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Abstract Microarray data analysis has been widely used
for extracting relevant biological information from thou-
sands of genes simultaneously expressed in a specific cell.
Although many genes are expressed in a sample tissue, most
of these are irrelevant or insignificant for clinical diagnosis
or disease classification because of missing values and
noises. Thus, finding a small, closely related gene set to
accurately classify disease cells is an important research
problem. At the same time, scalable gene selection methods
are required for microarray data analysis due to rapidly
increasing volume of microarray data. In this paper, we
propose a scalable parallel gene selection method using
the MapReduce programming model. The proposed method
utilizes the kNN classifier algorithm for evaluating clas-
sification accuracy and uses four real and three synthetic
datasets for experiments. Experimental results show that the
proposed method can offer good scalability on large data
with increasing number of nodes and it can also provide
higher classification accuracy rather than using whole gene
set for classification.

Keywords Microarray data analysis - Gene selection -
MapReduce

1 Introduction

Microarray technology has recently become a popular tech-
nique for bioinformatics, especially in clinical diagnosis,
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disease classification and finding gene regulations. The
technique observes expression values of thousands of genes
simultaneously and analyzes expression levels for clini-
cal diagnosis and discovers correlations among genes. For
example, microarray gene expressions data are widely used
for identifying candidate genes in various cancer stud-
ies [10]. These data usually contain thousands of genes
(sometimes more than 10000 genes) and small number of
samples (usually <100 samples). Although many genes are
expressed in a microarray chip, most of these are irrele-
vant or useless for a particular analysis because some of
the genes are differentially modulated in tissues under dif-
ferent conditions and an amount of noise in a microarray
experiment is usually expected.

Therefore, an important step towards effective classifica-
tion is to identify discriminatory genes and thus to reduce
the number of genes used for classification purpose. The
process of discriminatory gene identification is generally
referred to as gene selection. Gene selection methods extract
a small subset of discriminatory or the most relevant genes
that can effectively classify test samples. Thus, it is possi-
ble to generate classification model from training data set at
low cost while minimizing classification errors.

There is a variety of gene selection methods proposed in
last few years [10, 12, 13]. They address various biologi-
cal properties of microarray data and utilize those to extract
relevant genes from large number of genes. Some of the
methods use statistical analysis such as sampling technique
[11, 12, 19] while others utilize machine learning algorithms
such as genetic algorithm [6—8] and SVM classification
model [21].

Meanwhile, due to recent developments of microarray
chip technology, such experiments can handle more than
10,000 genes simultaneously in one chip and can gene-
rate large amount of microarray data at low cost. Thus,
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high performance computing for gene selection has become
increasingly important in microarray data analysis. The
MapReduce programming paradigm and its implementation
Hadoop have a substantial base for biological data analysis
including microarray data.

In this paper, we propose MapReduce based parallel gene
selection method. Our method utilizes sampling technique
to reduce irrelevant genes by using BW ratio [12] and uses
kNN algorithm for comparison of classification accuracy.
The method is implemented in MapReduce environment for
achieving scalability with an increasing amount of microar-
ray data. Major contributions of our work are as follows:

1. We propose new gene selection method (MRGS) for
microarray data by using the sampling technique.

2. We devise MRKNN to execute multiple kNN in parallel
using MapReduce programming model.

3. Finally, the effectiveness of our method is verified
through extensive experiments using several real and
synthetic data-sets.

The rest of our paper is organized as follows: in Section 2,
we discuss preliminary knowledge and existing works
related to the scope of our work. Section 3 presents the
proposed MapReduce gene selection algorithm. Section 4
explains experimental results and discusses several perfor-
mance issues in our method. In Section 5, we conclude the
paper with directions of future works.

2 Related works

In recent years, microarray technology has been widely used
in biological researches. To analyze microarray gene expres-
sions data, it is very important to select proper number of
genes that are relevant for a data analysis. For this reason,
several gene selection methods have been proposed in the
last few years [10, 12, 13].

Among statistical methods, SVST [11] has introduced
the concept of sample pruning to remove less relevant and
outlier samples and has applied SVM to find biologically
relevant genes. In order to improve accuracy of the classifi-
cation technique, the method removes less relevant samples
which are not located on support vectors. However, it may
suffer from low training data since it drops around 50 % of
samples while the number of samples is very small com-
pared to the number of genes in a microarray experiment.
RFGS [10] generates several hundreds of decision trees
constructed from randomly selected gene subsets and con-
siders root attributes for determining relevant gene sets. The
method requires several executions since each execution
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produces different decision trees for random gene subsets.
Moreover, in comparison with other approaches, it shows
relatively lower accuracy in selecting biologically relevant
genes.

On the contrary, other methods have adopted evolution-
ary approaches such as genetic algorithm because of their
high learning capability. [12, 18] are representative methods
of these approaches. GADP [12] has exploited probabilistic
measures for crossover and mutation to improve the degree
of fitness. The methods have common drawbacks that they
do not emphasize on biological relevance of extracted infor-
mation at each generation and also require many generations
to achieve optimal result. Another interesting technique for
gene selection is supervised clustering [14]. It generally
begins with coarse clusters and incrementally refines clus-
tering results by utilizing cluster features values. It also
considers mutual relationship between genes rather than
individual gene properties.

Furthermore, high performance computing has become
extremely important for analyzing large amount of biologi-
cal data. MapReduce is an easy-to-use and general purpose
parallel programming model that is suitable for large data
analysis on a commodity hardware cluster. Computation on
MapReduce is divided into two major phases called map
and reduce. The power of MapReduce is that map and
reduce tasks are executed in parallel over a large number of
processors with minimal effort by the application developer.

Figure 1 shows a schematic diagram to explain MapRe-
duce [1] framework. It is being deployed increasingly
in many biological data analysis projects. Several recent
literatures [2-9] have proposed parallel classifications and
learning methods for analyzing large datasets including bio-
logical data. Crossbow [4] is an open-source genotyping
tool implemented on hadoop. It accelerates alignment and
SNP calling tasks more than 100 times the capabilities of
conventional computer systems. CloudBurst [5] efficiently
maps next generation sequence data and achieves almost
linear speed up with increasing number of processors. Until
now, only a few works [6] have addressed the possibility
of parallel processing in microarray data analysis. This
scenario motivates us to develop a parallel gene selection
method using MapReduce programming model.

3 Proposed method

In this section, we describe MapReduce based parallel gene
selection method in detail. First, we explain overall outline
and also the principles hidden in each step of our method.
Then, we depict each parallelizable step with MapReduce
framework.



MapReduce based parallel gene selection method

Fig. 1 Graphical representation
of MapReduce programming
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3.1 Outline of our method

Figure 2 shows the overall procedures of our gene selec-
tion method. Generally, microarray data is presented as an
N x M matrix, where N is the number of genes and M is the
number of experimental samples involved. The transpose
matrix presentation is particularly suitable since the number
of genes is much larger than that of samples. Table 1 shows
a sample microarray data which will be used for examples
given in the paper.

Typically, microarray data has many irrelevant genes
that do not affect analysis results and have no correlation
with other genes. Thus, it is not necessary to consider all
genes for such analyses. Therefore, we eliminate unneces-
sary genes at the very beginning of our method. At
first, we reduce the number of genes by measuring BW
(Between-groups to Within-groups sum of square) ratio (1)
[12] values. The BW ratio indicates degree of variances
among gene expression values. If there are minor fluctua-
tions among gene expressions, BW ratio value would be
small. Smaller BW ratio value refers that corresponding
gene might be irrelevant for a particular microarray
analysis.

The potential genes extracted by BW ratio measure are
defined in definition 1.

Definition 1 Potential Gene (g,) Let G = {g1, £, ...,
gN—1, 8N}, be a set of genes and § = {s1, s2,...,
SM—1,SMm}, be a set of samples in a microarray dataset. If
BW(g;j) > BW;, and g; € G, then g; is a potential gene,
gp. BW ratio of a gene can be calculated from (1). We also
define a potential gene set G, = {Vg p € G}.

SSpj _ Z?nzl 21221 I(yi = c)(xc,j — )EJ')Z
SSwi Y Sk 1= — e j)?
(1)

BW(gj) =

Here, m is the number of training samples, k is the num-
ber of classes and ¢ represents corresponding class label.
X; denotes overall expressions mean value of gene g; over
training samples and X ; denotes class based mean value
of gene g; expressions belong to same class ¢y in training
samples. Larger BW indicates significance of a gene for a
particular analysis.

Let us consider, the expression values of g for training
samples in Table 1 (g21=2, g22=2, g23=0, g24=42). Thus,
overall mean value, x,=(2 + 2 + 6 + 42)/4=13 and class
mean values are X1 2=(6 + 42)/2=24 and X »=(2 + 2)/2=2
respectively. Finally, BW (g2) is ((24 — 13)2 + (2 — 13)?)/
(=224 2-2)%)+ (5—-24)% + (42 — 24)?) = 0.385.
If 0.385 > BW;;, g> would be a potential gene.

Fig. 2 Workflow of the
proposed method

NxM
Microarray
data

> Generate
potential gene
subsets

Select top-k genes

> Calculate " .
from high accuracy

accuracy of each

<Sne (O .gNz,.A-.gNK)>

<5y, (9110 912,0.4910)>

gene subset gene subset
<S;, accy> <0y, freqi>
: <ga freqz>
<Sy, acey> .
<Gk freqe>

@ Springer



150

Table 1 Sample microarray data

Genejy trsy trspy trsy  trsq4 .. sy tsy ts3
1 10 5 3 6 ... 25 3

2 42 ... 3 6 5
3 15 40 58 ... 34 7 37
4 17 24 13 41 ... 23 13 25
5 16 29 56 ... 14 32 64
6 7 22 57 56 ... 30 15 27
7 14 11 50 15 ... 17 12 26
8 18 26 29 ... 27 23 12
9 14 26 21 ...22 32 23
10 18 19 26 19 ... 15 37 12
N

Class value 2 2 1 1 . 1 1 2

After extracting all potential genes, we generate a pre-
defined number of potential gene subsets (Sx) of equal
size. While generating the subsets, genes having higher
BW value occur more frequently because higher BW value
implies greater significance of a gene. Next, we calculate
the classification accuracy of each subset by using the kNN
algorithm. kNN classification algorithm requires to measure
distance between each training and test sample. Based on
the distance values, the algorithm selects k nearest training
samples. Then, the class of a test sample is predicted by con-
sidering majority of k training samples class labels. Distance
values are measured from the expression values of member
genes of a subset. Finally, classification accuracy of a subset
Sk is determined by correct prediction ratio of test samples
and denoted as Acc(Sy).

Definition 2 Candidate Genes (g.) We define g; as a can-
didate gene, gc = {gc € G,&g. € ISk}, where S; shows
higher accuracy than user given accuracy threshold, i.e.,
Acc(Sy) = Accyy. Such an Si is also considered as a
candiate set, G..

Finally, we consider top-k frequently occurred genes in
candidate gene sets. This is the predictor set for a microarray
data. We validate the predictor set’s classification accuracy
over training and test samples using kNN. Moreover, we
corroborate biological relevance of the top genes with pub-
licly available domain knowledge.

3.2 Parallel gene selection method
In this section, we describe how to implement each step
of the parallel gene selection method in MapReduce frame-

work. For better understanding, we define frequently used
symbols in Table 2.
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Table 2 Commonly used symbols

Symbols  Definition

8i i gene over samples

8ij Expression value of iy, gene in j;;, sample

BW,, BW value of g; gene

trs; iz, training sample

N The number of genes in the microarray data set

m The number of training samples in the microarray data set

K The number of potential genes in a potential gene set

I The number of test samples in the microarray data set

ts; i, test sample

tsij Expression value of j;, gene in iy, test sample

dist; Distance value between iy, training sample and any test
sample over Sk

distij Distance value between i;j, training sample and j;;, test
sample over Sk

Sk k¢, potential gene subset

Acc(Sy)  Accuracy value of Sy potential gene subset

freq; Frequency value of g; potential gene in G s candidate
gene sets

Step 1:  Generating potential genes (g,) and subsets (Sk)

This step consists of one MR job. The map tasks input each
gene’s expression values in parallel and calculates the BW
ratio value of a gene from training samples expressions.
We utilize BW ratio (Between groups sum square to within
groups sum square ratio) [12, 16] (1) to measure relevancy
of genes based on domain knowledge. Higher BW ratio
indicates that g; has significant variations in training sam-
ples expressions and thus contains more information to clas-
sify unknown test samples. If BW (i) is relatively larger than
BW;j, gi is a significant potential gene and we ensure the
gene occurs more frequently in potential gene subsets (Sk).

In the MapReduce framework, each map task inputs
(i, (i1, 82, ---&im)) and emits (Sy, &), (S2, &) - -
(Sk, gi) to reduce task according to the subset id. Then,
each reduce task collects (Sk, g;) pairs with same subset id
and emits (S, (i1 8z - - - 8ix))-

For example, BW,,=2.0, BW,,=1.0, BW4=0.8 and
BW,,=1.5 are obtained from Table 1 data. Let us con-
sider, BW;;,=0.5. Thus, possible potential gene subsets
are  S1=(g2, 84, 87}, $2={(82, 84, 87}.-.., Sk={82. 84 g6}
according to Definition 1. BW(g;) = 2.0 indicates that
&> is the most significant gene. Therefore, g» occurs most
frequently in potential gene sets. g7 is the next frequently
occurred gene. The genes in a potential gene set are gene-
rated at 1°" map task according to BWy, values.

Algorithm 1 describes map and reduce tasks in this step
and also Fig. 3 shows the corresponding diagram of map
and reduce tasks.
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Fig. 3 MapReduce jobs for

} L Microarray Data
generating potential gene subsets

sample 1, sample 2, sample 3

(class A)  (class B) (class C)
1, 244 15 25w
2 21, 10.2 21, ..
3, 64.2, 213 158w
4, 214, 10.2 214, ..
5, 144, 35 144, ...
6, 212, 24 30:3; s
7, 44, 91.8 101,000
8, 24 726 12.5; s

gid, expression level

\_,-//

Each map ft. calculates BW value
for each gene

Step 2:  Measuring classification accuracy of each subset.

After generating potential gene subsets, we measure
classification accuracy of the gene subsets. For the classi-
fication, we utilize kNN method using Euclidian distance
function. kNN is a widely accepted method for classifying
small number of classes and requires less time for clas-
sification compared to other classification methods such
as SVM, Bayesian networks and so on. Standard kNN
algorithm has nested iterations which are not suitable for
MapReduce framework. For applying kNN, it is neces-
sary to obtain distance values between training samples
and a test sample. The second phase of the proposed
method executes classification tasks. First, each map task
inputs (S}, (8, &8s - - -» &ix)) and calculates distance value

Algorithm 1 Generation of potential gene subsets

Data: Microarray Data (NX M)
Result: Potential Gene Subsets

=

begin map task:

2 Fetches expression values of g; in microarray

data

Measures BW (g;) of g; using equation 1

if BW(gl) > BWth then
Generates <Sy, g;>using BW (g;);
Emits <Sk, gi>

end

end

begin reduce task:
Gather g; based on Sy from <Syg, g;>
Emits <Sk:a (gi17gi27 s ag’LK)>

O kW

9 end
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between each training sample and given test sample con-
sidering genes in subset S; only. The Euclidian distance
function is shown in (2).

dist; = \/(gilj — 151,02 + (8inj — ISLi)> + - + (8ip — I81.3;)?
@)

The dist; implies distance value between a training sam-
ple j and a test sample /. After completing map tasks,
reduce task takes (S,', (distl,distz e, distj)> inputs and
predicts test sample class label based on majority of k near-
est training samples class labels. Reduce task determines
(Sis (ts1, T/F)), (Si, (ts2, T/ F)) ,

A(S;, (tsg, T/ F)) (T/F means whether test sample is cor-
rectly classified or not) and emits Acc(S;) to the following
map tasks.

For parallel processing of this step, we distribute the
computation of each subset to several map and reduce
tasks. We devise a way to execute multiple instances of
kNN algorithm in parallel using MapReduce programming
model (MRKNN). The proposed algorithm has no iteration
and relies on very small operations suitable for inherent
architecture of MapReduce framework.

At this step, input files contain (S}, (g, &ir»-- &ix))
pairs. We assume that microarray data can be accessed
by every map and reduce tasks. First, each map task
calculates distance values of training samples and emits
(S 7, dist;, S> pairs. Distance value of subset S; is calculated

by \/ZL] (sij — tsji)z. After completion of all map tasks,
reduce tasks sort (Sj, distj,-> pairs by dist;; value and pro-
duce top-k smallest (S i di stjl.> pairs. Then, the following
map tasks collect class labels of top-k samples and predict
the test sample class label based on majority class labels of
k-nearest training samples. The reduce task checks it with
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Fig.4 MapReduce jobs for
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correct class label and generates prediction accuracy value
of each subset. If Acc(S;) > Accyp, S is a candidate set
and reduce task emits <S;, Acc(S;)>.

The MRKNN pseudocode is presented at Algorithm 2 and
also Fig. 4 shows the diagram of map and reduce tasks in
this step.

Step 3:  Generating top genes from G, and validation with

biological data

After completing execution of MRkNN, we obtain can-
didate gene sets (G.), having high prediction accuracy.
In this MR job, we measure the frequency of each
gene in the candidate sets. Each map task inputs
(Ge. (gidy» idss - - - » &iax )) and emits (g;, 1) for every gene
in G.s. The following reduce task aggregates value for keys

Algorithm 2 Generation of top-K significant genes

Data: Potential Gene Subsets
Result: top-K significant genes

1 begin MR Job 1:

2 Map:
Fetches a potential gene subset
forall the test samples ts; do
3 forall the training samples trs; do
4 Calculate dist value between a test sample and a traning
sample
Accumulate dist values for each potential gene subset
5 end
6 Emit <S;, (disty,dista ..., dist;)>
7 end
8 Reduce:
forall the Potential gene subsets S; do
9 Sort k-nearest samples for all ts, and measure (S;, (tsy, T/F))
For all (S;, (tsg, T/F)) extract Acc(S;)
if Acc(S;) > Accyp, then
10 | Emit <S;, Ace(S;)>
11 end
12 end
13 end
14 begin MR Job 2:
15 Map:
Fetch <G, (9id, > Gido» - - - » Jidye )>
forall the g; of a Candidate gene subset (G.) do
16 | Emit < g;,1 >
17 end
18 Reduce:
Calculate freq value of each g;
Emit < g;, freg; >
19 end

20 Sort (g;, freq;) by freq; descending order
Extract top — k most frequent genes
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(gi) and emits (g;, freq;) into file system. The driver class
sorts (g;, freg;) by descending order of freq;. From the
sorted list, we consider top genes as final predictor set. Our
experimental results show that such a predictor set gives
higher accuracy while classifying test samples. Then, we
validate top genes with biological resources [26]. Majority
of the genes are found meaningful regarding existing cancer
literatures and gene data.

4 Experimental results

We have conducted experiments in a seven-physical node
cluster, each node having four cores. There are four vir-
tual machines in each physical node. Therefore, we have a
total of 28 nodes considering each virtual machine a node.
The memory size is 15 GB and the storage capacity is 800
GB. The operating system is Ubuntu 11.10. We use Apache
Hadoop’s distribution of 1.1.0 for MapReduce library. One
node is set as the master node. The remaining nodes are set
as worker nodes. Each worker node has two slots of Map
and Reduce. Thus, there are maximum 54 map tasks and 54
reduce tasks that can run concurrently. The HDFS block size
is 32MB and each block has three replications. We apply
our proposed method to four publicly available microarray
datasets and three synthetic datasets. Along with predictor
set generation capability, we examine various MapReduce
metrics such as node scalability, data scalability and I/O
costs. Since the sizes of publicly available datasets are
small, we validate our method’s scalability by using syn-
thetically generated data sets. We generate three synthetic

Table 3 Description of real datasets

Dataset Samples Genes Class
Colon Cancer [15] 62 2000 2
Leukemia[17] 72 7129 2
Lymphoma [20] 71 7129 2
Prostate Cancer [21] 102 12600 2
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Table 4 Description of synthetic datasets

Dataset Samples Genes Class Size(MB)
ProstateX2 210 12600 2 25
ProstateX3 300 12600 2 43
ProstateX5 510 12600 2 78

microarray datasets from a prostate cancer dataset[21] and
use those to exhibit data scalability in MapReduce envi-
ronment. For node scalability, we change the number of
active nodes in the cluster and observe execution time
differences.

4.1 Datasets

Table 3 gives a brief description of the four real datasets
used in our experiments. The colon dataset [15] contains
62 microarray samples of tumor and normal colon tissues.
Among these, five samples are reported as outliers in the
existing literature [19]. Therefore, we drop those samples
from the experiments. Three other datasets, ALL/AML
(Leukemia) [17], Lymphoma [20] and Prostate cancer [21]
contain 72, 77 and 102 samples respectively. All of the
datasets have two class labels: normal and affected.

We generate three synthetic datasets from the prostate
cancer dataset. Though the generated datasets are not very
large with regards to MapReduce model, our intention is
to observe the MapReduce scalability metrics on relatively
larger data. Table 4 shows a brief description of the synthetic
datasets.

4.2 Predictor set accuracy

To validate the accuracy metric, we experiment with four
real microarray datasets. The method works in three steps.
In the first step, potentially informative genes are chosen
based on domain knowledge. For instance, g45 in the colon
dataset produces high BW value. Therefore, it is included in
G p. In the second step, MRKNN produces G sets from Sy
sets. The Accyj, requirements further reduces the chance of
picking irrelevant genes. In our experiments, we set candi-
date set accuracy threshold (Accsp), 90 %-100 % for three
datasets and 80 % for Lymphoma dataset. The reason is
three out of four datasets show very high prediction accu-
racy. We then sort genes in G, according to descending
order of frequency and select top genes which occur most
frequently. Resultant top genes show strong prediction capa-
bility. Fig. 5 shows the differences in prediction capability
for varied count of top genes. According to our experi-
ments, optimum accuracy can be achieved by using top
20-30 genes.
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Fig. 5 Candidate set and top genes classification accuracy

Moreover, our method shows satisfactory accuracy com-
pared to existing methods. Table 5 shows accuracy compar-
isons with optimal gene count on three real datasets. We
can see that SVST [11] and GADP [12] produce a bit better
accuracy than that of proposed method. GADP gives pri-
ority on selecting minimum number of genes; however, it
is widely accepted that tiny predictor set may cost genera-
lization capability. Though SVST and GADP give slightly
better accuracy, the proposed method is more scalable
than these methods. In Section 4.4, we compare scalability
of SVST and GADP through existing parallel algorithms of
their core methods.

4.3 Biological relevance

We validate biological significance of predictor genes with
NCBI [26] knowledge base. NCBI-Gene resources are
confidently recommended because of its completeness
and periodical synchronization with other major reposi-
tories such as BIND, GO, HGNC and EMBL. Table 6
provides a summary of the top 24 genes of the
colon dataset (CRIP1 and CRPI1 are same gene with
different features) extracted by the proposed method.

Table 5 Comparison of accuracy with other methods

Methods Colon C ALL/AML Prostate C
Cho. et. al.[22] 82.08(10) 94.12(17) -

DAFS [23] - 97.5(Max 30) 92.3 (Max 30)
SVST [11] - 100(25) 95.41 (25)
GADP [12] 100(8) 100(5) -

MRGS 100(20) 94.11(25) 93.55(10)
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Table 6 Top 25 genes of colon cancer dataset extracted by MRGS method

Names Relevant Functions
ANXA13¢ ANXAI13 overexpression sensitized malignant breast cancer cells to treatment with Rapamycin.
Regulation of cellular growth, calcium ion binding.
RPS18 Functions include translation initiation, mRNA metabolic process.
DES This gene encodes a muscle-specific class III intermediate filament.
NPMI1P The gene product might be involved in regulation of the ARF/p53 pathway. Mutations in this gene are associated with AML.
CRIP1® Identified as a novel marker for early detection of cancers [30].
RPS6* High Ribosomal Protein S6 is associated with renal cell carcinoma metastases.
PRIM1¢ It was found to be amplified in 41 % of 22 pediatric oncology specimens [28].
CRP1Y Identified as a novel marker for early detection of cancers [30].
FUCAL1 Alpha-L-fucosidase activity
SC35¢ It facilitates interaction among different SR splicing factors. Also found overexpressed in various cancers.
CCNH Expression is increased in GIST with very-high risk of malignancy.
PPIF® CyPD protects cells from cell death by peptidyl prolyl isomerization [31].
GSN* Gelsolin induces colorectal tumor cell invasion via modulation of the urokinase-type plasminogen activator
cascade [32].
CCL14¢ It is a critical mediator of the JARID1B/LSD1/NuRD complex in regulation of angiogenesis and metastasis in breast cancer.
GUCA2B Functions include body fluid secretion and negative regulation of blood pressure.
CEACAM1? High serum carcinoembryonic antigen is associated with recurrence in rectal cancer.
GDN* A novel target of ERK signaling involved in human colorectal tumorigenesis. It is overexpressed in several cancer diseases.
CDKN1A? The gene expression is tightly controlled by the tumor suppressor protein p53.
Its protein can interact with proliferating cell nuclear antigen (PCNA).
YWHAE" It may act as an important regulator in modulating tumor metastasis as well as cell migration.
PLB1 Activity associated with human intestinal brush border membranes.
MYH9 Cellular myosin heavy chain in human leukocytes
MIF? High MIF expression in tumor cells or in TILs was significantly related to poor survival of ESCC patients.
MM Po® Murine studies suggest a role in tumor-associated tissue remodeling.
CDK4“ It is responsible for the phosphorylation of retinoblastoma gene product
(Rb) which is associated with tumorigenesis of a variety of cancers.
SPARCLI1 Suppresses aggressiveness and predicts better survival in colorectal cancers [29].

a: gene cited in one or more cancer studies

b: gene functions likely responsible for positive or negative effect on cancer cells

The genes are evaluated by GO terms http:/www.
geneontology.org/, bibliographic results and RefSeq sum-
maries. Among them, 71 % are mentioned in existing
cancer studies. 11 genes (marked by a) have known
effects on cancer diseases including rectal cancer and 6
others (marked by b) are identified as significant bio-
markers for cancer detection. Hence the proposed method
can extract good predictor set and we recommend further
biological experiments on these genes.

4.4 Hadoop scalability
We measure effectiveness of the distributed and parallel
processing model on two widely discussed metrics:

node scalability and data scalability. A MapReduce
implementation has some overhead to initialize execution

@ Springer

environment. Therefore, relatively large datasets are
desirable for observing significant performance upgrades
through parallelization. The publicly available microarray
datasets are fairly small in size. Thus, we generate three
synthetic datasets shown in Table 4 along with real datasets.
Lab size clusters typically consist of a small amount of
memory and a small number of nodes. Therefore, increasing
the number of nodes and memory significantly speed up MR
job execution. Publicly available cloud services are good
candidates for such systems unless security is a major issue.

Figure 6a shows Hadoop scalability over real datasets.
As the number of worker nodes is increased, the execution
time decreases. The decrement is not linear because of
initial overhead imposed on each MR job. We can see
the difference in execution time between two datasets. For
example, for a 15-node configuration (1 master node and
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Fig. 6 Hadoop Scalability on Real and Synthetic Datasets

14 worker nodes), the Colon and Leukemia datasets require
58 seconds and 104 seconds respectively. The Leukemia
dataset is four times larger than colon dataset regarding
matrix size.

However, the difference in execution time is not very
large. In fact, all of the MR jobs except 2"¢ MR job in
MREKNN, take almost same amount of time to execute. The
MR jobs in MRKNN generate large intermediate data which
cause memory spills and large shuffle/sort phase. MapRe-
duce model is suitable for the shared nothing architecture.
We observe effectiveness of this property in our exper-
iments. Another interesting observation is that the Lym-
phoma and Leukemia datasets require different amounts of
time over varying configuration while Lymphoma data size
is similar to that of Leukemia. The genes have relatively
large BW ratio value in Lymphoma dataset. Thus, potential
gene set (G ) is much larger and the number of intermediate
operations is significantly higher than that of the Leukemia
dataset.

In Fig. 6(b), the execution times of synthetic datasets
are shown over varying number of nodes. We maintain the
proportion of normal and affected samples in the synthetic
data also. Each newly added synthetic sample is generated
by averaging three randomly selected samples of the same
class. As the number of nodes is decreased, the slope gets
sharper over increasing data size. Each virtual machine has
one core and can only run two map and reduce tasks at a
time. With smaller nodes, all of the data splits cannot run in
parallel. The intermediate outputs are also larger and require
more time for I/O.

Table 5 shows that SVST and GADP is suitable for
producing highly accurate gene sets. SVST deploys SVM
and BPNN for finding relevant genes. Both SVM and NN
algorithms are computationally intensive and they require
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much iteration to converge. In MapReduce model too many
iterations cause excessive I/O and reduce scalability. The
existing parallel SVM algorithms [24, 25] indicate that
they are less suitable for MapReduce model. Moreover,
SVM is used to determine relevant samples only. BPNN is
applied afterwards on relevant samples which also require
too much iteration. Therefore, despite producing high
accuracy, the method lacks scalability. Similarly, GADP
introduces genetic algorithm with dynamic probability
measures to select relevant genes from a dataset. It
requires several iterations to produce expected result. Con-
sidering MapReduce model, each such iteration incurs
costly I/O. Jin, Chao et al. [7, 8] discussed challenges
of implementing efficient GAs in MapReduce programming
model. Moreover, the method initially creates 50 potential
gene subsets (Sx) and updates those iteratively based on fit-
ness value while our proposed method executes more than
1000 Sis and can extend the instances far more with increa-
sing number of nodes. Thus, MRGS acquires a good mixture
of accuracy and scalability.

5 Conclusions

In this paper, we first address the possibility of utilizing
MapReduce programming model for gene selection tech-
nique. The proposed MRGS method is based on our own
sampling technique and kNN algorithm. In order to execute
multiple kNN algorithms in parallel, we develop the MRkNN
algorithm in MapReduce framework. We experiment with
four real cancer datasets and three synthetically generated
datasets. During the experiments, we observe accuracy
along with Hadoop scalability measures. Extensive experi-
mental results verify the effectiveness of our method. Our

@ Springer
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next objective is to devise parallel gene association analysis
(GAA) algorithm for microarray data using MapReduce
framework.
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