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Abstract This paper presents a new multi-objective artifi-
cial bee colony algorithm called dMOABC by dividing the
whole searching space S into two independent parts S1 and
S2. In this algorithm, two ”basic” colonies are assigned to
search potential solutions in regions S1 and S2, while the so-
called ”synthetic” colony explores in S. This multi-colony
model could enable the good diversity of the population, and
three colonies share information in a special way. A fixed-
size external archive is used to store the non-dominated
solutions found so far. The diversity over the archived solu-
tions is controlled by utilizing a self-adaptive grid. For basic
colonies, neighbor information is used to generate new food
sources. For the synthetic colony, besides neighbor infor-
mation, the global best food source gbest selected from the
archive, is also adopted to guide the flying trajectory of both
employed and onlooker bees. The scout bees are used to get
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rid of food sources with poor qualities. The proposed algo-
rithm is evaluated on a set of unconstrained multi-objective
test problems taken from CEC09, and is compared with 11
other state-of-the-art multi-objective algorithms by apply-
ing Friedman test in terms of four indicators: HV, SPREAD,
EPSILON and IGD. It is shown by the test results that our
algorithm significantly surpasses its competitors.

Keywords Multi-objective optimization · Pareto
dominance · Multi-objective artificial bee colony
algorithm · Multi-colony model · Friedman test

1 Introduction

In optimization field, scientists and engineers are usually
faced with problems with more than one objective function,
which are called multi-objective problems(MOPs). Com-
pared to single objective problems, MOPs are more difficult
to be solved since no single solution is available for these
problems. Quite often, objectives in MOPs are conflicting
with each other, and the performance of each objective can’t
be improved without sacrificing the performance of at least
one of the others. Hence, the goal for settling MOPs is to
find a set of solutions that represent a trade-off among the
objectives [3].

Recently, evolutionary and swarm-based search meth-
ods have been widely used to solve problems with multiple
objectives, and they can be classified into different cate-
gories such as aggregative, lexicographic, sub-population,
Pareto-based, and hybrid methods [43, 56]. Among the
multi-objective methods, the majority of research is con-
centrated on Pareto-based approaches [20]. Pareto-based
methods select a part of individuals based on the Pareto
dominance notion as leaders(or non-dominated solutions)
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which constitute the non-dominated set of the current itera-
tion. These methods use different approaches to continually
update the non-dominated set till the algorithms are ter-
minated. Usually leaders are maintained in an external
archive.

Many evolutionary algorithms have been extended
to deal with multi-objective problems in recent years.
The main issues of multi-objective evolutionary algo-
rithms(MOEAs) are selecting and updating individuals
using evolutionary operations. In 1985, Schaffer proposed
the first multi-objective evolutionary algorithm named Vec-
tor Evaluated Genetic Algorithm (VEGA) [41]. After that,
some other MOEAs were available, such as MOGA [17],
NPGA [22] and NSGA [44]. During the time from 1994
to 2003, MOEAs got rapid development and many new
methods were proposed by introducing the external archive.
Typical MOEAs in this phase were: SPEA [59], NSGA [11],
PAES [27], PESA [9] and SPEA2 [58], etc. From the year
2003 until now, the study on MOEAs went into a new phase,
with import of various new notions, mechanisms and strate-
gies. During this time period, Indicator-Based Evolutionary
Algorithm(IBEA) [57], MOCell [36], cooperative multi-
objective evolutionary algorithms such as DCCEA [45] and
CO-MOEA [8], and dynamic MOEAs such as DMOEA
[51], and parallel MOEAs as PSFGA [38] were reported
in corresponding literatures. Meanwhile, Multi-Objective
Evolutionary Algorithm based on Division (MOEA/D)
[52], Generalized Differential Evolution 3 (GDE3) [29],
Enhancing MOEA/D with Guided Mutation and Priority
Update (MOEA/DGM) [6], improved MOEA/D with adap-
tive weight vector adjustment (MOEA/D-AWA) [40], Mul-
tiple Trajectory Search (MTS) [48], LiuLiAlgorithm [33],
an improved version of Dynamical Multi-Objective Evolu-
tionary Algorithm (DMOEA-DD) [34] and Archive-based
Micro Genetic Algorithm (AMGA) [46] are some other
competitive methods aimed to obtain a true Pareto front for
multi-objective problems by considering the main issues of
multi-objective evolutionary algorithms.

Several types of swarm-based algorithms for MOPs have
been presented in the literature. Particle swarm optimiza-
tion (PSO) algorithm, proposed by Kennedy and Eberhart
[16, 26], was modified in recent years so as to deal with
optimization problems with more than one objective. Some
typical kinds of PSO-based multi-objective algorithms were
available, such as Multi-Objective Particle Swarm Opti-
mization (MOPSO) [7], OMOPSO [42], Multi-objective
Algorithm based on Comprehensive Learning Particle
Swarm Optimizer(MOCLPSO) [23], Time Variant Multi-
Objective Particle Swarm Optimization (TV-MOPSO) [47],
Interactive Particle Swarm Optimization (IPSO) [1], PSO-
Based Multi-Objective Optimization With Dynamic Pop-
ulation Size and Adaptive Local Archives (DMOPSO)

[31], Dynamic Multiple Swarms in Multi-Objective
Particle Swarm Optimization (DSMOPSO) [50], Speed-
constrained Multi-objective PSO (SMPSO) [35], Competi-
tive and Cooperative co-evolutionary Multi-objective Parti-
cle Swarm Optimization (CCPSO) [19], Two Local Bests
(lbest) based MOPSO (2LB-MOPSO) [54], Pareto-based
particle swarm optimization [55], etc.

The Artificial bee colony (ABC) algorithm is one of the
most recently introduced swarm-based methods [2, 25]. In
the ABC, there are three kinds of bees who do different tasks
to make the algorithm useful. The employed bees will be
sent to food sources and try to improve them by using neigh-
bor information. The onlookers will choose one of those
food sources based on the quality of food sources shared by
employed bees, and then try to improve it. At last, scout bees
will find the food sources which have not been optimized in
a limited number of cycles so as to reinitialize them to get
rid of poor solutions. The ABC seems particularly suitable
for multi-objective optimization mainly because of solution
quality and the high speed of convergence that the algorithm
presents for single-objective optimization [3].

However, only a few works that extend ABC for handling
multi-objective problems were reported in recent years.
Hedayatzadeh et al. proposed a multi-objective artificial
bee colony (MOABC) which has adapted the basic ABC
algorithm and a grid-based approach for maintaining and
adaptively assessing the Pareto front [21]. Omkar et al.
presented a method called the Vector-Evaluated ABC (or
VEABC) for the multi-objective design of composite struc-
tures [39]. In the VEABC, multiple populations were used
to concurrently optimize problem at hand. Also, a multi-
objective variant of the ABC was used by Atashkari et al. for
the optimization of power and heating system [5]. A Pareto-
based discrete artificial bee colony algorithm was used by Li
et al. for solving multi-objective flexible job shop schedul-
ing problems in which a crossover operator was developed
for the employed bees and an external Pareto archive set was
designed to record the non-dominated solutions found so
far, besides, several local search approaches were designed
to balance the exploration and exploitation capability of
the algorithm [32]. A multi-objective ABC was used in [4]
for scheduling in grid environment. Zou et al. proposed a
novel algorithm based on Artificial Bee Colony (ABC) to
deal with multi-objective optimization problems which used
the concept of Pareto dominance to determine the flight
direction of a bee, and it maintained non-dominated solu-
tion vectors in an external archive [60]. Finally, Akbari
et al. proposed a new type of MOABC utilizing different
types of bees (i.e. employed bees, onlookers, and scouts)
and a fixed-sized archive which was maintained by an ε-
dominance method. In this algorithm, the social information
provided by the external archive was used by the employed
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bees to adjust their flying trajectories. The diversity over the
external archive was controlled using a grid. The onlook-
ers evaluate the solutions provided by the employed bees to
adjust their next position. Finally, the scout bees replaced
the solutions who had reached trial limit with a new random
solution in the search space [3].

In this paper, we are going to suggest a new multi-
objective ABC algorithm by dividing the whole searching
space S into two subspaces S1 and S2. We abbreviate this
algorithm as dMOABC, and it uses three colonies: two basic
colonies are searching in subspaces, while the synthetic
colony explores in space S. They share information through
a multi-colony communication model. An external archive
is adopted to store and maintain non-dominated solutions
found so far. For the purpose of diversity maintenance,
the dMOABC utilizes a self-adaptive grid to divide the
objective space and maintain the archive, thus the achieved
solutions may distribute uniformly along the true Pareto
front. For basic colonies, only neighbor information is used
for generating new food sources, while in the synthetic
colony, both neighbor and social information (shared by the
external archive) are employed to adjust the flying trajecto-
ries of bees. Finally, the scout bee for each colony will do
a random search if the food source is abandoned. Just like
basic ABC algorithm, only one scout bee is allowed for each
colony in each cycle.

The rest of the paper is organized as follows: some
preliminaries on multi-objective optimization and artifi-
cial bee colony algorithm are presented in Section 2.

Section 3 describes the details of the proposed dMOABC
algorithm for handling problems with multiple objectives.
Next, the experimental study is presented in Section 4.
Finally, Section 5 concludes the paper.

2 Preliminaries

2.1 Multi-objective problems

Multi-objective problems (MOPs) concerns optimizing
problems with multiple and often conflicting objectives.
Generally, a MOP with D decision variables, M objectives,
p inequality constraints and q equality constraints could be
formulated as below [30]:

Min y = f(x) = [f1(x), f2(x), . . . , fM(x)],
s.t.

gi(x) ≤ 0, i = 1, 2, . . . , p,

hj (x) = 0, j = 1, 2, . . . , q,

(1)

where x = (x1, x2, . . . , xD) ∈ S and y = (f1, f2, . . . , fM)

∈ Y are called decision and target vectors; S and Y denote
the searching and target spaces, respectively.

Unlike single objective optimization, solutions of MOPs
are in such a way that the performance of each objective
cannot be improved without sacrificing the performance of
at least another one. Hence, the solution to a MOP exists in
the form of an alternate trade-off known as a Pareto optimal

Fig. 1 The flowchart of
dMOABC algorithm
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Fig. 2 The pseudo code of
Send Employed Bees

set. The Pareto optimal set is defined based on Pareto dom-
inance [3]. A vecotor x1 is said to dominate another vector
x2 (denoted as x1 ≺ x2), if and only if

fi(x1) ≤ fi(x2), i = 1, 2, . . . , M,

fj (x1) < fj (x2), ∃j ∈ {1, , 2, . . . , M}. (2)

Considering Pareto dominance, a vector x0 is called
Pareto optimal if and only if ¬∃x ∈ S such that x ≺ x0. We
call the set containing all Pareto optimal solutions the Pareto
optimal set (PS), which is defined as:

PS = {x0|¬∃x ∈ S and x ≺ x0}. (3)

Fig. 3 The pseudo code of
Send Onlooker Bees
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Fig. 4 The pseudo code of
Send scout Bees

Therefore, a Pareto front (PF) for a given multi-objective
problem and the Pareto optimal set PS, is defined as:

PF = {f(x) = [f1(x), f2(x), . . . , fM(x)]|x ∈ PS}. (4)

Given a set A and an element x ∈ A, x is called the
non-dominated solution concerning set A if x is not dom-
inated by any member in set A. And all non-dominated
solutions will constitute a set, which is called the non-
dominated set. A Pareto based mutli-objective method tries
to find the optimal Pareto front by continually updating the
current non-dominated set, so as to make it approximate the
true Pareto front as close as possible. When the algorithm is
terminated, the output will be the final non-dominated set.
However, the determination of a true Pareto front is a diffi-
cult task due to a large number of suboptimal Pareto fronts,
and difficulty may be increased due to the nature of the
Pareto front. More precisely, for most MOP methods, a par-
tially convex, concave, or discontinuous problem is harder
to solve compared to convex ones [3]. Actually, MOPs can
be divided into two types: constrained and unconstrained
MOPs. The focus of this paper is studying the second type
of MOPs with only boundary constraint.

2.2 Artificial bee colony algorithm

Artificial bee colony algorithm (ABC), proposed by
Karaboga in 2005 for real parameter optimization, is
a recently introduced optimization algorithm which was

Fig. 5 Multi-colony model and communication mechanism

inspired by the method adopted from a swarm of honey bees
trying to locate food sources [24]. In the ABC algorithm,
the honey bee colony contains three different kinds of bees
[2, 25], namely, employed bees, onlooker bees and scout
bees. Half of the colony consists of employed bees, and the
other half includes onlooker bees. Employed bees search the
food around the food source in their memory, meanwhile
they share information about the quality of the food source
with onlooker bees. Onlooker bees tend to select good food
sources from those founded by the employed bees, then fur-
ther search the foods around the selected food source. The
employed bee whose food source is exhausted will become
a scout [18, 49].

The ABC algorithm starts with randomly producing food
source sites that correspond to the solutions in the allowable
domain. Initial food sources are generated randomly within
the range of the boundaries of the parameters, formulated as
below [49].

Xij = lbj + rand(0, 1)(ubj − lbj ), (5)

where i = 1, 2, · · · , Sn; j = 1, 2, · · · , D; Sn is the number
of food sources and D is the dimensions of the problem to
be optimized. ubj and lbj are upper and lower boundaries of
parameter j respectively. random(0, 1) is a random number
uniformly distributed over interval [0,1].

After initialization, each employed bee is sent to a food
source site to find a neighboring food source using local
information (visual information), and then its quality is eval-
uated. In ABC, the following equation is used to find a
neighboring food source:

Vij = Xij + φij (Xij − Xkj ). (6)

A neighboring food source Vi is determined by chang-
ing one parameter of each food source Xi . In (6), j is a
random integer in the range [1, D] and D is the number of
dimensions. φij is a random number uniformly distributed
over the range [-1,1] and k is the index of a randomly cho-
sen solution. A parameter value produced by this operation
may exceed its predetermined boundaries. In standard ABC,
the value of the parameter exceeding its boundary is set to
its boundaries, i.e. if Xij > ubj , then Xij = ubj ; if Xij <

lbj ,then Xij = lbj . Both Vi and Xi are then compared
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Table 1 Mathematical representation of the unconstrained CEC09 test problems

Problem Mathematical representation

UF1 f1 = x1 + 2

|J1|
∑

j∈J1

[xj − sin(6πx1 + jπ
n

)]2

f2 = 1 − √
x1 + 2

|J2|
∑

j∈J2

[xj − sin(6πx1 + jπ
n

)]2,

where J1 = {j |j is odd and 2 ≤ j ≤ n} and J2 = {j |j is even and 2 ≤ j ≤ n}
UF2 f1 = x1 + 2

|J1|
∑

j∈J1

yj
2, f2 = 1 − √

x1 + 2

|J2|
∑

j∈J2

yj
2,

where J1 = {j |j is odd and 2 ≤ j ≤ n} and J2 = {j |j is even and 2 ≤ j ≤ n},

yj =

⎧
⎪⎨

⎪⎩

xj − [0.3x2
1 cos(24πx1 + 4jπ

n
) + 0.6x1]cos(6πx1 + jπ

n
), j ∈ J1

xj − [0.3x2
1cos(24πx1 + 4jπ

n
) + 0.6x1]sin(6πx1 + jπ

n
), j ∈ J2

UF3 f1 = x1 + 2

|J1| (4
∑

j∈J1

y2
j − 2

∏

j∈J1

cos(
20yj π√

j
+ 2)

f2 = 1 − √
x1 + 2

|J2| (4
∑

j∈J2

y2
j − 2

∏

j∈J2

cos(
20yj π√

j
+ 2),

where J1 and J2 are the same as those of UF1,and yj = xj − x
0.5(1.0+ 3(j−2)

n−2 )

1 , j = 2, . . . , n.

UF4 f1 = x1 + 2

|J1|
∑

j∈J1

h(yj ), f2 = 1 − x2
1 + 2

|J2|
∑

j∈J2

h(yj ),

where J1 = {j |j is odd and 2 ≤ j ≤ n} and J2 = {j |j is even and 2 ≤ j ≤ n},
yj = xj − sin(6πx1 + jπ

n
), j = 2, . . . , n, and h(t) = |t |

1+e2|t | .

UF5 f1 = x1 + ( 1
2N

+ ε)|sin(2Nπx1)| + 2

|J1|
∑

j∈J1

h(yj ),

f2 = 1 − x1 + ( 1
2N

+ ε)|sin(2Nπx1)| + 2

|J2|
∑

j∈J2

h(yj ),

where J1 = {j |j is odd and 2 ≤ j ≤ n} and J2 = {j |j is even and 2 ≤ j ≤ n}. N is an

integer, ε > 0, yj = xj − sin(6πx1 + jπ
n

), j = 2, . . . , n, and h(t) = 2t2 − cos(4πt) + 1.

UF6 f1 = x1 + max{0, 2( 1
2N

+ ε)sin(2Nπx1)} + 2

|J1| (4
∑

j∈J1

yj
2 − 2

∏

j∈J1

cos(
20yiπ√

j
) + 2)

f2 = 1 − x1 + max{0, 2( 1
2N

+ ε)sin(2Nπx1)} + 2

|J2| (4
∑

j∈J2

yj
2 − 2

∏

j∈J2

cos(
20yi π√

j
) + 2)

where J1 = {j |j is odd and 2 ≤ j ≤ n} and J2 = {j |j is even and 2 ≤ j ≤ n}, and

yj = xj − sin(6πx1 + jπ
n

), j = 2, . . . , n.

UF7 f1 = 5
√

x1 + 2

|J1|
∑

j∈J1

yj
2, f2 = 1 − 5

√
x1 + 2

|J2|
∑

j∈J2

yj
2,

where J1 = {j |j is odd and 2 ≤ j ≤ n}, J2 = {j |j is even and 2 ≤ j ≤ n},and

yj = xj − sin(6πx1 + jπ
n

), j = 2, . . . , n.

against each other and the employed bee exploits the better
food source in terms of fitness value which is calculated by
(7), and this is known as greedy selection mechanism.

f iti =
{

1/(1 + fi) if fi ≥ 0
1 + abs(fi) if fi < 0

, (7)

where fi is the objective value of solution Vi or Xi .
Equation 7 is used to calculate fitness values for a minimiza-
tion problem, while the objective function can be directly
used as a fitness function for maximization problems [49].

In the next step, each onlooker bee randomly chooses
a food source according to the probability given in (8) by

using roulette wheel selection scheme. Then, each onlooker
bee tries to improve the selected food source using (6):

pi = f iti
∑Sn

j=1 f itj
, (8)

where f itj is the fitness value of ith food source.
Finally, if a certain food source i cannot be improved

for a predetermined number of cycles, referred to as limit,
this food source is then abandoned. The employed bee that
was exploiting this food source becomes a scout that looks
for a new food source by randomly searching the problem
domain using (5). In basic ABC, it is assumed that only
one source can be exhausted in each cycle, and only one
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Table 1 Continued.

Problem Mathematical representation

UF8 f1 = cos(0.5x1π)cos(0.5x2π) + 2

|J1|
∑

j∈J1

(xj − 2x2sin(2πx1 + jπ
n

))2

f2 = cos(0.5x1π)sin(0.5x2π) + 2

|J2|
∑

j∈J2

(xj − 2x2sin(2πx1 + jπ
n

))2

f3 = sin(0.5x1π) + 2

|J3|
∑

j∈J3

(xj − 2x2sin(2πx1 + jπ
n

))2

where J1 = {j |3 ≤ j ≤ n and j − 1 is a multiplication of 3}, J2 =
{j |3 ≤ j ≤ n and j − 2 is a multiplication of 3}, J3 = {j |3 ≤ j ≤
n and j is a multiplication of 3}.

UF9 f1 = 0.5[max{0, (1 + ε)(1 − 4(2x1 − 1)2)} + 2x1]x2 + 2

|J1|
∑

j∈J1

(xj − 2x2sin(2πx1 + jπ
n

))2

f2 = 0.5[max{0, (1 + ε)(1 − 4(2x1 − 1)2)} − 2x1 + 2]x2 + 2

|J2|
∑

j∈J2

(xj − 2x2sin(2πx1 + jπ
n

))2

f3 = 1 − x2 + 2

|J3|
∑

j∈J3

(xj − 2x2sin(2πx1 + jπ
n

))2, where J1 = {j |3 ≤
j ≤ n and j − 1 is a multiplication of 3}, J2 = {j |3 ≤ j ≤
n and j − 2 is a multiplication of 3}, J3 = {j |3 ≤ j ≤
n and j is a multiplication of 3}, and ε = 0.1, and it can take any other positive values.

UF10 f1 = cos(0.5x1π)cos(0.5x2π) + 2

|J1|
∑

j∈J1

[4y2
j − cos(8πyj ) + 1]

f2 = cos(0.5x1π)sin(0.5x2π) + 2

|J2|
∑

j∈J2

[4y2
j − cos(8πyj ) + 1]

f3 = sin(0.5x1π) + 2

|J3|
∑

j∈J3

[4y2
j − cos(8πyj ) + 1]

where J1 = {j |3 ≤ j ≤ n and j − 1 is a multiplication of 3}, J2 =
{j |3 ≤ j ≤ n and j − 2 is a multiplication of 3}, J3 = {j |3 ≤ j ≤
n and j is a multiplication of 3}, and yj = xj − 2x2sin(2πx1 + jπ

n
), j = 3, . . . , n.

employed bee can be a scout. The algorithm will be termi-
nated after repeating a predefined max number of cycles,
denoted as Max Cycles.

3 Multi-objective artificial bee colony algorithm based
on division of the searching space

Our dMOABC algorithm is designed by dividing the search-
ing space S into two independent parts S1 and S2, and it
uses a special multi-colony model which will be described
in Subsection 3.7 in detail. In this model, three colonies are
used: two of them are basic colonies and they search in S1

and S2, while the third one is called synthetic colony whose
search space is S. In dMOABC, all control parameters that
must be determined aforehand are:

– depth, the number of recursive subdivisions of the
objective space carried out in order to divide the objec-
tive space into a grid for the purposes of diversity main-
tenance. Values between 3 and 6 are useful, depending
on number of objectives [28].

– ColonySize, the number of colony size, namely, the sum
of the numbers of employed bees and onlooker bees. In
our algorithm, three colonies are with the same colony
size.

– FoodNumber, the number of food sources. Since the
number of employed bees equals to that of onlooker
bees in dMOABC algorithm, the value of FoodNumber
will be the half of the ColonySize.

– limit, the abandonment criteria. A food source which
could not be improved through ”limit” trials will be
abandoned by its employed bee.

– MaxIterations, the termination criteria. The value of
this parameter could be tuned according to the maximal
number of function evaluations(max FEs) and Colony-
Size.

– ArchiveSize, the maximum number of non-dominated
solutions stored in the archive.

The dMOABC is a Pareto based algorithm with an
external archive to store non-dominated solutions. Since
the length of the archive are usually limited, we need an
updating method to maintain it so that the latest solutions
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Table 2 HV. Mean and standard deviation

included are not dominated by other archive members or
vice versa. The dMOABC uses a self-adaptive grid method
that was used in PAES [27] to achieve and maintain diver-
sity. This method will be described in Subsection 3.3. In our
dMOABC method, all colonies share the same archive, and
it should be initialized as null before the algorithm really
goes into run.

There are 6 parameters in dMOABC, but ColonySize,
MaxIterations and ArchiveSize are general parameters, i.e.,
they are involved in many multi-objective intelligent algo-
rithms. FoodNumber is determined by ColonySize, i.e.,
FoodNumber = ColonySize/2. Hence, there are only
two parameters depth and limit that should be tuned by the
users. The value of depth is suggested to be set between 3
and 6 [28]. The larger of this value, the better of the approx-
imated fronts will be, and the longer the computation time
will be. The limit is an important parameter in ABC algo-
rithm family. According to our empirical experiment [49],
this parameter is recommended to be set at a value varying
from 100 to 200 for general usage.

The flowchart of our dMOABC algorithm is shown in
Fig. 1. The dMOABC method is constituted of the following
main parts: Division, Initialization, Send Employed Bees,

Send Onlooker Bees, Maintain archive, Send Scout Bees and
Information Exchange. These parts are be explained in the
following subsections respectively.

3.1 Division

Each problem considered in this work has a number of deci-
sion parameters, and these parameters are continuous. Each
parameter is limited to a span, between lower and upper
bound values, which could be formulated as lbd ≤ xd ≤
ubd, where xd is the dth parameter or dimension, and lbd

and ubd are lower and upper bounds of this dimension,
respectively. Thus, for a D dimensional problem, the search-
ing space S = [lb1, ub1]×[lb2, ub2]× ...×[lbD, ubD] will
be a subset of RD . For each colony, each food source will be
associated with a position vector x = (x1, x2, . . . , xD) ∈ S.

In our algorithm, the whole search space S is divided into
two independent subsets, denoted as S1 and S2. This divi-
sion is executed by equally dividing the first dimension of
the problem, that is to say, the ranges of the first dimension

of S1 and S2 are [lb1,
(lb1 + ub1)

2
] and [ (lb1 + ub1)

2
, ub1],

respectively. And the 2 to D dimensions of S1 and S2 keep
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the same as S. Mathematically, S1 = [lb1,
(lb1 + ub1)

2
] ×

[lb2, ub2]× ...×[lbD, ubD] and S2 = [ (lb1 + ub1)

2
, ub1]×

[lb2, ub2] × ... × [lbD, ubD], where ”×” represents Carte-
sian product. It should be noted here that, except the first
dimension, this division can be carried out according to
any other dimensions. Two basic colonies will search in S1

and S2 independently, while the synthetic colony will seek
solutions in the whole searching space S.

The division will enable more refined search for good
solutions with less chances of missing some parts of the
searching space S. Since the goal of multi-objective algo-
rithms is to approximate a set instead of a single point,
the performance of the algorithm is evaluated based on the
closeness between the approximated and the true fronts, as
well as the distribution of the computed non-dominated set.
Thus, to achieve better approximated front, the algorithm
can’t miss any part of the whole PF. When using only one
colony, once it is dragged into a local minima, then there
will be a higher chance that the algorithm may miss some
parts of the whole true PF. But, if we use multi colonies,
the probability of the occurrence of the above situation will
be much lower. In our algorithm, as described before, basic

colonies are independently searching in the subspaces, thus,
the whole PF is divided into two parts and each part corre-
sponds to a basic colony. Even if a basic colony is trapped,
the synthetic colony could provide necessary remedy. This
mechanism enhances the exploration abilities of the algo-
rithm. Of course, more subspaces are feasible, but this may
sacrifice the exploitation abilities of each colony, since the
maximal number of function evaluations is fixed. To balance
exploration and exploitation, we here use three colonies in
the dMOABC algorithm.

3.2 Initialization

In the initialization phase, FoodNumber food sources will
be randomly generated for each colony according to its cor-
responding searching space. Note again that the searching
spaces for two basic colonies are S1 and S2, and that for syn-
thetic colony is S. To be convenient for explanation, we will
only take the synthetic colony as an example to show how
to initialize it:

First, each food source will be initialized by a function
named init (i, S), where i is the index of the food source
and S is the searching space defined before. In this way,
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a D dimensional vector xi = (xi1, xi2, . . . , xiD) will be
assigned randomly to food source i through the following
equation:

xid = lbd + rand(0, 1) · (ubd − lbd), (9)

where i = 1, 2, . . . , F oodNumber; d = 1, 2, . . . , D, and
rand(0, 1) is a random number distributed uniformly over
the interval [0,1]; lbd and ubd are lower and upper bounds
of the dth dimension respectively.

Second, a variable triali will be assigned to each food
source i in order to find food sources to be abandoned in
the next iterations. If a food source could not get optimized
in a number of trials (i.e. limit), its related employed bee
will turn into a scout bee and after doing a random search, it
will turn back to be an employed bee again. Variable triali
is a counter of unsuccessful trials for food source i, and
each triali, i = 1, 2, . . . , F oodNumber is set to 0 in the
initialization phase.

Finally, we calculate the objectives for each food source,
and try to add it into the external archive. The global best
food source gbest is initialized as a solution selected from
the archive by using roulette wheel method. If the loca-
tion of a solution is less crowded, then it will be chosen

with higher probability. The following subsection will give
details on archive maintenance.

3.3 Maintain archive

In dMOABC, an external archive is used to store and update
all of the non-dominated solutions. The archive has a maxi-
mum size, ArchiveSize, which is set by the user to reflect the
required number of final solutions desired. In order to make
sure that solutions in the archive approximate the true Pareto
front as close as possible, a self-adaptive grid is adopted for
the purpose of diversity maintenance. Actually, maintaining
archive involves two main tasks:

– Update grid [27]. For a problem with m criterions, the
whole objective space is divided by a m-dimensional
grid which is used to keep track of the degree of crowd-
ing in different regions of the solution space. When
a solution is generated its grid location is determined
by using recursive subdivision and noted using a tree
encoding. A map of the grid is also maintained, indi-
cating for each grid location how many and which
solutions in the archive currently reside there. When
trying to add a candidate solution into the archive,
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the algorithm needs to first check whether the can-
didate exceeds the grid or not. If the candidate is
located beyond the grid, the grid will be self-adaptively
updated so as to make the new solution included. The
objective space is then redivided, and grid locations
for the new candidate and all solutions in the archive
are recalculated. Besides, the degree of crowding( i.e.,
grid-location count) for each grid is also redetermined.

– Add candidate solution into the archive [28]. After the
grid is updated (if necessary), the new solution s will
be added into the archive provided one of the following
conditions is satisfied:

a). the archive is empty ;
b). the archive is not full and s is not dominated by or

equal to any member in the current archive;
c). s dominates any member in the archive ;
d). the archive is full but s is non-dominated and is in

a no more crowded square than at least one solution
in the archive.

In addition, the archive will be maintained such that
all solutions are non-dominated. To be specific, all solu-
tions that are dominated by s will be removed from the
archive in case c, and s will replace one of the archived
solutions with the highest grid-location count in case d.

3.4 Send employed bees

The pseudo code of Send Employed Bees() is given in
Fig. 2. For each food source xi, its employed bee will
explore a temporary position denoted as vi. The position vi
is a copy of the food source with one randomly selected
dimension d to be changed [3]. However, the updating
equations for new positions are different for different types
of colonies. Specifically, for basic colonies, one randomly
selected neighbor k is used to generate new positions which
could be formulated as follows:

vid = xid + φid · (xid − xkd), (10)

where φid is a real number randomly selected from interval
[-1,1]. Although k is determined randomly, it has to be dif-
ferent from i. From (10) we can find that as the difference
between xid and xkd decreases, the perturbation on the posi-
tion xid gets decreased, too. Thus, as the search approaches
the optimum solution in the search space, the step length is
adaptively reduced.

For the synthetic colony, the updating equation becomes

vid = xid + φid · (xid − xkd) + ϕid · (xid − gbestd ), (11)

where φid and ϕid are two different random numbers dis-
tributed uniformly over [−1, 1], and k is the same as in (10).
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As mentioned before, gbest is called the global best food
source. Equation 11 uses three parts to modify one dimen-
sion of the food sources which is analogous to the idea
introduced in literature [49]. By introducing gbest position,
it will attract the whole colony into a ”better” search region
and this operation will also enable a precise local search
around the neighborhood that gbest is located at. Note that
if the value produced by these operations overflows, then it
will be shifted onto the bound value.

After the new position for a food source is generated,
its objective values are then evaluated. If the new position
vi can dominate the old one, then this food source will be
replaced by the new position vector. If not, the update is
deemed as unsuccessful and trial value of this food source
will be incremented by one. If vi and xi are non-dominated
with each other, then this trial is also successful if vi could
be added into the archive.

If a trial for a food source is successful, then
its new food source vi will be used to update the
global best food source gbest. The logic for function
gbest = update gbest (gbest ,vi) (see Fig. 2) is as follows:
If (vi dominates gbest)

gbest = vi

Else If (vi and gbest are non-dominated with each other)
If (The grid-location count of vi is smaller than that

of gbest )
gbest = vi

End If
End If

After all foods sources have been updated, their fitness
values are calculated through function calculateF itness()

(see Fig. 2). In this paper, the method for calculating fitness
value is the same as SPEA2 [58]. Given an individual i, the
fitness value F(i) contains two parts: raw fitness value R(i)

and density information D(i), namely, F(i) = R(i)+D(i).
The raw fitness is determined by the strengths of its dom-
inators in both archive and colony, and it could avoid the
situation that individuals dominated by the same archive
members have identical fitness values. Density informa-
tion is incorporated to discriminate between individuals
having identical raw fitness values. Details of calculating
this kind of fitness value are available in literature [58].
It is important to note that fitness in SPEA2 is to be
minimized.
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3.5 Send onlooker bees

The pseudo code of Send Onlooker Bees is shown in
Fig. 3. After all employed bees optimized their food sources,
they will come to the hive to share information with the
onlooker bees about the quality of corresponding food
sources, and onlooker bees will then choose one food source
to be exploited. For this purpose, the probability for each
food source k advertised by the corresponding employed
bee will be calculated as follows:

probk = 1 − f it (xk)

FoodNumber∑

m=1
f it (xm)

, (12)

where f it (xm) returns the fitness value of xm. From (12)
we can find that a food source with lower fitness value
will be assigned with a higher selection probability, and
this is because the fitness value used in dMAOBC is to be
minimized.

Next, onlooker bees will choose a food source i based
on the probability provided by its employed bee by using
roulette wheel method. After that, they will randomly select
one dimension of that food source and do same as employed
bees to improve it. The updating equations for both basic

and synthetic colonies are in accordance with those in
employed bees phase given by (10) and (11), respectively.
Note again that if the parameter value produced by those
operations exceeds its predetermined limit, it will be set to
its boundaries.

3.6 Send Scout Bees

The pseudo code of Send Scout Bees is given in Fig. 4.
In this step, the algorithm will find abandoned food sources
to replace them with new ones. A food source that can’t be
improved by its employed or onlooker bee for limit cycles
will be discarded, and be replaced with a vector which is
generated similarly as in the initialization phase (see (9)).
The scout bees phase could help the algorithm get rid of
food sources that have been trapped in a local optimum. Just
as basic ABC, only one scout is allowed in each cycle for
each colony in our method.

3.7 Multi-colony model and information exchange

As previously stated, the dMOABC method employs three
colonies: two are basic ones and the third one is synthetic.
The schematic diagram of our multi-colony model is given
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in Fig. 5 which shows all possible relationships between
colonies and the archive. Line (1) means that non-dominated
solutions found by the synthetic colony are added into the
archive. Basic colonies share information with synthetic
colony by updating gbest, shown as line (2) and line (3).
Non-dominated solutions found by two basic colonies are
also added to the archive, so line (4) and line (5) exist. We
can find line (6) and line (7) are dotted, this is because
there exists no direct communication between two basic
colonies.

4 Experimental study

This section contains the computational results obtained by
the dMOABC algorithm compared to 11 other state-of-the-
art multi-objective methods over a set of unconstrained test
problems introduced in CEC09 [53].

4.1 Performance metrics

In this work, we use four indicators to provide quantitative
assessments over all algorithms, and they are: Hypervolume
(HV) [59], SPREAD [10], EPSILON [14], and IGD [14].

These metrics are computed by jMetal1, an object-oriented
Java-based framework for multi-objective optimization with
meta-heuristics, which was developed by J.J. Durillo and
A.J. Nebro [13, 14]. It is should be noted here that all
indicators but Hypervolume are to be minimized.

4.2 Benchmarks and experimental setup

In this section, several test functions from the CEC09
[53] are used in order to compare the performance of
dMOABC against other multi-objective algorithms. The
CEC09 benchmark presents a set of complex test problems,
and ten unconstrained ones (UF1-UF10) are selected for
the purpose of performance comparison. The mathematical
representation of these test problems are given in
Table 1. The UF1-UF7 are two objective test problems
while UF8-UF10 are three objective ones. The Pareto fronts
of these test problems have different characteristics (e.g. a
part of them are convex while the other ones are concave
or some of them are continuous while the other ones are
discontinuous) [3].

1url=http://jmetal.sourceforge.net/

http://jmetal.sourceforge.net/
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To observe the performance of the proposed dMOABC
method in solving multi-objective problems, its perfor-
mance is compared with MOEAD [52], SMPSO [35],
GDE3 [29], AbYSS [37], CellDE [15], IBEA [57], MOCell
[36], OMOPSO [42], NSGAII [11], PAES [27] and SPEA2
[58]. In all experiments, the maximum number of func-
tion evaluations is set at 300, 000 for each problem and
each algorithm. The maximum number of final solutions for
computing indicators is 100 for both two and three objec-
tives problems. Each algorithm is evaluated independently
30 times for each test problem. The dMOABC algorithm is
tested with a colony of size 10, so MaxIterations is set at
300, 000/10 = 30, 000. Since there are three colonies, each
colony iterates 30, 000/3 = 10, 000 cycles. According to
our experience, we set the values of control parameter limit

and depth at 100 and 6, respectively. The performance of
the dMOABC is evaluated under this configuration over all
test problems. dMOABC algorithm is implemented by our
Java code, and other algorithms are executed by running
jMetal software package.

We turn now to analyze the computed fronts in terms of
the diversity through the use of SPREAD indicator (Tables
4 and 5). In this case, the first three best algorithms are dis-
tributed among MOEAD, SPEA2, SMPSO and dMOABC.
Both MOEAD and SPEA2 have obtained the best values for

this indicator on three evaluated problems: UF1, UF3 and
UF7 for MOEAD; UF4, UF8 and UF9 for SPEA2. Another
algorithm obtaining good results in this indicator has been
dMOABC: it has computed the fronts with the best values of
the indicator in two out of the ten evaluated problems, plus
one second best value on test function UF1. For this indica-
tor, no algorithm has obtained obviously better results than
its competitors.

4.3 Performance analysis

The computational results on UF1-UF10 obtained by all
algorithms are shown in Tables 2–9. They include the mean
and standard deviation, as well as the median and interquar-
tile range (IQR) of all the independent runs for the indicators
HV, SPREAD, EPSILON and IGD, respectively. To ease
the analysis of these tables, some cells have a gray colored
background in each row; particularly, there are two differ-
ent gray levels: a darker one, pointing out the algorithm
obtaining the best value of the indicator, and a lighter one,
highlighting the algorithm obtaining the second best value
of the indicator [14].

We start by describing the values obtained in the HV
indicator. For this indicator, the higher the value, the better
the computed fronts. Thus, attending to Tables 2 and 3, we
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Fig. 6 Boxplots of the HV
obtained by the different
algorithms in the evaluated
problems

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

H
V

Box plots of problem UF1

d
M

O
A

B
C

 M
O

E
A

D
 S

M
P

S
O

 G
D

E
3

 A
b
Y

S
S

 C
e
ll
D

E

 I
B

E
A

 M
O

C
e
ll

 O
M

O
P

S
O

 N
S

G
A

II

 P
A

E
S

 S
P

E
A

2

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

H
V

Box plots of problem UF2

d
M

O
A

B
C

 M
O

E
A

D
 S

M
P

S
O

 G
D

E
3

 A
b
Y

S
S

 C
e
ll
D

E

 I
B

E
A

 M
O

C
e
ll

 O
M

O
P

S
O

 N
S

G
A

II

 P
A

E
S

 S
P

E
A

2

0.2

0.3

0.4

0.5

0.6

H
V

Box plots of problem UF3

d
M

O
A

B
C

 M
O

E
A

D
 S

M
P

S
O

 G
D

E
3

 A
b
Y

S
S

 C
e
ll
D

E

 I
B

E
A

 M
O

C
e
ll

 O
M

O
P

S
O

 N
S

G
A

II

 P
A

E
S

 S
P

E
A

2

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

H
V

Box plots of problem UF4

d
M

O
A

B
C

 M
O

E
A

D
 S

M
P

S
O

 G
D

E
3

 A
b
Y

S
S

 C
e
ll
D

E

 I
B

E
A

 M
O

C
e
ll

 O
M

O
P

S
O

 N
S

G
A

II

 P
A

E
S

 S
P

E
A

2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

H
V

Box plots of problem UF5

d
M

O
A

B
C

 M
O

E
A

D
 S

M
P

S
O

 G
D

E
3

 A
b
Y

S
S

 C
e
ll
D

E

 I
B

E
A

 M
O

C
e
ll

 O
M

O
P

S
O

 N
S

G
A

II

 P
A

E
S

 S
P

E
A

2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

H
V

Box plots of problem UF6

d
M

O
A

B
C

 M
O

E
A

D
 S

M
P

S
O

 G
D

E
3

 A
b
Y

S
S

 C
e
ll
D

E

 I
B

E
A

 M
O

C
e
ll

 O
M

O
P

S
O

 N
S

G
A

II

 P
A

E
S

 S
P

E
A

2

0

0.1

0.2

0.3

0.4

0.5

H
V

Box plots of problem UF7

d
M

O
A

B
C

 M
O

E
A

D
 S

M
P

S
O

 G
D

E
3

 A
b
Y

S
S

 C
e
ll
D

E

 I
B

E
A

 M
O

C
e
ll

 O
M

O
P

S
O

 N
S

G
A

II

 P
A

E
S

 S
P

E
A

2

0

0.05

0.1

0.15

0.2

0.25

0.3

H
V

Box plots of problem UF8

d
M

O
A

B
C

 M
O

E
A

D
 S

M
P

S
O

 G
D

E
3

 A
b
Y

S
S

 C
e
ll
D

E

 I
B

E
A

 M
O

C
e
ll

 O
M

O
P

S
O

 N
S

G
A

II

 P
A

E
S

 S
P

E
A

2

0

0.1

0.2

0.3

0.4

0.5

0.6

H
V

Box plots of problem UF9

d
M

O
A

B
C

 M
O

E
A

D
 S

M
P

S
O

 G
D

E
3

 A
b
Y

S
S

 C
e
ll
D

E

 I
B

E
A

 M
O

C
e
ll

 O
M

O
P

S
O

 N
S

G
A

II

 P
A

E
S

 S
P

E
A

2

0

0.05

0.1

0.15

0.2

0.25

H
V

Box plots of problem UF10

d
M

O
A

B
C

 M
O

E
A

D
 S

M
P

S
O

 G
D

E
3

 A
b
Y

S
S

 C
e
ll
D

E

 I
B

E
A

 M
O

C
e
ll

 O
M

O
P

S
O

 N
S

G
A

II

 P
A

E
S

 S
P

E
A

2



A MOABC algorithm based on division of the searching space 1003

Fig. 7 Boxplots of the
SPREAD obtained by the
different algorithms in the
evaluated problems
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Fig. 8 Boxplots of the
EPSILON obtained by the
different algorithms in the
evaluated problems
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Box plots of problem UF8

d
M

O
A

B
C

 M
O

E
A

D
 S

M
P

S
O

 G
D

E
3

 A
b
Y

S
S

 C
e
ll
D

E

 I
B

E
A

 M
O

C
e
ll

 O
M

O
P

S
O

 N
S

G
A

II

 P
A

E
S

 S
P

E
A

2

0.2

0.4

0.6

0.8

1

1.2

1.4

E
P

S
IL

O
N

Box plots of problem UF9

d
M

O
A

B
C

 M
O

E
A

D
 S

M
P

S
O

 G
D

E
3

 A
b
Y

S
S

 C
e
ll
D

E

 I
B

E
A

 M
O

C
e
ll

 O
M

O
P

S
O

 N
S

G
A

II

 P
A

E
S

 S
P

E
A

2

0.5

1

1.5

2

2.5

E
P

S
IL

O
N
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Fig. 9 Boxplots of the IGD
obtained by the different
algorithms in the evaluated
problems
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Fig. 10 The best Pareto fronts
obtained by the dMOABC
algorithm on the test problems
UF1-UF10 (The blue and red
lines represent the true and
approximated Pareto fronts,
respectively )
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Table 10 Average Rankings of the algorithms by applying Friedman test

Algorithm Ranking(HV) Ranking(SPREAD) Ranking(EPSILON) Ranking(IGD)

dMOABC 11.4 6.4 2.2 1.7

MOEAD 7.6 6.4 5.1 5.3

SMPSO 5.5 3.5 6.0 6.3

GDE3 6.0 7.0 5.4 5.4

AbYSS 7.3 6.9 6.8 6.6

CellDE 5.7 4.9 6.5 6.8

IBEA 6.4 9.9 8.1 9.2

MOCell 4.3 6.2 8.8 8.9

OMOPSO 5.2 4.2 7.3 6.7

NSGAII 7.3 9.1 5.5 5.2

PAES 3.9 7.2 10.3 10.7

SPEA2 7.5 6.3 6.0 5.2

see that the best indicator values are archived by dMOABC
algorithm, and the second best is MOEAD. dMOABC has
obtained the best or second best values in this indicator
for all the problems but UF3 and UF9; MOEAD has com-
puted the best fronts regarding to this indicator in four out
of the ten evaluated problems. AbYSS is also a compet-
itive algorithm which has gotten the second best values
on three functions (UF5, UF8 and UF10) in terms of the
mean value.

Next, we pay attention to the EPSILON values (Tables
6 and 7). Regarding this indicator, dMOABC has been
also the best algorithm; after it MOEAD has obtained the
best values in three out of the ten problems in terms of
the mean value. Another promising algorithm has been
GDE3, which has archived the best value in one out of
the ten problems and the second best values of the indi-
cator in two cases (see Table 6). For the median val-
ues regarding this indicator, similar conclusion could be
reached.

Finally, we compare algorithms in terms of IGD
indicator (Tables 8 and 9). Definitely, in this case,
dMOABC has performed the best. Then it comes to
MOEAD, archiving the best or second best values
regarding to this indictor in five out of the ten eval-
uated problems in terms of both mean and median
values.

The above conclusions are drawn just based on the num-
ber of the best or the second best results obtained by
each algorithm. Average rankings of the algorithms will
be given by using statistical test shown in Subsection 4.4.
More detailed information can be obtained if we display
the results by using boxplots, which constitutes a useful
way of depicting groups of numerical data. In this case, the
boxplot representing the distribution of values for the all

indicators in the comparison carried out are showed in Fig.
6–9. Some interesting facts can be worked out by observ-
ing the figure. For example, in problems UF4, UF6 and
UF10, we observe that dMOABC has clearly outperformed
to the other algorithms in terms of HV indicator. Regarding
indicator IGD, dMOABC has been the most salient on func-
tions UF1, UF4, UF5, UF6, UF10. From these figures, we
find dMOABC produces more stable results in most cases,
that is to say, our algorithm has better robustness than other
algorithms.

4.4 Nonparametric statistical test

One of the most frequent situations where the use of statis-
tical procedures is requested is in the joint analysis of the
results achieved by various algorithms [12]. To determine
whether the differences between the 12 involved algorithms
introduced in Subsection 4.2 are significant or not, this
section will perform multiple comparisons using Friedman
test [12] which is one of the commonly used nonparametric
statistical test procedures.

Average rankings of each algorithm for each indicator
obtained by applying Friedman test are shown in Table
10. These rankings are also computed by jMetal software.
The Friedman test assumes that the lower the values of the
indicators the better. This is true in all the indicators but
the hypervolume. It could be seen from Table 10 that the
dMOABC is significantly better than other algorithms in
terms of indicators HV, EPSILON and IGD. As for indica-
tor SPREAD, SMPSO performs the best, and dMOABC is
comparable to MOEAD algorithm.

Summarizing, according to the problems, parameter set-
tings and the quality indicators used, dMOABC has been the
most salient algorithm in our study.
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Fig. 11 The convergence
behavior of dMOABC
throughout maximal number of
function evaluations (The blue
and red lines represent the true
and approximated Pareto fronts,
respectively )
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4.5 Distribution and convergence analysis

For each test function, the approximated fronts computed
by dMOABC, together with the true fronts, are plotted in
Fig 10. In this figure, the computed front is a combina-
tion of all archive members returned by dMOABC over 30
independent runs. It is shown by this figure that the Pareto
fronts produced by dMOABC algorithm over the UF1 and
UF2 test problems not only have good convergence but also
has appropriate distribution along the true Pareto front in
objective space.

For the UF3 test problem, the approximated fronts dis-
tribute uniformly in the middle part of the true front, but

are not evenly distributed in the top-left and bottom-right
corners of the Pareto front. Figure 10 shows that dMOABC
algorithm has the ability to produce the uniformly dis-
tributed Pareto front on UF4 test function.

It seems that the UF5 is a hard problem to be solved
since it has a discontinuous Pareto front. Most of the algo-
rithms have difficulties in approximating to its true Pareto
front [3]. It is shown by Fig. 10 that the produced Pareto
front by dMOABC is uniformly distributed along the true
one.

The Pareto front of UF6 is also discontinuous. Hence, an
optimization algorithm needs to pay more attention to the
Pareto front and moves the archive members to the parts of
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solution space which contain the members of Pareto fronts.
The results show that most of the algorithms have difficulty
in optimizing this type of test problems [3]. Figure 10 also
shows that our algorithm could produce nearly uniformly
distributed fronts for the problem.

For problem UF7, it could be seen from Fig. 10 that the
top-left corner of the Pareto front is not successfully covered
by the dMOABC algorithm. Hence, the value of indicator
SPREAD increases over the UF7 test problem.

The UF8 is the first three objective test problem inves-
tigated in this paper. Usually, the complexity of multi-
objective problems increases by the number of objectives
to be optimized. The quality of the approximated Pareto
front is shown in Fig. 10. It is apparent from the results that
the dMOABC produces a set of solution points which have
an appropriate distribution in the 3 dimensional objective
space.

For the test problem UF9, Fig. 10 shows that the
dMOABC produces a set of non-dominated points which
covers a large part of the objective space. However, small
parts of the objective space are not covered by the approxi-
mated Pareto front.

It seems that UF10 is also a hard problem to be solved.
Figure 10 shows that the approximated Pareto front found
by the dMOABC algorithm distributes nearly uniformly, but
with a small number of non-dominated solutions.

Next, the behavior of the dMOABC in converging to the
optimal Pareto front is studied. By setting the maximal num-
ber of function evaluations at 3K, 6K, 30K, 60K, 300K and
600K, we plot the approximated Pareto front of the UF4 test
problem under different situations in Fig. 11. The results
show that the dMOABC algorithm continuously improves
its performance with the increase of the maximum number
of function evaluations. From Fig. 11, we can find that the
number of non-dominated solutions continuously increases
and the distance between the true and the approximated
Pareto front continuously decreases, with function evalua-
tions varying from 3K to 600K. Although the dMOABC
rapidly converges to the optimal Pareto front at the first
function evaluations, it can produce a few solution points.
As the number of function evaluations proceeds, the num-
ber of produced solutions increases and better distribution of
them is achieved. An algorithm needs to provide appropriate
balance between exploration and exploitation and mitigate
the hard constriction on the flying trajectories of its indi-
viduals in order to avoid premature convergence [3]. The
dMOABC algorithm uses some mechanisms to avoid itself
being trapped into a local optimum: the use of both neighbor
and social knowledge helps flying in the right trajectories
toward food sources; the communication between basic and
synthetic colonies also enables the algorithm to explore
other optimal positions produced by basic colonies so as to
avoid premature convergence.

4.6 Computational complexity

The computational complexity is an important factor when
evaluating an algorithm. Although our dMOABC achieves
good performance on CEC09 test functions, its space com-
plexity is great since three colonies are used. The larger
the number of colonies is, the greater the space complex-
ity will be. However, we can find that there exists potential
parallelism among the three colonies. That is to say, the
dMOABC algorithm can be easily modified to a paral-
lel algorithm with three processors, and each one for each
colony. Hence, the running time of the dMOABC will
decease significantly.

5 Conclusion

In this paper, we have presented a new multi-objective artifi-
cial bee colony algorithm by dividing the searching space. In
our proposed method, three colonies are used: two of them
are basic colonies and the third one is called the synthetic
colony. These colonies search in different regions of the
searching space and share information with each other, and
the aim for that is to avoid being attracted into a local opti-
mum. An external archive is adopted to store non-dominated
solutions found by the algorithm, and the diversity of
archived solutions is controlled by a self-adaptive grid.
Besides neighbor information, social information shared by
the external archive, called gbest, is also used to guide the
flying of both employed and onlooker bees in the synthetic
colony. Compared to other state-of-the-art algorithms con-
sidered in this work, the experimental study shows that our
method achieves the first rank in terms of indicators HV,
EPSILON and IGD. Some improvements and extensions
are currently being investigated by the authors, including
using ε dominance method to maintain the archive and
extending it to be a parallel algorithm, or modifying it for
handling multi-objective optimization problems. Practical
applications of this algorithm would also be worth studying.
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