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Abstract Twin support vector machines are a recently pro-
posed learning method for pattern classification. They learn
two hyperplanes rather than one as in usual support vector
machines and often bring performance improvements.
Semi-supervised learning has attracted great attention in
machine learning in the last decade. Laplacian support
vector machines and Laplacian twin support vector
machines have been proposed in the semi-supervised lear-
ning framework. In this paper, inspired by the recent success
of multi-view learning we propose multi-view Laplacian
twin support vector machines, whose dual optimization
problems are quadratic programming problems. We further
extend them to kernel multi-view Laplacian twin support
vector machines. Experimental results demonstrate that our
proposed methods are effective.

Keywords Twin support vector machines · Laplacian
support vector machines · Laplacian twin support vector
machines · Semi-supervised learning · Multi-view learning

1 Introduction

Support vector machines (SVMs) are a state-of-the-art tool
for pattern classification and regression problems [1–3],
which originate from the idea of structural risk minization
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in statistical learning theory. SVMs can learn a nonlinear
decision function which is linear in a potentially high-
dimensional feature space [4] with the aid of the kernel trick.
In practice, SVMs have been applied to a variety of domains
such as object detection, text categorization, bioinformatics
and image classification, etc.

In order to reduce the computational cost of SVMs,
proximal support vector machines (PSVMs) [5] have been
proposed. Compared with SVMs, PSVMs solve a linear
equation with time complexity O(d3) (d is the dimension
of the examples) while SVMs solve the convex optimization
problem. In essence, PSVMs classify the examples by a
hyperplane on the premise of guaranteeing the maximum
margin. Mangasarian and Wild [6] proposed generalized
eigenvalue proximal SVMs (GEPSVMs) which are an
extension of PSVMs for binary classification. Instead of
finding a single hyperplane as in PSVMs, GEPSVMs find
two nonparallel hyperplanes such that each hyperplane is as
close as possible to examples from one class and as far as
possible to examples from the other class. The two hyper-
planes are obtained by eigenvectors corresponding to the
smallest eigenvalues of two related generalized eigenvalue
problems. Jayadeva et al. [7] proposed another nonparallel
hyperplane classifier called twin SVMs (TSVMs), which
aim to generate two nonparallel hyperplanes such that one
of the hyperplanes is closer to one class and has a certain
distance to the other class. The formulation of TSVMs is
different from that of GEPSVMs and is similar to SVMs.
TSVMs solve a pair of quadratic programming problems
(QPPs), whereas SVMs solve a single QPP. This strategy
of solving two smaller sized QPPs rather than one large
QPP makes TSVMs work faster than standard SVMs [7].
Experimental results [8] show that nonparallel hyperplane
classifiers given by TSVMs can indeed improve the
performance of conventional SVMs [9–14].

2014

mailto:slsun@cs.ecnu.edu.cn
mailto:xjxie11@gmail.com


1060 X. Xie, S. Sun

In many machine learning tasks [15–18], labeled exam-
ples are often difficult and expensive to obtain, while
unlabeled examples may be relatively easy to collect.
Semi-supervised learning has attracted a great deal of
attention in the last decade to deal with this situation. It can
be superior to the performance of the counterpart supervised
learning approaches if the unlabeled data are properly used.
Some extensions of SVMs and TSVMs from supervised
learning to semi-supervised learning have been proposed,
e.g., transductive SVMs, semi-supervised support vector
machines, Laplacian support vector machines (LapSVMs),
Laplacian twin support vector machines (LapTSVMs)
[19–24]. LapTSVMs [24] are a successful combination
of semi-supervised learning and TSVMs, which are a
generalized framework of twin support vector machines
for learning from labeled and unlabeled data. By choosing
appropriate parameters, LapTSVMs can degenerate to
TSVMs [25, 26]. Experimental results showed that
LapTSVMs are superior to LapSVMs and TSVMs in
classification accuracy and the training time is more
economical than LapSVMs and TSVMs.

In many real-world applications, multi-modal data are
very common because of the use of different measuring
methods (e.g., infrared and visual cameras), or of different
media (e.g., text, video and audio) [27]. For example, web
pages can be represented by a vector for the words in the
web page text and another vector for the words in the anchor
text of a hyper-link. In content-based web-image retrieval,
an image can be simultaneously described by visual features
and the text surrounding the image. Multi-view learning
(MVL) is an emerging direction which aims to improve
classifiers by leveraging the complementarity and consis-
tency among distinct views [28–30]. The theories on MVL
can be classified to four categories which are canonical
correlation analysis, effectiveness of co-training, genera-
lization error analysis for co-training and generalization
error analysis for other MVL approaches [27].

SVM-2K is a successful combination of MVL and SVMs
which combines the maximum margin and multi-view
regularization principles to leverage two views to improve
classification performance [31]. Farquhar et al. [31] have
provided a theoretical analysis to illuminate the effec-
tiveness of SVM-2K, showing a significant reduction in
the Rademacher complexity of the corresponding function
class. Sun and Shawe-Taylor characterized the generaliza-
tion error of multi-view sparse SVMs [32] and multi-view
LapSVMs (MvLapSVMs) [33] in terms of the margin
bound and derived the empirical Rademacher complexity
of the considered function classes [34]. MvLapSVMs
integrate three regularization terms respectively on function
norm, manifold and multi-view regularization in the objec-
tive function. However, there is no existing multi-view
extension for LapTSVMs although LapTSVMs are superior

to LapSVMs. In this paper, we extend LapTSVMs to
our new frameworks named by multi-view Laplacian twin
support vector machines (MvLapTSVMs) which com-
bine two views by introducing the constraint of similar-
ity between two one-dimensional projections identifying
two distinct TSVMs from two feature spaces. Compared
to MvLapSVMs, there are two main differences. First,
LapSVMs and LapTSVMs are different in the principle
though they commonly use the manifold regularization term
for semi-supervised learning. MvLapSVMs are based on
LapSVMs while MvLapTSVMs are based on LapTSVMs.
Second, MvLapTSVMs combine two views in the con-
straints rather than in the objective function. Experimental
results validate that our proposed methods are effective.

The remainder of this paper proceeds as follows.
Section 2 briefly reviews related work including SVMs,
TSVMs, LapSVMs, LapTSVMs and SVM-2K. Section 3
introduces our proposed linear MvLapTSVMs and ker-
nel MvLapTSVMs. After reporting experimental results in
Section 4, we give conclusions in Section 5.

2 Related work

In this section, we briefly review SVMs, TSVMs,
LapSVMs, LapTSVMs and SVM-2K. They constitute the
foundation of our subsequent proposed methods.

2.1 SVMs and TSVMs

Suppose there are l examples represented by matrix A with
the ith row Ai (i = 1, 2, · · · , l) being the ith example.
Let yi ∈ {1, −1} denote the class to which the ith
example belongs. For simplicity, here we only review the
linearly separable case [1]. Then, we need to determine
w ∈ Rd and b ∈ R such that

yi(Aiw + b) ≥ 1. (1)

The hyperplane described by w�x + b = 0 lies midway
between the bounding hyperplanes given by w�x + b = 1
and w�x + b = −1. The margin of separation between
the two classes is given by 2

‖w‖ , where ‖w‖ denotes the
�2 norm of w. Support vectors are those training examples
lying on the above two hyperplanes. The standard SVMs [1]
are obtained by solving the following problem

min
w,b

1

2
w�w

s.t. ∀i : yi(Aiw + b) ≥ 1. (2)

The decision function is

f (x) = sign(w�x + b). (3)
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Then we introduce TSVMs [7]. Suppose examples
belonging to classes 1 and −1 are represented by matrices
A+ and B−, and the size of A+ and B− are (l1 × d) and
(l2 ×d), respectively. We define two matrices A, B and four
vectors v1, v2, e1, e2, where e1 and e2 are vectors of ones of
appropriate dimensions and

A = (A+, e1), B = (B−, e2),

v1 =
(

w1

b1

)
, v2 =

(
w2

b2

)
. (4)

TSVMs obtain two nonparallel hyperplanes

w�
1 x + b1 = 0 and w�

2 x + b2 = 0 (5)

around which the examples of the corresponding class get
clustered. The classifier is given by solving the following
QPPs separately
(TSVM1)

min
v1,q1

1

2
(Av1)

�(Av1) + c1e
�
2 q1

s.t. − Bv1 + q1 � e2, q1 � 0, (6)

(TSVM2)

min
v2,q2

1

2
(Bv2)

�(Bv2) + c2e
�
1 q2

s.t. Av2 + q2 � e1, q2 � 0, (7)

where c1, c2 are nonnegative parameters and q1, q2 are
slack vectors of appropriate dimensions. The label of a new
example x is determined by the minimum of |x�wr + br |
(r = 1, 2) which are the perpendicular distances of x to the
two hyperplanes given in (5).

2.2 LapSVMs

LapSVMs combine manifold regularization and SVMs [22].
Suppose x1, · · · , xl+u ∈ Rd represent a set of examples
including l labeled examples and u unlabeled examples.
W(l+u)×(l+u) represents the similarity of every pair of
examples

Wij = exp
(
− ‖ xi − xj ‖2 /2σ 2

)
, (8)

where σ is a scale parameter. The manifold regularization
can be written as

Reg(f ) = 1

2

l+u∑
i,j=1

Wij (f (xi) − f (xj ))
2

=
l+u∑
i=1

⎛
⎝ l+u∑

j=1

Wij

⎞
⎠ f 2(xi) −

l+u∑
i,j=1

Wijf (xi)f (xj )

= f�(V − W)f = f�Lf, (9)

where function f : Rd → R and f=[f (x1), · · · , f (xl+u)].
The matrix V is diagonal with the ith diagonal entry

Vii = ∑l+u
j=1 Wij . The matrix L = V −W and L is the graph

Laplacian of W . LapSVMs have the following optimization
problem

min
f ∈H

1
l

l∑
i=1

(1 − yif (xi))+ + γA‖f ‖2

+ γI

(u + l)2

l+u∑
i,j=1

Wij (f (xi) − f (xj ))
2, (10)

where H is the RKHS induced by a kernel. γA and γI

are respectively ambient and intrinsic regularization
coefficients.

2.3 LapTSVMs

The square loss function and hinge loss function are used
for TSVMs from supervised learning to semi-supervised
learning. LapTSVMs [24] are similar to LapSVMs in the
sense of manifold regularization. The optimization prob-
lems of LapTSVMs can be written as

min
w1,b1,ξ

1

2
‖A+w1 + e1b1‖2 + c1e

�
2 ξ + 1

2
c2

(
‖w1‖2 + b2

1

)

+ 1

2
c3

(
w�

1 M� + e�b1

)
L(Mw1 + eb1) (11)

s.t. − (B−w1 + e2b1) + ξ � e2, ξ � 0,

min
w2,b2,η

1

2
‖B−w2 + e2b2‖2 + c1e

�
1 η + 1

2
c2

(
‖w2‖2 + b2

2

)

+ 1

2
c3

(
w�

2 M� + e�b2

)
L(Mw2 + eb2) (12)

s.t. − (A+w2 + e1b2) + η � e1, η � 0,

where M includes all of labeled data and unlabeled data.
L is the graph Laplacian. e1, e2 and e are vectors of ones of
appropriate dimensions. w1, b1, w2, b2 are classifier para-
meters. c1, c2 and c3 are nonnegative parameters. ξ and η are
slack vectors of appropriate dimensions. The dual problem
of (11) and (12) respectively can be written as

max
α

e�
2 α − 1

2
α�G

(
H�H + c2I + c3J

�LJ
)−1

G�α

s.t. 0 	 α 	 c1e2, (13)

max
β

e�
1 β − 1

2
β�H

(
G�G + c2I + c3J

�LJ
)−1

H�β

s.t. 0 	 β 	 c1e1, (14)

where

v1 =
(

w1

b1

)
, v2 =

(
w2

b2

)
,

H = (A+, e1), J = (M, e), G = (B−, e2). (15)
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α and β are the vectors of nonnegative Lagrange multipliers.
I is an identity matrix of appropriate dimensions. v1, v2 can
be obtained simultaneously

v1 = − (
H�H + c2I + c3J

�LJ
)−1

G�α, (16)

v2 = − (
G�G + c2I + c3J

�LJ
)−1

H�β. (17)

According to matrix theory, it can be easily proved that
H�H + c2I + c3J

�LJ is a positive definite matrix.
LapTSVMs obtain two nonparallel hyperplanes

w�
1 x + b1 = 0 and w�

2 x + b2 = 0. (18)

The label of a new example x is determined by the minimum
of |x�wr + br | (r = 1, 2) which are the perpendicular
distances of x to the two hyperplanes given in (18).

2.4 SVM-2K

Suppose that we are given two views of the same data,
view 1 is represented by a feature projection φA with the
corresponding kernel function kA and view 2 is represented
by a feature projection φB with the corresponding kernel
function kB . Then the two-view data are given by a set
S = {(φA(x1), φB(x1)), · · · , (φA(xn), φB(xn))}. SVM-2K
[31] combines the two views by introducing the constraint
of similarity between two one-dimensional projections
identifying two distinct SVMs from the two feature spaces:

|〈wA, φA(xi)〉 + bA − 〈wB, φB(xi)〉 − bB | ≤ ηi + ε (19)

where wA, bA, wB , bB are the weight and threshold of
the first (second) SVMs. The SVM-2K method has the
following optimization for classifier parameters wA, bA,
wB , bB

min
wA,wB,q1i ,q2i ,ηi

1

2
‖wA‖2 + 1

2
‖wB‖2 + c1

n∑
i=1

q1i

+ c2

n∑
i=1

q2i + D

n∑
i=1

ηi

s.t. |〈wA, φA(xi)〉 + bA − 〈wB, φB(xi)〉 − bB | ≤ ηi + ε,

yi(〈wA, φA(xi)〉 + bA) ≥ 1 − q1i , (20)

yi(〈wB, φB(xi)〉 + bB) ≥ 1 − q2i ,

q1i ≥ 0, q2i ≥ 0, ηi ≥ 0, all for 1 ≤ i ≤ n,

where D, c1, c2, ε are nonnegative parameters and
q1i , q2i , ηi are slack vectors of appropriate dimensions.
Let ŵA, ŵB , b̂A, b̂B be the solution to this optimization
problem. The final SVM-2K decision function is
f (x) = 1

2 (〈ŵA, φA(x)〉 + b̂A + 〈ŵB, φB(x)〉 + b̂B).

The dual formulation of the above optimization problem
can be written as

min
ξA
i ,ξA

j ,ξB
i ,ξB

j ,αA
i ,αB

i

1

2

n∑
i,j=1

(
ξA
i ξA

j kA(xi, xj )

+ξB
i ξB

j kB(xi, xj )
)

−
n∑

i=1

(
αA

i + αB
i

)

s.t. ξA
i = αA

i yi − β+
i + β−

i ,

ξB
i = αB

i yi + β+
i − β−

i , (21)
n∑

i=1

ξA
i =

n∑
i=1

ξB
i = 0,

0 ≤ β+
i , β−

i , β+
i + β−

i ≤ D,

0 ≤ α
A/B
i ≤ c1/2,

where αA
i , αB

i , β+
i , β−

i are the vectors of nonnegative
Lagrange multipliers and we have taken ε = 0. The
prediction function for each view is given by

fA/B(x) =
n∑

i=1

ξ
A/B

i kA/B(xi, x) + bA/B. (22)

3 Our proposed methods

3.1 Linear MvLapTSVMs

In this part, we extend LapTSVMs to multi-view learning.
Here on view 1, positive examples are represented by A′

1
and negative examples are represented by B ′

1. On view 2,
positive examples are represented by A′

2 and negative exam-
ples are represented by B ′

2. The optimization problems of
linear MvLapTSVMs can be written as

min
w1,w2,b1,b2,q1,q2,η

1

2
‖A′

1w1 + e1b1‖2 + 1

2
‖A′

2w2 + e1b2‖2

+ c1e
�
2 q1 + c2e

�
2 q2

+ 1

2
c3

(
‖w1‖2 + b2

1 + ‖w2‖2 + b2
2

)

+ 1

2
c4

[
(w�

1 M
′�
1 + e�b1)

L1(M
′
1w1 + eb1)

+(w�
2 M ′�

2 + e�b2)L2(M
′
2w2 + eb2)

]

+ De�
1 η (23)

s.t. |A′
1w1 + e1b1 − A′

2w2 − e1b2| 	 η,

− B ′
1w1 − e2b1 + q1 � e2,

− B ′
2w2 − e2b2 + q2 � e2,

q1 � 0, q2 � 0,

η � 0,
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min
w3,w4,b3,b4,q3,q4,ζ

1

2
‖B ′

1w3 + e2b3‖2 + 1

2
‖B ′

2w4 + e2b4‖2

+ c1e
�
1 q3 + c2e

�
1 q4

+ 1

2
c3

(
‖w3‖2 + b2

3 + ‖w4‖2 + b2
4

)

+ 1

2
c4

[
(w�

3 M ′�
1 + e�b3)

L1(M
′
1w3 + eb3)

+(w�
4 M ′�

2 + e�b4)L2(M
′
2w4 + eb4)

]

+ He�
2 ζ (24)

s.t. |B ′
1w3 + e2b3 − B ′

2w4 − e2b4| 	 ζ,

− A′
1w3 − e1b3 + q3 � e1,

− A′
2w4 − e1b4 + q4 � e1,

q3 � 0, q4 � 0,

ζ � 0,

where M ′
1 includes all of labeled data and unlabeled data

from view 1. M ′
2 includes all of labeled data and unlabeled

data from view 2. L1 is the graph Laplacian of view 1 and
L2 is the graph Laplacian of view 2. e1, e2 and e are vectors
of appropriate dimensions. w1, b1, w2, b2, w3, b3,
w4, b4 are classifier parameters. c1, c2, c3 and c4 are
nonnegative parameters. q1, q2, q3, q4, η and ζ are slack
vectors of appropriate dimensions.

The Lagrangian of the optimization problem (23) is given
by

L = 1

2
‖A′

1w1 + e1b1‖2 + 1

2
‖A′

2w2 + e1b2‖2 + c1e
�
2 q1

+ c2e
�
2 q2 + 1

2
c3

(
‖w1‖2 + b2

1 + ‖w2‖2 + b2
2

)

+ 1

2
c4

[
(w�

1 M
′�
1 + e�b1)L1(M

′
1w1 + eb1)

+ (w�
2 M

′�
2 + e�b2)L2(M

′
2w2 + eb2)

]

+ De�
1 η − β�

1 (η − A′
1w1 − e1b1 + A′

2w2 + e1b2)

− β�
2 (A′

1w1 + e1b1 − A′
2w2 − e1b2 + η)

− α�
1 (−B ′

1w1 − e2b1 + q1 − e2)

− α�
2 (−B ′

2w2 − e2b2 + q2 − e2)

− λ�
1 q1 − λ�

2 q2 − σ�η, (25)

where α1, α2, β1, β2, λ1, λ2 and σ are the vectors of non-
negative Lagrange multipliers. We take partial derivatives of
the above equation and let them be zero

∂L

∂w1
= A

′�
1 (A′

1w1 + e1b1) + c3w1

+ c4M
′�
1 L1(M

′
1w1 + eb1)

+ A
′�
1 β1 − A

′�
1 β2 + B

′�
1 α1 = 0,

∂L

∂b1
= e�

1 (A′
1w1 + e1b1) + c3b1 + c4e

�L1(M
′
1w1 + eb1)

+ e�
1 β1 − e�

1 β2 + e�
1 α1 = 0, (26)

∂L

∂w2
= A

′�
2 (A′

2w2 + e1b2) + c3w2

+ c4M
′�
2 L2(M

′
2w2 + eb2)

− A
′�
2 β1 + A

′�
2 β2 + B

′�
2 α2 = 0,

∂L

∂b2
= e�

1 (A′
2w2 + e1b2) + c3b2 + c4e

�L2(M
′
2w2 + eb2)

− e�
1 β1 + e�

1 β2 + e�
2 α2 = 0,

∂L

∂q1
= c1e2 − α1 − λ1 = 0,

∂L

∂q2
= c2e2 − α2 − λ2 = 0,

∂L

∂η
= De1 − β1 − β2 − σ = 0.

We define

A1 = (
A′

1, e1
)
, A2 = (

A′
2, e1

)
,

B1 = (
B ′

1, e2
)
, B2 = (

B ′
2, e2

)
, (27)

J1 = (
M ′

1, e
)
, J2 = (

M ′
2, e

)
, v1 =

(
w1

b1

)
, v2 =

(
w2

b2

)
.

From the above equations, we obtain

A�
1 A1v1 + c3v1 + c4J

�
1 L1J1v1 + A�

1 β1

− A�
1 β2 + B�

1 α1 = 0, (28)

A�
2 A2v2 + c3v2 + c4J

�
2 L2J2v2 − A�

2 β1

+ A�
2 β2 + B�

2 α2 = 0. (29)

It follows that

v1 =
(
A�

1 A1 + c3I + c4J
�
1 L1J1

)−1

[A�
1 (β2 − β1) − B�

1 α1], (30)

v2 =
(
A�

2 A2 + c3I + c4J
�
2 L2J2

)−1

[A�
2 (β1 − β2) − B�

2 α2]. (31)

We substitute (30), (31) into (25) and get

L = (α1 + α2)
�e2 − 1

2

[
(β2 − β1)

�A1 − α�
1 B1

] (
A�

1 A1

+ c3I + c4J
�
1 L1J1

)−1 [
A�

1 (β2 − β1) − B�
1 α1

]

− 1

2

[
(β1 − β2)

�A2 − α�
2 B2

] (
A�

2 A2 + c3I

+ c4J
�
2 L2J2

)−1 [
A�

2 (β1 − β2) − B�
2 α2

]
. (32)
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Therefore, the dual optimization formulation is

min
ξ1,ξ2,α1,α2

1

2
ξ�

1

(
A�

1 A1 + c3I + c4J
�
1 L1J1

)−1
ξ1

+ 1

2
ξ�

2

(
A�

2 A2 + c3I + c4J
�
2 L2J2

)−1
ξ2

− (α1 + α2)
�e2

s.t. ξ1 = A�
1 (β2 − β1) − B�

1 α1, (33)

ξ2 = A�
2 (β1 − β2) − B�

2 α2,

0 	 β1, β2, β1 + β2 	 De1,

0 	 α1/2 	 c1/2e2.

Applying the same techniques to (24), we obtain its
corresponding dual optimization formulation as

min
ρ1,ρ2,ω1,ω2

1

2
ρ�

1

(
B�

1 B1 + c3I + c4J
�
1 L1J1

)−1
ρ1

+ 1

2
ρ�

2

(
B�

2 B2 + c3I + c4J
�
2 L2J2

)−1
ρ2

− (ω1 + ω2)
�e1

s.t. ρ1 = B�
1 (γ2 − γ1) − A�

1 ω1, (34)

ρ2 = B�
2 (γ1 − γ2) − A�

2 ω2,

0 	 γ1, γ2, γ1 + γ2 	 He2,

0 	 ω1/2 	 c1/2e1,

where the augmented vectors u1 =
(

w3

b3

)
, u2 =

(
w4

b4

)
are

given by

u1 =
(
B�

1 B1 + c3I + c4J
�
1 L1J1

)−1

[
B�

1 (γ2 − γ1) − A�
1 ω1

]
, (35)

u2 =
(
B�

2 B2 + c3I + c4J
�
2 L2J2

)−1

[
B�

2 (γ1 − γ2) − A�
2 ω2

]
. (36)

For an example x with x ′
1 and x ′

2, if 1
2 (|x�

1 v1| + |x�
2 v2|) ≤

1
2 (|x�

1 u1| + |x�
2 u2|), where x1 = (x ′

1, 1) and x2 = (x ′
2, 1),

it is classified to class +1, otherwise class −1.

Now we compare SVM-2K and MvLapTSVMs. SVM-
2K is a multi-view supervised learning method for SVMs
while MvLapTSVMs are multi-view semi-supervised learn-
ing methods for TSVMs. Suppose the number of sam-
ples from either class is equal to l/2. SVM-2K solves
a single QPP and has the computational complexity of
O((2l)3), while MvLapTSVMs solve a pair of QPPs and
have the computational complexity of O(2l3). About hyper-
parameter selection, SVM-2K needs three hyper-parameters
to select, and MvLapTSVMs need five hyper-parameters
to select. Therefore, MvLapTSVMs are more efficient for
multi-view learning in computational complexity.

3.2 Kernel MvLapTSVMs

Now we extend the linear MvLapTSVMs to the nonlinear
case. The kernel-induced hyperplanes are:

K{x�
1 , C�

1 }λ1 + b1 = 0, K{x�
2 , C�

2 }λ2 + b2 = 0,

K{x�
1 , C�

1 }λ3 + b3 = 0, K{x�
2 , C�

2 }λ4 + b4 = 0, (37)

where K is a chosen kernel function which is defined by
K{xi, xj } = (�(xi), �(xj )). �(·) is a nonlinear mapping
from a low-dimensional feature space to a high-dimensional
feature space. C1 and C2 denote training examples from
view 1 and view 2 respectively, that is, C1 = (A

′�
1 , B

′�
1 )�,

C2 = (A
′�
2 , B

′�
2 )�.

The optimization problems can be written as

min
λ1,λ2,b1,b2,q1,q2,η

1

2
‖K{A′

1, C�
1 }λ1 + e1b1‖2 (38)

+ 1

2
‖K

{
A′

2, C�
2

}
λ2 + e1b2‖2

+ c1e
�
2 q1 + c2e

�
2 q2 + 1

2
c3

(
λ�

1 K1λ1

+ b2
1 + λ�

2 K2λ2 + b2
2

)
+ 1

2
c4

[
(λ�

1 K1

+ e�b1

)
L1(K1λ1 + eb1) +

(
λ�

2 K2

+ e�b2

)
L2(K2λ2 + eb2)] + De�

1 η

s.t. |K{A′
1, C�

1 }λ1 + e1b1

− K{A′
2, C�

2 }λ2 − e1b2| 	 η,

− K{B ′
1, C�

1 }λ1 − e2b1 + q1 � e2,

− K{B ′
2, C�

2 }λ2 − e2b2 + q2 � e2,

q1 � 0, q2 � 0,

η � 0,

min
λ3,λ4,b3,b4,q3,q4,ζ

1

2
‖K

{
B ′

1, C�
1

}
λ3 + e2b3‖2

+ 1

2
‖K

{
B ′

2, C�
2

}
λ4 + e2b4‖2 + c1e

�
1 q3

+ c2e
�
1 q4 + 1

2
c3

(
λ�

3 K1λ3 + b2
3

+ λ�
4 K2λ4 + b2

4

)
+ 1

2
c4

[
(λ�

3 K1

+ e�b3)L1(K1λ3 + eb3) + (λ�
4 K2

+ e�b4)L2(K2λ4 + eb4)
]

+ He�
2 ζ (39)

s.t. |K
{
B ′

1, C�
1

}
λ3 + e2b3 − K

(
B ′

2, C�
2

)
λ4

− e2b4| 	 ζ, −K{A′
1, C�

1 }λ3 − e1b3 + q3 � e1,

− K{A′
2, C�

2 }λ4 − e1b4 + q4 � e1,

q3 � 0, q4 � 0,

ζ � 0,
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where K1 represents kernel matrix of view 1 and K2 repre-
sents kernel matrix of view 2. L1 is the graph Laplacian of
view 1 and L2 is the graph Laplacian of view 2. e1, e2 and
e are vectors of ones of appropriate dimensions. λ1, b1, λ2,
b2, λ3, b3, λ4, b4 are classifier parameters. c1, c2, c3 and c4

are nonnegative parameters. q1, q2, q3, q4, η and ζ are slack
vectors of appropriate dimensions.

The Lagrangian of the optimization problem (38) is given
by

L = 1

2
‖K

{
A′

1, C�
1

}
λ1 + e1b1‖2 + 1

2
‖K

{
A′

2, C�
2

}
λ2

+ e1b2‖2 + c1e
�
2 q1 + c2e

�
2 q2 + 1

2
c3

(
λ�

1 K1λ1 + b2
1

+ λ�
2 K2λ2 + b2

2

)
+ 1

2
c4

[
(λ�

1 K1 + e�b1)L1(K1λ1

+ eb1) + (λ�
2 K2 + e�b2)L2(K2λ2 + eb2)

]
+ De�

1 η

− β�
1

(
η − K{A′

1, C�
1 }λ1 − e1b1 + K{A′

2, C�
2 }λ2

+ e1b2

)
− β�

2

(
K{A′

1, C�
1 }λ1 + e1b1 − K{A′

2, C�
2 }λ2

− e1b2 + η
)

− α�
1

(
−K{B ′

1, C�
1 }λ1 − e2b1 + q1 − e2

)

− α�
2

(
−K{B ′

2, C�
2 }λ2 − e2b2 + q2 − e2

)

− ξ�
1 q1 − ξ�

2 q2 − σ�η, (40)

where α1, α2, β1, β2, ξ1, ξ2 and σ are the vectors of
nonnegative Lagrange multipliers.

We take partial derivatives of the above equation and let
them be zero

∂L

∂λ1
= K

{
A′

1, C�
1

}� (
K{A′

1, C�
1 }λ1 + e1b1

)
+ c3K1λ1

+ c4K1L1(K1λ1 + eb1) + K
{
A′

1, C�
1

}�
β1

− K
{
A′

1, C�
1

}�
β2 + K

{
B ′

1, C�
1

}�
α1 = 0,

∂L

∂b1
= e�

1

(
K{A′

1, C�
1 }λ1 + e1b1

)
+ c3b1 (41)

+ c4e
�L1(K1λ1 + eb1) + e�

1 β1 − eT
1 β2 + e�

2 α1 = 0,

∂L

∂λ2
= K

{
A′

2, C�
2

}� (
K{A′

2, C�
2 }λ2 + e1b2

)
+ c3K2λ2

+ c4K2L2(K2λ2 + eb2) − K
{
A′

2, C�
2

}�
β1

+ K
{
A′

2, C�
2

}�
β2 + K

{
B ′

2, C�
2

}�
α2 = 0,

∂L

∂b2
= e�

1

(
K{A′

2, C�
2 }λ2 + e1b2

)
+ c3b2

+ c4e
�L2(K2λ2 + eb2) − e�

1 β1 + e�
1 β2 + e�

2 α2 = 0,

∂L

∂q1
= c1e2 − α1 − ξ1 = 0,

∂L

∂q2
= c2e2 − α2 − ξ2 = 0,

∂L

∂η
= De1 − β1 − β2 − δ = 0.

Let

Hφ =
(
K{A′

1, C�
1 }, e1

)
, Gφ =

(
K{B ′

1, C�
1 }, e2

)
,

Oφ = (
K1 0
0 1

)
, Jφ = (K1, e), Qφ =

(
K{A′

2, C�
2 }, e1

)
,

Pφ =
(
K{B ′

2, C�
2 }, e2

)
, Uφ = (

K2 0
0 1

)
, Fφ = (K2, e),

θ1 =
(

λ1

b1

)
, θ2 =

(
λ2

b2

)
. (42)

From the above equations, we obtain

H�
φ Hφθ1 + c3Oφθ1 + c4J

�
φ L1Jφθ1 + H�

φ β1 − H�
φ β2

+ G�
φ α1 = 0, (43)

Q�
φ Qφθ2 + c3Uφθ2 + c4F

�
φ L2Fφθ2 − Q�

φ β1 + Q�
φ β2

+ P �
φ α1 = 0. (44)

It follows that

θ1 =
(
H�

φ Hφ + c3Oφ + c4J
�
φ L1Jφ

)−1

[
H�

φ (β2 − β1) − G�
φ α1

]
, (45)

θ2 =
(
Q�

φ Qφ + c3Uφ + c4F
�
φ L2Fφ

)−1

[
Q�

φ (β1 − β2) − P �
φ α2

]
. (46)

We substitute (45), (46) into (40) and get

L = (α1 + α2)
�e2 − 1

2

[
(β2 − β1)

�Hφ − α�
1 Gφ

]
(
H�

φ Hφ + c3Oφ + c4J
�
φ L1Jφ

)−1

[
H�

φ (β2 − β1) − G�
φ α1

]
− 1

2

[
(β1 − β2)

�Qφ

− α�
2 Fφ

] (
Q�

φ Qφ + c3Uφ + c4F
�
φ L2Fφ

)−1

[
Q�

φ (β1 − β2) − P �
φ α2

]
. (47)

Therefore, the dual optimization formulation is

min
ξ1,ξ2,α1,α2

1

2
ξ�

1

(
H�

φ Hφ + c3Oφ + c4J
�
φ L1Jφ

)−1
ξ1

+ 1

2
ξ�

2

(
Q�

φ Qφ + c3Uφ + c4F
�
φ L2Fφ

)−1

ξ2 − (α1 + α2)
�e2 (48)
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s.t. ξ1 = H�
φ (β2 − β1) − G�

φ α1,

ξ2 = Q�
φ (β1 − β2) − P �

φ α2,

0 	 β1, β2, β1 + β2 	 De1,

0 	 α1/2 	 c1/2e2.

Correspondingly, the dual optimization formulation for (39)
is

min
ρ1,ρ2,ω1,ω2

1

2
ρ�

1

(
G�

φ Gφ + c3Oφ + c4J
�
φ L1Jφ

)−1

ρ1 + 1

2
ρ�

2

(
P �

φ Pφ + c3Uφ + c4F
�
φ L2Fφ

)−1

ρ2 − (ω1 + ω2)
�e1 (49)

s.t. ρ1 = G�
φ (γ2 − γ1) − H�

φ ω1,

ρ2 = P �
φ (γ1 − γ2) − Q�

φ ω2,

0 	 γ1, γ2, γ1 + γ2 	 He2,

0 	 ω1/2 	 c1/2e1,

where the augmented vectors π1 =
(

λ3

b3

)
, π2 =

(
λ4

b4

)
are

given by

π1 =
(
G�

φ Gφ + c3Oφ + c4J
�
φ L1Jφ

)−1

[
G�

φ (γ2 − γ1) − H�
φ ω1

]
, (50)

π2 =
(
P �

φ Pφ + c3Uφ + c4F
�
φ L2Fφ

)−1

[
P �

φ (γ1 − γ2) − Q�
φ ω2

]
. (51)

Suppose an example x has two views x1 and x2.
If 1

2 (|K{x�
1 , C�

1 }λ1 + b1| + |K{x�
2 , C�

2 }λ2 + b2|) ≤
1
2 (|K{x�

1 , C�
1 }λ3 + b3| + |K{x�

2 , C�
2 }λ4 + b4|), it is classi-

fied to class +1, otherwise class −1.

4 Experimental results

In this section, we evaluate our proposed MvLapTSVMs
on three real-world datasets. Three datasets are from UCI
Machine Learning Repository: ionosphere classification,
handwritten digits classification and advertisement classifi-
cation. Details about the three datasets are listed in Table 1.

Table 1 Datasets

Name Attributes Instances Classes

Ionosphere 34 351 2

Handwritten digits 649 2000 10

Advertisement 587/967 3279 2

Table 2 Classification accuracies and standard deviations ( %) on
Ionosphere

Method l = 70, u = 70 l = 70, u = 140

single-view LapTSVM1 88.17±1.61 88.45±1.84

single-view LapTSVM2 88.17±2.75 88.73±2.64

SVM-2K 83.38±3.78 83.38±3.78

MvTSVMs 87.32±2.23 87.32±2.23

MvLapTSVMs 89.01±1.84 89.29±1.60

4.1 Ionosphere

The ionosphere dataset 1 was collected by a system in Goose
Bay, Labrador. This system consists of a phased array of 16
high-frequency antennas with a total transmitted power on
the order of 6.4 kilowatts. The targets were free electrons
in the ionosphere. “Good” radar returns are those showing
evidence of some type of structure in the ionosphere. “Bad”
returns are those that do not and their signals pass through
the ionosphere. It includes 351 instances in total which are
divided into 225 “Good” (positive) instances and 126 “Bad”
(negative) instances.

In our experiments, we regard original data as the first
view. Then we capture 99 % of the data variance while
reducing the dimensionality from 34 to 21 with PCA and
regard the resultant data as the second view. We compare
MvLapSVMs with single-view LapTSVMs (LapTSVM1
means using the LapTSVMs method to deal with one view
data and LapTSVM2 means using the LapTSVMs method
to deal with the other view data), SVM-2K and multi-view
TSVMs (MvTSVMs)2. The result of experiment varies by
use of different size of unlabeled data. We select regulariza-
tion parameters from the range [2−7, 27] with exponential
growth 0.5. The linear kernel is chosen for the dataset. We
select 70 labeled and 70 unlabeled examples as the training
set (i.e., l = 70, u = 70). The unlabeled examples are ran-
domly selected from both classes. The size of the test data is
71. The result is in the second column in Table 2. Then we
select 70 labeled and 140 unlabeled examples as the training
set (i.e., l = 70, u = 140). The unlabeled examples are ran-
domly selected from both classes. The size of the test data
is 71. The result is in the third column. Each experiment is
repeated five times. Experiment result is in Table 2.

4.2 Handwritten digits

The handwritten digits dataset3 consists of features of hand-
written digits (0 ∼ 9) extracted from a collection of Dutch

1http://archive.ics.uci.edu/ml/datasets/Ionosphere
2We do not detail the MvTSVMs here. They are supervised extensions
of TSVMs to multi-view learning.
3https://archive.ics.uci.edu/ml/datasets/Multiple+Features

http://archive.ics.uci.edu/ml/datasets/Ionosphere
https://archive.ics.uci.edu/ml/datasets/Multiple+Features
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Fig. 1 Classification accuracies
( %) of four methods on
Advertisement
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utility maps. It consists of 2000 examples (200 examples
per class) with view 1 being the 76 Fourier coefficients, and
view 2 being the 64 Karhunen-Loève coefficients of each
example image.

In this experiment, we compare MvLapSVMs with
single-view LapTSVMs, SVM-2K and MvTSVMs.
Because TSVMs are designed for binary classification
while handwritten digits contains 10 classes, we use
three pairs (1, 7), (2, 4) and (3, 9) for binary classifica-
tion. We select regularization parameters from the range
[2−7, 27] with exponential growth 0.5. We select 160
labeled and 160 unlabeled examples as the training set (i.e.,
l = 160, u = 160). Half of the unlabeled data come from
one class and the other half come from the other class. The
size of the test data is 80. The Gaussian kernel is chosen
for the dataset. Each experiment is repeated five times.
Experiment result is in Table 3.

4.3 Advertisement

The advertisement dataset4 [35] consists of 3279 examples
including 459 ads images (positive examples) and 2820 non-
ads images (negative examples). One view describes the
image itself (words in the images URL, alt text and caption),
while the other view contains all other features (words from
the URLs of the pages that contain the image and the image
points to).

In this experiment, we randomly select 700 examples
therein to form the used dataset. We select regulariza-
tion parameters from the range [2−7, 27] with exponential
growth 0.5. The Gaussian kernel is chosen for the dataset.

4http://archive.ics.uci.edu/ml/datasets/Internet+Advertisements

We select u = 100 unlabeled data. The unlabeled examples
are randomly selected from both classes. Each experiment
is repeated five times. Experiment result is in Fig. 1.

4.4 Analysis of the results

MvLapTSVMs can obtain good performance by combining
two views in the constraints and are better than the cor-
responding single-view LapTSVMs. The second row, third
row and sixth row in Table 2 show that MvLapTSVMs are
superior to single-view LapTSVMs with the same labeled
examples and different unlabeled examples. Similarly, the
second row, third row and sixth row in Table 3 show that
MvLapTSVMs are superior to single-view LapTSVMs in
different digit pairs classification problems. From Figure
1 with varying training sizes, we can conclude that
our method MvLapTSVMs are superior to single-view
LapTSVMs. MvLapTSVMs can also exploit the usefulness
of unlabeled examples to improve the classification accu-
racy comparable to supervised learning such as MvTSVMs
and SVM-2K. The fourth row, fifth row and sixth row in
Table 2 show that MvLapTSVMs are superior to MvTSVMs

Table 3 Classification accuracies and standard deviations ( %) on
Handwritten digits

Method 2 ∼ 4 1 ∼ 7 3 ∼ 9

single-view LapTSVM1 88.75±2.17 91.25±2.50 98.00±1.43

single-view LapTSVM2 81.5±7.78 81.00±4.95 78.00±6.22

SVM-2K 94.00±1.63 93.20±2.26 94.50±3.14

MvTSVMs 94.00±2.71 95.00±0.88 96.00±1.05

MvLapTSVMs 97.75±1.63 98.75±0.88 98.25±1.43

http://archive.ics.uci.edu/ml/datasets/Internet+Advertisements
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and SVM-2K with the same labeled examples and different
unlabeled examples. Similarly, the fourth row, fifth row and
sixth row in Table 3 show that MvLapTSVMs are superior
to MvTSVMs and SVM-2K in different digit pairs classifi-
cation problems. From Figure 1 with varying training sizes,
MvLapTSVMs are superior to MvTSVMs and SVM-2K.

5 Conclusion

In this paper, we extended LapTSVMs to multi-view learn-
ing and proposed a new framework called MvLapTSVMs
which combine two views by introducing the constraint of
similarity between two one-dimensional projections iden-
tifying two distinct TSVMs from two feature spaces.
MvLapTSVMs construct a decision function by solving two
quadratic programming problems. We provide their dual
formulation making use of Lagrange dual optimization tech-
niques. MvLapTSVMs were further extended to their kernel
version. Experimental results on real datasets indicate that
the multi-view LapTSVMs are better than the corresponding
single-view and supervised learning methods.
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