with respect to void ratio
and effective stress, it could be seen as independent of
the type of loading, number of loading cycles, strain rate
and stress/strain history [9]. It can be accurately deduced
through shear wave velocities, G0 = ρv2

s , where ρ stands
for density and vs for shear wave velocity.

However, the use of a specific seismic test imply an extra
cost, since it can only supply this geotechnical parameter,
leaving strength and insitu state of stress information depen-
dent on other tests. Therefore, several attempts to model
the maximum shear modulus as a function of DMT inter-
mediate parameters for sedimentary soils have been made
in the last decade. Hryciw [10] proposed a methodology

Fig. 1 Sample WDS: values for ID,ED,KD and G0
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Fig. 2 Sample PsS: values for P0, P1, u0, ID,ED,KD and G0

for all types of sedimentary soils, developed from indirect
method of Hardin & Blandford [11]. Despite its theoretical
base, references on this method are scarce and in general
it is not applied for practical analysis due to some scat-
ter around the determination, as illustrated by the results
obtained in Portuguese normally consolidated clays [6]. The
reasons for this scatter may be related to an expectable devi-
ation of K0 due to the important disturbance effects gener-
ated by penetration. On the other hand, this methodology
ignores dilatometer modulus, ED , commonly recognized as
a highly accurate stress-strain evaluation, and also lateral
stress index, KD , and material index, ID , which are the
main reasons for the accuracy in stiffness evaluation offered
by DMT tests [6]. Being so, the most common approaches
[12–14] with reasonable results concentrated in correlat-
ing directly G0 with ED or MDMT (constrained modulus),
which have revealed linear correlations with slopes con-
trolled by the type of soil. In 2006, Cruz [6] proposed a
generalization of this approach, trying to model the ratio
RG ≡ G0

ED
as a function of ID . In 2008, Marchetti [15] using

the commonly accepted fact that maximum shear modulus is
influenced by initial density and considering that this is well
represented by KD , studied the evolution of both RG and
G0/MDMT with KD and found different but parallel trends
as a function of the type of soil (that is ID), recommending
the second ratio to be used in deriving G0 from DMT, as
consequence of a lower scatter. In 2010, using the Theory
of Elasticity, Cruz [7] approximate G0 as a non-linear func-
tion of ID , ED and KD , from where a promising median
of relative errors close to 21 % with a mean(std) around
0.29 %(0.28 %) were obtained. It is worth mentioning that
comparing with the previous approach - RG - this approxi-
mation, using the same data, lowered the mean and median

of relative errors in more than 0.05 maintaining the standard
deviation (Table 2).

In this work, to infer about the results quality it will use
some of the same indicators used by Hryciw, Cruz and oth-
ers that are: the median, the arithmetic mean and standard
deviation of the relative errors

δi
˜G0

= |˜G0(i) − G0(i)|
|G0(i)| ; i = 1, 2, ..., N (2)

where ˜G0(i) stands for the predicted value and G0(i) for
the measured value given by seismic wave velocities (which
is assumed to be correct). A final remark to point out that
since in this work the no-intercept regression is sometimes
used, the R2 values will not be presented as they may not be
meaningful in this case [16]. It is also worth to remark that
in the context of DMT and from the engineering point of
view, the median is the parameter of choice for assessing the
model quality [7] since the final value for maximum shear
modulus relies on all set of results obtained in each geotech-
nical unit or layer. For this reason, we will use the median
to compare the performance of the different algorithms.

Table 2 Sample WDS: Results obtained with non-linear regression
˜G0 = f (ID,ED,KD) [7]

Type Median/Mean(std)

%

Non-Linear ˜G0 = α ED (ID)β 28/34(29)

regression ˜G0 = ED + ED e(α + βID + γ log(KD)) 21/29(28)
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Table 3 Sample WDS: Results obtained with non-linear regression
˜G0 = f (ID,ED,KD) using 10-folded cross validation

Type Mean(std)

%

Non-Linear ˜G0 = α ED (ID)β 28.00(0.40)

regression ˜G0 = ED + ED e(α + βID + γ log(KD)) 21.40(0.30)

3 Data sets, experiments and results

3.1 Data sets

The WDS data set will be used in the forthcoming experi-
ments. This data set is the same used in the development of
the non-linear G0 approximation done by Cruz in [7], result-
ing from 860 DMT measurements performed in Portugal by
Cruz and world wide by Marchetti et al. [15] (data kindly
granted by Marchetti for the work presented in [7]), which
included data obtained in all kinds of sedimentary soils,
namely clays, silty clays, clayey silts, silts, sandy silts, silty
sands and sands. Since the Marchetti data does not include
the record of the basic parameters, P0, P1 and u0, only the
Portuguese subset - denoted by PsS and consisting of 92
DMT measurements - of WDS will be used when trying to
predict G0 from these parameters.

The WDS main statistical measures with respect to ID ,
ED , KD and G0 parameters are given in Table 1 (in paren-
thesis the same measures for PsS). Figures 1 and 2, where
data from WDS and PsS, respectively, is represented using
MatLab function plotmatrix, aims a clear view of vari-
ables dispersion. As one can see, PsS has the additional
parameters P0, P1 and u0.

3.2 Maximum shear modulus (G0) prediction by DMT
intermediate parameters

In this subsection it is reported the search for a fitting
of G0, using the DMT intermediate parameters ED , ID

and KD . The dataset used in this task is the WDS, as

Table 4 Sample WDS: Results (Mean(std) %) obtained with Multi
Layer Perceptrons and with Bayesian, RBF and Fitting Neural Net-
works ˜G0 = f (ID,ED,KD)

Type Hidden neurons ˜G0 = f (ID,ED,KD)

MLP-Quasinewton 50 22.56(1.02)

MLP-Conj.Grad. 100 18.82(0.58)

MLP-SCG 40 20.29(0.40)

NN-Bayesian 20 20.67(0.55)

NN-RBF 100 26.40(0.94)

NN-Fitting 60 20.81(1.76)

explained in Section 3.1. Several types of neural net-
works (NN), from the Ian Nabney’s Netlab toolbox for
Matlab [17], were used in order to improve the results
obtained with traditional approaches and to achieve the
best results with this kind of tool. The purpose was to
find the best NN algorithm for the DMT problem. This
process started by performing some experiments with tra-
ditional Multi Layer Perceptrons (MLP’s) with different
learning algorithms, namely Quasinewton, Conjugated Gra-
dient and Scaled Conjugated Gradient (SCG) but, as it
will be shown later, the results were not as good as
expected (with one exception), and so Radial Basis Func-
tion (RBF), Bayesian and Fitting neural networks were
applied. The results obtained with these neural networks
were not better than those obtained with MLP’s and so
the last approach was to use Support Vector Regres-
sion in order to try to improve the results obtained
with NNs.

For all the experiments we follow a training/test proce-
dure using the well known 10-fold cross validation method
and performed 30 repetitions of each experiment to guar-
antee a better statistical significance. This is the most
common and widely accepted methodology to obtain a good
generalization [18].

For each algorithm, a huge set of experiments was per-
formed, varying the involved parameters such as the number
of neurons in the MLP hidden layer, the number of epochs
or the minimum error for stopping criteria. The results pre-
sented in Tables 4 to 7 are therefore the best ones for each
regression algorithm and represent the mean and standard
deviations (std) of the 10 × 30 performed tests for each
best configuration. It is important to stress the fact that,
when compared to traditional approaches where all the data
is used to build the model, this methodology tends to pro-
duce higher standard deviations since in each experiment
only a fraction of the available data is used to evaluate
the model. As this fact may bias the comparison between
these algorithms and the traditional approaches in terms of
some direct comparisons, we revaluate the results concern-
ing the regression functions obtained in previous works (as
Table 2), and updated that results using cross validation in
the same manner as described above.

As we are now using 10-fold cross validation in every
method, the following procedure was used to evaluate each
method. For each fold we compute the median of relative

Table 5 Sample WDS: Results (Mean(std) %) obtained with Support
Vector Regression ˜G0 = f (ID,ED,KD)

Type Cost/ε(ν) ˜G0 = f (ID,ED,KD)

ε-SVR 200/0.1 16.21(0.38)

ν-SVR 400/0.8 16.66(0.35)
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Table 6 Sample WDS: Results (Mean(std) %) obtained with Support Vector Regression using only two input variables

Type ˜G0 = f (ED,KD) ˜G0 = f (ID,ED) ˜G0 = f (ID,KD)

ε-SVR 20.08(0.60) 20.20(0.44) 30.28(0.56)

ν-SVR 21.23(0.46) 23.53(0.52) 31.87(0.49)

errors in the test set. Then we took the mean out of that (10)
medians. As we repeat this experiment 30 times, saving the
mean for each of that repetitions, we will have a sample of
size 30 for the error of each method. What we present on
each table is therefore the mean and standard deviation of
those samples.

Comparing Table 3 with Table 2 one can seen the effect
of using the method here described with a simpler one
where the only measure computed was the median, mean
and standard deviation of errors when all the data was used
to determinate the fitness function.

Table 4 shows the best results for the experiments per-
formed with common MLP regression using three differ-
ent learning algorithms: Quasinewton, Conjugated Gradient
and SCG and with Bayesian, RBF’s (with thin plate spline
activation function) and Fitting neural networks regression,
by applying several combinations for the number of itera-
tions in RBF’s or the number of inner and outer loops for
the Bayesian NN’s.

The results are not significantly better (statistical tests
are presented later) than those obtained with tradicional
non-linear regression (Table 3), with the exception of the
neural network trained with conjugated gradient that shows
a significant improvement when compared with the other
algorithms.

An attempt to improve the quality of results was car-
ried out by using Support Vector Regression (SVR). Support
Vector Machines [19] are based on the statistical learning
theory from Vapnik and are specially suited for classifica-
tion. However, there are also algorithms based in the same
approach for regression problems known as Support Vector
Regression (SVR). The performed experiments with SVRs

Table 7 Sample WDS: Results (Mean(std) %) obtained using the
subsets of the original data set for ˜G0 = f (ID,ED,KD)

Subsets ˜G0 = f (ID,ED,KD)

ε-SVR ID < 0.6 16.13(0.68)

0.6 ≤ ID < 1.8 15.88(0.67)

ID ≥ 1.8 17.37(1.29)

ν-SVR ID < 0.6 17.36(0.69)

0.6 ≤ ID < 1.8 16.52(0.72)

ID ≥ 1.8 17.25(1.17)

were carried out using LIBSVM [20] for Matlab. Two dif-
ferent kinds of SVR algorithms: ε-SVR, from Vapnik [21]
and ν-SVR from Schölkopf [22] were applied, which dif-
fer in the fact that ν-SVR uses an extra parameter ν ∈
(0, 1] to control the number of support vectors. Preliminary
experiments were performed with the four available ker-
nels: linear, polynomial, radial basis function and sigmoid,
using different values for the involved parameters. Since the
best results were obtained with the radial basis function ker-
nel, more exhaustive experiments were performed using this
one. For these experiments a search for the best results was
made in the C, ε (ν) space and so different values for the
parameter C (cost) and for parameters ε and ν were used.

The best results obtained with both ε-SVR and ν-SVR
with the radial basis function kernel are shown in Table 5
reveling slightly better results when compared with those
obtained with the conjugated gradient neural network and
better than those obtained with the other MLP’s and the
traditional regression algorithms.

In the previous experiments we tried to estimate G0 as
a function of ID , ED and KD . Following the same strat-
egy as Cruz [7], other experiments were performed and the
results are presented in Table 6. In these experiments, G0

was estimated only as a function of two of the three avail-
able variables. As last option ED was used as a single input
variable but the results were worst than those obtained using
more input variables (due to lack of space they are not
shown here). In these experiments only SVR’s were used, as
they presented the best results in the previous experiments.

After the last set of experiments it can be seen that the
best results are still those presented in Table 5, the ones that
were obtained by using the three available parameters KD ,
ID and ED .

Additional experiments with the intermediate parame-
ters were conducted splitting ID values in coherent groups,
namely those related with clay, silt and sandy soils, respec-
tively represented by the following ID intervals: ID < 0.6,

Table 8 Subset PsS:Results obtained with non-linear regression ˜G0 =
f (P0, P1) and ˜G0 = f (P0, P1, u0)

Type Mean(std) %

Non-Linear ˜G0 = α eβP0 + γ P1 24.29(1.33)

regression ˜G0 = α eβP0 + γ
√

P1 + δu0 24.31(1.49)
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Table 9 Sample PsS: Results (Mean(std) %) obtained with Support
Vector Regression ˜G0 = f (P0, P1)

Type Cost/ε(ν) ˜G0 = f (P0, P1)

ε-SVR 20/0.1 24.11(1.75)

ν-SVR 10/0.1 25.44(1.91)

0.6 ≤ ID < 1.8 and ID ≥ 1.8. This operation makes a par-
tition of the original 860 data set elements in subsets with
449, 259 and 152 elements respectively. Experiments with
these data sets (subsets) were performed using only SVR
algorithms. Results are presented in Table 7.

Although these results can be pointed as very interest-
ing, specially with ε-SVR, it can not be concluded that
these are better than those obtained with the complete data
set (Table 5) since there is one larger subset with a result
slightly higher and two smaller subsets with a slightly lower
result (remember ID-values distribution in Fig. 1). This indi-
cates that the methodology can produce interesting results
in some particular cases, deserving a more detailed study.
Nevertheless from a geotechnical point of view it may be
considered a very promising result.

3.3 Maximum shear modulus (G0) prediction by DMT
basic parameters

Despite all the work reviewed in Section 2 (a more exhaus-
tive review is available in Cruz [7]), it hasn’t been already
tried to model G0 as a straightforward function of the basic
parameters P0, P1 and P2. In addition to this the promis-
ing results presented in Section 3.2 lead the authors to go
further and try to estimate G0 using only the DMT basic
parameters. However, there are some difficulties in the inter-
pretation of P2 values, since it can represent very distinctive
situations in different type of soils, as explained below:

– In sands, due to its permeable behavior, the penetration
and the first two measurements taken when the mem-
brane is inflating do not generate significant pore pres-
sures and so, the parameter can be roughly compared to
the pore pressure resulting from the hydrostatic level,
in equilibrium. In fact, during inflation the membrane
displaces the sandy particles away from the blade while
during deflation they tend to remain in the displaced

Table 10 Sample PsS: Results (Mean(std) %) obtained with Support
Vector Regression ˜G0 = f (P0, P1, u0)

Type Cost/ε(ν) ˜G0 = f (P0, P1, u0)

ε-SVR 100/0.001 24.52(1.66)

ν-SVR 10/0.1 25.56(1.25)

position and, therefore, the pressure on the membrane
is that of the water in the pores.

– In clays, since they tend to rebound and thus, contribute
equally to pressurize the blade, P2 parameter repre-
sents a mixed of both water and soil pressures, and
thus it should only be used qualitatively, as sustained by
Marchetti [15].

– Furthermore, in soils with intermediate behaviors (silts,
sandy clays or clayey sands) the problem is even
worse than with clays, since it reveals a mixed behav-
ior between fully drained (sands) and fully undrained
(clays), creating some important problem for a reason-
able interpretation [7].

As a consequence of these, it was considered more appropri-
ate to work with equilibrium pore-pressures (u0), calculated
from the position of water level externally obtained, instead
of P2. Thus, in the next experiments the objective is to
model G0 as function of P0, P1 and u0 parameters, avoid-
ing the need for special interpretations, which turns to be
much more efficient to include in mathematical operations.
As stated before, for that purpose, only subset PsS is used.
With the characterization pointed on Table 1 and Fig. 2 it
can be seen that this subset is comparable to the WDS in
terms of variables distribution and limits in exception of the
G0 parameter where the available data is restricted to the
range 12-110, where in WDS it goes 6-530. This is relevant,
as the conclusions about this experiments must take this into
account.

Concerning the G0 prediction using the (P0, P1, u0)
parameters, the schema was similar to the one described
in the previous subsection for the intermediate parameters.
A traditional regression approach was first used and then
the Neural Network and Support Vector Regression experi-
ments were made. Two sets of input parameters were used:
one using P0, P1 and u0 and other neglecting u0.

Regarding traditional regression, the least squares
method returned some interesting results which can be seen
in Table 8. Those results are the best when considering all
the possible combinations of the transformations exponen-
tial, square root, logarithmic and square to the dependent
and independent variables.

It should be noted that in Table 8, δ ≈ 0.448, which com-
bined with the range of values for u0 (roughly say, [0,0.2]
) results on a multiplicative effect in the prediction ˜G0 -
that is eδu0 × f (P0, P1) - of approximately [1,1.1]. Thus,
it was expectable that the introduction of the u0 parameter
didn’t bring too much improvement to our previous result as
it happened.

Regarding the Neural Network approaches, as explained
in the previous subsection, several exploratory experiments
were performed with different kinds of MLPs and SVRs.
Results from these preliminary experiments show that the
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Fig. 3 Boxplot for G0 relative errors vs different methods concerning DMT intermediate parameters

best ones were also obtained with SVRs with the radial
basis function kernel and for that reason we focus on more
detailed experiments using this combination. Results from
the SVRs with radial basis function kernel are presented in
Tables 9 and 10, where the u0 parameter also seem to be
negligible in terms of G0 prediction (Fig. 3).

4 Statistical tests

In order to have a strong support to some of the claims
made in previous sections, we made some statistical tests.
As some of the hypothesis need to use parametric tests were
not verified, we relied on the Kruskal-Wallis [23] test to
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Fig. 4 Multiple comparison plot for G0 relative errors vs different methods concerning DMT intermediate parameters
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Fig. 5 Multiple comparison plot for G0 relative errors vs different methods concerning DMT basic parameters

draw the conclusions. As it is well know, this may lead to let
some differences between models not detected by the test,
but it makes the results more robust. We set α = 0.05 as
default significance level, and used Matlab to compute the
following results. As explained before, for each method we
used a 30 elements sample, that result from the experiences
made with the repetitions of the cross validation procedure.

We run two different tests: One regarding the samples
obtained in Section 3.2 - related with DMT intermediate

parameters - and other with the (P0, P1, u0) set as explained
in Section 3.3.

In Table 11 we present the differences between methods
in terms of the G0 prediction that are considered statistically
significant by the Kruskal-Wallis method. In that table, the
several methods are sorted with respect to the variable of
interest (less error on top and worst prediction below). If the
comparison between a pair of methods (i, j) is considered
statistically significant we mark the intersection with a plus
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Fig. 6 Boxplot for G0 relative errors vs different methods concerning DMT basic parameters
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Fig. 7 Some Results: values for mean and std of median(
|G0 −˜G0 |

G0
) in experiments

sign. The resulting matrix is obviously symmetric and, as so,
we just filled the upper triangular part. For sake of brevity
we do not present the full values for the hypothesis testing,
but a multcompare plot is presented on Figs. 4 and 5 for
each of the tests.

Figure 3 reinforces the results from Kruskal-Wallis test
and, together with the previous sections lead to conclude
that, for the same method, the usage of the 3 parameters
(ID, ED, KD) is better than any combination of them. Note,
that statistically that does not apply to the (P0, P1, u0) set,
where the only significant diference is between the ε-SVR
with two input variable (P0, P1) and the ν-SVR with three
input variables (Fig. 6).

Another important conclusion is that, for the same num-
ber of used parameters, the traditional regression give
poorest results than the usage of SVR in terms of relative
error.

As final remark, it should be notice that we didn’t apply
these tests to results given by the ID partition (7) as the
data is rather unbalanced between the different subsets and
it probably bias the conclusions.

5 Conclusions

Figure 7 summarizes the results presented in the previous
sections and represents the quality parameters of some of
the best results.

It emphasizes the good results of the new approach
that was applied to predict maximum shear modulus by
DMT using Neural Networks and Support Vector Machines.
Based on the performed experiments and supported by the

non-parametric statistical tests it is possible to outline the
following considerations:

– Concerning the prediction with DMT intermediate
parameters,

– Neural Networks and Support Vector
Machines improve the current state-of-the-art
in terms of G0 prediction.

– The results show that, in general, NNs and
SVRs lead us to much smaller medians, when
compared to traditional approaches.

– Regarding the problem characteristics, the
SVR approach gives the best results consider-
ing the median as the main quality measure as
discussed earlier.

– The unbalanced data distribution, regarding
the ID partition, postpone a final conclusion
about the improvement of the model quality to
the availability of a more balanced sample.

– Concerning the prediction with DMT basic parameters,

– The results show that the basic input param-
eters (P0, P1) do not improve the fitness of
G0, when compared with the one given by
intermediate parameters.

– In addition to the previous, the inclusion of u0

as input parameter does not seem to improve
the fitness when compared to the one that con-
siders only the two basic pressions P0 and P1.
As so, future work should considered other
auxiliar data, mainly measured depth, depth of
water level, and/or P2.
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– The available unbalanced data, regarding G0

distribution, suggests that more tests should
be made using G0 values of higher magnitude
(>110).
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